
Reasoning About Probabilistic Security
Using Task-PIOAs?

Aaron D. Jaggard??1, Catherine Meadows? ? ?2,
Michael Mislove???3, and Roberto Segala4

1 Rutgers University, New Brunswick, NJ, adj@dimacs.rutgers.edu
2 Naval Research Lab, Washington, DC, catherine.meadows@nrl.navy.mil

3 Tulane University, New Orleans, LA, mwm@math.tulane.edu
4 University of Verona, Italy, roberto.segala@univr.it

Abstract. Task-structured probabilistic input/output automata (task-
PIOAs) are concurrent probabilistic automata that, among other things,
have been used to provide a formal framework for the universal compos-
ability paradigms of protocol security. One of their advantages is that
that they allow one to distinguish high-level nondeterminism that can
affect the outcome of the protocol, from low-level choices, which can’t. We
present an alternative approach to analyzing the structure of task-PIOAs
that relies on ordered sets. We focus on two of the components that
are required to define and apply task-PIOAs: discrete probability theory
and automata theory. We believe our development gives insight into the
structure of task-PIOAs and how they can be utilized to model crypto-
protocols. We illustrate our approach with an example from anonymity,
an area that has not been previously been addressed using task-PIOAs.
We model Chaum’s Dining Cryptographers protocol at a level that does
not require cryptographic primitives in the analysis. We show via this
example, how our approach can leverage a proof of security in the case a
principal behaves deterministically to prove security when that principal
behaves probabilistically.

1 Introduction

Process algebras and other models of concurrent computation have become a
staple for reasoning about security (cf. [1, 20], to name two examples). Origi-
nally, this work concentrated on the “Dolev-Yao” model in which cryptographic
algorithms were modeled as black boxes. However, there is a growing body of
research aimed at marrying concurrency theory with cryptographic reasoning.
Prominent among these approaches is the work of Canetti, Lynch, Segala, et
? The authors wish to thank the Center for Discrete Mathematics and Theoretical

Computer Science and the DIMACS Special Focus on Communication Security and
Information Privacy for their support that allowed us to gather at Rutgers to work
on this project for a week in May/June, 2008.

?? The author wishes to acknowledge the support of the NSF and of the ONR during
this research.

? ? ? These authors wish to acknowledge the support of the ONR during this research.



al. [6], which uses Task-PIOAs to provide a formalization of Canetti’s Universal
Composability model [5]. Task-PIOAs are probabilistic input/output automata
equipped with tasks, which define their execution sequences. The approach is
highlighted by two aspects: First, this approach encodes the basic constituents
of cryptography – one-way functions, hardcore predicates, etc., into the model
and reasons about them in proving security properties.

The second distinguishing aspect of [6] is that it divides the nondeterminism
in a concurrent system into high-level choices that can affect the outcome of
the protocol, and low-level nondeterminism that does not affect the outcome.
By allowing the adversary to see the outcomes only of the low-level choices,
the model overcomes the problem that concurrency models generally afford the
adversary too much power by allowing it to see the outcomes of all the choices
made during the execution of a protocol.

Because of all this, the task-PIOA work is often cited as a promising approach
to modeling crypto-protocols, but at the same time this makes the task-PIOA
analysis of oblivious transfer [6], for example, rather daunting. Indeed, there
are three components that must be mastered to appreciate the subtleties of
task-PIOAs: the theory of discrete probability that is applied to task-PIOAs,
the theory of probabilistic automata that underlies task-PIOAs, and the incor-
poration of cryptographic primitives that requires detailed and often-tedious
reasoning. We note that this rather formidable array of components is inherent
in all approaches to marrying formal with cryptographic reasoning, and is not
specific to task-PIOAs. Thus, all approaches to marrying formal with crypto-
graphic reasoning suffer from the same complexity. Our approach is to separate
the cryptographic primitives in the model from the other aspects, and to treat
these other facets first, reserving a similar analysis of the cryptographic compo-
nents for future work.

Thus, the purpose of the current paper is to present the first two components
– discrete probability theory applied to task-PIOAs, and the theory of proba-
bilistic automata needed to analyze task-PIOAs, from a different perspective,
one we hope will make the technology more easily digested. Our approach relies
on ordered sets as an underlying theme for both discrete probability and for the
automata theory needed to describe task-PIOAs.

The universal composability approach to proving security employs the no-
tion of simulator as part of a mechanism that allows comparison of “real-world”
processes with “ideal processes” that are secure by design. Task-PIOAs use sim-
ulation relations common to cryptographic proofs to carry out such comparisons.
Simulation relations validate security properties by showing the trace distribu-
tions on visible events of the real-world process are contained in those of the
simulating process. As a result, an unbiased observer cannot tell if it is inter-
acting with the real-world process or with the simulator, and the security of the
real-world process follows.

We illustrate our results with an example in which cryptographic primitives
don’t play a role. This allows us to demonstrate the techniques developed in
this paper to model a security protocol, avoiding cryptographic details that are

2



independent of our approach to combining discrete probability theory with the
theory of probabilistic automata. The example comes from anonymity: it is the
canonical example of Chaum’s Dining Cryptographers protocol [9]. Our approach
also has the advantage that it explicitly models a method by which the choice of
who pays is made, a detail left unspecified in Chaum’s original paper, and one
that is also left unspecified in other approaches such as [4].

Task-PIOAs use task schedules to resolve the nondeterminism, and a task-
PIOA simulation relation typically shows that each task schedule for a real-world
process has a corresponding schedule for its simulating process. In this paper we
introduce a somewhat simpler notion of simulation we call Task-PIOA maps.
The main difference is that, while task-PIOA simulations utilize maps between
task schedules, Task-PIOA maps map states to states, actions to actions, and
tasks to tasks. This makes defining a task-PIOA map somewhat simpler, and
their use is well-suited for indistinguishability proofs in which the only differ-
ence between the two processes is the choice of a secret. This is the case for
our proof of anonymity of Dining Cryptographers. Anticipating some details,
the protocol is secure if the probability distributions on the announcements of
the cryptographers doesn’t vary depending on which one is paying. Our analysis
shows that the distributions in the case of a probabilistic choice of who pays can
be calculated compositionally from the distributions that arise from its deter-
ministic subprocesses. Our argument uses ideas from [4,7] relying on conditional
probability.

The rest of the paper is organized as follows. In the next section, we give
a comparison with other work. The following sections give some results about
discrete probability theory based on order-theoretic arguments, and the basic
definitions and results used by task-PIOAs. Following that, we give the main
results of the paper which define Task-PIOA maps and show they preserve trace
distributions of task-based probabilistic input/output automata. This is followed
by a brief description of the Dining Cryptographers protocol and how to encode
it using process algebra. We next encode the Dining Cryptographers Protocol
using a task-based probabilistic input/output automata and then show that the
protocol is secure if the choice of who pays is either deterministic or probabilistic.
In the final section we summarize our results and discuss possible future work.

2 Comparison with other work
As we already commented, the use of process algebras and of models of concur-
rency is now commonplace in analyzing crypto-protocols, as well as other areas
of security. What is novel about the task-PIOA approach as presented in [6] is the
level of detail at which processes are treated. Most security models operate under
the traditional Dolev-Yao assumption and assume perfect encryption. However,
these assumptions have been shown to be unrealistic in some contexts [17], which
is one of the impetuses for the universal composability approach [5] to modeling
security. This need for more realism has been accompanied by a myriad of de-
tails that make analyses much more intricate. In particular, in what is probably
the most closely-related work to the task-PIOA approach, [17, 20], Probabilis-
tic Polynomial-time Turing Machines are used as the basis for a model. This

3



approach also involves myriad details about computations, details we seek to
abstract away in our approach to understanding parts of the PIOA approach.

Part of the problem with these more realistic models is the level of detail, but
an added problem with [6] is the presentation of the model. Indeed, the task-
PIOA approach is composed of two parts: (i) the presentation of task-based
probabilistic input/output automata (task-PIOAs), and (ii) the application of
these automata to model cryptographic primitives in the analysis of the oblivi-
ous transfer protocol. Here, we give an alternative presentation of task-PIOAs,
using techniques from order theory. While our approach requires familiarity with
ordered sets, the mathematical results needed are not especially deep, and the
ordered sets approach carries with it computational intuitions that are not so
clear in [6].

The Dining Cryptographers protocol originated in the work of Chaum [9],
and it quickly became a prototypical test example for modeling anonymity. For
example, Schneider and Sidiropoulos [21] use CSP to analyze the protocol, after
first replacing probabilistic choice by nondeterministic choice. While CSP is lim-
ited to nondeterministic choice, there are models of concurrency that support
both nondeterminism and probabilistic choice, and these require a mechanism to
account for how the nondeterminism in the system is resolved. The most com-
monly used approach is to include a scheduler that resolves the nondeterministic
choices. In security analyses, the scheduler is often seen as an adversary that can
control the occurrence of events in order to maximize the chances of compromis-
ing the security of the system. Garcia et al. [11] introduce admissible schedulers
that limit the power of the adversary so that it is “realistic” and cannot see the
outcomes of choices that should be hidden from it.

Probably the most exhaustive treatment of the Dining Cryptographers using
concurrency appears in the papers [4,7,8]. In [4], an analysis shows the limitations
of substituting nondeterminism for probabilistic choice, as was done in [21], and
analyses are presented of the Dining Cryptographers with users that are nonde-
terministic or probabilistic in their choices, under some added hypotheses. In [7],
the pi-calculus is augmented with labels guarding choices, so that the scheduler
can enable a choice, but not control or see its outcome. In [8], a new notion of
conditional capacity of a channel is introduced, and this is used to analyse the
degree of anonymity of a system in which some information is leaked on purpose.
Finally, [14] applies simulation relations based on coalgebras to analyze the Din-
ing Cryptographers. As is typical of other treatments, the presentation is at an
abstract level, concentrating solely on the case in which the choice of who pays is
deterministic, and in which the implementation of the choice is left unspecified.
Moreover, this model does not support nondeterminism, and presents everything
in a purely probabilistic framework.

There is a growing body of literature on modeling probabilistic processes,
including models of concurrency that support both nondeterminism and prob-
abilistic choice (see, e.g., [18]), as is the case here. A major theme along this
line stems from the seminal work of Larsen and Skou [16] on labeled Markov
processes (see also [10, 19]). A major difference between task-PIOAs and that

4



work is the nature of the transition relation that defines the evolution of the pro-
cesses. We comment in more detail on this point in Section 9. Nevertheless, it
should be noted that the Task-PIOA maps we introduce are a form of functional
simulation.

In summary, our main results are as follows:
– The use of order theory to analyze task-PIOAs, and in particular, the Ap-

ply operator that applies a task to a probabilistic input/output automaton,
which make clear how processes evolve under the application of task sched-
ules.

– The notion of a Task-PIOA map and the proof that these maps take trace
distributions of a domain task-PIOA to trace distributions of the target task-
PIOA. These mappings show how one task-PIOA has its trace distributions
observable events contained in those of another using the same task schedule.

– An analysis of the Dining Cryptographers Protocol using task-PIOAs. Our
version of Dining Cryptographers uses a Master that chooses who pays (ei-
ther one of the cryptographers or the Master itself), a concept introduced
in [4]. We prove the anonymity of the protocol from the point of view of the
cryptographers when the Master is deterministic, and then use that result
to show that anonymity also holds in the case of a probabilistic Master.

3 Ordered Structures and Domain-theoretic Arguments

In this section we present the results on ordered sets and their application to
models of computation we need to analyze probabilistic input/output automata.
We emphasize at the outset that our results are valid in the case of directed
complete partial orders (e.g., domains) but we restrict the presentation to the
case of ordered sets, since that’s all that is needed in the current setting.

Definition 1. An ordered set is a non-empty set together with a partial order,
i.e., a reflexive, antisymmetric and transitive relation. If P and Q are ordered
sets, and if f : P → Q is a mapping between them, then
– f is monotone if x ≤P y implies f(x) ≤Q f(y).
– f is progressive if P = Q and x ≤P f(x) for all x ∈ P .

We use Ord to denote the category of ordered sets and monotone maps.

The prototypical example of an ordered set is the family A∗ of finite words over
an alphabet A in the prefix order: s ≤ t ⇔ (∃u ∈ A∗) t = su.

If X is a set, then a discrete probability measure over X has the form∑
i∈I riδxi , where I is a countable set, δxi denotes the point mass at xi ∈ X and∑
i ri = 1, where 0 < ri for each i. If I is finite, then the measure is said to be sim-

ple. For µ =
∑
i∈I riδxi , then the support of µ is defined by suppµ = {xi | i ∈ I}.

If P is an ordered set, the order on P lifts to the family Disc(P ) of discrete
probability measures on P :

∑
i riδxi ≤

∑
j sjδyj iff

∑
{ri | xi ∈ A} ≤

∑
{sj |

yj ∈ A} for each upper set A.5 Thus, µ ≤ ν iff µ(A) ≤ ν(A) for every upper set
A. For simple measures

∑m
i=1 riδxi ≤

∑n
j=1 sjδyj iff there is a family tij ≥ 0,

5 A is an upper set if A = ↑A = {x ∈ P | (∃a ∈ A) a ≤P x}.

5



1 ≤ i ≤ m and 1 ≤ j ≤ n satisfying:

(i) (∀i) ri =
∑
j tij , (ii) (∀j)

∑
i tij = sj , and (iii) tij > 0 ⇒ xi ≤P yj .

(Cf. Theorem 4.10 of [15] for details.) There is a monad Disc : Ord → Ord that
associates to each ordered set P the family Disc(P ) of discrete probability mea-
sures on P and that sends each monotone mapping f : P → Q to the mapping
Disc(f) : Disc(P ) → Disc(Q) by Disc(f)(

∑
i riδxi) =

∑
i riδf(xi). The unit of

the monad is the mapping x 7→ δx and the multiplication m : Disc(Disc(P )) →
Disc(P ) is just integration:

∑
i riδ

P
j sijδxij

=
∑
ij risijδxij .

4 Probabilistic Input/Output Automata

We use task-structured probabilistic input/output automata as our basic model
of computation. This notion is due to Canetti, Lynch, et. al. [6]. In this section,
we summarize the main ideas from [6] that are necessary to understand this
paper.

Definition 2. A Probabilistic Input/Output Automaton A = (Q, q, I, O,H,D)
is a 6-tuple where:

1. Q is a countable set of states containing q ∈ Q as the start state;
2. I, O and H are pairwise disjoint, countable sets of actions, referred to as

input, output and internal actions, respectively. The set Act ::= I∪O∪H is
called the set of actions of A. The set of external actions of A is E ::= I∪O
and the set of locally controlled actions is L ::= O ∪H.

3. D ⊆ Q × Act × Disc(Q) is a transition relation. An action a is enabled in
state q if (q, a, µ) ∈ D for some µ ∈ Disc(Q), which we denote by µq,a.
We also assume D satisfies:
Input enabling: For every q ∈ Q and a ∈ I, a is enabled in q.
Transition determinism: For every q ∈ Q and a ∈ Act, there is at most one
µ ∈ Disc(Q) such that (q, a, µ) ∈ D

Probabilistic input/output automata also admit a hiding operator: If S ⊆ OA is
a set of output actions of A, then A \ S denotes the process where O = OA \ S
and H = HA ∪ S. The result is that the output of actions in S are visible only
to the process executing them, and to the recipient processes of the actions.

A probabilistic input/output automaton can be viewed as a labelled transition
system where the transition relation is a partial function ∆ : Q×Act ⇀ Disc(Q)
defined by ∆(q, a) = µq,a, if such a measure exists. Input enabling implies the
restriction ∆|Q×I : Q× I → Disc(Q) is a total function.

We also need a method for composing PIOAs.

Definition 3. Let Ai = (Qi, qi, Ii, Oi, Hi, Di), i = 1, 2 be PIOAs. We say A1

and A2 are compatible if Act1∩H2 = Act2∩H1 = ∅ = O1∩O2. If this is the case,
then we define A1‖A2 = (QA1‖A2 , qA1‖A2

, IA1‖A2 , OA1‖A2 , HA|‖A2 , DA1‖A2)
where:

– QA1‖A2 = Q1 ×Q2, qA1‖A2
= 〈q1, q2〉,

– IA1‖A2 = (I1 ∪ I2) \ (O1 ∪O2), OA1‖A2 = O1 ∪O2, and HA1‖A2 = H1 ∪H2,

6



– DA1‖A2 = {(〈q1, q2〉, a, µ1 × µ2) | (a ∈ Acti ⇒ (qi, a, µi) ∈ Di),
and (a 6∈ Actj ⇒ µj = δqj )}.

The main points to note of the composition are that (1) the inputs of either com-
ponent can be provided by outputs of the other component, so the composition
of processes can be closed – its set of inputs can be empty, and (2) if an action
is in the alphabet of only one component, then the other component “idles”
in its current state while the enabled component executes the action. However,
even though one component may be able to perform an action in a given state,
the other component can block the action if the action is in its alphabet, but it
cannot execute the action in its current state.

4.1 Tasks
Tasks provide a mechanism for resolving nondeterminism – the choice of which
action to execute in a given state, in the execution of a PIOA.
Definition 4. A Task Probabilistic Input/Output Automaton is a pair T =
(A,R) where

– A = (Q, q, I, O,H,D) is a probabilistic I/O automaton, and
– R ⊆ (O × O) ∪ (H ×H) is an equivalence relation on the locally controlled

actions. The equivalence classes of R are called tasks.

A task-PIOA T is said to be action deterministic if for each state q ∈ A and
each task T ∈ R, there is at most one action a ∈ T that is enabled in q.

A task schedule for a task-PIOA T is a finite sequence ρ = T1T2 · · ·Tn of
tasks in R.6

4.2 Applying Task Schedules

Since we have no final states in Q, there is a question of what constitutes a
computation of a task-PIOA. We use task schedules to specify the sequences
of actions a process should execute. The probability distribution generated by
the process as it executes that sequence of tasks then defines a computational
behavior of the process.

Our interest is in the trace distributions over finite sequences of observable
events of the automaton A. For an automaton A = (Q, q, I, O,H,D), we let

Exec∗A = {qa0 . . . qn−1an−1qn | qi ∈ Q, ai ∈ Act, qi+1 ∈ suppµqi,ai (∀i < n)}.7

Note that Exec∗A is ordered by the prefix ordering as a subset of Q×(Act×Q)∗.
If a ∈ Act, then we define the set of finite execution fragments whose last state
enables the action a:

Aa = {α ∈ Exec∗A | a enabled in lstate(α)},
6 Our results in general include a treatment of the case of infinite task schedules (in

which case the utility of domain theory comes to the fore), but since we only need
finite task schedules in the present setting, we limit our presentation to that case.
Nonetheless, the order-theoretic approach pays a dividend by giving a clear and
concise definition of the application of a task to a process.

7 Note that all such sequences begin at q. Recall x ∈ suppµ iff µ(x) > 0.

7



where lstate(α) = qn is the final state of α = qa0 · · · an−1qn. Likewise, for a task
T , let AT be the set of finite execution fragments whose last state enables the
task T :

AT = {α ∈ Exec∗A | (∃a ∈ T ) a enabled in lstate(α)}.
For each finite execution fragment α ∈ AT , if the action a ∈ T is enabled
in lstate(α), we let µlstate(α),a be the target measure of the unique transition
(lstate(α), a, µlstate(α),a) ∈ D. Then we define

Apply(µ, T ) =
X
α 6∈AT

µ(α)δα +
X
α∈AT

µ(α)

 X
s

µlstate(α),aT (s)δαaT s

!
8 (1)

Note that execution sequences in whose last state T is not enabled still appear
as the first summand on the right in the definition of Apply(µ, T ); this is why we
cannot use the traditional approach of adjoining a deadlock state to transform
the transition relation ∆ : Q× Act ⇀ Disc(Q) into a total function.

Thus, Apply applies the task T to each execution fragment α ∈ suppµ, re-
solving the nondeterminism of which action should occur next. For a finite task
schedule ρ = T1 · · ·Tn, we define

Apply(µ, ρ) = Apply(Apply(µ, T1 · · ·Tn−1), Tn).

Proposition 1. Let µ =
∑
α µ(α)δα ∈ Disc(Exec∗(A)), then

µ ≤ Apply(
X
α

µ(α)δα, ρ) =
X
α

µ(α)Apply(δα, ρ).

In particular, Apply(µ, ρ) is well-defined for any task sequence ρ = T1 · · ·Tn.

Proof. By induction on the lengh of ρ – see Appendix.

Corollary 1. If µ =
∑
i piµi, then µ ≤ Apply(

∑
i piµi, ρ) =

∑
i piApply(µi, ρ).

Proof. By the Proposition, we know that µi ≤ Apply(µi, ρ) for each index i, so

µ =
X
i

piµi ≤
X
i

piApply(µi, ρ) = Apply(
X
i

piµi, ρ),

the last equality following by expanding each µi as a convex sum of point masses
and then applying the Proposition once again.

5 Comparing PIOAs

An important component of any modeling paradigm is the ability to compare
models of distinct processes, in order to analyze the differences between them.
In the development of task-PIOAs in [6], this is done via simulation relations,
which are used to show that the probability distributions over observable be-
haviors of one task-PIOA are a subset of those of another task-PIOA. This is
8 Since each task T allows only one action aT ∈ T to be enabled in lstate(α), there is

no sum over actions in the second summand on the right.

8



useful for simplifying a process by devising a simpler, simulating process, and
then deductions about the behavior of the simpler process can be used to prove
properties about the more complicated one. This approach is based on matching
a task schedule for the first process to one for the simulating process, but in
our setting, the security specification requires we use the same task schedule for
both processes. Rather than use the task-PIOA simulation relations from [6],
we present a simpler approach to simulation that meets this requirement. The
setting is as follows:

If T = (A,R) is a task-PIOA, and A ⊆ (I ∪O) is a set of observable actions,
then traceA : Exec∗A → A∗ is the function that extracts the sequence of A-
actions (i.e., the sequences from A∗) from an execution sequence of A. Since
we are using only discrete measures, all sets are measurable, and so traceA is
a measurable map. Then Disc(traceA)(µ) = µ ◦ trace−1

A is a measure on A∗ for
each measure µ ∈ Disc(Exec∗A). In fact, if µ =

∑
i riδαi , then Disc(traceA)(µ) =∑

i riδtraceA(αi). We let SA denote the family of task schedules on A, and for
ρ ∈ SA, let Apply(δq, ρ) =

∑
α∈supp Apply(δq,ρ)

rαδα. Then we define

tdistρA(A) = Disc(traceA)(Apply(δq, ρ)) =
∑

α∈supp Apply(δq,ρ)

rαδtraceA(α)

be the measure on A∗ induced by traceA from the measure Apply(δq, ρ). We also
call

tdistsA(A) = {tdistρA(A) | ρ ∈ SA}

the A-trace distributions of A. We elide the subscript if A = I ∪O.

Definition 5. Let Ai = (Qi, qi, Ii, Oi, Hi, Di), i = 1, 2 be two compatible task-
PIOAs, with task sets Ti, i = 1, 2, respectively. We define a Task-PIOA map
φ : A1 → A2 to consist of

– A mapping φ : Q1 → Q2 of the states of A1 to the states of A2 satisfying
φ(q1) = q2. We call this the state component of φ.

– A mapping φ : Act1 → Act2 of actions of A1 to actions of A2. We call this
the action component of φ.

We also require the mapping φ : A1 → A2 to satisfy the compatibility conditions:

(i) 〈q, a, µ〉 ∈ D1 ⇒ 〈φ(a), φ(a),Disc(φ)(µ)〉 ∈ D2; i.e., if q ∈ Q1 and a ∈ Act1
is enabled in state q, then φ(a) is enabled in state φ(q) and Disc(φ)(µq,a) =
µφ(q),φ(a).

(ii) For each T ∈ T1, φ(T ) ∈ T2.

Remark 1. Note that if φ does not rename states or actions, then this coincides
with the notion of refinement in process algebra.

The map φ induces Exec∗φ : Exec∗A1 → Exec∗A2 by Exec∗φ(qa0 · · · an−1qn) =
φ(q)φ(a0) · · ·φ(an−1)φ(qn), which in turn gives Disc(Exec∗φ) : Disc(Exec∗A1)→
Disc(Exec∗A2) by Disc(Exec∗φ)(

∑
i riδαi) =

∑
i riδExec∗φ(αi). Our main result is:

9



Theorem 1. Let φ : A1 → A2 be a Task-PIOA map of compatible task-PIOAs
satisfying φ(AT ) = Aφ(T ) for each task T ∈ T1. If A ⊆ Act1 is the set of
observable actions, then Disc(φ|∗A)(tdist(A1)) ⊆ tdist(A2).

Proof. We give an outline of the proof here, and provide full details in the Ap-
pendix. First, if µ ∈ Disc(Exec∗A1), then µ =

∑
α∈suppµ rαδα. So, for T ∈ T1, we

can apply our definition of Apply from Equation 1 and of Disc(Exec∗φ) above to
show Disc(Exec∗φ)(Apply(µ, T )) = Apply(Disc(Exec∗φ)(µ), φ(T )). An induction
on n then shows the analogous result holds with any task schedule ρ = T1 · · ·Tn
in place of T . The next step is to use this equation to show

Disc(φ|∗A)(Disc(trace)(Apply(µ, ρ))) = (Disc(trace) ◦ Disc(Exec∗φ))(Apply(µ, ρ)),

which implies the result.

6 Dining Cryptographers

The Dining Cryptographers Protocol is originally due to Chaum [9]. It postulates
several cryptographers who are dining together. They are trying to determine
whether one of them paid for dinner or NSA paid, without revealing to each
other which cryptographer paid. In [9] the implementation of the decision of who
pays is left unspecified; we use the solution of Bhargava and Palamadessi [4] in
which a Master (that is, NSA) chooses who pays. The cryptographers use the
following protocol to accomplish this. Each cryptographer has a coin that he
flips, and he reports the outcome of that flip to the cryptographer to his right.
The cryptographers then report the outcomes of the two coin flips they know
– theirs and the one to their left – by announcing either Agree or Disagree.
A cryptographer reports the outcome correctly if she is not paying, but if she
is paying for dinner, then she reverses the announcement and lies about the
outcome of the coin tosses she has witnessed. A simple argument based on parity
shows that the Master is paying if the number of Disagree announcements is even,
while one of the cryptographers is paying if there are an odd number of Disagree
announcements. Moreover, if the cryptographers are honest and if the coins they
use are fair, this protocol protects the identity of the paying cryptographer from
the other cryptographers, as long as there are at least three cryptographers.

We will use probabilistic input/output automata [6] to model the Dining
Cryptographers. The formal model will be introduced below, but first we give a
process algebraic description of the component processes. We focus on the least
number of cryptographers that makes the analysis meaningful, which is three.
The processes are:9

Master ::= choose payer ◦ pay0 ◦ pay1 ◦ pay2

Cryptoi ::= rec payi ◦ flip coini ◦ learn coini−1 ◦ tell coini ◦
compare coins ◦ announcei ◦ receive announcements

The composition operator ◦ in this syntax is a meant to allow the actions to occur
in any order specified by the environment. The action pay i sends the message to
9 We us indices i = 0, 1, 2 modulo 3, so 0− 1 = 2, 2 + 1 = 0, etc.

10



cryptographer i, i = 0, 1, 2 indicating whether or not she is paying. We believe
the meaning of the components of the processes listed here is clear, so they
require no further explanation. But these names will change when we encode
the processes as probabilistic input/output automata, in order to conform to
the requirements of that system. The process representing our protocol is then
the composition

Master ‖ Crypto0 ‖ Crypto1 ‖ Crypto2,

where ‖ denotes parallel composition.

7 A Model of Dining Cryptographers
We now show how to model the Dining Cryptographers using task-based prob-
abilistic input/output automata. Figure 1 describes the Master process and its
transition relation. This includes the set of actions for the process, labeled ac-
cording to whether they are input, output or internal actions; it also gives the
state space of the process and the list of tasks. The Master has an internally
defined distribution r · δ〈master,⊥Q0 〉 +

∑
i riδ〈cryptoi,⊥Q0 〉 that gives the proba-

bility of choosing the payer – i.e., r +
∑
i ri = 1. Also, the transition relation

encodes the Master’s actions of sending messages to each of the cryptographers
indicating which one, if any, is paying, and the state space records the fact that
the message to each cryptographer has been sent. The Master also observes the
announcements of the cryptographers. Actions determine tasks:, e.g., one of the
Master’s tasks is payi = {payi(T ), payi(F )}.

Master
Actions:
Input:

Output:
payj(c), c ∈ {T, F}, j ∈ {0, 1, 2}

Internal:
choose payer

State:

Payer×Q0, where Q0 =
Q2
i=0{⊥, T},

Payer = {⊥,Master,Cryptoi
| i = 0, 1, 2},

all initially ⊥

Tasks:
{choose payer},
{payj(c) | c ∈ {T, F}, j = 0, 1, 2}

Transitions:
D = {〈〈⊥,⊥Q0〉, choose payer, r · δ〈Master,⊥Q0 〉

+
P
i riδ〈Cryptoi,⊥Q0 〉

〉}
∪ {〈〈Master, q〉, payj(F ), δ〈Master,q′〉 | qj = ⊥, q′j = T, j = 0, 1, 2}
∪ {〈〈Cryptoi, q〉, payi(T ), δ〈Cryptoi,q

′〉〉 | qi = ⊥ & q′i = T}
∪ {〈〈Cryptoi, q〉, payj(F ), δ〈Cryptoj ,q

′〉〉 | qj = ⊥ & q′j = T, j 6= i}

Fig. 1: The Master automaton chooses the payer

Figure 2 gives the actions, state set and tasks of the cryptographers, while the
transition relation is given in Figure 3. Together, these model the cryptographers
as task-based probabilistic input/output automata. These are the most compli-
cated task-PIOAs, having several states and actions to perform. In essence, each
cryptographer receives a message from the Master indicating whether she is pay-
ing, and then uses this information in determining whether to honestly announce
the outcome of the coin flips seen, or to lie. Each cryptographer also has an un-
biased coin: this is specified by the output of flipi that is 1

2δH + 1
2δT . Cryptoi

11



reports the outcome of her coin flip to Cryptoi+1, compares her flip with the
one from Cryptoi−1 and announces the outcome as described.10 The component
names have changed from the syntax in Section 5; for example, rec pay i is now
the input action pay i for Cryptoi, while learn coini−1 is shortened to the input
action coini−1, etc.

Cryptoi
Actions:
Input:

payi(c), c ∈ {T, F}
coini−1(c), c ∈ {H,T}
(We again use subtraction mod 3.)
announcei−1(c), c ∈ {Agree,Disagree}
announcei+1(c), c ∈ {Agree,Disagree}

Output:
coini(c), c ∈ {H,T}
announcei(c), c ∈ {Agree,Disagree}

Internal:
flipi
comparei

Tasks:
{flipi}, {coini(c)}, {comparei},
{announcei(c)}

State:
Qi = Payi × Coini−1 × Coini × Coin senti
×Comparei ×Announcei−1 ×Announcei+1

Payi = {pay i(c) | c ∈ {⊥, T, F}}
initially ⊥

Coini = {coini−1(c) | c ∈ {⊥, H, T}}
initially ⊥

Coin senti = {coin senti(x) | x ∈ {F, T}}
initially F

Comparei = {⊥, T, F}, initially ⊥
Announcej = {announcej(c)}, j = i− 1, i+ 1
c ∈ {⊥,Agree,Disagree}, initially ⊥

Fig. 2: The actions and state set of Cryptoi

Cryptographer i
Transitions:
Qi = Payi × Coini−1 × Coini × Coin senti × Comparei ×Announcei
Payi = Comparei = {⊥, T, F}; Coini−1 = Coini = {⊥, H, T};
Announcei = {⊥,Agree,Disagree}

D = {〈q, payi(c), δq′〉 | q1 =⊥, q′1 = c, j 6= 1 ⇒ qi = q′i}

∪{〈q, coini−1(c), δq′〉 | q2 =⊥, q′2 = c, j 6= 2 ⇒ qi = q′′i }

∪{〈q,flipi,
1

2
δq′ +

1

2
δq′′〉 | q3 =⊥, q′3 = H, q′′3 = T, j 6= 3 ⇒ qi = q′i = q′′i }

∪{〈q, coini(c), δq′〉 | q3 = c 6= ⊥, q4 = F, q4 = T, j 6= 3, 4 ⇒ qi = q′i}

∪{〈q, comparei, δq′〉 | q2 = q3 6= ⊥, q5 =⊥, q′5 = T, j 6= 5 ⇒ qj = q′j}

∪{〈q, comparei, δq′〉 | ⊥ 6= q2 6= q3 6= ⊥, q5 =⊥, q′5 = F, j 6= 5 ⇒ qj = q′j}

∪{〈q, announcei(c), δq′〉 | q1 = F, q5 = T, q′6 =⊥, c = q′6 = Agree, j 6= 6 ⇒ qj = q′j}

∪{〈q, announcei(c), δq′〉 | q1 = T, q5 = T, q′6 =⊥, c = q′6 = Disagree, j 6= 6 ⇒ qj = q′j}

∪{〈q, announcei(c), δq′〉 | q1 = F, q5 = F, q′6 =⊥, c = q′6 = Disagree, j 6= 6 ⇒ qj = q′j}

∪{〈q, announcei(c), δq′〉 | q1 = T, q5 = F, q′6 =⊥, c = q′6 = Agree, j 6= 6 ⇒ qj = q′j}

Fig 3: The transition relation for Cryptographer i

Our model of the Dining Cryptographers is the composition
10 Here again, we are using arithmetic modulo 3.

12



DC = Master ‖ C0 ‖C1 ‖C2,

of the Master with the cryptographers. Note that all actions except the an-
nouncements are hidden. Indeed, by definition, the outputs of one component
that are inputs of another become hidden in the composition of the two: the
Master has no input actions, its outputs are the inputs to the cryptographers,
while each cryptographer provides the input for the “next” cryptographer (the
one to the right, numbering in the counterclockwise direction). Since all input
actions are hidden, DC is a closed task-PIOA.

A prototypical task schedule for this combined process is:
choose payer, pay0, pay1, pay2,flip0,flip1,flip2, coin0, coin1, coin2,

compare0, compare1, compare2, announce0, announce1, announce2

8 Proving the Protocol Secure

To say DC is secure, we mean that, if one of the cryptographers is paying, then
neither of the non-paying cryptographers can tell which of the other cryptogra-
phers is paying, based on the probability distributions of their announcements.

Our approach to the proof is first to assume the Master is deterministic,
and to show the anonymity of the paying cryptographer from the perspective
of the other cryptographers. We then use this result to prove the anonymity of
the paying cryptographer in the case of a probabilistic Master who chooses a
cryptographer to pay.

8.1 A Deterministic Master

The anonymity guarantee of the Dining Cryptographers – that, if one of the
cryptographers is paying for dinner, then neither of the two non-payers can
distinguish the behaviors of the remaining cryptographers, can be proved by
showing that neither non-paying cryptographer can see a difference in the distri-
butions on the announcements of the other two cryptographers. To accomplish
this, we define a deterministic Master using the distribution r · δ〈Master,⊥Q0 〉 +∑
i riδ〈Cryptoi,⊥Q0 〉 satisfying ri = 1 and r = 0 = rj for j 6= i, that specifies a

Master Mi that selects Cryptoi, i = 0, 1 or 2 as the payer. Let

Ai =Mi ‖ C0 ‖ C1 ‖ C2 (1)

denote the process with Master Mi, i = 0, 1, 2. We also let S denote the set of
task schedules.

Proposition 2. If all cryptographers use fair coins, then the Dining Cryptog-
raphers Protocol is deterministically secure for non-paying cryptographers:

(∀ρ ∈ S) tdistρAi(Ai+1) = tdistρAi(Ai−1) (∀i = 0, 1, 2).11

Thus, for each i and each task schedule ρ, the trace distribution of announce-
ments that Cryptoi sees when the Master selects Cryptoi+1 are the same as the
trace distribution he sees when the Master selects Cryptoi−1.

11 We are again counting mod 3, since there are three cryptographers.

13



Proof. Without loss of generality, we also assume i = 0 (so Crypto0 is not
paying). The proof proceeds by defining a mapping from φ : A1 → A2 that
simply reverses the roles of Crypto1 and Crypto2 and reverses the values of the
received messages, pay1(c) and pay2(c).

More formally, we wish to apply Theorem 1. Let T denote the set of tasks
of DC, and let QAi = QM ×

∏2
i=0Qi denote the state space of Ai, i = 1, 2,

where QM = {Master,Cryptoi | i = 0, 1, 2} ×
∏2
j=0{⊥, T} is the state space of

the Master and Qj is the state space of the jth cryptographer.
Define φ : QA1 → QA2 by φ(Crypto1) = Crypto2, φ(Crypto2) = Crypto1, and

φ is the identity on all other states. Next, define φ : Act1 → Act2 by φ(pay1(c)) =
pay2(c), and φ(pay2(c)) = pay1(c). On all other actions, φ is the identity. We
show φ : A1 → A2 is a Task-PIOA map satisfying the hypothesis of Theorem 1.

We begin by checking conditions (i) and (ii) of Definition 5. For (i), the crucial
points are first, what happens to pay1(T ), which is enabled in 〈Crypto1,⊥〉.
But φ(pay1(T )) = pay2(T ), which is enabled in 〈Crypto2,⊥〉 in A2. Likewise,
pay2(F ) is enabled in 〈Crypto1,⊥〉 in A1, while φ(pay2(F )) = pay1(F ), which
is enabled in 〈Crypto2,⊥〉 in A2. Next, we have that φ(δCrypto1

) = δφ(Crypto1)
,

which is the output distribution of the action choose payer ; this follows because
φ(Crypto1) = Crypto2.

The second point is to check that φ(δ〈Crypto1,T 〉) = δ〈φ(Crypto1),φ(T )〉, but this
holds because φ(Crypto1) = Crypto2 and φ(T ) = T . Lastly, the fact that all coins
are fair implies that Disc(φ)(〈⊥,flip1,

1
2δH+ 1

2δT 〉) = 〈⊥,flip2,
1
2δH+ 1

2δT 〉, which
is the only case in which µq,a is not a point mass; for point masses the result
follows from the definition of φ and from Disc(φ)(δx) = δφ(x). This validates the
remaining requirement in condition (i) of Definition 5.

Finally,A1 andA2 have the same tasks, and φ permutes the two actions listed
and their corresponding enabling states, so φ(T ) is a task and φ(AT ) = Aφ(T ) for
each task T . Thus φ is a task-PIOA map satisfying the hypothesis of Theorem 1,
so tdist(A1) ⊆ tdist(A2), but since φ is its own inverse, the reverse is also true.

Remark 2. We calculate the probability distributions on the announcements: for
a non-paying cryptographer, the coins are fair, so the outcome of his own coin
is 1

2δH + 1
2δT . The same is true of the coin he sees from his neighbor on the left,

so the probability of announcing Agree is 1
4δHH + 1

4δTT , which is 1
2 . Obviously

the probability of announcing Disagree is also 1
2 . The payer has just been shown

to have the same probability distribution on announcements, so the probability
is 1

2Agree and 1
2Disagree as well.

8.2 The Probabilistic Case
In this section we consider the case of a probabilistic Master – i.e., one that
chooses the paying cryptographer probabilistically. This uses the rest of the def-
inition of the Master as given in Figure 1. Thus, the Master process begins with
the probabilistic choice Mpr = r · δmaster +

∑2
i=0 riδci which denotes choosing

the Master with probability r and choosing cryptographer i with probability ri.
We call this Master Mpr, so our system now is

Apr :=Mpr ‖ C0 ‖ C1 ‖ C2.

14



Even though the Master paying is one possibility, the notion of anonymity re-
mains clear: if a cryptographer pays, then the identity of the payer should remain
unknown to the other cryptographers. Indeed, anonymity is now a conditional
probability : for a given sample space X and probability measure P , the condi-
tional probability of A given that B has occurred is P (A|B) = P (A∩B)

P (B) , provided
P (B) 6= 0.

The set E of observable events consists of possible sequences of announce-
ments by the cryptographers. We denote the probability of a sequence O ∈ E
under the probability measure induced by applying the task sequence ρ to the
process Apr as Apply(δAprq , ρ)(O), and if O is conditioned on the event O′, we
denote the probability by Apply(Apr, ρ)(O|O′).
Theorem 2. If all cryptographers use unbiased coins, then the Dining Cryptog-
raphers is probabilistically secure, by which we mean (∀ρ ∈ S) (∀O ∈ E)

Apply(δ
Apr
q , ρ)(O|M0) = Apply(δ

Apr
q , ρ)(O|M1) = Apply(δ

Apr
q , ρ)(O|M2).

I.e. the probability distributions on announcements are the same whether the
probabilistic Master chooses cryptographer 0, 1 or 2 as the payer.
Proof. There are eight possible announcement sequences under any ρ. If the
Master has chosen to pay, any of the four with an even number of Disagree
announcements occurs, but if one of the cryptographers is paying, then one of
the four with an odd number of Disagree announcements occurs. We divide E
into the set EE of sequences with an even number of Disagree announcements,
and EO of sequences with an odd number of Disagree announcements.

For any ρ, Corollary 1 implies Apply(δAprq , ρ) = r · Apply(δAmq , ρ) +
∑
i ri ·

Apply(δAiq , ρ), where Ai is as in Equation 1 and Am denotes the case of a deter-
ministic Master choosing himself to pay. We assume r 6= 0 6= rj for j = 0, 1, 2.

Proposition 2 shows the probability distributions Apply(δAiq , ρ) all agree on
the observable events, and Remark 2 notes the probability that any of the cryp-
tographers announces Agree is 1

2 , as is the probability that any of them an-
nounces Disagree; it’s easy to show the same in case the Master is paying. Hence,
for any sequence O of announcements and each master Mj , j = 0, 1, 2,

Apply(δ
Apr
q , ρ)(O ∩Mj) = Apply(δ

Apr
q , ρ)((O ∈ EE) ∩Mj)

+Apply(δ
Apr
q , ρ)((O ∈ EO) ∩Mj).

In case O ∈ EE , then the Master is paying, and the only event that can oc-
cur is Mm, in which case the probability of any of the possible announcement
sequences is 1

4 , since they are equally likely.
The other possibility is that a cryptographer is paying, i.e., O ∈ EO. Then

Apply(δ
Apr
q , ρ)((O ∈ EO) ∩Mj) =

 X
i

riApply(δAiq , ρ)

!
((O ∈ EO) ∩Mj)

=
X
i

riApply(δAiq , ρ)((O ∈ EO) ∩Mj) =
rj
4
.

Since Apply(δAprq , ρ)(Mj) = rj 6= 0, we have Apply(δAprq , ρ)(O|Mj) = 1/4. This
holds for each j = 0, 1, 2 for which rj 6= 0. This proves that the paying cryptog-
rapher is unknown to the other two.

15



9 Summary and Future Work

We have presented an alternative derivation of the task-PIOA framework of
Canetti, et al [6] based on order theory. The presentation focuses on two of
the components needed for task-PIOAs, discrete probability and probabilistic
automata theory. Our main result is a proof that task-PIOA maps preserve
trace distributions on observable events. We applied our approach by analyzing
the Dining Cryptographers Protocol. Our model has much more detail than
traditional analyses of the protocol using concurrency, but the point has been
to illustrate the use of the task-PIOAs. Of particular note is the modularity of
our proof that the protocol meets its security specification – the anonymity of a
paying cryptographer from the other cryptographers. We first show this for the
case of a deterministic Master, and then use this result to prove the result also
holds in the case of a probabilistic Master.

We purposely have avoided the use of cryptographic primitives, and our pre-
sentation has been restricted to an example where these aspects are not needed.
The addition of encryption would allow an interesting extension of the Din-
ing Cryptographers. Namely, it would support adding a component process one
might call Anonymizer that provides the service of making the paying cryptogra-
pher anonymous even to the Master, one of the original goals of the protocol [9].
This could be accomplished by having the Master’s messages to the cryptogra-
phers first sent to the Anonymizer, which then reroutes the messages using a
randomized permutation of the recipients.

We commented in Section 2 that the PIOA approach differs significantly from
the approach utilizing labeled Markov processes, as in [10,16,19]. The difference
concerns the transition relation D ⊆ Q×Act×Disc(Q) that defines the evolution
of processes. For labeled Markov processes, this relation (or the closely related
D ⊆ Q×Disc(Act×Q)), assume D generates a function ∆ : Q×Act→ Disc(Q)
(resp., ∆ : Q→ Disc(Act×Q)), but in the PIOA approach, ∆ is a partial function
(cf. comments following Definition 2). The usual method for transforming partial
functions into total functions – adjoining a deadlock state and mapping elements
of the domain where ∆ is not defined to that deadlock state (or, more precisely,
point mass at deadlock in the present situation) won’t work for PIOAs, because
of how the executions of PIOAs are defined (see the footnote to Equation 1).

In future work, we plan to apply our approach to other settings where they
are appropriate. Among the areas being scrutinized is the Goldreich-Micali-
Wigderson [13] secure multiparty computation protocol, where we also antic-
ipate using the universal composability result for oblivious transfer from [6].
The GMW protocol works by composing a number of simpler protocols, includ-
ing oblivious transfer and communication mechanisms similar to those among
the Dining Cryptographers. The work presented in this paper is thus the first
step in that path.

References

1. Abadi, M. and A. Gordon, A calculus for cryptographic protocols: The spi calculus,
Information and Computation 148 (1999), pp. 1–70.

16



2. Abramsky, S. and A. Jung, Domain theory, in: S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 3,
pages 1–168. Clarendon Press, 1994.

3. de Alfaro, L., T. Henzinger and R. Jhala, Compositional methods for probabilistic
systems, Lecture Notes In Computer Science 2154 (2001), pp. 351–365.

4. Bhargava, M. and C. Palamidessi, Probabilistic anonymity, Proceedings of CON-
CUR 2005, LNCS 3653 (2005), pp. 171–185.

5. Canetti, R., Universally Composable Security: A New Paradigm for Cryptographic
Protocols, Available online at URL: http://eprint.iacr.org/2000/067

6. Canetti, R., N. Lynch, et al., Using Probabilistic I/O Automata to Analyze an
Oblivious Transfer Protocol, preprint http://people.csail.mit.edu/lcheung/

task-pioa/task-PIOA-TR.pdf.
7. Chatzikokalakis, K. and C. Palamidessi, Making Random Choices Invisible to the

Scheduler, Lecture Notes in Computer Science 4703, Springer-Verlag, 2007, pp. 42–
58.

8. Chatzikokalakis, K., C. Palamidessi and P. Panangaden, Anonymity protocols as
noisy channels, Information and Computation 206 (2008), pp. 378–401.

9. Chaum, D. , The dining cryptographers problem: Unconditional sender and recip-
ient untraceability, Journal of Cryptology 1 (1988), pp. 65-75.

10. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating La-
beled Markov Processes. Information and Computation, 184(1):160–200, 2003.

11. Garcia, F., P. van Rossum and A. Sokolova, Probabilistic anonymity and admissible
schedulers, Jun2, 2007, arXiv:0706.1019, http://eprintweb.org/S/authors/All/
so/Sokolova

12. Goldreich, O., “Secure Multi-party Computation,” Available online at URL
: http://www.wisdom.weizmann.ac.il/~oded/pp.html

13. Goldreich, O., S. Micali and A. Wigderson, Proofs that yield nothing but their
validity, or All languages in NP have Zero-knowledge proofs. JACM 38 (1991),
pp 691–729.

14. Hasuo, I. and Y. Kawabe, Probabilistic anonymity via coalgebraic simulations,
in: Proceedings of Programming Languages and Systems, LNCS 4421(2007), pp.
379-394

15. Jones, C., Probabilistic non-determinism, University of Edinburgh, Edinburgh,
Scotland, 1992

16. K.G. Larsen and A. Skou. Bisimulation through Probabilistic Testing. Information
and Computation, 94(1):1–28, 1991.

17. Lincoln, P. J. C. Mitchell, M. Mitchell and A. Scedrov, A Probabilistic Poly-Time
Framework for Protocol Analysis, ACM Conference on Computer and Communi-
cations Security (1998), pp. 112-121.

18. Mislove, M.. Nondeterminism and probabilistic choice: obeying the laws, Proceed-
ings of CONCUR 2000, Lecture Notes in Computer Science 1877 (2000), pp. 350
364.

19. Mislove, M., D. Pavlovic and J. Worrell, Labelled Markov Processes as Generalized
Stochastic Relations, Electronic Notes Theoretical Computer Science 172 (2007),
pp: 459–478.

20. Mitchell, J., A. Ramanathan, A. Scedrov, V. Teague, A probabilistic polynomial-
time process calculus for the analysis of cryptographic protocols, Theoretical Com-
puter Science 353 (2006), pp. 118–164.

21. Schneider, S. and A. Sidiropoulos, CSP and anonymity, in Proceedings of European
Symposium on Research in Computer Security (ESORICS ), LNCS 1146 (1996),
pp. 198-218, http://dx.doi.org/10.1007/3-540-61770-1_38

17



22. Segala, R., Modeling and Verification of Randomized Distributed Real-time Sys-
tems, PhD Thesis (1995), MIT Technical Report MIT/LCS/TR-676.

23. Segala, R. and N. Lynch, Probabilistic simulations for probabilistic processes,
Nordic Journal of Computing 2 (1995), 250–273.

A Appendix - Proofs

We present the proofs of selected results not proved in the body of the paper.

Proposition 1 Let µ =
∑
α µ(α)δα ∈ Disc(Frags∗(A)), then

µ ≤ Apply(
X
α

µ(α)δα, ρ) =
X
α

µ(α)Apply(δα, ρ).

In particular, Apply(µ, ρ) is well-defined for any task sequence ρ = T1 · · ·Tn.

Proof. If ρ = λ the empty sequence, then Apply(µ, ρ) = µ, so the result is trivial,
while if ρ = T is a single task, then

Apply(µ, T ) =
X
α 6∈AT

µ(α)δα +
X
α∈AT

µ(α)

 X
s

µlstate(α),a(s)δαas

!
(2)

=
X
α 6∈AT

µ(α)Apply(δα, T ) +
X
α∈AT

µ(α)Apply(δα, T )

=
X
α

µ(α)Apply(δα, T ).

The fact that µ ≤ Apply(µ, T ) is obvious from Equation 2.
Next, if ρ = ρ′T is finite, then

Apply(µ, ρ) = Apply(Apply(µ, ρ′), T ) = Apply(
∑
α

µ(α)Apply(δα, ρ′), T )

=
∑
α

µ(α)Apply(Apply(δα, ρ′), T )

Assuming by induction that µ ≤ Apply(µ, ρ′), then µ ≤ Apply(µ, ρ) follows from
the basis step.

Theorem 1 Let φ : A1 → A2 be a Task PIOA map of compatible task PIOAs
satisfying φ(AT ) = Aφ(T ) for each task T ∈ T1. If A ⊆ Act1 is the set of
observable actions, then Disc(φ|∗A))(tdist(A)) ⊆ tdist(A2).
Proof. We first show that if Ai ⊆ Acti, i = 1, 2 are the sets of observable events
and if φ(A1) ⊆ A2, then the following diagram commutes:

Disc(Exec∗A1)× T

Disc(Exec∗φ)×φ

��

Apply // Disc(Exec∗A1)

Disc(Exec∗φ)

��

Disc(trace) // Disc(A∗1)

Disc(φ|∗A1
)

��
Disc(Exec∗A2)× T

Apply
// Disc(Exec∗A2)

Disc(trace)
// Disc(A∗2),

18



where φ∗ : A∗1 → A∗2 is given by φ∗(a0 · · · an) = φ(a0) · · ·φ(an). Indeed, the
commutativity of the left square is a diagram chase, with one twist: we need
φ(T ) ∈ T2 for each T ∈ T1: Indeed, if

∑
i riδαi ∈ Disc(Exec∗A1) and T ∈ T1,

then
Disc(Exec∗φ)(Apply(

X
i

riδαi , T )) =

= Disc(Exec∗φ)

0@ X
αi 6∈AT

riδαi +
X

αi∈AT

ri
X
q∈Q1

µlstate(αi),aT (q)δαiaT q

1A
1
=

X
αi 6∈AT

riδExec∗φ(αi) +
X

αi∈AT

ri
X
q∈Q1

µlstate(Exec∗φ(αi)),φ(aT )(φ(q))δExec∗φ(αiaT q)

2
=

X
Exec∗φ(αi)6∈Aφ(T )

riδExec∗φ(αi) +

X
Exec∗φ(αi)∈Aφ(T )

ri
X

φ(q)∈Q2

µlstate(Exec∗φ(αi)),φ(aT )(φ(q))δExec∗φ(αiaT q)

= Apply

 
Disc(Exec∗φ)(

X
i

riδαi), φ(T )

!
,

where 1= follows from the definition of Disc(Exec∗φ), while 2= follows from the
assumptions that φ(T ) ∈ T2 is a task in A2, from the assumption that φ(AT ) =
Aφ(T ) (to preserve the first summand in each case) and from the calculation
that Exec∗φ(lstate(αi)) = lstate(Exec∗φ(αi)). The right square is then a simple
diagram chase.

Now the result follows: Let ρ = T1 · · ·Tn ∈ T ∗1 be a task schedule. Then for∑
i riδαi ∈ Disc(Exec∗A1), we have

Disc(Exec∗φ)(Apply(
X
i

riδαi , ρ)) = Disc(φ∗)(Apply(Apply(
X
i

riδαi , T1 · · ·Tn−1), Tn)))

= Apply

 
Disc(Exec∗φ)(Apply(

X
i

riδαi , T1 · · ·Tn−1)), φ(Tn))

!
by 2). It then follows by induction on n that

Disc(Exec∗φ)(Apply(
X
i

riδαi , ρ)) = Apply

 
Disc(Exec∗φ)(

X
i

riδαi), φ(T1) · · ·φ(Tn)

!
.

Thus,
Disc(trace) ◦ Disc(Exec∗φ)(Apply(

∑
i

riδαi , ρ)) =

Disc(trace)

(
Apply

(
Disc(Exec∗φ)(

∑
i

riδαi), φ(T1) · · ·φ(Tn)

))
.

But the left square in 2) implies

Disc(trace)◦Disc(Exec∗φ)(Apply(
X
i

riδαi , ρ)) = Disc(φ|∗A1)

 
Disc(trace)(Apply(

X
i

riδαi , ρ))

!
,

which implies the claim.

19


