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Abstract

These are notes based on discussions at DIMACS in May 2008.

1 Dining Cryptographers

Figures 1, 2, and 3 describe the master process, the signature and state set of
a cryptographer, and the transition relation of a cryptographer, respectively.
In the definitions above, each action name is a task. Thus, one of the tasks
is {pay i(T ), pay i(F )}.

From the discussion about the correctness of Dining Cryptographers we
ended up with the following informal formulation of correctness: for every
scheduler σ and every observation o of player 0, µσ(M1‖C0‖C1‖C2)(o) =
µσ(M2‖C0‖C1‖C2)(o), where with the notation µσ(M1‖C0‖C1‖C2)(o) we
mean the probability of o in the probabilistic execution of M1‖C0‖C1‖C2

induced by σ. In other words, for every scheduler σ cryptographer 0 has
no way to distinguish the situation in which cryptographer 1 is paying from
the situation in which cryptographer 2 is paying. The scheduler has to be
restricted in power, and we reached the conclusion that according to the def-
inition given in the CONCUR paper of Chatzikokolakis and Palamidessi [3]
using task schedulers should be ok.

We take this definition for granted, given that we derived it from the
CONCUR paper mentioned above. However, we will need to see whether
there are alternative definitions (e.g., by exchanging quantifications) that
are equivalent or more interesting.

An observation of a cryptographer should be seen as the actual execution
performed by the cryptographer. Thus, in the framework of task PIOAs, we
can reformulate the correctness condition as follows: let Pi, i ∈ {0, 1, 2}, be
Mi‖C0‖C1‖C2. Then,
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Signature:

Input:

Output:
pay i(c), c ∈ {T, F}, i ∈ {0, 1, 2}

Internal:

Tasks:

choose culprit = {choose culprit0,

choose culprit1, choose culprit2}

Task Distributions:

P

2

i=0
ri δchoose culprit=i

State:

tell crypto i ∈ {⊥, T, F}, i ∈ {0, 1, 2} − {n}, initially F

tell crypton ∈ {⊥, T, F}, initially T

Transitions:
Output pay i(c)

Precondition:
tell cryptoi = c

Effect:
tell cryptoi := ⊥

Figure 1: The Master automaton that chooses the culprit
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Signature:

Input:
pay i(c), c ∈ {T, F}
coin i−1(c), c ∈ {T, F}
announce j(c), j ∈ {0, 1, 2} − {i}, c ∈ {T, F}

Output:
coin i(c), c ∈ {T, F}
announce i(c), c ∈ {T, F}

Internal:
flipi

State:

lcoin ∈ {⊥, T, F} initially ⊥
ncoin ∈ {⊥, T, F} initially ⊥
comparej ∈ {⊥, T, F}, j ∈ {0, 1, 2} initially ⊥
payer ∈ {⊥, T, F} initially ⊥
coin-sent ∈ {T, F} initially F

announced ∈ {T, F} initially F

Figure 2: The signature and state set of cryptographer i

∀ρ µP1,ρ⌈C0 = µP2,ρ⌈C0. (1)

Actually, to be more precise, we should do the same operation for each
cryptographer, so we should write the same formula for C1 and C2. We omit
this for the moment.

Now we would like to use simulation relations to prove the equality above.
Thus, we want to find a simulation relation from P1 to P2 and vice versa
that implies the equality above. In particular, given that the scheduler must
be the same in both probabilistic executions. This seems to be achievable
by requiring the map c from tasks of the implementation to sequences of
tasks of the specification to be the identity.

Observe first that we can rewrite the correctness equation as

∀ρ µP ′

1
,ρ⌈C0 = µP ′

2
,ρ⌈C0, (2)

where P ′
i is defined as HideA0

(Pi) and A0 is the set of actions that are not
external in C0.

We can prove a theorem of this style: Equation (2) is true if all actions
of C0 are external and we can find a simulation relation from P ′

1 to P ′
2 and
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Transitions:
Input pay i(c)

Effect:
payer = c

Input coini−1(c)
Effect:

ncoin = c

if lcoin 6= ⊥ then comparei = lcoin ⊕ c

Input announcej(c)
Effect:

comparej = c

Internal flipi

Precondition:
lcoin = ⊥

Effect:
lcoin :=R {T, F}
if ncoin 6= ⊥ then comparei = lcoin ⊕ c

Output coin i(c)
Precondition:

coin-sent = F

lcoin = c

Effect:
coin-sent := T

Output announcei(c)
Precondition:

announced = F

payer 6= ⊥
c = comparei ⊕ payer

Effect:
announced := T

Figure 3: The transition relation of cryptographer i
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vice versa that is the identity on C0 and such that the task map c is the
identity. In practice we need to externalize also actions flipi, which is not a
problem, though.

The simulation essentially should be the identity function with the ex-
ception that the values of payer 1 and payer 2 are reversed, when defined,
the value of lcoin of C1 is reversed, when defined, and similarly the value of
ncoin of C2 is reversed.

To prove that the simulation is correct we can try to be smarter than just
applying the step condition. In particular we can check the step condition
just from single states and single actions. Of course we need to prove a
theorem stating that this is sound. This follows from the fact that we have
defined the relation on states. The relation on measures is just the lifting.

Almost all actions are rather trivial to handle since they affect the states
in the same way in the specification and the implementation. The actions
that have an impact are flip1 where essentially we have to exchange the
outcomes and where this can be done because all coins are fair, coin1, where
the actual action is different but causes no problem since it is internal. In
both cases we just need to make sure that variable compare? is set correctly.
We will work out the details later.

From the discussion it emerged that it is possible to exhibit a simulation
relation in the style above from any master that probabilistically chooses
between C1 and C2 as payer. There should be also a general way to say that
a randomized master is just a convex combination of deterministic masters,
and thus, by convexity, the correctness under randomized masters follows
from the correctness under deterministic masters.

We have discussed what happens if we consider randomized schedulers.
We can define a randomized task scheduler just as a sequence of probability
measures on tasks.

We have also discussed about what would happen if we leave the master
nondeterministic. Correctness follows provided that we compare two task
schedulers that differ only on the probabilities chosen within the master. A
formal definition of this idea is not immediate. A simplification is to state
that the choice of the master is resolved at the first step.

We should get the details of this proof worked out as well as the general
theorems that are needed within the model. It should be useful also to
investigate what we can do with respect to the more general cases studies
by Kostas and Catuscia in the context of the dining cryptographers.
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2 The GMW Framework for Computing a func-
tion

We have investigated how to use the Task-PIOAs framework to analyze
the passive adversary case of the protocol. We want to compose oblivious
transfer with implementation of and and or gates. Using compositionality
we can replace the implementations needed for oblivious transfer with ideal
specifications. We can prove correctness of the gates assuming ideal oblivious
transfer, and again by compositionality get to a point where we have ideal
gates only and from there derive correctness.

We need to check whether the compositionality result of Cheung et. al.,
CSF 2007, applies and see exactly how to use it. We have not thought of
active adversaries yet, but should be interesting to consider them. The main
point of the case study is to show that compositionality can simplify greatly
the analysis.

3 Probabilistic Input/Output Automata

Our approach utilizes task-structured probabilistic input/output automata
as a basic model of computation. In this section, we make this notion precise,
and also make precise what we mean by a computation in this setting.

A Probabilistic Input/Output Automaton A is a 6-tuple
(Q, q0, I,O,H,D) where:

1. Q is a countable set of states;

2. q0 ∈ Q is the start state;

3. I, O and H are pairwise disjoint, countable sets of actions, referred to
as input, output and internal actions, respectively. The set Act ::= I∪
O ∪ H is called the set of actions of A. If I = ∅, then A is closed.
The set of external actions of A is E ::= I ∪ O and the set of locally
controlled actions is L ::= O ∪ H.

4. D ⊆ Q × A × Prob(Q) is a transition relation. An action a is enabled
in a state q if (q, a, µ) ∈ D for some µ.

In addition, A satisfies:

• Input enabling: For every q ∈ Q and a ∈ I, a is enabled in q.

6



D
R

A
FT

• Transition determinism: For every q ∈ Q and a ∈ A, there is at
most one µ ∈ Prob(Q) such that (q, a, µ) ∈ D.

We denote probabilistic input-output automata as PIOAs. We have
retained the traditional assumptions from, e.g., [8], that the state space and
set of actions of a probabilistic I/O automaton are countable in order to
utilize the fact that all measures are discrete. A probabilistic input/output
automaton can be realized as a labelled transition system where:

1. Given a state q ∈ Q and an action a ∈ Act, there is a unique probability
distribution µq,a ∈ Prob(Q) which can be executed in state q “by action
a”, if there is such a distribution at all. This means the transition
relation is a partial function ∆: Q × Act ⇀ Prob(Q) with ∆(q, a) =
µq,a, when ∆(q, a) is defined.

2. For any state q ∈ Q, every a ∈ I is enabled in q, so the restriction
∆|Q×I : Q × I → Prob(Q) is a total function.

3. The obvious domain equation for PIOAs is

E ≃ E × Act ⇀ Prob(E),

where X ⇀ Y is the set of partial functions from X to Y .

Since we have no final states in Q, there is a question of what a computa-
tion of a probabilistic automaton is. As we describe in more detail later, our
interest is in the trace distributions of observable events of the automation
A. Toward that end, we develop the following definition.

If a ∈ Act, then we define

Aa = {α ∈ Exec(A) | a enabled in lstate(α)}.

Then, for a = a0a1 · · · ∈ Act∞, is a sequence of actions of the PIOA A, we
define a sequence of probability distributions on Exec(A) by

µ0 = δq0

µn =
∑

α6∈Aan

µn−1(α)δα +
∑

α∈Aan

µn−1(α)




∑

q∈Q

µlstate(α),an
(q)δαanq





where µlstate(α),an
is the unique probability distribution for which

(lstate(α), an, µlstate(α),an
) ∈ D.
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1. µn ∈ Prob(Exec(A)) for each n ∈ N.

2. µn ≤ µn+1 for each n ∈ N.

3. If a ∈ Actω is an infinite sequence, then µa = supn µn ∈ Prob(Exec(A))
is well-defined.

Proof. For (1), we proceed by induction. Clearly µ0 = δq0
∈ Prob(Exec(A)).

Suppose µn−1 ∈ Prob(Exec(A)), and consider µn. If α ∈ Aan , then
µlstate(α),an

∈ Prob(Q), and so ||µn−1(α)(
∑

q∈Q µlstate(α),an
(q)δαanq)|| =

µn−1(α). It follows that

||µn|| = ||
∑

α6∈Aan

µn−1(α) +
∑

α∈Aan

µn−1(α)|| = ||µn−1|| = 1

For (2), let n ∈ N. Given α ∈ suppµn ∩ Aan , we define tα,αanq =
µn−1(α)µlstate(α),an

(q). Then as in (1),

• µn−1(α) = µn−1(α)
∑

q µlstate(α),an
(q) =

∑
q tα,αanq, and

• tα,αanq = µn−1µlstate(α),an
(q)

from which it follows that µn−1 ≤ µn.
Finally, (3) now follows from (1) and (2).

Let A be a probabilistic input/output automaton. Given a sequence a =
a0a1 · · · ∈ Act∞ of actions of A, the computation of A over a0a1 · · · is the
probability measure µa = sup {µn | µn is defined}.

If A is a PIOA and a = a0 · · · ∈ Act∞ is a sequence of actions, then
suppµa consists of incomparable execution fragments.

Proof. By definition, µa = supn{µn | µn is defined}. Moreover, δq0
consists

of execution fragments that are incomparable, since its support consists
of just q0. Suppose that µn−1 is defined and has support consisting of
incomparable fragments. Then

µn =
∑

α6∈Aan

µn−1(α)δα +
∑

α∈Aan

µn−1(α)




∑

q∈Q

µlstate(α),an
(q)δαanq



 .

By assumption, all α 6∈ Aan are incomparable with one another and with
all α ∈ Aan , and vice versa. It follows that all α 6∈ Aan are incomparable
with all fragments in {αanq | α ∈ Aan & q a state}. It also is clear that
all fragments in {αanq | α ∈ Aan & q a state} are incomparable since they
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are distinct extensions of incomparable the fragments in Aan . Thus the
support of µn consists of incomparable fragments. Thus, suppµa consists
of incomparable fragments if a is finite.

Finally, suppose a is infinite. If β′ is a finite fragment in the support of
µa, then β′ arises in µn for some n, and then no extension of β′ is in the
support of µa by the previous argument. Hence β and β′ are incomparable.
Last, any two infinite fragments are incomparable, so β cannot compare to
any other infinite fragment in the support.

3.1 Tasks

A task probabilistic Input/Output automaton is a pair T = (A,R) where

• A = (Q, q0, I,O,H,D) is a probabilistic I/O automaton, and

• R ⊆ (O × O) ∪ (H × H) is an equivalence relation on the locally
controlled actions. The equivalence classes of R are called tasks.

A task-PIOA T is said to be action deterministic if it satisfies:

• Action determinism: For every state q ∈ A and every task T ∈ R,
there is at most one action a ∈ Act that is enabled in q.

As opposed to [2], we will consider more general task-PIOAs than those
that are action-deterministic. Because of this, we must impose an additional
requirement on such processes:

• A task PIOA T = (A,R) is also equipped with a function σ : R ×
Exec∗(A) → Prob(Act) satisfying the property that

σ(T, α)(a) > 0 ⇒ a ∈ T & a enabled in lstate(α).1

A task schedule for a task-PIOA T is a finite or infinite sequence ρ = T1T2 · · ·
of tasks in R.

4 Task Schedules and Their Schedulers

We now define how to apply a task to a probability distribution on the
execution sequences of a task-PIOA. This definition of Apply is first given

1Note that if {a | a ∈ T & a enabled in lstate(α)} consists of a single action, a0, then
σ(T, α)(a) > 0 implies a = a0, so σ(T, α)(a0) = δa0

, which means this definition agrees
with the one in [2] in case T is action-deterministic.
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for a single task. Our definition here generalizes the one in [2] in two ways:
first, we consider tasks that are not action-deterministic, and second, even
in the case of action -deterministic tasks, our definition is not the same one
as in [2]. However, for action-deterministic tasks, they do amount to the
same thing.

For a task T , let AT be the set of finite execution fragments in whose
last state the task T is enabled:

AT = {α ∈ Exec∗(A) | (∃a ∈ T ) a enabled in lstate(α)}.

For each finite execution fragment α ∈ AT and action a ∈ Act for which
σ(T, α)(a) > 0, let ν(α, a) be the target measure of the unique transition
(lstate(α), a, ν(α, a)) ∈ D. Then we define

Apply(µ, T ) =
∑

α6∈AT

µ(α)δα+
∑

α∈AT

µ(α)

[
∑

a∈T

σ(T, α)(a)

(
∑

s

ν(α, a)(s)δαas

)]

(3)
For a finite task schedule ρ = T1 · · ·Tn, we define

Apply(µ, ρ) = Apply(Apply(µ, T1 · · · Tn−1), Tn)

and if ρ is infinite, we define

Apply(µ, ρ) = sup
n

Apply(µ, T1 · · ·Tn).

Of course, we must show that this last is well-defined.
Let µ =

∑
α µ(α)δα ∈ Prob(Frags∗(A)), then

µ ≤ Apply(
∑

α

µ(α)δα, ρ) =
∑

α

µ(α)Apply(δα, ρ).

In particular, Apply(µ, ρ) is well-defined for any task sequence ρ = T1 · · · .

Proof. If ρ = λ then Apply(ρ, µ) = µ, so the result is trivial, while if ρ = T

is a single task, then

Apply(µ, T ) =
∑

α6∈AT

µ(α)δα +

∑

α∈AT

µ(α)

[
∑

a∈T

σ(T, α)(a)

(
∑

s

ν(α, a)(s)δαas

)]
(4)

=
∑

α6∈AT

µi(α)Apply(δα, T ) +
∑

α∈AT

µ(α)Apply(δα, T )

=
∑

α

µ(α)Apply(δα, T ).
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The fact that µ ≤ Apply(µ, T ) is obvious from Equation 4.
Next, if ρ = ρ′T is finite, then

Apply(µ, ρ) = Apply(Apply(µ, ρ′), T )

= Apply(
∑

α

µ(α)Apply(δα, ρ′), T )

=
∑

α

µ(α)Apply(Apply(δα, ρ′), T )

Assuming by induction that µ ≤ Apply(µ, ρ′), then µ ≤ Apply(µ, ρ) follows
from the basis step.

Finally, if ρ = T1 · · · is infinite, then we have just shown that
{Apply(µ, T1 · · ·Tn)}n is an increasing sequence in Prob(Frags∗(A)) whose
supremum, Apply(µi, ρ) is well-defined. Clearly µ ≤ Apply(µ, ρ) in this
case.

If µ =
∑

i piµi, then

µ ≤ Apply(
∑

i

piµi, ρ) =
∑

i

piApply(µi, ρ).

Proof. By the Proposition, we know that µi ≤ Apply(µi, ρ) for each index i,
so

µ =
∑

i

piµi ≤
∑

i

piApply(µi, ρ) = Apply(
∑

i

piµi, ρ),

the last equality following by expanding each µi as a convex sum of point
masses and then applying the Proposition once again.

We now prove a useful result about Apply and measures µ whose support
consists of incomparable fragments.

1. If µ is a measure whose support consists of incomparable fragments and
ρ is a task sequence, then all fragments in the support of Apply(µ, ρ)
are incomparable.

2. If ρ is a task sequence, then all fragments in the support of Apply(δα, ρ)
are incomparable.
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Proof. For (1), suppose the support of µ consists of incomparable elements.
Then µ =

∑
α µ(α)δα and α 6= α′ implies α and α′ are incomparable. If T

is a task, then

Apply(µ, T ) =
∑

α6∈AT

δα +
∑

α∈AT

µ(α)

[
∑

a∈T

σ(T, α)(a)

(
∑

s

ν(α, a)(s)δαas

)]
,

where a ∈ T is enabled in lstate(α). Thus, the support of Apply(µ, T ) consists
of α 6∈ AT together with {αas | α ∈ AT , a ∈ T & s a state}. By assumption,
all α 6∈ AT are incomparable with one another and with all α ∈ AT , and
vice versa. It follows that all α 6∈ AT are incomparable with all fragments
in {αas | α ∈ AT , a ∈ T & s a state}. It also is clear that all fragments in
{αas | α ∈ AT , a ∈ T & s a state} are incomparable since they are distinct
extensions of incomparable the fragments in AT .

If ρ is finite, then the result follows by induction on the length of ρ. If
ρ = T1 · · · is infinite, then Apply(µ, ρ) = supn Apply(µ, T1 · · ·Tn). If β is
in the support of Apply(µ, ρ) and β is finite, then β ∈ Apply(µ, T1 · · · Tn)
for some n. The result for finite task schedules implies β is incomparable
with all elements in the support of Apply(µ, T1 · · ·Tn), and because β is in
the support of Apply(µ, ρ), it follows that no subsequent task Tm, m > n is
enabled in lstate(β). Hence, no extension of β is in the support of Apply(µ, ρ).
Since no prefix of β is in the support either, β is incomparable with all other
fragments in the support.

Finally, suppose β is infinite. If β′ is a finite fragment in the support
of Apply(µ, ρ), then β′ arises in Apply(µ, T1 · · ·Tn) for some n, and then no
extension of β′ is in the support of Apply(µ, ρ) by the previous argument.
Hence β and β′ are incomparable. Last, any two infinite fragments are
incomparable, so β cannot compare to any other infinite fragment in the
support.

Part (2) follows since point masses have only one fragment in their sup-
port.

We now consider the analog to applying task schedules to distributions,
viz. realizing them via task schedulers. We first make this notion precise.
( [2]) If A is a Task PIOA, then a task scheduler for A is a mapping
σ : Exec∗(A) → V(Act) satisfying σ(α)(a) > 0 ⇒ a is enabled in lstate(α),
where V(Act) is the family of subprobability measures over Act. Given such
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a mapping, and an α ∈ Exec∗(A), we define ǫσ,α ∈ Prob(Exec∗(A)) by:

ǫσ,α(↑α′) =






0 if α′ 6≤ α 6≤ α′

1 if α′ ≤ α

ǫσ,α(↑α′′)σ(α′′)(a)ν(α′′, a)(s) if α ≤ α′ = α′′as,

where ν(α′′, a)(s) is the probability of landing in state s starting from
lstate(α′′) after executing action a.

Further, if µ ∈ Prob(Exec∗(A)), then we define ǫσ,µ =
∑

α µ(α)ǫσ,α.
Let A be a task PIOA and let σ : Exec∗(A) → V(Act) be a task scheduler.

If α ∈ Exec∗(A), we define

ǫ′σ,α = (1 − ||σ(α)||)δα +
∑

a∈Act

σ(α)(a)

(
∑

s

ν(α, a)(s)ǫ′σ,αas

)

Then, ǫ′σ,α = ǫσ,α for all schedulers σ and α ∈ Exec∗(A).

Proof. Before proving the result, we first define a sequence of approximants
to ǫ′σ,α as follows:

ǫ′σ,α,0 = δα

ǫ′σ,α,n+1 = (1 − ||σ(α)||)δα +
∑

a∈Act

σ(α)(a)

(
∑

s

ν(α, a)(s)ǫ′σ,αas,n

)

Claim 1: ||ǫ′σ,α,n|| = 1 and ǫ′σ,α,n ≤ ǫ′σ,α,n+1 for each α ∈ Exec∗(A) and each
n ∈ N.

Proof: We proceed by induction on n. For n = 0 let α ∈ Frags∗(A). The
clearly ||ǫ′σ,α,0|| = 1 Also we have ǫ′σ,α,0 = δα and

ǫ′σ,α,1 = (1 − ||σ(α)||)δα +
∑

a∈Act

σ(α)(a)

(
∑

s

ν(α, a)(s)ǫ′σ,αas,0

)

= (1 − ||σ(α)||)δα +
∑

a∈Act

σ(α)(a)

(
∑

s

ν(α, a)(s)δαas

)

But, ν(α, a) is a probability distribution, so ||
∑

s ν(α, a)(s)δαas|| = 1 for
each a ∈ Act. It follows that ||ǫ′σ,α,1|| = 1. Moreover, we can define “trans-
port numbers” t0,1 = (1−||σ(α)||) and t0,1(a, s) = σ(α)(a)ν(α, a)(s) so that
1 = t0,1(α) +

∑
a,s t0,1(a, s) and

ǫ′σ,α,1 = t0,1(α)δα +
∑

a,s

t0,1(a, s)δαas

This shows ǫ′σ,α,0 ≤ ǫ′σ,α,1.
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Now, assume that, for all α ∈ Exec∗(A) and all k ≤ n, ||ǫ′σ,α,k|| = 1 and
ǫ′σ,α,k−1 ≤ ǫ′σ,α,k. Then

ǫ′σ,α,n = (1 − ||σ(α)||)δα +
∑

a∈Act

σ(α)(a)

(
∑

s

ν(α, a)(s)ǫ′σ,αas,n−1

)

and

ǫ′σ,α,n+1 = (1 − ||σ(α)||)δα +
∑

a∈Act

σ(α)(a)

(
∑

s

ν(α, a)(s)ǫ′σ,αas,n

)

By the inductive hypothesis, for each a ∈ Act and each state s, we have

||ǫ′σ,αas,n−1|| = ||ǫ′σ,αas,n|| = 1 and ǫ′σ,αas,n−1 ≤ ǫ′σ,αas,n.

It then is clear that ||ǫ′σ,αas,n+1|| = 1, and the fact that ǫ′σ,αas,n−1 ≤ ǫ′σ,αas,n

means there are transport numbers demonstrating this fact; these can then
be augmented by numbers analogous to those given in the base case to show
ǫ′σ,αas,n ≤ ǫ′σ,αas,n+1. (Claim 1)

Since {ǫ′σ,αas,n}n ⊆ Prob(Exec∗(A)) is an increasing chain, it has a supre-
mum ǫ′′σ,α = supn ǫ′σ,αas,n.

Claim 2: ǫ′′σ,α = ǫ′σ,α

Proof: We show ǫ′′σ,α(α′) = ǫ′σ,α(α′) for all α′. First, if α′ 6≤ α 6≤ α′, it is
clear that both are 0, so they are equal.

Next, for α′ < α, ǫ′′σ,α(α′) = 0 since ǫ′σα,n(α′) = 0 for all n. Likewise,
since ǫ′σ,α is concentrated on ↑α, we have ǫ′σ,α(α′) = 0.

Further, ǫ′′σ,α(α) = (1−||σ(α)||) since this holds for ǫ′σ,α,n for each n ≥ 1.
Likewise, ǫ′σ,α(α) = (1−||σ(α)||). Since α is arbitrary, we can use this result
to prove our claim. Namely, if α ≤ α′ then there are a1, . . . , an ∈ Act and
states s1, . . . , sn so that α′ = αa1s1 . . . ansn. Then

ǫ′′σ,α(αa1s1 . . . ansn) = sup
m

ǫ′σ,α,m(αa1s1 . . . ansn).

For m ≥ n + 1,

ǫ′σ,α,m(αa1s1 . . . ansn) = (1 − ||σ(αa1s1 . . . ansn||)

= ǫ′σ,αa1s1...ansn
(αa1s1 . . . ansn),
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the second equality following from the first step. An easy induction on the
definitions of ǫ′σ,α shows that

ǫ′σ,α(αa1s1 . . . ansn) = σ(α)(a1)ν(α, a1)(s1) · · · σ(α . . . an−1sn−1)(an)

· ν(α . . . an−1sn−1, an)(sn)ǫ′σ,αa1s1...ansn
(αa1s1 . . . ansn)

= σ(α)(a1)ν(α, a1)(s1) · · · ν(α . . . an−1sn−1, an)(sn)(1 − ||σ(α . . . ansn)||),

and that an analogous result holds for ǫ′′σ,α,m if m ≥ n + 1. It follows that

ǫ′σ,α(αa1s1 . . . ansn) = ǫ′′σ,α(αa1s1 . . . ansn)

Since ǫ′′σ,α and ǫσ,α agree at all fragments α′ ≥ α, they are the same, since
both are concentrated on ↑α. Moreover, since ǫ′σ,α,m is a probability measure
for all m, the same is true of ǫ′′σ,α, and hence also of ǫ′σ,α. �(Claim 2)

We are now ready to prove the proposition. We show ǫ′σ,α(↑α′) =
ǫσ,α(↑α′) for all σ, α and α′. First, it is clear that ǫ′σ,α(↑α′) = 0 if
α′ 6≤ α 6≤ α′. Next, assume that α′ ≤ α. The ǫ′σ,α(↑α′) = 1 since ǫ′σ,α

is a probability measure concentrated on ↑α. Thus the value of ǫ′σ,α agrees
with that of ǫσ,α for those α′ ≤ α and those α′ incomparable with α.

Finally, we consider α′ with α ≤ α′. If α = α′, we already have the
result, so we can assume α < α′, in which case there are a1, . . . , an ∈ Act

and states s1, . . . , sn with α′ = αa1s1 . . . ansn.We induct on n, and assume
the result holds for all k < n. Moreover, since ǫσ,α′ is a probability measure,
ǫ′σ,α′(↑α′) = 1. So, if α′′ = αa1s1 . . . an−1sn−1, then

ǫ′σ,α(↑α′) = ǫσ,α(↑α′′)σ(α′′)ν(α′′, an)(sn)

= ǫ′σ,α(↑α′′)σ(α′′)ν(α′′, an)(sn)

= ǫ′σ,α(↑α′′)σ(α′′)ν(α′′, an)(sn)ǫ′σ,α′(↑α′)

= ǫ′σ,α(↑α′),

the next-to-last equality following from the fact that ǫ′σ,α′(↑α′) = 1.

Finally, we are now ready to turn our attention to the main result of this
section: that task schedules can be realized by “oblivious” schedulers. Our
result achieves this in a limited case, but one that suffices for the application
of Task-PIOAs to modeling crypto-protocols.

Let µ ∈ Prob(Exec(A)) have support consisting of incomparable frag-
ments, and let ρ be a task schedule. Then there is a scheduler σ : Exec∗(A) →
V(Act) such that σ(α) 6= 0 implies α ∈ suppµ and Apply(µ, ρ) = ǫσ,µ. More-
over, if T = (A,R) is action-deterministic, then σ is deterministic.
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Proof. First, for ρ finite we proceed by induction on the length of ρ. If ρ = T

is a single task, then we define σρ : Exec∗(A) → V(Act) by

σρ(α) =

{
σ(T, α) if α ∈ AT ∩ suppµ,

0 otherwise.

Then,

ǫσρ,α =






(1 − ||σρ(α)||)δα +
∑

a∈Act σρ(α)(a)
(∑

s ν(α, a)(s)ǫσρ ,αas

)

if α ∈ AT ∩ suppµ,

δα otherwise.

=

{∑
a σ(T, α)(a) (

∑
s ν(α, a)(s)δαas) if α ∈ AT ∩ suppµ,

δα otherwise,

the second equality following from the definition of σρ and the fact that
suppµ consists of incomparable fragments.

Hence

ǫσρ,µ =
∑

α

µ(α)ǫσρ,α

=
∑

α∈AT ∩supp,µ

µ(α)

(
∑

a

σ(T, α)(a)

(
∑

s

ν(α, a)(s)δαas

))

+
∑

α6∈(AT ∩supp µ)

µ(α)δα

= Apply(µ, T ),

the last equality following from the fact that the only terms α for which
µ(α) 6= 0 are those in the support of µ.

Suppose the result holds for any finite task sequence of length n, and
let ρ = Tρ′ be a task sequence of length n + 1. Then there is a scheduler
σρ′ : Exec∗(A) → V(Act) satisfying σρ′(α) 6= 0 implies α ∈ suppApply(µ, T )
and ǫσρ′ ,Apply(µ,T ) = Apply(Apply(µ, T ), ρ′). Note that suppApply(µ, T ) con-
sists of incomparable fragments by Lemma 1, and this support includes those
fragments in suppµ that are not enabled under T .

We define σρ : Exec∗(A) → V(Act) by

σρ(α) =






σρ′(α) if σρ′(α) 6= 0,

σ(T, α) if α ∈ AT ∩ suppµ,

0 otherwise.
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σρ = σT ∪σρ′ (where σT is as defined in the base step) is well-defined because
µ has incomparable fragments for its support, and σρ′(α) 6= 0 implies α ∈
suppApply(µ, T ); further, σρ(α) ≤ 1 since the same is true for σρ′(α). Now

ǫσρ,µ =
∑

α

µ(α)ǫσρ,α =
∑

α∈supp µ

µ(α)ǫσρ,α

=
∑

α∈AT ∩supp µ

µ(α)ǫσρ,α +
∑

α∈supp µ−AT

µ(α)ǫσρ,α

=
∑

α∈AT ∩supp µ

µ(α)

(
∑

a

σ(T, α)(a)

(
∑

s

ν(α, a)ǫσρ,αas

))

+
∑

α∈supp µ−AT

µ(α)ǫσρ,α

=
∑

α∈AT ∩supp µ

µ(α)

(
∑

a

σ(T, α)(a)

(
∑

s

ν(α, a)ǫσρ′ ,αas

))

+
∑

α∈supp µ−AT

µ(α)ǫσρ′ ,α

= ǫσρ′ ,Apply(µ,T ) = Apply(Apply(µ, T ), ρ′) = Apply(µ, ρ).

If ρ = T1 · · ·Tn · · · is infinite, then the function σρ can be expressed
as the increasing union σρ = ∪nσρn , where σρn is the scheduler for ρn =
T1 · · ·Tn. Likewise, the family ǫσρn ,µ forms an increasing sequence satisfying
ǫσρn ,µ = Apply(µ, ρn) for each n, so that

ǫσρ,µ = sup
n

ǫσρn ,µ = sup
n

Apply(µ, ρn) = Apply(µ, ρ).

The claim that σ is deterministic if T is action-deterministic follows from
the fact that σ(T, α) = δα in this case.

If A = (S, s0,Act,D) is a task PIOA, ρ is a task sequence for A and
ǫ = Apply(δs0

, ρ), then there exists a scheduler σ such that ǫ = ǫσ,δs0
. That

scheduler is deterministic if T is action-deterministic.

Remark.

• As the Corollary states, given a task PIOA and a task sequence for A,
then there is a task scheduler that realizes the application of the task
sequence to A starting at its start state. This is the basic situation in
which crypto-protocols are modeled using task PIOAs.
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• We do not see how to extend the proof given above to the case of
an arbitrary distribution µ on Prob(Frags∗(A)). The problem is the
assumption that µ has incomparable fragments in its support. Its use is
most apparent in the inductive step of the proof where we define σρ in
terms of σρ′ – our definition would not make sense if domσρ′∩suppµ 6=
∅. It’s at this point that randomized schedulers enter the proof (a close
examination of the proof we have shows the schedulers we use can be
regarded as functions with inputs that are the distributions σ(T, α)
for the input PIOA T ), and finding a way to deal with this in our
approach would be very useful.

We close this section with a result that anticipates the need for reasoning
about randomized schedulers, as in the description of how we plan to attack
the dining cryptographers example. First, recall that V(Act), the family
of subprobability measures over Act is closed under convex sums – i. e., if
µ1, µ2 ∈ V(Act) and 0 ≤ r ≤ 1, then rµ1 + (1 − r)µ2 ∈ V(Act). It follows
that given σ1, σ2 : Frags∗(A) → V(Act), the function rσ1 + (1− r)σ2 defined
point wise is also well-defined.

Let σ1, σ2 : Frags∗(A) → V(Act), α ∈ Frags∗(A) and 0 ≤ r ≤ 1. Then

||(rσ1 + (1 − r)σ2)(α)|| = r||σ1(α)|| + (1 − r)||σ2(α)||.

Hence the family of schedulers is closed under convex sums.

Proof. Let σ1, σ2 : Frags∗(A) → V(Act), α ∈ Frags∗(A) and let 0 ≤ r ≤ 1.
Then σi(α) =

∑
a∈Act σi(α)(a)δa, so ||σi(α)|| =

∑
s σi(α)(s). Hence (rσ1 +

(1 − r)σ2)(α) = rσ1(α) + (1 − r)σ2(α). Then

||rσ1(α) + (1 − r)σ2(α)|| =
∑

s

(rσ1(α) + (1 − r)σ2(α))(s)

=
∑

s

rσ1(α)(s) +
∑

s

(1 − r)σ2(α)(s)

= r||σ1(α)|| + (1 − r)||σ2(α)||

The concluding remark is obvious from this result.

5 Simulation Relations

A key notion for task PIOAs is that of a simulation relation, which are
used to show that the observable behaviors of one task PIOA are a subset
of another tack PIOA. This is used in [2] to simplify the process one has
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to reason about, and then deductions about the behavior of the simpler
process can be used to prove properties about the more complicated one. In
our setting, we’ll exploit this idea to show that the Dining Cryptographers
Protocol fulfills what is claimed for it: if a given cryptographer is not paying,
then the behaviors of the other two cryptographers looks the same.

To begin, we have to generalize the definitions from [2] to accommodate
the more general setting we are in where task PIOAs are not necessarily
action-deterministic. This actually turns out to be straightforward: the
definitions don’t need to be altered, since they make no specific reference to
action determinism. We recall the key concepts, however:

• If T1 = (A,R) is a task PIOA, and ρ if a task sequence for T ,
then a probability measure µ ∈ Prob(Exec∗(A)) is consistent with ρ

if suppµ ⊆ suppApply(δs0
, ρ). I. e., any execution sequence in the sup-

port of µ is a possibly execution sequence obtained by applying the
task sequence ρ starting in the start state s0.

• Let T1 = (A1,R1) and T2 = (A2,R2) be task PIOAs, and let c : R∗
1 ×

R1 → R∗
2 be a function. We define full(c) : R∗

1 → R∗
2 by full(c)(λ) = λ,

and full(c)(ρT ) = full(c)(ρ)̂ c(ρ, T ).

• If T = (A,R) is a task PIOA, then trace : Exec∗(A) → (I ∪ O)∗ is
the function that extracts the sequence of observable actions (i. e.,
the input or output actions) from an execution sequence of A. Since
we are using only discrete measures, all sets are measurable, and so
trace is a measurable map. Then µ ◦ trace−1 is a measure on (I ∪O)∗,
so we define tdist(µ) to be this measure. We also call tdists(A) =
{µ ◦ trace−1 | µ ∈ Prob(Exec∗(A))} the trace distributions of A.

• The task PIOAs T1 and T2 are comparable if they have the same set
of input actions and the same set of output actions. They are closed
if they both have empty input action sets.

A relation R ⊆ Prob(Exec∗(A1)) × Prob(Exec∗(A2)) is a simulation if:

1. µ1 R µ2 ⇒ tdist(µ1) = tdist(µ2);

2. δs1

0

R δs2

0

– i. e., the Dirac measures of the start states are related;
and

3. There is a function c : R∗
1 ×R1 → R∗

2 satisfying:

If µ1 R µ2 and ρ ∈ R∗
1 satisfy µ1 is consistent with

ρ, µ2 is consistent with full(c)(ρ) and T ∈ R1, then
Apply(µ1, T ) E(R) Apply(µ2, c(ρ, T )).
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To understand the last condition, we need to recall some notions about
probability distributions. If X is a set, then Prob(X) denotes the set of
discrete probability measures on X. Thus, we may form Prob(Prob(X)), the
discrete probability measures of discrete probability measures on X.

If R ⊆ Prob(X) × Prob(Y ), then we can “lift” R to L(R) ⊆
Prob(Prob(X)) × Prob(Prob(Y )) by

∑
i riδµi

L(R)
∑

i siδνi
iff there is a

weighting function w : N × N → [0, 1] so that

• For each i,
∑

j w(i, j) = ri;

• For each j,
∑

i w(i, j) = sj;

• w(i, j) > 0 ⇒ (µi, νj) ∈ R.

There is a mapping flatten : Prob(Prob(X)) → Prob(X) defined by
flatten(

∑
i riδµi

) =
∑

i,j risi,jδxi,j
, where µi =

∑
j si,jδxi,j

. It is routine
to show that this is well-defined.

Given a relation R ⊆ Prob(X) × Prob(Y ), we can define a relation
E(R) ⊆ Prob(X) × Prob(Y ) by (µ1, µ2) ∈ E(R) iff there are measures
ν1 ∈ Prob(Prob(X)) and ν2 ∈ Prob(Prob(Y )) satisfying ν1 E(R) ν2 and
flatten(νi) = µi.

Here are some key results from [2] concerning these concepts:

Lemma 2.6: If R ⊆ Prob(X)×Prob(Y ), then µ1 E(R) µ2 iff there is a family
pi ∈ [0, 1] with

∑
i pi = 1 and there are measures µ1,j ∈ Prob(X),

µ2,j ∈ Prob(Y ) for j ∈ N satisfying:

• µ1 =
∑

j pjµ1,j;

• µ2 =
∑

j pjµ2,j;

• µ1,i R µ2,i for each i ∈ N.

Lemma 4.4: Let T1,T2 be two comparable, closed action-deterministic
PIOAs and let R ⊆ Prob(Exec∗(A1)) × Prob(Exec∗(A2)) satisfy
µ R ν ⇒ tdist(µ) = tdist(ν). Let c : R∗

1 ×R1 → R∗
2 and assume:

• δs1

0

R δs2

0

;

• If µ1 R µ2, ρ ∈ R∗
1 with µ1 consistent with ρ and µ2 consistent

with full(c)(ρ) and T ∈ R1, then there is a family {pi}i ⊆ [0, 1]
with

∑
i pi and measures µi,j ∈ Prob(Exec∗(Ai)) for i = 1, 2 sat-

isfying

– µ1,j R µ2,j for each j ∈ N;
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–
∑

j pjµ1,j = Apply(µ1, T );

–
∑

j pjµ2,j = Apply(µ2, c(ρ, T )).

Then R is a simulation from T1 to T2.

Lemma 4.5: If T1 and T2 are comparable closed action-deterministic
PIOAs, and R is a simulation relation from T1 to T2, then given
µi ∈ Prob(Exec∗(Ai)), i = 1, 2 for which µ1 E(R) µ2, then tdist(µ1) =
tdist(µ2).

Lemma 4.6: Let T1 and T2 be comparable closed action-deterministic
PIOAs, and R is a simulation relation from T1 to T2 with
associated function c : R∗

1 × R1 → R∗
2. Let ρ ∈ R∗

1

and suppose Apply(δs1

0

, ρ) E(R) Apply(δs2

0

, full(c)(ρ)). Then

Apply(δs1

0

, ρT ) E(R) Apply(δs2

0

, full(c)(ρ)c(ρ, T )) for each task T ∈ R1.

Theorem 4.7: If T1 and T2 are comparable closed action-deterministic task
PIOAs for which there is a simulation relation R from T1 to T2, then
tdist(T1) ⊆ tdist(T2).

Note: I have read through the proofs of these results, and there appears to
be no problems extending them to our case.

Roberto’s approach to applying these results to the Dining Cryptog-
raphers was to posit the existence of simulations between M1 and M2 –
back and forth – which would show that the trace distributions from cryp-
tographer 0’s viewpoint were the same for both, implying cryptographer 0
couldn’t tell which of the other two were paying. We need a similar idea to
show an analogous result for our more general setting of a nondeterministic
master.

6 Domain Equations

We have discussed a paper of Mike’s where a domain equation of the form
D ≃ Pow(

∐
a D) is solved. Yet, the equation does not account for the fact

that at any state there is a collection of transitions available. A scheduler
chooses a measure over transition which, by integration, leads indeed to
a measure over pairs action,state. A more natural equation seems to be
D ≃ Pow (

∐
a V(D)).

Is it possible to solve this equation? What do we get in terms of logical
and equational characterizations? Can we get the characterizations directly
from the power-domain operators?
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The two domain equations should be closely related, though. Assuming
that the transition relation is compact, from the set of possible measures
on action,state pairs we should be able to retrieve the set of enabled transi-
tions. What is a nice statement based on domain theory that captures this
property? Can we define mappings from one to the other whose composition
is the identity up to bisimulation?

We have observed, though, that we do not distinguish systems whose
transitions are not closed from systems that are completed with the extremal
points. Is there a different domain equation that permits to distinguish?
And if we keep the current equations, what are the operational limitations
that we impose on non-finitary systems so that full abstraction holds?
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