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Mislovesemantics involve not just topology alone, but also involve order in an essen-tial way. And, this approach places domain theory at center stage, since it isthe area that has combined order and topology for application to theoreticalcomputation most e�ectively. The goal now is to show why this is so, and whyit is order-theoretic topology that has had such a large impact on theoreticalcomputer science. In particular, we highlight those aspects of domain theoryand its relationship to topology that have proved to be of greatest utility andimportance. At the same time, we document the advantages domain theoryenjoys in this area of application, and the \standard" that domain theory hasset in providing solutions to the problems this area of application poses.2 Topology versus OrderLet's begin with a simple but illustrative example.Example 2.1 Let N = f0; 1; 2; : : :g denote the natural numbers, and let (N *N) denote the set of partial functions from N to itself. Consider the family ofpartial functions fn 2 (N * N) de�ned byfn(m) = nm! if m < n,unde�ned otherwise.We would like to assert that the functions ffngn2N converge to the functionFAC:N ! N by FAC(m) = m! (8m 2 N).To �nd a suitable topology on (N * N) to express this convergence, we�rst identify (N * N) with a space of total functions. Let ? be an elementnot in N, and de�ne N? = N [ f?g. We interpret ? as unde�ned, and wede�ne an injectionf 7! f?: (N * N)! (N? ! N?) by f?(x) = n f(x) if f(x) is de�ned,? otherwise.Then it is clear that ff? j f 2 (N * N)g is precisely the set of selfmaps ofN? that are strict { i.e., those that take ? to itself. If we endow N? with thediscrete topology, then all the functions in (N? ! N?) are continuous.Proposition 2.2 In the compact-open topology on (N? ! N?), the sequenceffn?gn2N converges to FAC?.Proof. Since N? is discrete, the compact-open topology on (N? ! N?) is thesame as the topology of pointwise convergence, so the result is clear. 2We also note that by endowing N? with the discrete metric and giving(N? ! N?) the Frechet metric, the Proposition remains true for the metrictopology on (N? ! N?).But even though we have convergence of ffngn2N to FAC (after suitableidenti�cation with ffn?gn2N), something is lost in this assertion. Namely, thefunctions ffngn2N represent increasing approximations to FAC; indeed, as nincreases, so does the amount of information we have about the limit functionFAC. In fact, there is a natural order on (N * N) that makes this idea precise.2



MisloveDe�nition 2.3 De�ne the extensional order on the space (N * N) byf v g i� dom(f) � dom(g) & gjdom(f) = f;where dom(f) = f�1(N).Clearly, in this order any increasing family of partial functions has a supre-mum { the union. Moreover, the function FAC is the supremum of the familyffngn2N. Our next goal is to capture this as a \convergence in order." Thisleads us to the Scott topology.De�nition 2.4 Let P be a partially ordered set.� A subset D � P is directed if (8F � D �nite)(9x 2 D) y v x (8y 2 F ).� P is a complete partial order (cpo for short) if P has a least element {usually denoted ? { and if every directed subset of P has a least upperbound in P .Note that a directed set must be non-empty, since the empty set is a �nitesubset of every set.For example, the family (N * N) is a cpo: the nowhere-de�ned function isthe least element, and the supremum of a directed family of functions is justtheir union. Similarly, we can give N? the at order, whereby x v y if andonly if x =? or x = y for all x; y 2 N?. This corresponds to the pointwiseorder on the space (N? ! N?) of monotone selfmaps of N?, and in this orderthe supremum of a directed family of functions is the pointwise supremum,and the constant function with value ? is the least element.De�nition 2.5 Let P be a partially ordered set. A subset U � P is Scottopen if� U = "U = fy 2 P j (9x 2 U)u v yg is an upper set, and� (8D � P directed) FD 2 U ) D \ U 6= ;:Proposition 2.6 Let P be a partially ordered set.(i) The family of Scott open sets is a T0 topology on P .(ii) If x; y 2 P and there is some open set containing x but not containing y,then x 6� y.(iii) The following are equivalent:(a) The Scott topology is T1.(b) P has the discrete order.(c) The Scott topology is T2.(d) The Scott topology is discrete.Proof. Let P be a partially ordered set. Clearly the union of upper sets fromP is an upper set. And, if D � P is directed and FD 2 Si Ui, with Ui openfor each i 2 I, then FD 2 Ui for some i 2 I. Since Ui is Scott open, it followsthat D \ Ui 6= ;, and so the same is true of D \ (Si Ui).If x 6v y 2 P , then the de�nition of Scott open implies that #y = fz 2 P jz v yg is Scott closed. Since x 62#y, we have x 2 Pn #y, which is Scott open.Hence the Scott topology is T0. this proves (i).3



MisloveFor (ii), if x; y 2 P and x 2 U , then x � y and U ="U imply y 2 U aswell. Thus y =2 U must imply x 6� y.Finally, (iii) follows easily from (ii). 2In our example { (N * N) { it is not hard to show that "f is Scott open ifdom(f) is �nite (a directed union of functions extends a �nite function if andonly if one of the functions in the directed family extends the �nite function),and, as it happens, this family of principal upper sets forms a basis for theScott topology on (N * N).There are a number of important results that are true of the Scott topology.Below we summarize some of them; they all can be found for dcpo's (cpo'swithout least elements) as well as cpo's in, e.g., [3].Proposition 2.7 Let P be a cpo, and endow P with the Scott topology.(i) If D � P is directed, then FD is a limit point of D, and it is the greatestlimit point of D.(ii) Let I and J be directed sets, and let (i; j) 7! xij: I�J ! P be monotone.Then(a) Fi2I Fj2J xij = Fj2J Fi2I xij.(b) If I = J , then Fi2I Fj2J xij = Fi2I xii:(iii) If Q also is a dcpo, then f :P ! Q is continuous i� f is monotone andpreserves sups of directed sets. 2As we shall see, the second part of this result is a very useful tool in provingresults about continuous functions between dcpo's.One of the most celebrated results about cpo's is the following. We at-tribute it to Tarski, who �rst proved it for complete lattices [55]. However,a number of others { among them Scott and Knaster { have contributedto this result.Theorem 2.8 Tarski [55]If P is a cpo and f :P ! P is monotone, then f has a least �xed point,�x(f) = F�2Ord f�(?). If f is continuous, then �x(f) = Fn2N fn(?).Proof. We con�ne ourselves to an outline. For the �rst part, the monotonicityof f and the fact that ?v x (8x 2 P ) implies?v f(?), and so ffn(?)gn2N isa chain. Since P is a cpo, this chain has a least upper bound, which we use tode�ne f!(?) = Fn2N fn(?). A trans�nite induction then shows that f�(?)is well-de�ned for all ordinals �, and that � � � implies f�(?) v f�(?).Since this holds for all ordinals, there must be one where the increasing chainstops growing, and the �rst place this happens is easily seen to be a �xedpoint of f . The fact that ?v x (8x 2 P ) implies f�(?) v f(y) = y for all�xed points y of f and all ordinals �, showing that the �rst ordinal � wheref(f�(?)) = f�(?) is the least �xed point of f .If f is continuous, then it follows thatf(Gn fn(?)) =Gn f(fn(?)) =Gn fn+1(?): 24



MisloveExample 2.9 Returning to our example, we recall that the natural order on(N * N) makes the empty function the least element; this corresponds to thepointwise order on the family (N? ! N?) of monotone selfmaps of N?, andthe constant function with value ? is the least element.Now, let [(N? ! N?) ! (N? ! N?)] be the family of Scott-continuousselfmaps of (N? ! N?). De�neF 2 [(N? ! N?)! (N? ! N?)] by F (f)(n) = 8<:? if n =?,1 if n = 0,n � f(n� 1) otherwise,where we de�ne n� ?=? �n =? for all n 2 N. Then� F is Scott continuous: indeed, as the domain of the function f increases,then the domain of F (f) also increases, which implies F is monotone. Con-tinuity then follows from the fact that the supremum of a directed set offunctions is just their union.� If �? denotes the function that has value ? at all points on N?, thenF n(�?) = fn? for n > 0: this is a routine induction argument.� F (FAC) = FAC: indeed, FAC has maximal domain { N { and so it cannotbe extended. And it is clear that F (FAC)(n) = n! = FAC(n) for all n 2 N.� FAC= �x (F ): this follows from the second observation and the fact thatFAC= Fn fn?.Actually, this example shows an alternative approach to obtaining a re-cursively de�ned function from just one functional. We shall see a strikinggeneralization of this result later.We've already seen that continuous functions can be characterized purelyorder-theoretically. Another fact about continuous functions also is importantto note.Proposition 2.10 Let P , Q and R be dcpo's, and let f :P �Q ! R. Thenf is (jointly) continuous wrt the Scott topology on P � Q if and only if f isseparately continuous wrt the product of the Scott topologies on P and Q.Proof. If D � P � Q is directed, then it is routine to show that tD =(t�P (D);t�Q(D)). If f :P �Q! R is separately continuous wrt the productof the Scott topologies on P and Q, thenf(tD) = f((t�P (D);t�Q(D))) = f(td2D�P (d);td02D�Q(d0))=td2Df((�P (d);td02D�Q(d0))) = td2D td02D f((�P (d); �Q(d0)))=td2Df((�P (d); �Q(d))) = tf(D);so f also is continuous wrt the Scott topology on P �Q.Conversely, if f :P �Q! R is continuous wrt the Scott topology of P�Q,then f preserves suprema of directed sets in P � Q, which clearly implies fpreserves suprema of directed subsets of P � fyg and fxg � Q, respectively,for all x 2 P and y 2 Q. This characterizes separate continuity of f wrt theproduct of the Scott topologies. 2Remark 2.11 It should be noted that, for dcpos P and Q, the product of5



Mislovethe Scott topologies of P and Q is in general weaker than the Scott topologyof the product. However, these topologies do coincide for continuous dcpos(cf. Section 3).Theorem 2.12 For dcpo's P and Q, the family [P ! Q] of Scott-continuousmaps is a dcpo in the pointwise order.Proof. It's routine to show that the directed supremum of monotone func-tions is well-de�ned and monotone. The fact that order of computing thesupremum of a product of directed sets can be reversed implies the supremumfunction itself also preserves directed suprema, hence is continuous. 2Tarski's Theorem guarantees that the the operator �xD: [D ! D]! D iswell-de�ned, and using part (ii) of Proposition 2.7, it is easy to show that thisoperator is continuous. The following discussion shows in what sense �xD isunique.A �xed point operator is a family of continuous maps FD: [D ! D] ! Dfor each cpo D, which satis�es FD(f) = f(FD(f)) for each f 2 [D ! D].Such a family is called uniform if FE(g) = h(FD(f)) for all continuous mapsf :D ! D and g:E ! E and strict continuous maps h:D ! E satisfyingh � f = g � h: D D
E E

f
gh �? h-? - ? =) FE(g) = h(FD(f))Theorem 2.13 �x is the unique uniform �xed point operator de�ned on thecategory CPO. 2It is clear that f?g is a terminal object for the category CPO of cpo's andcontinuous maps, and that the product of cpo's is another such, so CPO iscartesian. It also is closed, as Theorem 2.12 shows. The fact that [P �Q !R] ' [P ! [Q! R]] also is clear from Proposition 2.10. Thus we have:Theorem 2.14 The category CPO of cpo's and Scott continuous maps iscartesian closed. The same also holds of the category DCPO of dcpo's andScott continuous maps. 2Our aim in this section was to show how order theory together with topol-ogy provides a richer theory than topology alone. While we have not shownthat topology alone cannot claim the results we have enumerated, it shouldbe clear that results we have highlighted are available in a particularly sim-ple way in the cpo setting, and that this theory o�ers some results (such asTarski's Theorem and Theorem 2.13) that are not so easily available in othersettings. We also shall see that these results are particularly useful in the6



Mislovearea of programming language semantics, which is at the heart of theoreticalcomputer science.3 Domain TheoryWhile some aspects of our motivating example in the previous section clearlyare close to computability, nothing in the general theory of the category CPOaddresses this directly. Domain theory adds this aspect to the theory we haveoutlined.3.1 Basic ResultsWe begin this development with some standard de�nitions.De�nition 3.1 Let P be a dcpo. An element k 2 P is compact i� "k isScott open. We let K(P ) = fk 2 P j K is compactg, and for each x 2 P ,K(x) =#x \K(P ).For example, if we consider N? to be the at natural numbers, thenK(N?) = N?. We already noted that the partial functions with �nite do-main are compact in (N * N), from which it follows that K([N? !!N?]) �ff j dom(f) is �niteg, where [N? !!N?] is the space of continuous selfmaps ofN? leaving ? �xed.De�nition 3.2 The dcpo P is algebraic if, for all x 2 P� K(x) is directed, and� x = FK(x).By a domain, we mean an algebraic cpo.The following result is basic to the theory.Theorem 3.3 Let P be a dcpo and let B � K(P ) be a family of compactelements of P . If for all x 2 P ,(i) B(x) =#x \ B is directed, and(ii) x = FB(x),then P is algebraic and B = K(P ).Proof. If the conditions hold, then x = FB(x) can be used to show thatK(x)is directed, so x = FB(x) v FK(x) v x, and then P is algebraic. If k 2K(P ), then k = FB(k) implies k 2 B(k) by the de�nition of compactness.2We noted earlier that the functions f :N? ! N? that leave ? �xed andthat have a �nite domain are compact elements in [N? ! N?]. A corollary ofTheorem 3.3 is that K([N? !!N?]) = ff j dom(f) is �niteg.De�nition 3.4 Let P be a partially ordered set. An ideal of P is a directedlower set of P . We let Idl(P ) denote the family of ideals of P .7



MisloveIf P is a poset, then using Theorem 3.3 it is routine to show that Idl(P )is an algebraic dcpo whose compact elements are K(Idl(P )) = f#x j x 2 Pg.The de�nition of algebraicity then implies that a cpo P is algebraic if andonly if P ' Idl(P ): indeed the mapping x 7! K(x) has I 7! F I as its inverse.Moreover, Idl(P ) is a cpo if and only if P has a least element.To elevate the above relationship to an equivalence of categories requiresusing relations between posets rather than functions. Since a continuous mapf :P ! Q between domains need not preserve compact elements, such a func-tion f does not restrict to a function from K(P ) to K(Q). But, for eachx 2 P , f(x) = FK(f(x)) is completely determined by the ideal K(f(x)) ofcompact elements of Q. This gives rise to the following notion.De�nition 3.5 Let P and Q be posets. An approximable relation R � P �Qis a relation satisfying:� (8x 2 P )(8y; y0 2 Q)xRy w y0 ) xRy0.� (8x 2 P )(8M � Q �nite) ((8y 2 M)xRy ) (9z 2 Q)xRz & M �#z).� (8x; x0 2 P )(8y 2 Q)x0 w xRy ) x0Ry.These conditions insure that the set fy 2 Q j xRyg is an ideal of Q, andso the relation R is really a monotone function from P to Idl(Q); this then ex-tends to a (unique!) continuous function from Idl(P ) to Idl(Q). If R � P �P 0and S � P 0�P 00 are approximable relations, then so is S�R � P�P 00. Hence,there is a category POSA of posets and approximable relations. The corre-spondence taking a continuous mapping f :P ! Q between algebraic dcpo'sto the approximable relation Rf � K(P )�K(Q) by Rf = Sffkg�K(f(x)) jk 2 K(P )g then has as its inverse the assignment taking an approximable re-lation R � P �Q between posets to the continuous map fR: Idl(P )! Idl(Q)by fR(I) = F(SR(I)). Thus, we have an equivalence of categories POSA andADCPO between posets and approximable relations and algebraic dcpo's andcontinuous mappings. This equivalence cuts down to an equivalence betweenthe full subcategories POSA0 of posets with least element and ALG of domains.Theorem 3.6 The category ALG of domains is equivalent to the categoryPOSA0 of posets with least element and approximable relations. 2If by a locally compact space we mean one in which each point has aneighborhood basis of compact sets, then the following is obvious from thede�nitions.Proposition 3.7 If P is a domain, then f"k j k 2 K(P )g is a basis for theScott topology on P , and so P is locally compact. 2Wewill see later that domains also are sober ; for now we leave this issue andconcentrate on bringing computability more to the fore. A detailed descriptionwould include an indication of how enumerability can be captured in thissetting. The details are too many to go through here, so we con�ne ourselvesto the following brief indicator.We showed that the function FAC:N ! N could be realized as the least8



Mislove�xed point �x(F ), where F : [N? ! N?] ! [N? ! N?]. This result has astriking generalization.Theorem 3.8 Myhill{Sheperdson [50]If g:N * N is partial recursive, then g can be realized as g = �x(G) for somecontinuous selfmap G: [N? ! N?]! [N? ! N?]. 2This hints at the close relationship between notions of computability anddomain theory. We could summarize this relationship with the following \slo-gans":Algebraicity captures Computabilityk compact if and only if k is computable in �nite timef :P ! P recursive implies (9F : [P ! P ]! [P ! P ]) f = �x (F )3.2 Continuous DomainsMany of the basic results outlined in the previous section have an importantgeneralization. In his seminal paper [49], Scott comments that the algebraiclattices he discovered as injective spaces are in some sense zero-dimensional,and to close up the class under quotients, one needs to consider positive-dimensional analogues. This was the impetus for the results in [20], where itis shown that continuous lattices form the class of objects so generated. Atthe more general level of cpo's, the corresponding objects are the continuouscpo's. Some of their theory was presented in the exercises in [20], but thenicest presentation we have seen is in [3]. Here's a brief outline of the basicsof that theory.De�nition 3.9 Let P be a dcpo, and let x; y 2 P .� We write x� y if for all D � P directed sets, if y v FD, then D\ "x 6= ;.If x � y, then we say x is way-below y. We let +y = fx 2 P j x � yg foreach y 2 P .� P is a continuous dcpo if for all y 2 P ,(i) +y is directed, and(ii) y = F +y.We let CON denote the category of continuous cpo's and Scott continuousmaps.Clearly x 2 P satis�es x � x if and only if x is compact, and so eachalgebraic cpo is continuous. Given a continuous cpo P , in analogy with theposet K(P ), we can de�ne the pre-ordered set (P;�). In general,� is not apartial order: x � x i� x is compact. The proper generalization of K(P ) isgiven in the following de�nition.De�nition 3.10 An abstract basis is a set B together with a transitive rela-tion � which satis�es the interpolation property:INT (8M � B �nite)(8x 2 P )M � x ) (9y � x)M � y � x:9



MisloveHere, M � x means z � x for all z 2 M .Proposition 3.11 Let P be a continuous dcpo. Then� satis�es INT. Hence� (P;�) is an abstract basis.� *x = fy 2 P j x� yg is Scott open for each x 2 P .Proof. Let P be continuous and let x 2 P . Consider the set A = fz 2 P j(9w 2 P ) z � w � xg. It is routine to show that A is directed, and clearlyFA v x. If FA 6= x, then x = F +x implies there is some w � x withw 6v FA, and then the same argument implies there is some z � w withz 6v FA. Then z 2 A, so z v FA, which is a contradiction. Hence FA = x.Next, if M � P is a �nite set with y � x for all y 2 M , then, for eachy 2 M , there is some y0 2 A with y v y0. Choosing z 2 A with y0 v z foreach y 2 M implies there is some w � x with z � w. But, then y v y0 v zimplies y � w � x for all y 2 M . Hence P satis�es INT.The �rst part of the Proposition now follows. As for the second part, ifFD 2*x, then x � FD, and so INT implies there is some y 2 P withx� y � FD. Then 9d 2 D with y v d, and so d 2"y �*x. 2Corollary 3.12 If P is a continuous dcpo, then P is locally compact in theScott topology.Proof. The fact that *x is Scott open implies "x is a Scott-compact neigh-borhood of each point in *x. 2Each abstract basis (B;�) has an ideal completion Idl(B;�) { the set of�-directed lower sets of B, and this ideal completion is a continuous dcpoin which x � y implies #x �#y in Idl(B;�). Moreover, given a continuousdcpo P , the mapping x 7!+x:P ! Idl(P;�) has as its inverse the mappingI 7! F I: Idl(P;�)! P .In further analogy to the algebraic case, there is a notion of approximablerelations between abstract bases, and the following theorem holds.Theorem 3.13 Abramsky & Jung [3]There is an equivalence between the categories ABAS of abstract bases andapproximable relations and COND of continuous dcpo's and continuous map-pings. This equivalence restricts to an equivalence between the full subcate-gories ABAS0 of abstract bases with minimum elements and CON continuouscpo's. 2What this all says is that there is a uniform approach the algebraic andcontinuous cases in which the algebraic structure of continuous cpo's can behighlighted and used e�ectively to understand the structure of continuouscpo's. It has been known for some time that certain aspects of the theoryof domains are more elegantly and simply presented in the continuous case(because of the closure under quotients), and the approach of abstract basesprovides a method for developing that theory in a way that a�ords easy accessto the results about algebraic cpo's that one might wish to highlight.10



Mislove3.3 Categories of DomainsIn the �rst section we noted that CPO and DCPO are cartesian closed cate-gories. If P and Q are algebraic, then it is easy to show that P � Q also isalgebraic and that K(P �Q) = K(P )�K(Q). Since the terminal object alsois algebraic, ALG { the category of domains and continuous maps { is carte-sian. If we want to know whether ALG also is cartesian closed, the followingresult shows we don't have to look far for a potential internal hom:Theorem 3.14 Smyth [51], Jung [30]Let C be a full subcategory of ALG and let P;Q be objects of C.(i) If C has products, then P �Q is the product of P and Q in C.(ii) If C has exponentials, then [P ! Q] is the exponential of P and Q in C.2We attribute this theorem jointly to Smyth and Jung; Smyth [51] showedthis for !-algebraic domains (i.e., ones for which K(P ) is countable), andJung [30] extended the result to the general case.Unfortunately, ALG is not cartesian closed. Indeed, a simple example thathints at the problem is to show that (N ;�)op { the natural numbers in thedual of the usual order { satis�es [(N;�)op ! (N;�)op] is not algebraic. Infact, K(f) = ; for any function in this space. (This example is taken from[3].)So, one might ask what cartesian closed categories exist within ALG. The�rst one we note is probably the best-known.De�nition 3.15 A domain P is a Scott domain if P is closed under theformation of non-empty in�ma.Theorem 3.16 The category SD of Scott domains and continuous maps iscartesian closed. 2Clearly the product of Scott domains is another such, so the proof of thisresult requires only consideration of the function space. Here, a little workis required. The pointwise in�mum of a family of continuous maps betweenScott domains surely is well-de�ned, but it is not necessarily continuous. Whatone has to take for the in�mum is the largest Scott continuous map which ispointwise below the pointwise in�mum. Of course, even once it is shownthat this map exists and that it is the in�mum, it also needs to be shownthat the family of continuous maps between Scott domains is algebraic. Hereone explicitly shows that every continuous function is the supremum of \stepfunctions" which clearly are compact elements in the function space. By taking�nite sub-suprema of such step-functions, one sees that the compact elementsof the function space form a basis.A larger cartesian closed category of domains is obtained in the followingway.De�nition 3.17 An embedding{projection pair (e; p):P ! Q between do-11



Mislovemains P and Q is a pair of continuous maps e:P ! Q and p:Q! P satisfying� p � e = 1P , and� e � p v 1Q.Actually, an e-p pair is a special case of a Galois adjunction between thedomains P and Q: e is the lower adjoint and p the upper adjoint.De�nition 3.18 A domain P is SFP if there is a sequence of �nite posetsand e-p pairs, f(enn+1; pn+1n):Pn ! Pn+1gn2N such thatP ' limn (Pn; (pnn�1 � � � � � pm+1m)m�n2N)' colimn (Pn; (en�1n � � � � � emm+1)m�n2N)This de�nition only makes sense once one shows that the indicated limitand colimit both exist and that they coincide. This was �rst demonstratedby Plotkin [43]. Plotkin constructed the category SFP of SFP-objects andcontinuous maps in order to have a cartesian closed category that was closedunder all the operators he needed to create the sort of semantic models he hadin mind. In particular, he needed a ccc that was closed under the Plotkin powerdomain construct, and this is something that is not true of Scott domains.Plotkin also conjectured the following result, which was proved by Smyth [51].Theorem 3.19 Smyth [51]The category SFP of SFP-objects and continuous maps is the largest cartesianclosed category of !-algebraic domains. 2In his celebrated thesis [30], Jung greatly extended our knowledge aboutmaximal cartesian closed categories of domains. He �rst showed that thecategory of bi�nite domains { those that are simultaneously the limit andcolimit of a directed family of �nite posets under e-p pairs { is cartesianclosed, and in fact is maximal such among those ccc's of domains. He alsode�ned the following class of domains.De�nition 3.20 An L-domain is a domainP in which #x is a complete latticefor each x 2 P .Theorem 3.21 Jung [30]There are two maximal cartesian closed full subcategories of domains:� The category BIFIN of bi�nite domains and continuous maps, and� The category LDOM of L-domains and continuous maps. 23.4 Categorical GeneralizationsOne of the basic aspects of the Scott topology is that directed sets convergeto their suprema. Moreover, Tarski's Theorem guarantees that continuousselfmaps on cpo's have least �xed points that can be computed in a simpleway { simply iterate the function starting at the least element. Smyth andPlotkin [53] were the �rst to elevate these ideas to the categorical level.In their approach, categories of cpo's and continuous maps were viewed as12



Mislove\large cpo's" in which colimits of what are called \expanding sequences" in[3] correspond to suprema in a cpo. Furthermore, domains satisfying desiredproperties can be viewed as \�xed points" of associated continuous endofunc-tors of the category, and these \�xed points" can be calculated in a way similarto the calculation of the least �xed point of a continuous selfmap of a cpo.We now outline this material along with the interesting phenomena that arisein related categories. All of this material is presented in detail in Section 5 of[3]. In order to mimic Tarski's Theorem at the level of a category A of cpo's,we �rst need to order A. This is accomplished by de�ning not a partial orderon A, but rather a pre-order { a reexive, transitive relation { on A.De�nition 3.22 Let D and E be cpo's. We write D v E if and only if thereis an embedding-projection pair (e; p):D ! E.Lemma 3.23 v is a pre-order on the class of cpo's.Proof. It is clear that the relation is reexive, since the identity map formsan e-p pair on any cpo. Transitivity follows from the fact that (e2 � e1; p1 �p2):D1 ! D3 is an e-p pair if (e1; p1):D1 ! D2 and (e2; p2):D2 ! D3 are e-ppairs. 2Note, however, that it is unclear what it means for two dcpo's to be equiv-alent under v.Example 3.24 Let I = [0; 1] denote the unit interval, E = I � I the unitsquare in the product order, andD = ([1=2; 1=2]� [1=2; 1=2])[ f(x; x) j 1=2 � x � 1g:Clearly D is a sub-cpo of E, and it is easy to see that there is a projectionmapping p:E ! D so that the embedding i:D ! E together with p formsan embedding-projection pair. But, likewise, E can be embedded in D as thelower square, and this also has an associated projection p0:D ! E. Thus Dand E are equivalent under v, but they clearly are not isomorphic as cpo's.Even though v is not a partial order, we can still use it as if it were one,and so our next goal is to show that increasing sequences on cpo's in this orderhave \least upper bounds".De�nition 3.25 Let (en; pn):Dn ! Dn+1 be a sequence of e-p pairs for eachn 2 N. We de�ne D1 = f(xn)n2N 2Yn2NDn j pn(xn+1) = xng;and we endow D1 with the order inherited from Qn2NDn. It is not hard toshow that D1 is a sub-cpo of Qn2NDn, since the maps pn all are continuous.We also can de�ne embedding-projection pairs (En; Pn):Dn ! D1 byPn((xn)n2N) = xn and En(x) = (fin(x)i2N), where fij:Dj ! Di byfij = 8<: pi � � � � � pj�1 if i < j,1Di if i = j, andei�1 � � � � � ej if i > j.13



MisloveTheorem 3.26 If (en; pn):Dn ! Dn+1 is a sequence of e-p pairs for eachn 2 N, then (En; Pn):Dn ! D1 as de�ned above is a sequence of e-p pairssatisfying En = En+1 � en and Pn = pn � Pn+1 for each n 2 N.Moreover, if A is a cpo and (E 0n; P 0n):Dn ! A is a sequence of e-p pairssatisfying E 0n = E 0n+1 � en and P 0n = pn � P 0n+1 for each n 2 N, then there is aunique e-p pair (E;P ):D1 ! A such that E � En = E 0n and Pn � P = P 0n foreach n 2 N.Finally, if (E 0n; P 0n):Dn ! A is a co-cone over the sequence (en; pn):Dn !Dn+1, then the co-cone is co-limiting if and only if 1A = F(E 0n � P 0n). 2Let CPOep be the category of cpo's and e-p pairs; i.e., the objects of thecategory are cpo's, and morphisms are pairs of embedding-projection map-pings between objects. The point of the previous result is that we can regard(D1; ((En; Pn):Dn ! D1)n2N) as a co-cone over the diagram (en; pn):Dn !Dn+1)n2N in CPOep, and this result asserts that it is co-limiting. Viewed asa colimit, D1 then is the \least" upper bound of the sequence D0 v � � � vDn v Dn+1 � � �, and so the category CPO of cpo's and continuous maps hasleast upper bounds relative to the order v. The construction shows that thisalso holds for every full subcategory of CPO that is complete. Note also thatCPO has a least cpo - the one-point cpo f?g, since there is an obvious e-ppair from f?g to any cpo P .The next point is to single out a family of continuous endofunctors forwhich we can prove an analogue of Tarski's Theorem. The obvious de�nitionfor continuity would be that a functor preserves least upper bounds, as de�nedin Theorem 3.26. But to make this precise, we �rst record a result that showsCPO is closed under limits and colimits.Theorem 3.27 If (Pi; f(eij ; pij):Pi ! Pjgi�j2I) is a diagram in CPOep, thenlim(Pi; fpijgi�j2I) ' colim(Pi; feijgi�j2I): 2So, if one has a diagram (Pi; f(eij ; pij):Pi ! Pjgi�j2I) in CPOep, thenthe limit of the diagram (Pi; fpij:Pi ! Pjgi�j2I) and the colimit of the dia-gram (Pi; feij :Pi ! Pjgi�j2I) both exist and they coincide. This limit can beregarded either as a colimit or a limit in the category CPO by taking the appro-priate projection from CPOep. This result allows for a �ne analysis of the limitof such a diagram, and this in turn is very useful in applying the techniquesthat are needed to construct domains to satisfying certain equations.We already have seen that the colimit of a sequence (Pi; f(eij ; pij):Pi !Pjgi�j2I) in CPO can be regarded as the least upper bound of the sequence.Moreover, the order on CPO ensures that all functors between categories ofcpo's are monotonic: if (e; p):P ! Q is an e-p pair in a category A of cpo'sand F :A ! B is a functor, then (F (e); F (p)):F (P ) ! F (Q) also is an e-ppair. So what remains is to �nd the appropriate sense in which functors shouldbe continuous.De�nition 3.28 Let A and B be co-complete categories of cpo's and con-tinuous maps. The functor F :A ! B is continuous if for every diagram14



Mislove(Pi; ((eij ; pij):Pi ! Pj: )i�j2I) in Aep,F (colim(Pi; fejigi�j2I)) ' colim(F (Pi); fF (eji)gi�j2I):While this seems a reasonable de�nition for continuity (albeit somewhatopposite from the usual de�nition of a continuous functor), it can be a di�cultproperty to prove. The following result shows that there is a simple test thatmakes it easy to show certain functors are continuous.De�nition 3.29 The functor F :A! B between full subcategories of CPO islocally continuous if for all objects P and Q of A,F : [P ! Q]! [F (P )! F (Q)]is continuous.This de�nition does make sense: indeed, because operations on [D ! E]are de�ned pointwise, even though [D ! E] and [F (D) ! F (E)] are notnecessarily objects of A or B, respectively, nonetheless they are cpo's andF : [D ! E]! [F (D) ! F (E)] is a well-de�ned function, so it makes perfectsense that it might be continuous.Theorem 3.30 Plotkin [44], Smyth & Plotkin [53]If F :A! B is a locally continuous functor between full subcategories of CPO,then F :A! B is continuous. 2Now, let F :CPO! CPO be an endofunctor and let (e; p): f?g ! F (f?g)be the natural e-p pair. If we let F 0 be the identity functor, then the followingis the analogue to Tarski's Theorem we have been seeking:Corollary 3.31 Tarski's Theorem for Categories of Cpo'sLet F :A ! A be a continuous endofunctor on a full, complete subcategory ofCPO. Then (F n(e); F n(p)):F n(f?g) ! F n+1(f?g) is a sequence of e-p pairsand I= f(xn)n2N j F n(p)(xn+1) = xng' colim(F n(f?g); (Fm�1 � � � � � F n)(e)n<m2N)satis�es F (I) ' I. Moreover, I is the least such cpo, in the sense of Theo-rem 3.26. 2Since local continuity implies continuity, we can �nd a domain satisfyinga desired isomorphism by starting with a continuous endofunctor F :CPO !CPO and seeking a cpo P satisfying F (P ) ' P . The technique for �ndingsuch a cpo P is to apply Tarski's Theorem 3.31: iterate the functor F startingwith the least domain, f?g, using the canonical e-p pair from f?g to F (f?g).One should note the analogy to �nding �xed points of continuous selfmaps ofcpo's. We present perhaps the simplest example.Example 3.32 Let L:CPO ! CPO by L(P ) = P [ f?g, where ?62 P , andfor f :P ! Q,L(f):L(P ) ! L(Q) by L(f)(x) = n f(x) if x 2 P ,? otherwise.15



MisloveThus, L is the lift functor which adds a new bottom to the cpo P and whichextends a continuous map between cpo's by sending the new bottom in thedomain cpo to the new bottom in the range cpo. Clearly L is an endofunctorof CPO, and the local continuity of L should be obvious.In seeking a cpo P satisfying L(P ) ' P , we start with the cpo f?g andthe embedding-projection pair (e; p) between f?g and the cpo L(f?g) whichsends ? to the least element of L(f?g), and the projection which is the onlymap from L(f?g) to f?g. This leads to the following diagram in CPOep:f?g p ��!e L(f?g) L(p) ��!L(e) L2(f?g) � � � Ln(f?g) Ln(p) ��!Ln(e) Ln+1(f?g) � � �Theorem 3.27 then implies thatlimn (Ln(f?g); fLn�1(p) � � � � � Lm(p)gm<n2N)' colimn (Ln(f?g); fLm(e) � � � � � Ln�1(e)gm<n2N)' (N;�)>;where (N;�)> is the natural numbers in the usual order with a top elementadded. It is important to note that the reason this is the colimit of the diagram(Ln(f?g); fLm(e) � � � � � Ln�1(e)gm<n2N) is that the colimit is taken in CPO,where all objects must be directed complete. Hence, the colimit in POS {(N;�) { must have a largest element added to make it a cpo.Now, since L is locally continuous, it is continuous. Hence(N;�)> ' L((N ;�)>);and this provides a solution to the equation L(P ) ' P .In analogy to the situation with continuous selfmaps of cpo's, the solutionL(P ) ' P we just found is least relative to the pre-order we have placed onCPO. There is another way to state this fact, which utilizes the notions ofF -algebras.De�nition 3.33 Let F :A! A be an endofunctor on a category A. The objectA of A is an F -algebra if there is a morphism �A:F (A) ! A in the categoryA. If A and B are F -algebras, then an F -homomorphism from A to B is anA-morphism f :A! B such the the following diagram commutes:F (A) F (B)
A B

F (f)
f�A �B-? - ?If F :A! A is a locally continuous endofunctor on the full subcategory Aof CPO, and if A contains the object f?g, then we can form the objectI= colimn ((F n(f?g)n2N); fFm(e) � � � � � F n�1(e)gm�n2N);16



Mislovewhere e: f?g ! F (f?g) is the embedding sending ? to the least element ofF (f?g), and this satis�es F (I) ' I. Recall that a map f :P ! Q betweencpo's is strict if it preserves the least element of P . The proof of the followingresult can be found in [3].Theorem 3.34(i) If A is an F -algebra for which �A:F (A) ! A is an isomorphism, thenthere is a least F -homomorphism fB;A:A! B for any F -algebra B.(ii) I is a sub-cpo of every �xed point B ' F (B) of F .(iii) I is an initial F -algebra in the category A! of A-objects and strict contin-uous maps from A. 2So, if we take the case F = L, the lift functor, then this says that thelift algebra (N;�)> is a lift algebra in CPO that is the \least �xed point" inthe category in the sense that there is a least homomorphism from it to anyother lift algebra. Moreover, if we force the least element of (N;�)> to bemapped to the least element of a target lift algebra B, then there is a uniquelift algebra homomorphism from (N;�)> to B.Lastly, in Section 5.3 we will see how the assignment P 7! [P ! P ] can bemade functorial, and how the techniques outlined here allow one to constructa non-degenerate �xed point for the associated functor. This result providesus with a model of the untyped lambda calculus of Church and Curry.3.5 Further ResultsThe results we have outlined begin to make a case that domain theory hasa number of interesting results to o�er. From the start, there have beenseveral attempts to duplicate the results we describe in other settings. Forexample, a number of authors have examined the possibility of developinganalogous results in categories of metric spaces. Most notable among these isthe seminal result of America and Rutten [6] where it was shown that oneof the most important techniques { solving \recursive domain equations" (likeour lift algebra equation) { can be carried out in the metric setting. Analogousresults also have been obtained by Flagg and Kopperman [17] who use thedi�erent setting of quantales. Perhaps the most penetrating results so far havebeen obtained by Wagner [59] who has shown that the domain-theoretic andmetric space approaches can be understood as instances of a common theme.This theme is to regard the categories CPO and MET as enriched categories.For CPO, the enrichment is over the two-point lattice, while for MET, it is overthe quantale (Rop;+) of real numbers in the opposite order equipped with +as the tensor product.Another point that is worth making is that there are concerted attemptsto understand just what portion of the properties of CPO are fundamental toa basis for theoretical computation. In this regard, we mention two researche�orts:(i) The work of Freyd [19] on algebraically compact categories. If T is an17



Misloveendofunctor of a category C, then T -Inv denotes the category of tripleshA; f; gi where hA; fi is a T -algebra, hA; gi is a T -coalgebra, and f � gand g � f are the identity maps. T is algebraically bounded if T -Inv hasan object that is both terminal and initial. If C is bi-complete (i.e., everycovariant endofunctor of C or of Cop has an initial algebra), then C isalgebraically compact if every endofunctor is algebraically bounded. Forexample, the category of countable sets is algebraically complete. Thesenotions appear to characterize what is necessary for each endofunctor tohave a \least �xed point" in the category.(ii) The work of Plotkin, Fiore, et al on a \system of axioms for domaintheory." The axiom system postulates a pair of categories in which thereis a forgetful functor from one to the other whose left adjoint is \analogousto" the lift functor. The relation between CPO and CPO! is the primeexample: here CPO! is the category of cpo's and strict continuous maps.The forgetful functor from CPO! to CPO has lift as its left adjoint. Themotivation is that (N;�)> is an initial lift algebra, and this is exactlywhat is needed to develop a theory of !-cpo's and continuous maps {partial orders with least element where countable chains have least upperbounds, and in which maps preserve the suprema of such chains.4 Domains as Topological SpacesThe \traditional approach" to domain theory emphasizes realizing domainsas dcpo's P which are isomorphic to the family Idl(K(P )) of order idealsof the set of compact elements. The results in [3] extend this approach tocontinuous domains by utilizing the notion of an abstract basis. In our opinion,this approach su�ers from the drawback of having to deal with approximablerelations, which we view as much less intuitive than continuous functions.In this section we outline an alternative approach that emphasizes topology,perhaps to the detriment of not highlighting the algebraic character of domainsthat the traditional approach o�ers. Nonetheless, we believe this approach hassome intuitive advantages.4.1 Order-theoretic TopologyTo begin, we recall the well-worn connection between topology and algebrathat has been extensively studied under the rubric \order-theoretic topology."A basic reference for this approach is the book [28]. However, we prefer tofocus on the closed sets of a topological space, rather than the open sets.Let TOP be the category of topological spaces and continuous maps.De�nition 4.1 If X is a topological space, then we de�ne the family �(X) =fC � X j C = Cg of closed subsets of X. If f :X ! Y is continuous, wede�ne �(f): �(Y )! �(X) by �(f)(C) = f�1(C).De�nition 4.2 A Brouwerian lattice is a complete lattice L for which x _(VC) = Vy2C(x _ y) for all x 2 L and all families C � L. A morphism of18



MisloveBrouwerian lattices is a mapping f :L ! M that preserves all in�ma and all�nite suprema.Theorem 4.3 If CBL denotes the category of Brouwerian lattices and Brouw-erian lattice maps, then �:TOP! CBLop is a contravariant functor. 2.To go back the other way, we �rst need some terminology.De�nition 4.4 For a complete lattice L, an element p 2 L is co-prime if forall F � L �nite, if p v _F , then F \ "p 6= ;. We denote by Spec_(L) thefamily of co-primes of L.For example, given a topological space X, the set fxg is co-prime in �(X)for each x 2 X. Note that the least element of L cannot be co-prime, sinceF = ; is a possibility.We want to topologize Spec_(L), so we make the following de�nition.De�nition 4.5 If L is a lattice, we de�ne C � Spec_(L) to be closed ifC =#x \ Spec_(L) for some x 2 L. The hull-kernel topology on Spec_(L) hasthese sets as its family of closed sets.Of course, for this de�nition to make sense, it must be shown that thefamily of closed sets we have de�ned is closed under all intersections andall �nite unions. The former is true since Tf#xi \ Spec_(L) j i 2 Ig =#(Vi xi) \ Spec_(L), while the latter is an easy exercise using the fact that allelements of Spec_(L) are co-prime.Proposition 4.6 Let �:L ! M be a morphism of Brouwerian lattices. Wede�ne the lower adjoint of � by ��:M ! L by ��(x) = V��1("x). Then:(i) � � �� � 1M and �� �� � 1L; .i.e., (�; ��) is a Galois adjunction betweenL and M .(ii) �� preserves all suprema.(iii) ��(Spec_(M)) � Spec_(L).(iv) ��jSpec_(M): Spec_(M)! Spec_(L) is hull-kernel continuous.Proof. It is clear that �� is well-de�ned since M is a complete lattice, andpart (i) is then a routine exercise. Since � preserves all in�ma, part (ii) followsfrom the general theory of adjunctions. Part (iii) follows from the fact that �preserves �nite suprema, and part (iv) again is easy. 2Using this Proposition, we can prove the following result.Corollary 4.7 There is a functor Spec:CBLop ! TOP given by Spec(L) =Spec_(L), and for �:L! M , Spec(�) = ��jSpec_(L). 2Our aim is to use the functors Spec and � to establish as equivalence ofcategories, but this is not true in the generality we are in. For example, notevery topological space is of the form Spec_(L) for some complete Brouwerianlattice L. Indeed, the unit �X :X ! Spec_(�(X)) satis�es �X(x) = fxg, andso this map is injective if and only if X is T0. On the other side, the co-unit�L:L ! �(Spec_(L)) given by �L(x) = W #X \ Spec_(L) certainly is onto,19



Mislovebut it is one-to-one if and only if every x 2 L is the supremum of the set#x \ Spec_(L). We make these special spaces and lattices the subject of ournext de�nitions.De�nition 4.8 A closed subset C � X of the topological space X is irre-ducible if C is a co-prime in �(X); i.e., if C is not the union of two properclosed subsets. The space X is sober if every irreducible closed subset C sat-is�es C = fxg for a unique point x 2 X. We let SOB denote the category ofsober spaces and continuous maps.The following proposition is routine.Proposition 4.9(i) If L is a complete Brouwerian lattice, then Spec_(L) is a sober space inthe hull-kernel topology.(ii) If X is a topological space, then �X :X ! Spec_(�(X)) is a continuousand open mapping onto its image. 2Corollary 4.10 The functor Spec � �:TOP ! SOB is left adjoint to theinclusion functor. 2For a topological spaceX, the space Spec_(�(X)) is called the sobri�cationof X; it is the largest space having the same topology as X.On the lattice side, we have the following.De�nition 4.11 A complete Brouwerian lattice L has enough co-primes ifx = W(#x \Spec_(L)) for all x 2 L. We let SCBL denote the category of suchlattices and maps ��:L ! M that are upper adjoints to CBL-maps from Mto L.Proposition 4.12(i) If X is a topological space, then �(X) has enough co-primes.(ii) If L is a complete Brouwerian lattice, then the mapping �L:L! �(Spec_(L))is a monomorphism of complete Brouwerian lattices. 2Corollary 4.13 The functor � � Spec:CBL ! SCBL is left adjoint to theinclusion functor. 2A complete Brouwerian lattice also is called spatial if L has enough co-primes. All of this culminates in the following result.Theorem 4.14 The functors �jSOB: SOB! SCBLop and SpecjSCBLop : SCBLop! SOB form a dual equivalence. 24.2 Continuous PosetsWe know by now that we can endow each dcpo with its Scott topology, andobviously this would be a way to take advantage of the equivalence of cate-gories we have just outlined. Unfortunately, in this generality, it is not clearwhether every dcpo can be retrieved from its Scott topology. But we will be20



Misloveable to do this for continuous dcpo's, and it is convenient to generalize fromthe setting of dcpo's just a bit.De�nition 4.15 Let P be a poset. If x; y 2 P , then we write x � y if, forall directed sets D � P , if FD exists in P and y v FD, then D\ "x 6= ;.We say P is continuous if, for all y 2 P ,� +y = fx 2 P j x� yg is directed, and� y = F +y.Likewise, x 2 P is compact i� x � x, and P is an algebraic poset if K(x)is directed and satis�es x = FK(x) for all x 2 P . We let CPOS denote thecategory of continuous posets and Scott continuous maps, and APOS denotethe full subcategory of algebraic posets.The only di�erence between the de�nitions we just made and the earliernotions of continuity and algebraicity is that we no longer assume the under-lying poset P is directed complete. Algebraic and continuous posets also havebeen studied in [36] and in [61], respectively. We shall see that the equiva-lence just outlined for sober spaces and spatial Brouwerian lattices yields avery satisfying theory for the categories CPOS and APOS. We begin our studywith the following result, whose proof is the same as that for Proposition 3.11.Lemma 4.16 If P is a continuous poset, then � satis�es the propertyINT x� y ) (9z 2 P ) x� z � yHence, *x is Scott open for each x 2 P . 2Lemma 4.17 If P is a continuous poset and C 2 Spec_(�(P )), then fx 2C j *x \ C 6= ;g is directed and C = Ff#x j*x \ C 6= ;g.Proof. Any closed set C = Sf#x j x 2 Cg and each x 2 P satis�es x = F +xsince P is continuous. Thus, C = Sf#x j *x \ C 6= ;g. Suppose that x; y 2 Csatisfy *x \C 6= ; 6=*y \C. If *x\ *y \C = ;, then C = (Cn *x) [(Cn *y)is the disjoint union of proper closed sets, which meansC 62 Spec_(�(P )). Thisshows fx 2 C j *x \ C 6= ;g is directed. And since C = Sf#x j *x \ C 6= ;g,it follows that C = Ff#x j *x \ C 6= ;g. 2Proposition 4.18 If P is a continuous poset, then(i) Spec_(�(P )) is a dcpo.(ii) C � D 2 Spec_(�(P )) i� (9x� y 2 P )C �#x�#z � D.(iii) Spec_(�(P )) is continuous.(iv) The mapping �P :P ! Spec_(�(P )) is a homeomorphism onto its image,and the topology �P (P ) inherits from the Scott topology on Spec_(�(P ))is the hull-kernel topology of �P (P ).Proof. If L is a complete lattice and D � L is a directed family of co-primes,then it is easy to show that FD also is co-prime. This shows (i).For (ii), suppose that x� y 2 P and that D � Spec_(�(P )) is a directedfamily of closed sets whose supremum dominates #y. Then y 2 SD. Since21



Mislovex� y, it follows that *x is a Scott open set containing y, and soSD\ *x 6= ;.Since closed sets are lower sets, there is some set C in the familyD with x 2 C,and this means #x v C. Thus #x �#y in Spec_(�(P )). It then follows thatC � D for any sets C and D with C �#x and #y � D.Conversely, if C � D in Spec_(�(P )), then the preceding lemma impliesD = Ff#x j*x \ D 6= ;g, and this supremum is directed. Hence, (9x 2 D)*x \D 6= ; & C �#x: Since *x \D 6= ;, Lemma 4.16 implies there is somey 2 D\ *x with *y \D 6= ;. Then the �rst part of the proof implies #x�#y,and so C �#x�#y � D, which proves part (ii).Part (iii) follows from part (ii), Lemma 4.17 and the continuity of P . The�rst part of (iv) follows from the fact that P is T0 in the Scott topology. Sincedirected sets in Spec_(�(P )) converge to the same point in the Scott topologyof Spec_(�(P )) as they do in the hull-kernel topology (since Spec_(�(P ))is closed under directed suprema in �(P )), the identity map is continuousfrom the Scott topology to the hull-kernel topology. Conversely, if C 2 U �Spec_(�(P )) and U is Scott open, then there is some x 2 P with C 2 fD j*x \D 6= ;g � U . ThenSpec_(�(P )) n fD j *x \D 6= ;g= fD 2 Spec_(�(P )) j D\ *x = ;g= fD 2 Spec_(�(P )) j D � Pn *xg;which clearly is hull-kernel closed, and so the topologies are the same. 2Since Spec_(�(P )) is sober for any continuous poset P , the following resultis clear.Corollary 4.19 The functor Spec � �:CPOS ! CON is left adjoint to theforgetful functor. Hence, the continuous poset P is sober if and only if P is adcpo. 2Thus, the sobri�cation of a continuous poset is a continuous dcpo with\the same way-below relation." Of course, we can restrict our attention tothe algebraic case to obtain the following.Corollary 4.20 If P is an algebraic poset, then Spec_(�(P )) is an algebraicdcpo with K(Spec_(�(P ))) = f#k j k 2 Pg. Hence, P is a dcpo if and only Pis sober in the Scott topology. 2One might ask which algebraic posets P satisfy the property that Idl(P ) 'Spec_(�(P )) the answer is the following.Proposition 4.21 An algebraic poset P satis�es Idl(P ) ' Spec_(�(P )) ifand only if P = K(P ). 2All of the material we have presented has been for continuous posets, andthe resulting directed complete partial orders are continuous dcpo's. Clearlya similar development can be made for continuous posets with least element,and then the resulting directed complete partial order would be cpo's.Our stated motivation was to present a theory that avoided the use ofapproximable relations. This theory does that, but it does not have the \purelyalgebraic" avor that using approximable relations a�ords. On the other hand,22



Mislovethis theory provides a nice example of how the sobri�cation functor can yieldpleasing results relating categories of incomplete partial orders to ones that arecomplete. This highlights that fact that sober spaces might best be thoughtof in terms of completeness, rather than separation.Finally, one might ask whether the theory we have presented can be ex-tended to a larger class of posets endowed with the Scott topology. Whilethis may be true, such a theory cannot include all dcpo's as the target of thesobri�cation functor, as Johnstone's example [28] of a dcpo whose Scotttopology is not sober shows.4.3 Duality TheoriesOne of the appealing aspects of domain theory is the fact that rich dualitytheories can be devised for it. These theories rely on both aspects of domains:their intrinsic topological structure as represented by the Scott topology, andtheir intrinsic algebraic structure, represented by the role that compact ele-ments play in the structure of domains. The basic theory relies on analyzingthe use of spectral theory of the previous section somewhat more carefully.In applying the sobri�cation functor, we \passed through" the family �(P )for P a continuous poset. Since P and Spec_(�(P )) have the same closed sets,we can investigate the complete Brouwerian lattice �(P ) assuming that P isa continuous poset or a continuous dcpo.De�nition 4.22 A complete lattice L is continuous if L is a continuous cpo.Likewise, L is algebraic if L is algebraic as a cpo. The lattice L is bicontinuous(resp., bialgebraic) if both L and Lop are continuous (resp., algebraic).An examination of the proof of part ii) of Proposition 4.18 shows thatx� y 2 P implies #x�#y in �(P ) for a continuous poset P . It then followsthat, if xi � yi for each i = 1 : : : ; n, then [i #xi � [i #yi in �(P ). It then isroutine to show that any closed subset C of a continuous poset P satis�esC =Gf#F j F � C �nite & #F � Cg:That is, �(P ) is a continuous cpo.Dually, it can be shown that Pn *y is way-below Pn *x in (�(P );�)if x � y 2 P , again for P a continuous poset. If C � P is closed, thenC = TfPn *F j F � P n C �niteg, and Pn *F � C in (�(P );�) for eachsuch F . Since this family is easily seen to be directed under reverse inclusion,it follows that (�(P );�) also is continuous. Hence �(P ) is bicontinuous if P isa continuous poset. Since �(P ) is Brouwerian, [20], Proposition VII-2.9 thenimplies that �(P ) also is completely distributive.Theorem 4.23 If P is a continuous poset, then �(P ) is a completely dis-tributive bicontinuous lattice. Moreover, C � D in �(P ) if and only ifthere are �nite subsets F;G � P such that C �#F �#G � D. Dually,C � D in (�(P );�) if and only if there are �nite subsets F;G � P such thatC � Pn *F � Pn *G � D.Moreover, �(P ) is algebraic if and only if P is algebraic, in which case23



MisloveK(�(P )) = f"F j F � K(P ) �niteg, and K(�(P )op) = fPn "F j F �K(P ) �niteg. 2Lawson duality also asserts that the converse of this Theorem holds. Namely,if L is a completely distributive, bicontinuous lattice, then Spec_(L) is a con-tinuous dcpo and L ' �(Spec_(L)) (cf. [33]).Theorem 4.23 can be raised to the level of a duality theory by applyingthe general equivalence between sober spaces and spatial complete Brouwerianlattices. Indeed, the continuous functions between continuous dcpo's are theScott continuous maps, and these correspond precisely to the maps betweenthe respective closed-set lattices that preserve all suprema and co-primes. Tostate this precisely, we let CDCPO denote the category of continuous dcpo'sand Scott continuous maps, and BDL denote the category of bicontinuouscompletely distributive lattices and maps preserving all suprema and all co-primes.Theorem 4.24 The functors �jCDCPO:CDCOP ! BDL and SpecjBDLBDL !CDCOP form an equivalence.These functors further cut down to an equivalence between the full subcat-egories ALG of algebraic dcpo's and BAL of bialgebraic completely distributivelattices. 24.4 Power DomainsOne of the most important constructs for semantics is that of power domains.The idea is to have a model for nondeterminism. There are three traditionalpower domains, and these constructs can be de�ned purely algebraically { i.e.,order-theoretically. We begin with the de�nitions, and then proceed to recastthem topologically.Nondeterministic choice is meant to be a binary operation which satis�essome simple algebraic rules: associativity, commutativity and idempotency.Thus, a model of nondeterministic choice is simply a semilattice. The tradi-tional path to building a model for nondeterminism is to start with a modelfor sequential composition and perhaps some additional operations as well,and then to construct a model for nondeterminism \on top" of the existingmodel. Thus one usually begins with a continuous algebra relative to somesignature � (i.e., a �-algebra whose underlying set is a continuous cpo suchthat the interpretation of all of the operations is continuous), and seeks toadd a semilattice operation to the model. The following development mod-ularizes this by �rst constructing free ordered semilattices over posets, andthen extending them naturally to be continuous algebras.De�nition 4.25 Let P be a poset. We de�ne the family(a) L�n(P ) = f#F j ; 6= F � P �niteg with#F vL#G i� #F �#G and #F + #G =#(F [G):(b) U�n(P ) = f"F j ; 6= F � P �niteg with"F vU"G i� "G �"F and "F + "G ="(F [G):24



Mislove(c) C�n(P ) = fhF i =#F \ "F j ; 6= F � P �niteg withhF i vC hGi i� #F vL#G & "F vU"G and hF i + h#Gi = hF [Gi:Proposition 4.26 Let POS be the category of posets and monotone maps.(i) If SUP is the category of sup-semilattices and sup-semilattice maps, thenthe functor L:POS ! SUP by L(P ) = L�n(P ) and L(f)(#F ) =#f(F ) isleft adjoint to the forgetful functor from SUP to POS.(ii) If INF is the category of inf-semilattices and inf-semilattice maps, thenthe functor U :POS ! INF by U(P ) = U�n(P ) and U(f)("F ) ="f(F ) isleft adjoint to the forgetful functor from INF to POS.(iii) If OSEM is the category of ordered semilattices and ordered-semilatticemaps, then the functor C:POS! OSEM by C(P ) = C�n(P ) and C(f)(hF i)= hf(F )i is left adjoint to the forgetful functor from OSEM to POS.Proof. We outline the proof for (iii); the others are similar. Let P be a posetand S an ordered semilattice (i.e., a semilattice with a partial order relativeto which the semilattice operation is monotone), and suppose f :P ! S is amonotone map.The familyC(P ) = C�n(P ) is a semilattice under the operation (hF i; hGi) 7!hF [Gi. Moreover, if hF1i vC hF2i and hG1i vC hG2i, then#(hF1 [G1i) =#(F1 [G1) =#F1[ #G1 �#F2[ #G2 =#(hF2 [G2i);and, similarly,"(hF2 [G2i) ="(F2 [G2) ="F2[ "G2 �"F1[ "G1 ="(hF1 [G1i):Thus the semilattice operation is monotone on C�n(P ).Now, de�ne C(f):C�n(P ) ! S by C(f)(hF i) = x1 � � � � � xn, where F =fx1; : : : ; xng and � is the semilattice operation on S. It is routine to show C(f)is well-de�ned and that C(f) is a semilattice map. Finally, C(f)(fxg) = f(x)is clear, and this is the unique semilattice map from C�n(P ) to S satisfyingthis property since C�n(P ) is generated by the image of P under the mapx 7! fxg = hfxgi. 2In Section 3 we pointed out that the category of algebraic dcpo's and Scottcontinuous maps is equivalent to the category of posets and approximablerelations. There is another relationship between the category of DCPO dcpo'sand Scott continuous maps and the category POS of posets and monotonemaps that is worth pointing out.Proposition 4.27 The functor Idl:POS ! DCPO de�ned by Idl(P ) = fI �P j ; 6= I =#I directedg and Idl(f)(I) =#f(I) is left adjoint to the forgetfulfunctor.Proof. Certainly Idl(P ) is a dcpo for any poset P . And if f :P ! Q isa monotone map from the poset P to the dcpo Q, then we can de�ne themapping f̂ : Idl(P )! Q by (̂f)(I) = F f(I). Since f is monotone and I is anideal, it follows that f(I) is directed, so this supremum is well-de�ned. And25



Misloveif C � Q is a Scott-closed set, thenf̂�1(C) = fI 2 Idl(P ) jG f(I) 2 Cg = fI 2 Idl(P ) j f(I) � Cg:It is clear that this is a lower set in Idl(P ), and it is routine to show that thisfamily is closed under directed suprema (which are just increasing unions).Moreover, if we de�ne �P :P ! Idl(P ) by �P (x) =#x, then this map iscontinuous and f̂ ��P = f , and this is the unique continuous map g: Idl(P )!Q satisfying g � �P = f since �P (P ) is Scott-dense in Idl(P ). 2Next, we note the following result.Proposition 4.28 If S is an ordered semilattice, then Idl(S) = fI � P jI =#I is directedg is an algebraic dcpo which also is a semilattice, and thesemilattice operation on Idl(S) induced from that of S is continuous.Proof. Let �:S � S ! S be the semilattice operation on S. We de�ne�: Idl(S)�Idl(S)! Idl(S) by I�J =#fx�y j x 2 I & y 2 Jg. Since I and J aredirected and �:S�S ! S is monotone, it follows that fx � y j x 2 I & y 2 Jgalso is directed, and so I � J is an ideal of S. Also, using Proposition 4.27and the fact that Idl(P � Q) = Idl(P ) � Idl(Q) for all posets P and Q, thefact that �:S � S ! S is monotone implies that �: Idl(S) � Idl(S) ! Idl(S)is continuous. 2Note that a corollary of this last result is that, if S is a sup- (respectively,an inf-) semilattice, then so is Idl(S) under the operation induced from thesemilattice operation from S.Corollary 4.29 The restriction of the functor Idl to each of the categoriesSUP, INF and OSEM, respectively, is a left adjoint to the inclusion functor fromthe associated category of continuous semilattices and continuous semilatticemaps. The composition of this restriction with each of the left adjoints L,U and C gives a left adjoint to the inclusion of the associated category ofcontinuous semilattices into POS, respectively. 2This last result can be used along with the following purely categoricalresult to lift the free ordered semilattices just constructed to free algebraicsemilattices, thus building of universal algebraic semilattices over algebraiccpo's.Theorem 4.30 [37] Let A, B and C be categories, and suppose FAB:A! B isleft adjoint to UAB:B! A, and that FAC:A! C is left adjoint to UAC:C! A.Also, suppose there is a functor UBC:C ! B satisfying UAB � UBC ' 2 UAC,and �nally suppose that for each object b in B, there is an object Gb in A suchthat FABGb ' b. Then there is a left adjoint FBC:B ! C to UBC given byFBCb = FACGb and FBC � FAB ' FAC.2 By ' we mean natural isomorphism. 26



MisloveA BC
FABUABFAC UAC UBC9FBC -�?6 ��������������	 2Our particular application of this Theorem is to the case that A = POSis the category of posets and monotone maps, B = CPO is the category ofalgebraic cpo's, and FAB = Idl is the ideal functor. The function G on objectsof B associates to each algebraic cpo P the set K(P ) of compact elements ofP . By choosing C to be an appropriate category of algebras over POS { in thecase of power domains, these will be categories of continuous semilattices { we�nd that having a universal C-algebra over a poset K(P ) naturally leads to auniversal C-algebra over the algebraic cpo P . We see that each of the powerdomains arises in exactly this fashion, so the construction of these objectshas been broken down into two steps: �rst form the appropriate free orderedsemilattice over the family of compact elements of an algebraic cpo, and thenapply Corollary 4.29 to obtain the free continuous algebra over the cpo.We letADCPO denote the category of algebraic dcpo's and continuous maps,ASUP denote the category of algebraic dcpo's having a continuous sup-semi-lattice operation and continuous maps preserving �nite suprema,AINF denote the category of algebraic dcpo's which also have a continuousinf-semilattice operation and continuous maps preserving �nite in�ma, andASEM denote the category of algebraic dcpo's having a continuous semilatticeoperation and continuous maps preserving �nite products.Theorem 4.31 Hennessy & Plotkin [23](i) The functor PL:ADCPO! ASUP de�ned byPL(P ) = Idl � L�n(K(P )) and PL(f):PL(P )! PL(Q) byPL(f)(I) =Gf#f(F ) j ; 6= F � K(P ) & #F 2 Igis left adjoint to the forgetful functor from ASUP to ADCPO.(ii) The functor PU :ADCPO! AINF de�ned byPU (P ) = Idl � U�n(K(P )) and PU(f):PU (P )! PU(Q) byPU (f)(I) =Gf"f(F ) j ; 6= F � K(P ) & "F 2 Igis left adjoint to the forgetful functor from AINF to ADCPO.(iii) The functor PC :ADCPO! ASEM de�ned byPC(P ) = Idl � C�n(K(P )) and PC(f):PC(P )! PC(Q) byPC(f)(I) =Gfhf(F )i j ; 6= F � K(P ) & hF i 2 Igis left adjoint to the forgetful functor from ASEM to ADCPO.27



MisloveProof. Again we con�ne ourselves to an outline of the last assertion, the oth-ers being similar. We know from Proposition 4.26 that the functor C from POSto OSEM is left adjoint to the forgetful functor, and Corollary 4.29 implies therestriction of the functor Idl is left adjoint to the forgetful functor from ASEMto OSEM. Corollary 4.29 further implies that IdljOSEM � C:POS ! ASEMis left adjoint to the inclusion, and Theorem 4.30 then implies it inducesPC:ADCPO ! ASEM which is left adjoint to the inclusion. Given the def-initions of Idl and of C, it is routine to show that PC acts on objects andmorphisms as indicated. 2If we apply the construction for the free sup-semilattice to K(P ) for analgebraic poset P , and then take the ideal completion to obtain PL(P ), thenwe have the lower power domain, or the Hoare power domain, as it sometimesis called. Similarly, PU (P ) is the upper power domain, or Smyth power domainusing the free inf-semilattice over K(P ), and PC(P ) is the convex power do-main or Plotkin power domain over the algebraic dcpo P . It was �rst pointedout in [23] that each of these yields a left adjoint to the forgetful functor froma category of ordered semilattice dcpo's into ALG.Theorem 4.31 serves to de�ne the three traditional power domains for allalgebraic dcpo's. The �rst of these also has a simple topological representation.Proposition 4.32 If P is an algebraic dcpo, then PL(P ) ' (�0(P );�), where�0(P ) denotes the family of non-empty closed subsets of P .Proof. For non-empty, �nite subsets F;G of K(P ), F vL G i� F �#G i�#F �#G, and this implies the mapping #F 7!#F :L�n(K(P )) ! �0(P ) is anisomorphism of L�n(P ) onto K(�0(P )). Clearly this mapping preserves thesemilattice operation, and since each of Idl(L�n(K(P ));vL) and �0(P ) is analgebraic dcpo, the isomorphism extends to one of the structures themselves.2This leads to a de�nition of an analogue to the lower power domain forcontinuous dcpo's. We let SUPCON denote the category of continuous dcpo'sendowed with a Scott continuous sup-semilattice operation and Scott contin-uous maps preserving the sup-semilattice operation.Proposition 4.33 The functor �0:CON ! SUPCON which sends each con-tinuous dcpo P to �0(P ) endowed with the union operation, and each mappingf :P ! Q to the sup-semilattice mapping �0(f)(C) = f(C) is left adjoint tothe forgetful functor.Proof. The functor clearly is well-de�ned on objects. And the unit of theadjunction is the mapping x 7!#x:P ! �0(P ). Suppose that S is a sup-semilattice continuous dcpo and that f :P ! S is continuous. Then wecan de�ne �0(f)(#x) = f(x) for each x 2 P . Given C 2 �0(P ), we haveC = Ff#F j#F � C;F �niteg, and this sup is directed. So we can extend�0(f) by de�ning �0(f)(C) = F(_Sf(F )), This mapping is well-de�ned andcontinuous. 2For the other power domains { the upper and convex { we require somemore development and a restriction of the class of dcpo's considered for a28



Mislovetopological analogue for them to be derived. We begin with the followingde�nition.De�nition 4.34 A subset S � X of the topological space X is saturated ifit is the intersection of the open sets that contain it.It is routine to show that a subset A � X of a topological space X iscompact if and only if Sat(A) = TfU j A � U openg is saturated. Moreover,the saturated subsets of a partially ordered set endowed with the Scott topol-ogy are precisely the upper sets; this follows since Pn #x is Scott open for allx 2 P .Theorem 4.35 Hofmann and Mislove [24]Let X be a sober space, and let F be a �lter basis of compact saturated subsetsof X. Then(i) TF is compact, and(ii) if TF � U with U open, then there is some C 2 F such that C � U . 2This theorem can be proved by �rst showing that the family of Scottcompact saturated subsets of a sober space X is isomorphic to the semilatticeof Scott-open �lters in the lattice of Scott-open subsets ofX: A simple analysisof this structure then yields the result. Alternatively, as in [31], a direct proofcan be given.It is important to note that the second part of the theorem implies that ifthe intersection of a �lter basis of compact saturated sets is empty, then oneof them is empty.Finally, recall from Corollary 4.19 that continuous dcpo's are sober in theScott topology, so the above result applies to them.We now are ready to give a topological representation of the upper powerdomain. This result was �rst discovered by Smyth [52] for the case of do-mains. Given the tools at our disposal, however, we can extend the de�nitionsto all continuous dcpo's. To begin, let INFCON denote the category of con-tinuous dcpo's which also have a continuous inf-semilattice operation, andcontinuous, inf-preserving maps, and recall CON denotes the category of con-tinuous dcpo's and continuous maps.Proposition 4.36 Let P be a continuous dcpo, and let C(P ) denote the familyof non-empty Scott compact, saturated subsets of P . Then:(i) (C(P );[) is a continuous dcpo inf-semilattice.(ii) The functor C:CON ! INFCON which associates C(P ) to the contin-uous dcpo P , and to the continuous mapping f :P ! Q the mappingC(f): C(P ) ! C(Q) by C(f)(C) ="f(C) is left adjoint to the forgetfulfunctor.(iii) If P is algebraic, then (C(P );[) ' (PU (P );[).Proof. Suppose P is continuous. Then each compact saturated subset C of Pcan be written as the �ltered intersection of sets of the form "F , where C �"Fand F � P is �nite. Conversely, Theorem 4.35 implies that each �ltered29



Misloveintersection of sets of the form "F for F � P �nite is Scott compact, and sothis accounts for all compact saturated subsets of P . Moreover, Theorem 4.35also implies that C(P ) is a dcpo under reverse containment.Now, suppose C is saturated and compact, and C �*F for F � P �nite.If F is a �lter basis of compact saturated subsets of P such that C � TF ,then since *F is Scott open and C �*F , Theorem 4.35 again implies thatX �*F for some X 2 F . It follows that "F � C in C(P ) (in the oppositeorder). The continuity of P then implies (C(P );�) is a continuous dcpo, andit is clear that union is a continuous inf-semilattice operation on (C(P );�).This proves (i).For part (ii), it is clear that C:CON! INFCON is well-de�ned. Suppose Sis a continuous dcpo with a continuous inf-semilattice operation, and supposef :P ! S is continuous. If C 2 C(P ), then C = Tf"F j C �*F & F �niteg.Then f̂(" F ) = �Sf(F ) is well-de�ned, 3 and f̂(C) = Ff�Sf(F ) j C �*F & F �niteg de�nes f̂(C). If F � C(P ) is directed, then FF = TF , andclearly ff̂(C) j C 2 Fg � S is �ltered. Now, F f̂ (F) vS f̂(TF) holds justbecause f̂ is monotone.Conversely, let f̂(TF) 2*s for some s 2 S. Then f̂(TF) = Ff�Sf(F ) jTF �*F & F �niteg, and so there is some �nite subset F � P withTF �*Fand s vS �Sf(F ). Since *F is a neighborhood of TF , Theorem 4.35 impliesC � f�1(U) for some C 2 F , and the monotonicity of f̂ then implies s vS�Sf(F ) vS f̂(C). Since f̂(TF) = FSfs 2 S j s � f̂(TF)g, we concludethat FS f̂(F) = f̂(TF), and this implies f̂ : C(P ) ! S is continuous. Thismap clearly preserves �nite infs, and it is completely determined by f . Thisproves (ii).For part (iii), we note that the proof of the second part shows that C =Ff"F j C �*F & F �niteg characterizes the way-below relation in (C(P );�).If P is algebraic, then the �nite sets F � P such that C �*F can be takento consist of compact elements, in which case *F ="F . It then follows thatK(PU(P )) = f"F j ; 6= F � K(P ) �niteg is a basis for C(P ), and so PU (P )and C(P ) are isomorphic. 2This a�ords the desired generalization of the upper power domain to con-tinuous dcpo's. Obtaining a generalization of the convex power domain re-quires more work still. To derive the result we seek, we restrict ourselves toan interesting subclass of continuous dcpo's.De�nition 4.37 A domain P is coherent if it is Scott compact and the in-tersection of Scott-compact saturated subsets of P again is Scott compact.Proposition 4.38 A compact domain P is coherent if and only if(8F;G � K(P ) �nite)(9H � K(P ) �nite) "F \ "G = "H:More generally, a continuous compact dcpo P is coherent i�(8F;G � P �nite) "F \ "G is compact:3 By �SF we mean the product in S of the elements of the �nite set F .30



MisloveProof. First, suppose P is a domain. If F;G � K(P ) are �nite, then clearly"F and "G are Scott compact, and so coherence implies the same is true of"F \ "G. But this set also is Scott open, and so it is the union of sets of theform "k, for k 2 K(P ). Then compactness implies we can �nd �nitely manysuch compact elements whose union is the set "F \ "G, and this is the �niteset H we seek.To show the converse, �rst recall the sets of the form "k for k 2 K(P ) area basis for the Scott topology, and any compact upper set A is the intersectionof a �lter basis of sets of the form "F , for F � K(P ) �nite. So, given compactupper sets A and B, we conclude thatA \ B=(\f"F j A �"Fg) \ (\f"G j B �"Gg)=\f"F \ "G j A �"F & B �"Ggwhere the sets F and G all are �nite subsets if K(P ) and the intersections are�ltered. Theorem 4.35 then shows that A \ B is compact.More generally, if P is a coherent dcpo and F;G � P are �nite, then "Fand "G are compact, and so the same is true of "F \ "G. Conversely, if thiscondition holds and C;D � P are compact, then we can write each of thesesets as a �ltered intersection of sets of the form "F where F is �nite and theset in question is within *F . The same argument as in the algebraic case thenimplies C \D is compact. 2So far we have focused on the Scott topology on dcpo's. We now introducea re�nement of that topology.De�nition 4.39 Let P be a continuous dcpo. We de�ne the Lawson topologyon P to be the smallest topology for which Un "F is open for all U � P Scottopen and all F � P �nite.It is routine to show that the collection f*xn "F j x 2 P & F � P �nitegis a basis for the Lawson topology on a continuous dcpo P ; in particular, if Pis algebraic, then fxg [ F can be taken to be consist of compact elements.Proposition 4.40 Let P be a continuous dcpo. Then(i) The Lawson topology on P is Hausdor� and the order v is closed in P�Pin the product of the Lawson topologies.(ii) The Lawson topology on an algebraic dcpo P is totally disconnected.(iii) P is coherent if and only if the Lawson topology is compact.Proof. For (i), let x; y 2 P with x 6v y. Since P is continuous, there is somez 2 P with z � x and z 6v y. Then x 2*z, y 2 Pn "z, and these are disjointLawson-open sets. This same argument shows that (P �P )n v is open in theproduct of the Lawson topologies.For (ii), we simply note that the basis " kn "F where k 2 K(P ) andF � K(P ) is �nite consists of clopen subsets of P , since "k is clopen in theLawson topology if k is compact.Finally, for (iii), we �rst assume that P is coherent, and we employ the31



MisloveAlexander subbasis theorem to show P is Lawson compact. Note that a sub-basis for the Lawson topology consists of sets of the form *x and Pn "x, forx 2 P . Assume thatP = ([f*z j z 2 Ag) [ ([fPn "z j z 2 Bg):Since P is coherent, the sets \f"z j z 2 F � B �niteg are saturated and com-pact, and this family is �ltered. Thus, Theorem 4.35 implies the intersectionTf"z j z 2 Bg is compact and saturated, and it does not intersect Pn "z forany z 2 B. It follows that Tf"z j z 2 Bg � Sf*z j z 2 Ag, and so thereis a �nite subcover, Tf"z j z 2 Bg � [z2F *z, where F is a �nite subset ofA. Now, since [z2F *z is open and contains Tf"z j z 2 Bg, Theorem 4.35implies there is a �nite subset G � B with \z2G "z � [z2F *z. It then followsthat f*z j z 2 Fg [ fPn "z j z 2 Gg is a �nite subcover of P , and so P isLawson compact.The converse { that P Lawson compact implies P coherent { follows fromthe fact that "F is a Lawson-closed, hence compact, upper set for any �niteset F , and the fact that Lawson compact upper sets are Scott compact in anycontinuous dcpo (which is easy to show). 2Note that the second part of this result gives substance to Scott's intuitionthat algebraic dcpo's are zero-dimensional. Also, note that the last part ofthe proof shows that the Scott-compact saturated sets { i.e., the members ofthe Smyth power domain C(P ) { all are Lawson-closed sets in P .Given a subset X � P of a dcpo P , we de�ne hXi =#X \ "X, the convexhull of X.Proposition 4.41 Let P be a coherent continuous dcpo. Then ��(P ) =fX � P j X is � � closedg is a continuous lattice with respect to reverseinclusion. In particular, ��(P ) is compact and Hausdor� in its Lawson topol-ogy.Proof. Since P is coherent, P is compact and Hausdor� in the Lawson topol-ogy. It is then routine to show that each compact subset X � P is the �lteredintersection of the family + X = fY � X j X � Y �� ; Y ��closedg. Moreover,if the intersection of a �lter basis F of �-closed sets satis�es TF � X, thenfor any Y 2+ X, there is some F 2 F with F � Y: This means Y � X foreach Y 2+ X, so this set deserves its name. 2Proposition 4.42 Let P be a coherent continuous dcpo, and suppose F ���(P ) is a �lter basis of �-compact subsets of P . Thenh\Fi = \F2FhF i:Thus the family of Lawson closed, order-convex subsets of P is a continuouslattice under reverse inclusion, and X � Y for such sets if and only if Y �X��.Proof. If X is a closed subset of P , then X is compact and so "X and#X also are closed, hence compact, all because P is coherent. Thus, X 7!32



MislovehXi: ��(P ) ! ��(P ) is well-de�ned, and it clearly is monotone with respectto reverse inclusion. Thus hTFi � TF2FhF i.For the converse, we suppose that x 2 TF2FhF i. Then, for each F 2 F ,there is a pair of elements aF ; bF 2 F with aF v x v bF . Since P is compactin the Lawson topology, the nets faFgF2F ; fbFgF2F must have subnets whichconverge to points a; b 2 P , and, wlog, we assume that the nets faFgF2F andfbFgF2F already converge to these points, respectively. Since each of the setsin F is closed and F is a �lter basis, we must have a; b 2 F for each F 2 F ,and so a; b 2 TF . And, since the order v on P is closed in the productLawson topology and aF v x v bF for all F , it follows that a v x v b. Hencex 2 hTFi, so the two sets are equal.Now, since the mapping X 7! hXi: ��(P ) ! ��(P ) preserves �lteredintersections, it is a continuous kernel operator, and so its image, which isprecisely the family of Lawson closed, order-convex subsets of P , also is acontinuous lattice under reverse inclusion. The characterizing property of theway below relation in this lattice follows from the same property in ��(P )(cf. [20], Corollary IV-1.7). 2De�nition 4.43 For a coherent continuous dcpo P , letD(P ) = fC � P j C = #C \ "C; #C 2 �0(P ) & "C 2 C(P )g;and de�ne C vD C 0 i� #C vL#C 0 and "C vU"C 0.Proposition 4.44 Let P be a coherent continuous dcpo. Then(i) D(P ) = fC � P j ; 6= C ="C \ #C = C�g is the family of non-emptyLawson closed order-convex subsets of P .(ii) If C;D 2 D(P ) and D � C�� (the interior in the Lawson topology), thenthere is a �nite subset F �"C such that F �#D and D �*F .Proof. The forward inclusion of part (i) follows from the fact that Scott-closed sets are Lawson closed, as are Scott-compact saturated sets. The reverseinclusion follows from the fact that coherent continuous dcpo's are Lawsoncompact.For part (ii), since P is coherent, D and hence "D are Lawson-compact.Then the continuity of P implies "D = Tf*F j F �nite & F �#Dg, and thisintersection is �ltered. Since D � C��, it follows that "D � ("C)��, and soTheorem 4.35 implies the result. 2Note that Proposition 4.42 shows that (D(P );�) is a continuous cpo inwhich X � Y if and only if Y � X�� . We now investigate the other order onD(P ).Proposition 4.45 If P is a coherent continuous dcpo, then (D(P );vD) is acontinuous dcpo in whichC � D i� (9F � P �nite) C vD hF i vD D & D �*F;and for which the operation(C;D) 7! hC;Di �"(C [D)\ #(C [D):D(P )�D(P )! D(P )33



Misloveis continuous.Proof. Assume that F � D(P ) is vD-directed and let A = Sf#C j C 2 Fg�be the Scott closure of the union of the lower sets of the members of F . Then Ais Scott closed, and hence also Lawson closed. Now, the sets fA \ "C j C 2 Fgform a �ltered intersection, and each is non-empty and Lawson compact sinceP is coherent, so their intersection also is non-empty and Lawson compact(e.g., by Theorem 4.35). Let B be that intersection. We claim that B =FD(P ) F . Indeed, it is obvious that B �"C for all C 2 F . For the otherdirection { C �#B for each C 2 F { given x 2 C 2 F , the fact that F isvD-directed implies that "x \ (A \ "C 0) is non-empty and compact for eachC 0 2 F , so Theorem 4.35 shows the same is true of the "x \B. Thus B is anupper bound for F , and a similar argument shows that B is the least upperbound of F in the order vD, so (D(P );vD) is a dcpo.Next, if C 2 D(P ), then C is a convex Lawson-closed subset of P , and "Cis Lawson compact, hence also Scott compact. So, we can write "C as the�ltered intersection of sets "F where C �*F and F is �nite. Clearly we canarrange it so that F �#C for each such F . Then hF i =#F \ "F 2 D(P ), andhF i vD C. We now show that hF i �D C.First, since "C �*F , if F � D(P ) is directed and C vD FF , thenFF �"C �*F . The �rst part of the proof implies FF = TfA\ "C 0 jC 0 2 Fg, where A = Sf#C 0 j C 0 2 Fg�. Since this expresses FF as a �lteredintersection, Theorem 4.35 implies there is some C0 2 F with A\ "C0 �*F .Thus, C0 � A\ "C0 �*F �"hF i.On the other hand, C vD FF also implies that C v#FF , and so F �#FF . Using the facts that FF = TC02F(#SF� \ "C 0), that F �#C �#FF ,and that F is �nite, we conclude there is some C1 2 F with F �#C1. SinceF is directed, we can choose a C2 2 F such that C0; C1 vD C2, and it thenfollows that hF i vD C2. This all goes to show that hF i �D C in D(P ), asclaimed.It is easy to show that the family fhF i j F �nite; hF i vD C&C �*Fg is vD-directed, so we conclude that D(P ) is continuous and that fhF i j�nite; hF i vD C&C �*Fg is a basis for the way-below set of each C inD(P ). Hence, (D(P );vD) is continuous and if C 0 �D C in D(P ), then thereis some F � P �nite with C 0 vD hF i vD C and C �*F .The proof that (C;D) 7! hC;Di:D(P ) � D(P ) ! D(P ) is continuous isstraightforward. 2Thus, (D(P );�) is a coherent continuous dcpo by Proposition 4.42, while(D(P );vD) continuous dcpo by Proposition 4.45. We now investigate therelationship between these distinct orders on D(P ). We begin with a technicallemma.Lemma 4.46 Let F � P be a �nite subset of the continuous dcpo P . If F isan antichain, then"DhF i = fX 2 D(P ) j X �"F & X 6�"(F n fxg) (8x 2 F )gProof. If hF i vD X, then X �"F and F �#X, and it is easy to show that34



MisloveX is in the set on the right side of the claimed equality using the fact that Fis an antichain. Conversely, if X is in the set on the right side of the claimedequality, then X �"F , and since X 6�"(F n fxg) for any x 2 F , it must bethat "x \X 6= ; for each x 2 F . But, then for each x 2 X, (9y 2 X)x v y,which means x 2#y �#X. Hence F �#X, so F vD X. 2Proposition 4.47 Let P be a coherent continuous dcpo. Then(i) The identity mapping on D(P ) is continuous from the �-topology on(D(P );�) to the Scott topology on (D(P );vD).(ii) The identity mapping on D(P ) is continuous from the �-topology on(D(P );�) to the lower topology on (D(P );vD).Proof. For (i), we note that given C 2 U � (D(P );vD) with U Scott open,then there is a �nite subset F � P with C 2*D hF i �"vDhF i � U . Bysubstituting the minimal elements of F for F itself, we may assume that Fis an antichain, and so hF i = F . Now, if F is a singleton set, then *DhF i = fD 2 D(P ) j D �* Fg, which is Scott open in (D(P );�). ThusC 2*D hF i � U .In case F has more than one element, we also can assume that C hasmore than one minimal element (for otherwise we are back in the case of oneelement in F ). Then we also can assume that C 6�"x for any x 2 F : if x 2 Fwith C �"x, then the fact that C is closed in the �-compact space P impliesthat there is a �nite set G � P with C �* G and x 62"G. We also canchoose the elements of G so that C 6�"y for any y 2 G (since C has more thanone minimal element), and so we can substitute the �nite set G for F in ourargument. Now we consider the �-open subset of (D(P );�) given by"�(* hF i)n "�([x2F "(F n fxg));which consists of the sets in D(P ) that are subsets of the Scott-open set * Fbut are not subsets of the set [x2F "(F n fxg). Clearly C is in this set, whichis �-open since "�(* hF i) is the Scott interior in (D(P );�) of the set "hF i.Moreover, any set X which lies in this set satis�es hF i vD X by the previouslemma. This shows part (i).For part (ii), if C 2 D(P )n "D D for some D 2 D(P ), then C 6�"D orD 6�#C. In the �rst case, "D 2 D(P ) as P is coherent, and C 2 D(P )n "� "D.Moreover, if X 2 D(P )n "� "D then X 6�"D, and so X 2 D(P )n "DD.Finally, in the second case, D 6�#C implies x 62#C for some x 2 D.Then "x \ C = ;, and since C is compact, we can choose y � x in P with"y \ C = ;. It follows that Pn * y 2 D(P ) and C � (Pn * y)�� . ThusPn * y �(D(P );�) C, and if X 2 D(P ) with Pn * y �(D(P );�) X, thenX\ "y = ;, and so D 6vD X. 2Corollary 4.48 If P is a coherent continuous dcpo, then so is (D(P );vD).Proof. Since (D(P );�) is coherent, its �-topology is compact, and the �-topology of (D(P );vD) is Hausdor�. The previous Proposition then impliesthese topologies are the same, so the �-topology of (D(P );vD) also is compact,making (D(P );vD) coherent. 235



MisloveLemma 4.49 If S is a coherent continuous dcpo with a continuous semilatticeoperation �:S � S ! S, then there is a continuous mapping fS:D(S) ! Ssuch that fS(hC [Di) = fS(C) � fS(D) and fS(fxg) = x for all x 2 S.Proof. If x1�� � ��xm vS y1�� � ��yn, if F = fx1; : : : ; xmg and G = fy1; : : : ; yngare �nite subsets of S with hF i vD hGi. This implies that hfx1; : : : ; xmgi 7!x1 � � � � � xm is well-de�ned and monotone on sets of the form hfx1; : : : ; xmgi.Since each set C 2 D(S) is the directed supremum of sets of the form hF i forF �nite, we have a well-de�ned mapping fS:D(S) ! S. To see that fS is acontinuous, assume fS(C) 2 U � S is Scott open. Then there is some �nitesubset F � S with C �*F � U , and clearly we can assume F vD C. Hence,C 2*D(S)hF i � f�1S (U), so f�1S (U) � D(S) is open. It also is routine to checkthat this mapping preserves the semilattice operation on �nitely generatedsubsets of S, and so it must on all of D(S) by continuity. Finally, if x 2 S,then clearly fS(fxg) = x. 2Theorem 4.50 Let SCCON be the category of coherent continuous semilatticedcpo's and Scott continuous semilattice maps. Then:(i) The functor D:CCON ! SCCON which assigns to each coherent con-tinuous dcpo P the coherent continuous semilattice D(P ), and to eachmorphism f :P ! Q the mapping D(f)(C) = hf(C)i is left adjoint to theforgetful functor from SCCON to CCON.(ii) If P is algebraic, then (D(P ) vD) ' (PC(P );vC).Proof. If P is a coherent continuous dcpo, then the previous result impliesD(P ) is a coherent continuous semilattice. Suppose S is a coherent continuoussemilattice and f :P ! S is continuous. Then the previous results aboutthe lower and upper power domains imply there are continuous semilatticemaps f̂L: �0(P ) ! �0(S) and f̂U :PU(P ) ! PU (S) that uniquely extend themap f . It is routine to show that the mappings C 7!#C:D(P ) ! �0(P )and C 7!"C:D(P ) ! PU(P ) are continuous semilattice maps, and then themappingC 7! f̂L(#C) \f̂U ("C):D(P )! D(S) also is a continuous semilatticemapping. If we compose this map with fS:D(S) ! S, we have the desiredmap. This proves part (i).Part (ii) follows from part (ii) of the previous result, where we showed thatthe sets of the form hF i with F �nite form a a basis at C for each C 2 D(P ).If P is algebraic, then we can assume the �nite sets F consist solely of compactelements, and so this basis is isomorphic the the basis K(PC(P )) = fhF i j; 6= F � K(P ) �niteg. 2These results end our presentation of the power domain constructions. Foreach of the three \standard" power domains, we have constructed an analogouspower domain over continuous coherent domains, and shown these topologicalconstructions agree with the algebraic ones in the case the domain P on whichthey are built is algebraic. 36



Mislove4.5 Abramsky's ProgramDomains have demonstrated utility in devising models for high-level program-ming languages. Part of this modeling process includes devising logics thatallow one to reason about the programming language under study. One of themost impressive accomplishments in the area of domain theory has been thework of Abramsky [2] in which a tight connection between domain-theoreticmodels and program logics is detailed. We very briey outline these resultshere.Abramsky's starting point is the realization that, for domains, the compactelements completely determine the domain, and for logics, the Lindenbaumalgebra provides a de�nitive model from which the logic can be recovered.So, if there were a canonical way to create a domain from the Lindenbaumalgebra of a logic, and a canonical way to create a Lindenbaum algebra fromthe compact elements of a domain, then this would lead to a canonical methodfor associating domains to logics and vice-versa.Now, a Lindenbaum algebra is a special sort of distributive lattice. If onewants a classical logic, then this algebra should be Boolean. On the otherhand, if one seeks an intuitionistic logic, then the lattice should be a Heytingalgebra. If one starts with a domain D, then K(D) can be identi�ed withcertain Scott open sets { the basis f"k j k 2 K(D)g. In fact, we can take thedistributive lattice K
(D) = fC � D j C is compact and Scott openg.Lemma 4.51 For a domain D, K
(D) = f"F j ; 6= F � K(D) �niteg. 2Now, if D also is coherent, then the family K
(D) is a lattice, and so wecan view it as the Lindenbaum algebra of some logic. And this logic will beintuitionistic, since its Lindenbaum algebra is a Heyting algebra.We can carry this a bit further. The Scott-open sets are ones that are \in-accessible by directed suprema." Viewing the compact elements as represent-ing �nite amounts of information, the set "k then represents any informationthat supersedes that of k. But the point is that we can observe in �nite timewhether the supremum of a directed set gets in "k.On the other hand, "F , for F � K(D) �nite, is Scott-compact. Thismeans it is determined by a �nite amount of �nite information. Thus, thesets in K
(D) form the basis of the \topology of the �nitely observable," asAbramsky likes to phrase it.Going back the other way, given a Lindenbaum algebra L, what domaincould it represent? If we look at the algebra K
(P ) for P a coherent domain,we see it is the sets "k for k 2 K(P ) that we need to retrieve. In the algebraK
(P ), these are distinguished by the fact that f"k j k 2 K(P )g is the setthe co-primes. So, it is Stone Duality that we need to apply to retrieve thedomain P from the lattice K
(P ).Of course, this all is rather fatuous, since it is not so easy to take anydomain { even any coherent domain { P and �gure out what logic has Lin-denbaum algebra K
(P ). So what is needed is a method for going back andforth between domains and logics in a way that allows one to identify precisely37



Mislovethe logic that a given domain generates. This is where Abramsky's programfocuses. He sets out a number of basic constructors of domain theory andshows how each corresponds to a constructor for the proof system in the Lin-denbaum algebra of the desired logic. In the end, his theory can be appliedto domains freely generated by these constructors.Abramsky's theory applies to the category SFP of SFP -objects and contin-uous maps. This is reasonable, since the domains should be countably basedto reect computational reality, and some of the constructors are well-behavedonly if the domains in question are coherent. The fact that SFP is the largestcartesian closed category of countably-based domains that are coherent makesit the right target for Abramsky's theory.The domain constructors Abramsky incorporates are the following:� Lift : L(P ) = P?,� Coalesced sum: P �Q the disjoint union of P and Q with the least elementsidenti�ed.� Products: P �Q,� Function space: [P ! Q],� Power domains: �0(P ); C(P ); and D(P ), and� Recursion.Winskel [60] was the �rst to observe that each of the power domains canbe characterized logically by suitable modal operators; the lower power do-main corresponds to the sometimes operator, the upper power domain to theeventually operator, and the convex power domain to the combination of thetwo.The inclusion of recursion in this list is fundamental. It is based on thenotion of an admissible predicate on a cpo { a non-empty Scott-closed subsetof the cpo { and the Principle of Fixed Point Induction (cf. [56]):If f :P ! P is a monotone selfmap of a cpo and if f(x) satis�es a givenadmissible property whenever x does, then �xf also satis�es the property.An important outstanding question is how to extend Abramsky's theory todomains that are not freely generated. The problem is reected by the factthat quotients of domains need not be algebraic { they can be continuous.But, even if the quotients in question again are domains, there still is no clearway to extend Abramsky's theory to handle them. More concretely, the modelfor the language CSP [10] is intrinsically a Scott domain, and it would be verynice to have an extension of Abramsky's theory that provided a logic for thismodel.5 The Lambda CalculusTopology is at the center of the only known approach to giving models ofthe untyped lambda calculus. This system originally was devised by AlonzoChurch in the 1930's in an attempt to �nd a foundation for mathematics and38



Mislovelogic that placed functions at the forefront. While Church's original formu-lation had inconsistencies, Curry put forth subsystems that are consistent.Because the theory focuses on the computational aspects of functions, in thespirit of, say, the First Recursion Theorem, it attracted the attention of com-puter scientists. But the lack of mathematical models for the theory made itlittle more than a \formal and unmotivated notation," in the words of DanaScott (cf. the Foreword to [20]). Not long after he made this observation,however, Scott found the �rst of a whole family of models for the system, andthus began the present-day study of the calculus in earnest.5.1 SyntaxWe begin our discussion of the lambda calculus by describing the calculus andwhat it means to have a model for it. Let C denote a set of constants, V aset of identi�ers or variables, and then consider the following set of BNF-likeproduction rules:M ::= c j x j MM j �x:M;(1)where c 2 C and x 2 V . One way to think of the rules given above is asthe signature of a (single-sorted) universal algebra. In this case, the algebrahas nullary operators (i.e., constants) c 2 C and x 2 V , a family of unaryoperators f�x:� j x 2 V g, and one binary operator, (M;N) 7! MN , whichis given as the third clause of the set. This operator is called application, andit is meant to be an abstract model for the application of a function (the �rstM in the clause) to its argument (the second M in the clause). The operatorin the last clause is called abstraction, and it is meant to model the way wecan take, say, the polynomial x2 and make it into a function x 7! x2:R ! R,here de�ned on the reals. So, in lambda notation, the function f :R ! R byf(x) = x2 would be denoted �x : R : x2:The term �x : R : x2 is from a typed universe, where functions are speci�edas having speci�c domains (and codomains). The type of this term is givenby the syntax x : R, which denotes that the variable x is restricted to the setR of real numbers. But the calculus whose syntax is given in equation (1)has no such restriction; all terms are assumed to have the same domain - thefamily of all objects de�ned by the syntax. In this sense, the untyped lambdacalculus could also be viewed as a unityped system, where there is just onetype. Since terms either can be arguments for functions (the second M inthe application clause of the BNF), or functions (the �rst M in the clause),the abstraction clause provides a way of taking a term and making it into afunction of the variable x; the term �x:M makes the term M into a functionof the variable x.With no further rules, then, the lambda calculus whose abstract syntaxis given above is simply the initial universal algebra with the signature justdescribed. This algebra consists of all terms we can create by repeatedlyapplying the operators, starting with the constant terms C[X. Such algebrasoften are called term algebras.But the lambda calculus is not meant to be just an abstract anomic uni-39



Misloveversal algebra. Indeed, it is supposed to be an abstract model of functions andhow they operate. This is why Church chose to focus on the two operations wehave included: application and abstraction. In order to model functions moreaccurately, we impose three conversion rules; these simply are equations wewant to hold in the algebra, and so the calculus is really the universal algebrawe get as above, modulo the algebra congruence the following rules generate:(�) �x:M = �y:M [y=x], for y neither free nor bound in M .(�) (�x:M)N =M [N=x].(�) �x:Mx =M , for x not free in M .We let �(C) denote the set of terms of the lambda calculus with constantsfrom S, modulo the equations (�); (�) and (�). These rules presuppose thenotions of when a variable is bound in a term (i.e., within the scope of a �-abstraction), and when it is free (not within such a scope). In essence, the�-rule says that being a function of a variable has nothing to do with thename of the particular variable that is used. The �-rule provides the vital linkbetween the two operators application and abstraction via the usual notionof substitution. And, �nally, the �-rule says that all terms can be regard asfunctions. Certainly all functions we encounter satisfy these laws, and so itseems reasonable to include them in the calculus.5.2 The Notion of a Lambda ModelOne question to consider is what sort of models the calculus might have. Sincethe calculus is meant to be an abstract version of functions, we expect to �ndsome mathematical model D in which� the constants c 2 C are interpreted as constants in [[c]] 4 2 D,� the variables x 2 X also are constants in [[x]] 2 D,� the term �x:M is interpreted as a function [[�x:M ]]:D ! D.� applicationMN is interpreted as the application of the termM interpretedas a function [[M ]]:D ! D to the term [[N ]] 2 D.In all, this says we expect to �nd a mathematical objectD which is a universalalgebra with the same signature as the calculus, and a homomorphism ofuniversal algebras [[�]]: �(C) ! D from the terms of the calculus to D. Ofcourse, the calculus and the identity map form one such model, but it isdi�cult to think of any other model.This di�culty is reected in certain aspects of the calculus. For example,the idea that objects can be functions and arguments for functions at the sametime seems a bit odd. The fact that all terms \live at the same level" seemsunintuitive. This clash with intuition is brought home when we consider theterm �x:xx:4 It is traditional to denote the semantic meaning of a term x in a model by [[x]].40



MisloveThis certainly is a valid term of our calculus. And for any term M of thecalculus, it expresses the fact that we can applyM to itself; (�x:xx)M =MMby the �-rule. Since (�x:xx) can be applied to any term of the calculus, eachselfmap of the domain arising as the interpretation of an element of the calculusmust also be an element of the domain. Transporting this to our hoped-formodel D, we see that there must some way to interpret each element of D asa selfmap of D. This means, that, at least, there must be mapsp:D ! [D ! D] and e: [D ! D]! D such that p � e = 1[D!D]:(2)Here, [D ! D] denotes the family of selfmaps of D. In general then, we seeka mathematical object D satisfying the equations (2) in whatever universeD resides in. What seems to be required minimally is a cartesian closedcategory A and an object D from A for which A(D;D) is a retract of D in A.Such objects are called reexive, so we seek a reexive object is some cartesianclosed category as a model for the calculus.We note that �(C) also has an operation of composition intrinsically de-�ned on it:Proposition 5.1 The operation (M;N) 7! M�N � �x:MNx: �(C)��(C)!�(C) de�nes a monoid structure on �(C) whose identity is the term I =�x:xx.Proof. This is a routine veri�cation using the conversion rules (�) � (�). 2Lemma 5.2 If X is an object of a ccc A, then [X ! X] has a monoid struc-ture.Proof. This also is a standard result about cartesian closed categories. Aproof can be found in the appendix of [25]. 2Using these observations, and denoting by MON the category of monoidsand monoid homomorphisms, we now can formulate precisely what we meanby a lambda model.De�nition 5.3 An objectX in a ccc A is a lambda model if there is a mappingp:X !! [X ! X] and maps�  : �(C)!! X in SET, and� �: (�(C):�) ! ([X ! X]; �) in MONsuch that � = p �  and �(M)( (N)) =  (MN).[X ! X]�X X�(C)� �(C) appA��  �app�(C)6�������*-From this de�nition, it is clear that we are interested only in models thatare SET-based. The following result clari�es the situation further; a morecomplete presentation about this connection can be found in Chapter 9 of [7]:41



MisloveTheorem 5.4 There is a one-to-one correspondence between models of theuntyped lambda calculus and reexive objects in ccc's. 2We remark that there are other notions of what a lambda model shouldbe. Of particular note are the results of [34] which elaborate the relationshipsbetween a number of approaches to de�ning this concept, as well as the de-tailed discussion in [7]. These involve concepts such as combinatory algebrasand combinatory models.For us, the question is how to �nd an example of a non-degenerate reexiveobject in a ccc. The place to start a search for a lambda model is the categorySET of sets and functions. But, there Cantor's Lemma says no non-degenerateset can admit its space of selfmaps as a quotient, let alone a retract. It turnsout that, with one exception, it is relatively di�cult to �nd cartesian closedcategories that have any non-degenerate reexive objects. We'll say moreabout the search for reexive objects in other categories in a moment, but�rst we want to present the construction of one such model.5.3 Finding a Lambda ModelWhile the �rst mathematical model of the untyped lambda calculus was foundby Scott in the category of algebraic lattices and Scott-continuous functions[49], there is an underlying construction technique which is applicable muchmore broadly, and which highlights the nature of the model much better thansimply reiterating Scott's construction verbatim.We begin with the observation that what makes SET fail to have a non-degenerate model is that there are too many functions in SET. Namely, theset of selfmaps of a non-degenerate set has larger cardinality than the setitself, and this is what is getting in the way. But, if we restrict our attentionto topological spaces and continuous maps, then this no longer is a problem.For example, the space of continuous selfmaps of a space X is of the samecardinality as X, providing X has a dense subspace of cardinality smallerthan the cardinality of X. For example, j[R ! R]j = jRj for precisely thisreason. But, it turns out that �nding a model in Hausdor� spaces is not asimple matter { in fact, it remains an unsolved problem. So, we turn ourattention to spaces not satisfying such a strong separation condition.One place to �nd such spaces is within the area of partially ordered sets.As we have seen, the categories DCPO and CPO are cartesian closed, and theScott topology is T0 but rarely T1. Moreover, we already have encountereda technique for �nding domains with desired properties { solving recursivedomain equations. Our example of the domain (Nop;�) ' L(Nop;�) is a casein point. So, one way to �nd a cpo satisfying our needs would be to seek asolution of a similar domain equation.The problem is to �nd a non-degenerate cpo that is isomorphic to its cpo ofcontinuous selfmaps. We cannot expect an actual set-inclusion [P ! P ] � P ,since this is forbidden within Zermelo-Frankel set theory by the Foundation42



MisloveAxiom, 5 so the the nearest we can come is an isomorphism. In this approach,the likely equation is P ' [P ! P ], and this gives rise to the operatorF (P ) = [P ! P ] on cpo's. However, this operator has P in two places, andit is not at all clear how to turn F into a functor. We now recall a de�nitionthat allows us to overcome this problem.If P and Q are dcpo's, then the pair of Scott-continuous maps e:P ! Qand p:Q! P is an embedding-projection pair if p�e = 1P and p�e � 1Q. Givenan embedding-projection pair (e; p):P ! Q, we can de�ne related functionsF (e): [P ! P ]! [Q! Q] by F (e)(f) = e � f � p;and F (p): [Q! Q]! [P ! P ] by F (p)(f) = p � f � e:Moreover, these mappings F (e) and F (p) are Scott-continuous, since theyare de�ned via composition. The following result captures an important factabout embedding-projection pairs.Lemma 5.5 If (e; p):P ! Q is an embedding-projection pair, then so is thepair of mappings (F (e); F (p)): [P ! P ]! [Q! Q].Proof. If f :P ! P , then F (e)(f) = e � f � p:Q! Q and so(F (p) � F (e))(f) = p � (e � f � p) � e = f;since p � e = 1P . Similarly, for g 2 [Q! Q],(F (e) � F (p))(g) = e � (p � g � e) � p � g;since e � p � 1Q: 2Both DCPO and CPO are complete categories: the limit of diagram�:G!DCPO de�ned on the directed graph G = (N;E) is the usual familylim � (�(n);�(e))(n;e)2(N;E) = f(xn) 2Yn2N�(n) j �(e)(xni) = xnj ; e = ni ! njg:Both categories also are co-complete: the colimit of the diagram �:G !DCPO is the ideal completion under directed suprema of the colimit in POS.Theorem 3.27 shows that for embedding-projection pairs, the limit and colimitthat arise naturally are in fact the same: If �:G ! DCPOep is a diagram inthe category of dcpo's and embedding-projection pairs. For each edge e in G,let �(e) = (eij ; pij); where e = ni ! nj. Thenlim � f(�(n); pij) j n 2 N; e = ni ! njg ' lim�! f(�(n); eij) j n 2 N; e = ni ! njg:If we start with the canonical embedding-projection pair(e:p): f?;>g ! F (f?;>g) where e(x)(y) = x and p(f) = f(?);then we can consider the objectI0 = colimn (F n(f?;>g); fF n(e) � � � � � Fm+1(e)gm�n2N):5 This follows by a simple argument using the von Neumann de�nition of ordered pair(x; y) = ffxg; fx; ygg and the identi�cation of functions as sets of ordered pairs.43



MisloveWe would like to claim that F (I0) ' I0, but to do this, we need to know thatF is continuous. Since F is not the same sort of functor as before, we needthe following de�nitions and result.De�nition 5.6 Let F :Aop � B ! C be a functor de�ned on categories ofdcpo's which is contravariant in its �rst argument and covariant in its second(such a functor is said to be of mixed variance). We say F is continuous if forall diagrams �:G! Aep and all diagrams �0:G0 ! Bep, we haveF (limA (�(n);�(e))(n;e)2G � colimB (�0(n0);�0(e0))(n0;e0)2G0)' colimC (F (�(n) � �0(n0)); F (�(e) � �0(e0))((n;e);(n0 ;e0))2G�G0):Also, G is locally continuous if for all objects P1; P2 of A and Q1; Q2 of B,G: (Aop � B)((P1; Q1); (P2; Q2))! C(G(P1; Q1); G(P2; Q2))is continuous.In analogy to Theorem 3.30, we have the following:Proposition 5.7 If G:Aop � B ! C is mixed variance, locally continuousfunctor, then G is a continuous functor. 2Applying this to our functor F :CPOop � CPO ! CPO, we see that localcontinuity of F is su�cient to prove the desired isomorphism I0 ' F (I0).And, indeed, the proof that F is locally continuous is straightforward. Theobject thus de�ned, I0 ' F (I0) is the D1-model �rst discovered by Scott[50]. This rather general treatment of how to construct such a model is takenfrom Section 5 of [3], where more details of proofs can be found, and wherefurther results about the canonicity of solutions to domain equations for mixedvariance, locally continuous functors also can be found.There is one subtle point we have skipped over here. Namely, in generatingthe �xed point I0, we started with the domain f?;>g instead of the leastdomain, f?g. Of course, the reason is that were we to apply the functorF (P ) = [P ! P ] to f?g, we would never get anywhere, and our solution toP ' [P ! P ] would be f?g. But there is a way to bring this constructioninto the realm of generality considered in Section 3.4. Namely, we rede�ne thefunctor F . Instead of using F (P ) = [P ! P ], we can take instead the functorF (P ) = A? � [P ! P ], where A? is the at domain de�ned on the set Aof constants we wish to include in the syntax of the calculus, and � denotescoalesced sum. Since this set A can be assumed to include the variables, it isnon-empty, and so the resulting domain P ' F (P ) must be non-degenerate.For example, taking A to be a singleton yields the originalD1-model of Scott.5.4 The Search for Other ModelsWe now have constructed a non-degenerate model of the untyped lambdacalculus in CPO. An interesting question is whether models exist in othercategories. We already commented that this is not possible in SET. The \nextplace" one might look is the category POS of posets and monotone maps.44



Mislove5.4.1 Models in POSIt is well-known that POS is cartesian closed: the terminal object is the one-point poset, products are ordered in the product order, and the internal homis the space of monotone maps.De�nition 5.8 If P is a poset, we let L(P ) = fY � P j Y =#Y g denote thefamily of lower sets of P .The following result of Gleason and Dilworth is crucial to our devel-opment.Theorem 5.9 Gleason & Dilworth [21]If P is a poset, then there is no monotone surjection of a subposet of P ontoL(P ). 2We also need the following result, whose proof is straightforward.Lemma 5.10 If f :P op ,! Q is an injection, then x 7! �Qn#f(x):P ! [Q! 2]is also an injection, where 2 denotes the two-point lattice. 2Theorem 5.11 POS has no non-degenerate lambda models.Proof. AbramskySuppose that P is a poset and that [P ! P ] is a retract of P in POS. If P isan antichain (i.e., if P is a set with the discrete order), then [P ! P ] = P P ,and the result follows from Cantor's Lemma.So we assume P is not an antichain. Then there are a < b 2 P , and so�Pn#a:P ! 2 retracts P onto 2. Then [P ! 2] is a retract of [P ! P ], andhence also of P . Applying the same reasoning again, we see that [[P ! P ]!2] also is a retract of P . But, the mappingI 7! �I :L(P )op ! [P ! 2]is an order-isomorphism, and this implies that L(P ) is isomorphic to a sub-poset of [[P ! P ] ! 2]. Since the latter is a retract of P , there is somesubposet Q � P which maps under the retraction onto L(P ), and this con-tradicts the Gleason{Dilworth Theorem. 2We should note that an alternative proof of this is contained in [12].5.4.2 Models in Complete Ultrametric SpacesAnother well-known ccc is the category CU of complete ultrametric spacesand non-expansive mappings. In this category, the terminal object is the one-point space, products are given the product metric, and the internal hom isthe space of non-expansive mappings between the spaces. We proceed to showthat CU has no non-degenerate lambda models.De�nition 5.12 A metric d:X � X ! R+ is an ultrametric if (8x; y; z 2X) d(x; z) = max(d(x; y); d(y; z)).Lemma 5.13 If (X; d) is an ultrametric space and x 2 X and � > 0, thenB(x; �) is closed as well as open. 45



MisloveProof. Suppose that y 62 B(x; �) Then d(x; y) � �. Now consider B(y; �). Weclaim B(x; �) \ B(y:�) = ;. Indeed, if z 2 B(x; �) \ B(y:�), then d(x; z) < �and d(y; z) < �. Hence, � = d(x; y) = max(d(x; z); d(y; z)) < max(�; �) = �,which is a contradiction. 2Finally, we recall the paradoxical combinator Y2 �(C) de�ned byYM = �f:�x:f(xx)f(xx):A routine calculations show that, for all terms M in �(C), M(YM) = YM ;i.e., YM is a �xed point of M . This means that in any lambda model, eachselfmap must have a �xed point.Theorem 5.14 CU has no non-degenerate lambda models.Proof. PlotkinIf X is a non-degenerate complete ultrametric space, then there are distinctpoint a; b 2 X. If d(a; b) = �, then B(a; �) is a clopen ball in X which doesnot contain b. The mapping f :X ! X byf(x) = � a if x 62 B(a; �), andb otherwise,clearly has no �xed points. Moreover, it is non-expansive. If x; y 2 B(a; �) orx; y 2 X n B(a; �), then f(x) = f(y), so this is clear. On the other hand, ifx 2 B(a; �) and y 2 X nB(a; �), then the argument in the proof of the lemmashows that d(x; y) � �, and so d(f(x); f(y)) = � � d(x; y). Thus X cannot bea lambda model. 2It is interesting that this proof is quite di�erent from the ones for SET andPOS, both of which relied on a cardinality principle. Of course, knowing thatall selfmaps in a lambda model must have �xed points already says topologicalspaces that are lambda models must be connected.5.4.3 Hausdor� Lambda ModelsA last category we consider in our search for lambda models is a ccc of Haus-dor� spaces. If one starts with the category of compact spaces and continuousmaps, then the natural ccc one comes to is the category K of k-spaces andcontinuous maps. A K-space is a topological space in which a subset is openif and only if its intersection with each compact subset of the space is openin the subspace. If we are given a topological space X, we can \k-ify" it bytaking the topology generated by the sets satisfying this property. The basicresults about the category K are contained in [54]. They include the fact thatthe terminal object is the one-point space, that the product is obtained by \k-ifying" the product topology, and the internal hom is the space of continuousmaps endowed with the \k-i�cation" of the compact-open topology.In the last subsection, we introduced the combinator Y which assigns toeach term of the lambda calculus a \canonical" �xed point. Along with Ythere is another combinator, K. This combinator is de�ned byK = �MN:M46



Misloveand it gives a way of recognizing constant functions in the lambda calculus. Infact, it is not hard to show that K(M)N = M using �-reduction. Moreover,Y �K = I is the identity operator.Our �rst result about non-degenerate lambda models in K eliminates com-pact spaces. To obtain this result, we �rst derive a simple result from thetheory of compact semigroups. This result is not new; it can be found, e.g.,in [27].Proposition 5.15 Let (S; �) be a compact monoid. If x; y 2 S satisfy x � y =1S, then y � x = 1S.Proof. First, we show that any compact semigroup T has a smallest closedideal MT satisfying MT � I for any (closed) ideal I � T . Indeed, the semi-group T itself is an ideal, and if I and J are closed ideals, then so is I � J , theset-product of I with J . Moreover, I �J � I; J , so I \J 6= ;. Thus, the familyof non-empty, closed ideals is �ltered, and so it has a non-empty intersection.This intersection also is an ideal, and so it must be the minimal ideal we seek.Next, we note that, if T is commutative, then MT is a group. Indeed, ifx 2 MT , then x �MT � MT is compact (being a translate of a compact set),and T � (x �MT ) = T � (MT � x) = (T �MT ) � x � MT � x = x �MT . Dually,(x �MT ) � T = x � (MT � T ) � x �MT . Thus, x �MT is an ideal, and so it mustbe equal to MT as MT is minimal. Similarly,MT =MT � x, so MT is indeed agroup.Finally, let x; y 2 S with S a compact monoid, and suppose x �y = 1S. LetSx = fxn j n 2 Ng be the closed subsemigroup of S that x generates. Since thesemigroup of powers of x is commutative and multiplication is continuous onS, it follows that Sx is a commutative, and so this is a compact, commutativesemigroup. Its minimal ideal MSx then is a group, and we let e = e2 be theidentity of this group. Furthermore, since MSx is a group, x � e 2 MSx has aninverse x�1 in this group.We claim that e = 1S. Indeed, since e 2 Sx, there is a net fxn�g �fxn j n 2 Ng such that e = lim� xn�. Now, S is compact, and so the netfyn�g has a cluster point, and by picking subnets if necessary, we can assumelimyn� = z 2 S. Then, xn � yn = 1S for all n 2 N, and soe � z = lim� xn� � yn� = 1S;and this means 1S = e � z = (e � e) � z = e � (e � z) = e � 1S = e:Now, x � e = x � 1S = x, and so x is a member of the group of units of S, andx�1 is the inverse of x in S. But since x � y = 1S, it follows that y = x�1, andso y � x = 1S as well. 2Theorem 5.16 Hofmann & Mislove [25] There are no non-degenerate,compact Hausdor� lambda models in K.Proof. Suppose that X is a compact Hausdor� space that is a reexive objectin K. Then [X ! X] is a retract of X, and so it too is compact and Hausdor�.[X ! X] also is a topological semigroup under the operation of composition,47



Misloveand the identity map is the identity of this semigroup. Now, the combinatorsY and K can be recognized in [X ! X], and so there are functions Y;K 2[X ! X] satisfying the property that Y � K = 1X. It is routine to verifythat the combinator K gives rise to the \constant picker" K(x):X ! X byK(x)(y) = x. Hence, the image of X under K consists of the constant maps.Now, the previous Proposition shows that in the compact monoid [X !X], if s � t = 1X, then t � s = 1X as well. It follows that K � Y = 1X in[X ! X], and this in turn implies that 1X 2 K(X) is a constant map. Hence,X is degenerate. 2Of course, this result doesn't eliminate non-degenerate lambda modelsfrom K; it merely says they cannot be compact. The class of possible modelscan be shrunk further by the following result. It is taken from [26].Proposition 5.17 Let X be a lambda model in a ccc A, and suppose that Zis a retract of X in A. Then there is a morphism YZ in A([Z ! Z]; Z) suchthat f(YZ(f)) = YZ(f) for all f 2 [Z ! Z].Proof. Since X is a lambda model, [X ! X] is a retract of X in A, andthe interpretation YX of the paradoxical combinator Y in [X ! X] implieseach morphism f 2 [X ! X] satis�es f(YX(f)) = YX(f). Now, if �:Z $ X:�expresses Z as a retract ofX in A, then it is routine to show that the mappingsf 7! � � f � �: [Z ! Z]! [X ! X] and g 7! � � g � �: [X ! X]! [Z ! Z]express [Z ! Z] as a retract of [X ! X]. Another calculation shows thatf 7! �(YX(� � f � �)): [Z ! Z] ! Z produces a �xed point combinator for[Z ! Z], and clearly YZ = � �YX �� ��� �:Z ! Z is the desired morphism.2Recall that the unit interval [0; 1] in the usual topology is an absoluteneighborhood retract.Theorem 5.18 Hofmann & Mislove [26]If X is a normal space that contains a homeomorphic image of [0; 1], then Xcannot be a lambda model.Proof. Indeed, if X is normal and contains a copy of [0; 1], then there isa retraction of X onto [0; 1]. Then the previous result implies [0; 1] has acontinuous �xed-point picker. But this is not true. Indeed, consider themappingH: [0; 1]! [[0; 1]! [0; 1]] by H(t)(x) = � 2tx+ 1� 2t if 0 � t � 1=2,(1� 2t)x if 1=2 < t � 1.The �xed points of the mappings H(t) areFix(H(t)) = 8<: f1g if 0 � t < 1=2[0; 1] if t = 1=2,f0g if 1=2 < t � 1.Clearly Fix cannot be made to be a continuous function on the arc of functionsfH(t) j t 2 [0; 1]g. 248



MisloveRice [46] has an alternative approach to proving these results. His meth-ods rely more on the syntactical structure of the lambda calculus, and less onthe structure of the objects of K.5.5 Models of the �I-calculusThe calculus we have focused on has included the constant combinator K= �xy:x. This calculus is sometimes called the \call-by-name" calculus, sinceit does not require evaluating terms before other terms can be applied to them.Another calculus is the �I-calculus, which corresponds to the \call-by-value"calculus. We begin by giving its syntax.The �I-calculus includes:� the constants c 2 C and the variables x 2 X,� the applicationMN of any term M in �I to any term N in �I, and� the abstraction �x:M only if x 2 FV(M), the set of free variables of M .Clearly, this eliminates the constant functions from the calculus. In fact, anyterm of the �-calculus can be de�ned from terms in the �I-calculus and thecombinator K = �xy:x (cf. [8]). But our argument showing compact Hausdor�models of the �-calculus are degenerate uses the combinator K crucially. Toprove a similar result for the �I-calculus, we �rst de�ne three combinators:� B = �xyz:x(yz),� C* = �xy:yx, and� hIi = �x:xI = �x:x(�y:y), the so-called list of I.B is the combinator that instantiates composition in the calculus. The follow-ing result is a routine computation.Proposition 5.19 In the �I-calculus, we have(i) BC*hIi = �zt:t(zI), and(ii) BhIiC� = I. 2Corollary 5.20 There are no non-degenerate compact Hausdor� models ofthe �I-calculus.Proof. According to Proposition 5.15, if there is a compact Hausdor� model,then �x:x = I = �zt:t(zI). If we take any element a in the model, then thisimplies a = (�x:x)a = (�zt:t(zI)a = �t:t(aI). So, for any b in the model,ab = (�t:t(aI))b = b(aI). Taking a = I, we see that b = Ib = b(II) = bI for allb in the model, and so ab = b(aI) = ba.Now, by a basis for the calculus we mean a family K of terms such thatevery term in the calculus can be realized as the application of terms in K;i.e., every term of the calculus is in the set of terms that K generates underthe operation of application. A result of Rosser (cf. [47] and Proposition 9.3.7of [8]) states that the terms� I = �x:x, and 49



Mislove� J = �wxyz:wx(wzy)form a basis for the �I-calculus. But, according to our result above, J = IJ =JI, and so the only terms that I and J generate are powers of J. But, further,J = IJ = JI = �xyz:x(zy) = J0;and so further, J = J0 = IJ0 = J0I = �yz:zy = J00;and �nally, J = J00 = IJ00 = J00I = �z:z = I;Thus, the model is degenerate. 2Furio Honsell is to be thanked for pointing out to the author thatthe combinators B, C* and hIi can be used as described above to show thatcompact Hausdor� models of the �I-calculus also are degenerate in the sameway as K and Y can be used to show compact Hausdor� models of the �-calculus are degenerate.6 Programming Languages and Other ApplicationsDomain theory began in an attempt by Dana Scott to avoid the untypedlambda calculus and �nd a more intuitive, mathematical structure for pro-viding models for programming languages. As it happened, the search alsoproduced the �rst mathematical models of the untyped lambda calculus. Butwe have not said much about the methods used to build programming lan-guage models themselves. We close this paper with some comments along thisline; they are more hints at places to look for details than they are precisedescriptions of such models themselves.The \classical" languages which domain theory has proven most useful formodeling are functional languages; this is understandable, since the lambdacalculus itself is a prototypical such language. An excellent introduction hereis the book by Gunter [22]. A great deal of research has gone into this area,and Gunter's book also is a good resource for �nding further applications alongthis line.An area which the author has been motivated by is process algebra andlanguages supporting concurrent computation. Among the most prominentof these are the languages CSP studied by Hoare, Brookes, Roscoe,Reed |citebhr84,rr88 and others at Oxford, and CCS, invented by Mil-ner[35] and studied by many people. In either case, the approach is to focuson the communication events that take place between machines running in aconcurrent environment, rather than on the actual computations each machinemakes. Domain theory has proved a fruitful tool in this area. For example, theseminal paper of Hennessy and Plotkin [23] showed how power domainscorrespond to forms of nondeterminism. The paper [37] carries this themefurther by showing for a simple parallel programming language how each ofthe power domains corresponds to a distinct form of nondeterminism.50



MisloveProcess algebra also provides an interesting contrast to two opposing ap-proaches for giving denotational models. As we have tried to demonstratefrom the outset, the role of domain theory is to give meanings to recursiveconstructs, and the property of domains that facilitates this is the least �xedpoint property that continuous selfmaps on domains enjoy. Indeed, these �xedpoints not only exist, they are canonical. The alternative approach here is touse complete metric spaces and the Banach Fixed Point Theorem. This ap-proach has been championed by de Bakker and his colleagues [13]. This ap-proach has a shortcoming, however, in that it requires a restriction to so-calledguarded terms in order to guarantee the associated selfmaps are contractive.A synthesis between the domain-theoretic and metric-space approachesalso has begun to emerge. A seminal result is the paper of America andRutten [6] in which it is shown how to solve recursive domain equationswithin the metric space world. Further work along this line has been doneby Flagg and Kopperman [18], as well as Alessi, Baldan, Bell�e andRutten [5]. But the most extensive results along the lines of synthesizingdomain theory and metric spaces are due to Wagner [59].Our discussion of power domains focused on presenting them �rst in theiroriginal algebraic formulation, and then from a topological view. There aretopological analogues to these constructs, which have evolved from the originalVietoris hyperspaces. These constructs have received new interest because ofthe work of Edalat [14{16]. In these works Edalat has found new and excitingapplications of domain theory to the areas of fractals, neural networks andperhaps most notably to the theory of integration. Indeed, Edalat has useddomain theory to provide a very simple derivation of the Riemann integraland, at the same time, he has found solutions to problems that do not seemavailable from the more traditional methods.Lastly, we mention set theory as an area of application. One of the mo-tivations for Church in devising the lambda calculus was to provide a newfoundation for mathematics. Through work on set theory and process alge-bra, Aczel [4] devised a new formulation for set theory in which he replacesthe traditional Foundation Axiom by a more general axiom that allows amuch wider family of sets - including ones that contain themselves as mem-bers. This set theory has special appeal for theoretical computation, sinceit provides simple models for processes that want to \call themselves." Anobvious topic is then the relation between this new set theory and the more\traditional" domain theory. One aspect of this relation is presented in [38],where it is shown how to present a domain-theoretic model for the hereditar-ily �nite portion of Aczel's theory. A direct application of Aczel's theory toproviding programming models also can be found in [48].AcknowledgementsThis paper arose from a series of lectures the author delivered at the SummerTopology Conference held in Portland, Maine in August, 1995. The authorwants to express his thanks to the organizers of that meeting, including Bob51
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