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Abstract

In this paper, we survey the use of order-theoretic topology in theoretical computer
science, with an emphasis on applications of domain theory. Our focus is on the uses
of order-theoretic topology in programming language semantics, and on problems of
potential interest to topologists that stem from concerns that semantics generates.
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1 Introduction

Topology has proved to be an essential tool for certain aspects of theoretical
computer science. Conversely, the problems that arise in the computational
setting have provided new and interesting stimuli for topology. These prob-
lems also have increased the interaction between topology and related areas of
mathematics such as order theory and topological algebra. In this paper, we
outline some of these interactions between topology and theoretical computer
science, focusing on those aspects that have been most useful to one particular
area of theoretical computation denotational semantics.

This paper began with the goal of highlighting how the interaction of order
and topology plays a fundamental role in programming semantics and related
areas. It also started with the viewpoint that there are many purely topo-
logical notions that are useful in theoretical computer science that could be
highlighted and which could attract the attention of topologists to this area.
And, to be sure, there are many interesting and appealing applications of
“pure topology” — certainly in the form of metric space arguments — that have
been made to theoretical computer science. But, as the work evolved. it be-
came clear that the main applications of topology to the area of programming
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semantics involve not just topology alone, but also involve order in an essen-
tial way. And, this approach places domain theory at center stage, since it is
the area that has combined order and topology for application to theoretical
computation most effectively. The goal now is to show why this is so, and why
it is order-theoretic topology that has had such a large impact on theoretical
computer science. In particular, we highlight those aspects of domain theory
and its relationship to topology that have proved to be of greatest utility and
importance. At the same time, we document the advantages domain theory
enjoys in this area of application, and the “standard” that domain theory has
set in providing solutions to the problems this area of application poses.

2 Topology versus Order

Let’s begin with a simple but illustrative example.

Example 2.1 Let N ={0,1,2,...} denote the natural numbers, and let (N —
N) denote the set of partial functions from N to itself. Consider the family of
partial functions f, € (N — N) defined by

fo(m) = {m! if m<n,
Jn - .
undefined otherwise.

We would like to assert that the functions {f,},en converge to the function

FAC:N — N by FAC(m) = m! (Vm € N).

To find a suitable topology on (N — N) to express this convergence, we
first identify (N — N) with a space of total functions. Let L be an element
not in N, and define N; = NU {L}. We interpret L as undefined, and we
define an injection

f — fL: (N N N) N (NL N NL) by fl (.’7?) — { f(r) lf f(l,) 15‘ deﬁned,

1 otherwise.
Then it is clear that {f, | f € (N = N)} is precisely the set of selfmaps of
N, that are strict i.e., those that take L to itself. If we endow N with the
discrete topology, then all the functions in (N, — N ) are continuous.

Proposition 2.2 In the compact-open topology on (N, — N, ), the sequence
{fn1tnen converges to FAC .

Proof. Since N, is discrete, the compact-open topology on (N, — N ) is the
same as the topology of pointwise convergence, so the result is clear. O

We also note that by endowing N, with the discrete metric and giving
(N} — N) the Frechet metric, the Proposition remains true for the metric
topology on (N} — N ).

But even though we have convergence of {f,},en to FAC (after suitable
identification with {f, | } ,en), something is lost in this assertion. Namely. the
functions {f, },en represent increasing approximations to FAC: indeed, as n
increases, so does the amount of information we have about the limit function
FAC. In fact, there is a natural order on (N — N) that makes this idea precise.
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Definition 2.3 Define the extensional order on the space (N — N) by
fEyg iff dom(f)C dom(g) & glaoms) = f.
where dom(f) = f1(N).

Clearly, in this order any increasing family of partial functions has a supre-
mum the union. Moreover, the function FAC is the supremum of the family
{fn}nen. Our next goal is to capture this as a “convergence in order.” This
leads us to the Scott topology.

Definition 2.4 Let P be a partially ordered set.
o A subset D C P is directed if (VF C D finite)(3x € D) yC 2 (Vy € F).

o P is a complete partial order (cpo for short) if P has a least element —
usually denoted L and if every directed subset of P has a least upper
bound in P.

Note that a directed set must be non-empty, since the empty set is a finite
subset of every set.

For example, the family (N — N) is a cpo: the nowhere-defined function is
the least element, and the supremum of a directed family of functions is just
their union. Similarly, we can give N, the flat order, whereby x C y if and
only if # =1 or x = y for all #,y € N,. This corresponds to the pointwise
order on the space (N, — N, ) of monotone selfmaps of N, and in this order
the supremum of a directed family of functions is the pointwise supremum,
and the constant function with value L is the least element.

Definition 2.5 Let P be a partially ordered set. A subset U C P is Scott
open if
s U=1U={y€ P| (v e€U)uL y}is an upper sct, and
* (VD C Pdirected) | |DeU = DnNU#.
Proposition 2.6 Let P be a partially ordered set.
(1) The family of Scott open sets is a Ty topology on P.

(i) If x,y € P and there is some open set containing x but not containing y,
then x £ y.

(iii) The following are equivalent:
(a) The Scott topology is T} .
(b) P has the discrete order.
(¢) The Scott topology is T.
(d) The Scott topology is discrete.

Proof. Let P be a partially ordered set. Clearly the union of upper sets from
P is an upper set. And, if D C P is directed and | | D € |, U;. with U; open
for each 7 € I, then | | D € U, for some ¢ € I. Since U; is Scott open, it follows
that D NU; # 0, and so the same is true of D N (Y, U;).

If 2 [Z y € P, then the definition of Scott open implies that |y = {z € P |
= C y} is Scott closed. Since x €|y, we have x € P\ ly, which is Scott open.
Hence the Scott topology is Ty. this proves (i).
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For (ii), if x,y € P and x € U, then 2 < y and U =1U imply y € U as
well. Thus y ¢ U must imply = £ y.
Finally, (iii) follows easily from (ii). O

In our example (N — N) it is not hard to show that 1f is Scott open if
dom(f) is finite (a directed union of functions extends a finite function if and
only if one of the functions in the directed family extends the finite function),
and, as it happens, this family of principal upper sets forms a basis for the
Scott topology on (N — N).

There are a number of important results that are true of the Scott topology.
Below we summarize some of them; they all can be found for depo’s (cpo’s
without least elements) as well as cpo’s in, e.g., [3].

Proposition 2.7 Let P be a cpo, and endow P with the Scott topology.

(i) If D C P is directed, then | | D is a limit point of D, and it is the greatest
lirmat point of D.

(ii) Let I and J be directed sets, and let (i, j) — x;;: I X J — P be monotone.
Then
(a) |_|.7261 I—ljeJ LTij = I—lje.] Llics @ij-
(b) If I =J. then | ic, e, vij = Lie; ii-

(iii) If Q also is a dcpo, then f: P — () is continuous iff f is monotone and
preserves sups of directed sets. O

As we shall see, the second part of this result is a very useful tool in proving
results about continuous functions between depo’s.

One of the most celebrated results about cpo’s is the following. We at-
tribute it to TARSKI, who first proved it for complete lattices [55]. However,
a number of others — among them SCOTT and KNASTER — have contributed
to this result.

Theorem 2.8 TARSKI [55]
If P is a cpo and f: P — P is monotone, then f has a least fized point,

Jia(f) = Upcom fO(L). If [ is continuous, then fiz(f) = ||,cn f"(L).

Proof. We confine ourselves to an outline. For the first part, the monotonicity
of f and the fact that LC @ (Vo € P) implies LC f(L), and so {f"(L)},en is
a chain. Since P is a cpo, this chain has a least upper bound, which we use to
define f<(L) = |,y f"(L). A transfinite induction then shows that f(L)
is well-defined for all ordinals «, and that a < 4 implies fo(L1) C f7(L1).
Since this holds for all ordinals, there must be one where the increasing chain
stops growing, and the first place this happens is easily seen to be a fixed
point of f. The fact that LC z (Vo € P) implies f*(L) C f(y) = y for all
fixed points y of f and all ordinals a, showing that the first ordinal a where
F(f*(L)) = f(L) is the least fixed point of f.
If f is continuous, then it follows that

FL ey =L ey = L] ).
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Example 2.9 Returning to our example, we recall that the natural order on
(N — N) makes the empty function the least element; this corresponds to the
pointwise order on the family (N, — N, ) of monotone selfmaps of N, and
the constant function with value L is the least element.
Now, let [N} — N;) = (N, — N, )] be the family of Scott-continuous
selfmaps of (N, — N, ). Define
€L ifn=1,
Fe[N, - N;)—= (N, =N )] by F(f)(n) =<1 if n =0,
n-f(n—1) otherwise,
where we define n- L=1 -n =1 for all n € N. Then

* ['is Scott continuous: indeed, as the domain of the function f increases,
then the domain of F(f) also increases, which implies F' is monotone. Con-
tinuity then follows from the fact that the supremum of a directed set of
functions is just their union.

o If k| denotes the function that has value L at all points on N,. then
F"(k,) = f,, for n > 0: this is a routine induction argument.

¢ F(FAC) = FAC: indeed, FAC has maximal domain — N — and so it cannot
be extended. And it is clear that F(FAC)(n) = n! = FAC(n) for all n € N.

o FAC= fix (F): this follows from the second observation and the fact that

FAC: |_|77 fnL-

Actually, this example shows an alternative approach to obtaining a re-
cursively defined function from just one functional. We shall see a striking
generalization of this result later.

We've already seen that continuous functions can be characterized purely
order-theoretically. Another fact about continuous functions also is important
to note.

Proposition 2.10 Let P, () and R be dcpo’s, and let f: P x () — R. Then
[ is (jointly) continuous wrt the Scott topology on P X Q if and only if [ is
separately continuous wrt the product of the Scott topologies on P and ().

Proof. If D C P x @ is directed, then it is routine to show that UD =
(Ump(D). Umg(D)). If f: Px(Q — R is separately continuous wrt the product
of the Scott topologies on P and (@, then

FUD) = f((Urp(D),Urq(D))) = f(Usenmp(d), Upenmo(d))
=Ugep [((mp(d), Uaepmo(d'))) = Usep Uwep f((mp(d), mo(d')))
- Udei)f((ﬂ—f’(d)v WQ(dD) = I—|f<D>

so f also is continuous wrt the Scott topology on P x Q).

Conversely, if f: P x () — R is continuous wrt the Scott topology of P x Q).
then f preserves suprema of directed sets in P x (). which clearly implies f
preserves suprema of directed subsets of P x {y} and {z} x @, respectively,
for all x € P and y € ). This characterizes separate continuity of f wrt the
product of the Scott topologies. O

Remark 2.11 It should be noted that, for decpos P and (). the product of
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the Scott topologies of P and () is in general weaker than the Scott topology
of the product. However, these topologies do coincide for continuous dcpos
(cf. Section 3).

Theorem 2.12 For depo’s P and Q, the family [P — Q] of Scott-continuous
maps is a depo in the pointwise order.

Proof. It’s routine to show that the directed supremum of monotone func-
tions is well-defined and monotone. The fact that order of computing the
supremum of a product of directed sets can be reversed implies the supremum
function itself also preserves directed suprema. hence is continuous. O

Tarski’s Theorem guarantees that the the operator fixp:[D — D] — D is
well-defined, and using part (ii) of Proposition 2.7, it is easy to show that this
operator is continuous. The following discussion shows in what sense fixp is
unique.

A fized point operator is a family of continuous maps Fp:[D — D] — D
for each cpo D, which satisfies Fjp(f) = f(Fp(f)) for each f € [D — D].
Such a family is called uniform if Fu(g) = h(Fp(f)) for all continuous maps
f:D — D and ¢: F — FE and strict continuous maps h: D — FE satisfying
hof=goh:

f=y9 F

D D

h \ h = Frlg) =hFp(f))

K E

Theorem 2.13 fix is the unique uniform fized point operator defined on the
category CPO. O

It is clear that { L} is a terminal object for the category CPO of ¢po’s and
continuous maps, and that the product of ¢po’s is another such, so CPO is
cartesian. It also is closed, as Theorem 2.12 shows. The fact that [P x @ —
R] ~ [P — [(Q) — R]] also is clear from Proposition 2.10. Thus we have:

Theorem 2.14 The category CPO of cpo’s and Scott continuous maps is
cartestan closed. The same also holds of the category DCPO of depo’s and
Scott continuous maps. O

Our aim in this section was to show how order theory together with topol-
ogy provides a richer theory than topology alone. While we have not shown
that topology alone cannot claim the results we have enumerated, it should
be clear that results we have highlighted are available in a particularly sim-
ple way in the cpo setting, and that this theory offers some results (such as
Tarski’s Theorem and Theorem 2.13) that are not so easily available in other
settings. We also shall see that these results are particularly useful in the
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area of programming language semantics, which is at the heart of theoretical
computer science.

3 Domain Theory

While some aspects of our motivating example in the previous section clearly
are close to computability, nothing in the general theory of the category CPO
addresses this directly. Domain theory adds this aspect to the theory we have
outlined.

3.1 Basic Results
We begin this development with some standard definitions.

Definition 3.1 Let P be a dcpo. An element k& € P is compact iff Tk is
Scott open. We let K(P) = {k € P | K is compact}, and for each x € P,
K(x)=lr N K(P).

For example, if we consider N; to be the flat natural numbers, then
K(N;) = N;. We already noted that the partial functions with finite do-
main are compact in (N — N), from which it follows that K([NL—!>NL]) 2
{f | dom(f) is finite}, where [NL—E>NL] is the space of continuous selfmaps of
N, leaving L fixed.

Definition 3.2 The dcpo P is algebraic if, for all x € P
o K(x) is directed, and
o x=||K(x).

By a domain, we mean an algebraic cpo.
The following result is basic to the theory.

Theorem 3.3 Let P be a depo and let B C K(P) be a family of compact
elements of P. If for all x € P,
(i) B(x) =lx N B is directed, and
(ii) @ =[] B(x),
then P is algebraic and B = K(P).
Proof. If the conditions hold, then x = | | B(z) can be used to show that K (x)

is directed, so @ = | |B(z) C || K(x) C x, and then P is algebraic. If k €
K(P), then k = || B(k) implies k € B(k) by the definition of compactness.O

We noted earlier that the functions f: N, — N, that leave 1 fixed and
that have a finite domain are compact elements in [N, — N ]. A corollary of

Theorem 3.3 is that [x’([Nl—!>NL]) = {f | dom(f) is finite}.

Definition 3.4 Let P be a partially ordered set. An ideal of P is a directed
lower set of P. We let Id1(P) denote the family of ideals of P.

7
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If P is a poset, then using Theorem 3.3 it is routine to show that Idl(P)
is an algebraic depo whose compact elements are K(Idl(P)) = {lx | x € P}.
The definition of algebraicity then implies that a cpo P is algebraic if and
only if P ~ Idl(P): indeed the mapping x — K(x) has I — || [ as its inverse.
Moreover, Idl(P) is a cpo if and only if P has a least element.

To elevate the above relationship to an equivalence of categories requires
using relations between posets rather than functions. Since a continuous map
f: P — @ between domains need not preserve compact elements, such a func-
tion f does not restrict to a function from K (P) to K(Q). But, for each
x € P, f(a) = | K(f(x)) is completely determined by the ideal K(f(x)) of
compact elements of (). This gives rise to the following notion.

Definition 3.5 Let P and ) be posets. An approzimable relation R C P x ()
is a relation satisfying:

s Vxe P)(Vy.y € Q)zRyJy = zRy.
o (Vo e P)(VM C Q finite) (Vy € M)zRy = (32 € Q)xRz & M Clz).
o (Va,2' € P)(Vye Q)2 JxRy = 2'Ry.

These conditions insure that the set {y € @ | Ry} is an ideal of @, and
so the relation R is really a monotone function from P to I1d1(Q); this then ex-
tends to a (unique!) continuous function from Id1(P) to Id(Q). f R C P x P’
and S C P’ x P" are approximable relations. then sois SoR C P x P”. Hence,
there is a category POS, of posets and approximable relations. The corre-
spondence taking a continuous mapping f: P — ) between algebraic depo’s
to the appr()xin’labl(‘ relation Ry C K(P) x K(Q) by Ry = U{{k} x K(f(2)) |
k € K(P)} then has as its inverse the assignment taking an dpplommdbl(‘ re-
lation R C P x @ between posets to the continuous map fg: Id1(P) — 1d1(Q)
by fr(I) = (U R(I)). Thus, we have an equivalence of categories POS 4 and
ADCPO between posets and appmmmable relations and algebraic depo’s and
continuous mappings. This equivalence cuts down to an equivalence between
the full subcategories POS 44 of posets with least element and ALG of domains.

Theorem 3.6 The category ALG of domains is equivalent to the category
POS g of posets with least element and approzimable relations. O

If by a locally compact space we mean one in which each point has a
neighborhood basis of compact sets, then the following is obvious from the
definitions.

Proposition 3.7 If P is a domain, then {tk | k € K(P)} is a basis for the
Scott topology on P, and so P s locally compact. a

We will see later that domains also are sober; for now we leave this issue and
concentrate on bringing computability more to the fore. A detailed description
would include an indication of how enumerability can be captured in this
setting. The details are too many to go through here, so we confine ourselves
to the following brief indicator.

We showed that the function FAC: N — N could be realized as the least
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fixed point fix(F), where F:[N; — N;|] — [N, — N;]. This result has a
striking generalization.

Theorem 3.8 MYHILL SHEPERDSON [50]
If g: N — N is partial recursive, then g can be realized as g = fix(G) for some
continuous selfmap G: [N, — N ] — [N} — N, ]. O

This hints at the close relationship between notions of computability and
domain theory. We could summarize this relationship with the following “slo-
gans’:

Algebraicity captures Computability

k compact if and only if k is computable in finite time

f: P — P recursive implies (IF:[P — P] = [P — P]) f =fix(F)

3.2 Continuous Domains

Many of the basic results outlined in the previous section have an important
generalization. In his seminal paper [49], SCOTT comments that the algebraic
lattices he discovered as injective spaces are in some sense zero-dimensional,
and to close up the class under quotients, one needs to consider positive-
dimensional analogues. This was the impetus for the results in [20], where it
is shown that continuous lattices form the class of objects so generated. At
the more general level of cpo’s, the corresponding objects are the continuous
cpo’s. Some of their theory was presented in the exercises in [20], but the
nicest presentation we have seen is in [3]. Here’s a brief outline of the basics
of that theory.

Definition 3.9 Let P be a dcpo, and let x,y € P.

o We write 2 < y if for all D C P directed sets, if y C | | D, then DNt # ().
If © < y, then we say a is way-below y. We let Jy = {o € P | x < y} for
each y € P.

e Pis a continuous depo if for all y € P,

(i) y is directed, and

(i) v =1 Jy.

We let CON denote the category of continuous cpo’s and Scott continuous

maps.

Clearly x € P satisfies &+ < x if and only if x is compact, and so each
algebraic cpo is continuous. Given a continuous cpo P, in analogy with the
poset K(P), we can define the pre-ordered set (P, <). In general, < is not a
partial order: » < « iff & is compact. The proper generalization of K(P) is
given in the following definition.

Definition 3.10 An abstract basis is a set B together with a transitive rela-
tion < which satisfies the interpolation property:
INT (VM C Bfinite)(Ve e P)YM <2 = (Jy<a)M <y < x.
9
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Here, M < @ means 2z < x for all z € M.

Proposition 3.11 Let P be a continuous depo. Then < satisfies INT. Hence

« (P, <) is an abstract basis.
s fo={y € P|x <y} is Scott open for each x € P.

Proof. Let P be continuous and let & € P. Consider the set A = {z € P |
(Jw € P)z < w < x}. It is routine to show that A is directed, and clearly
|]AC o If||JA # x, then x = || Y2 implies there is some w < x with
w Z | ] A, and then the same argument implies there is some z < w with
zIZ||A. Then z € A, so z C | | A, which is a contradiction. Hence | | A = x.

Next, if M C P is a finite set with y < x for all y € M, then. for each
y € M, there is some y € A with y C 3. Choosing z € A with ¢/ C 2 for
each y € M implies there is some w < x with z < w. But, then y C ¢/ C =
implies y < w K x for all y € M. Hence P satisfies INT.

The first part of the Proposition now follows. As for the second part, if
L] D efre, then @ < || D, and so INT implies there is some y € P with
r <K y<<|]D. Then 3d € D with y C d, and so d €ty T O

Corollary 3.12 If P is a continuous dcpo, then P is locally compact in the
Scott topology.

Proof. The fact that ffa is Scott open implies T is a Scott-compact neigh-
borhood of each point in fjz. O

Each abstract basis (B, <) has an ideal completion Idl(B, <) — the set of
<-directed lower sets of B, and this ideal completion is a continuous depo
in which 2 < y implies Jo <]y in 1dl(B, <). Moreover, given a continuous
depo P, the mapping 2 —{a: P — 1dl(P, <) has as its inverse the mapping
I— || Td(P, <) — P.

In further analogy to the algebraic case, there is a notion of approximable
relations between abstract bases, and the following theorem holds.

Theorem 3.13 ABRAMSKY & JUNG [3]

There is an equivalence between the categories ABAS of abstract bases and
approzimable relations and COND of continuous depo’s and continuous map-
pings. This equivalence restricts to an equivalence between the full subcate-
gories ABASy of abstract bases with minimum elements and CON continuous
cpo’s. O

What this all says is that there is a uniform approach the algebraic and
continuous cases in which the algebraic structure of continuous ¢po’s can be
highlighted and used effectively to understand the structure of continuous
cpo’s. It has been known for some time that certain aspects of the theory
of domains are more elegantly and simply presented in the continuous case
(because of the closure under quotients), and the approach of abstract bases
provides a method for developing that theory in a way that affords easy access
to the results about algebraic cpo’s that one might wish to highlight.

10
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3.3 Cuategories of Domains

In the first section we noted that CPO and DCPO are cartesian closed cate-
gories. If P and () are algebraic, then it is easy to show that P x () also is
algebraic and that K(P x Q) = K(P) x K(Q). Since the terminal object also
is algebraic, ALG — the category of domains and continuous maps — is carte-
sian. If we want to know whether ALG also is cartesian closed, the following
result shows we don’t have to look far for a potential internal hom:

Theorem 3.14 SmyYTH [51], JUNG [30]
Let C be a full subcategory of ALG and let P, Q) be objects of C.

(i) If C has products, then P X Q is the product of P and Q in C.

(i) If C has exponentials, then [P — Q] is the exponential of P and Q) in C.
(Il

We attribute this theorem jointly to SMYTH and JUNG; Smyth [51] showed
this for w-algebraic domains (i.e., ones for which K(P) is countable), and
Jung [30] extended the result to the general case.

Unfortunately, ALG is not cartesian closed. Indeed, a simple example that
hints at the problem is to show that (N, <)°?  the natural numbers in the
dual of the usual order satisfies [(N, <)°? — (N, <)°P] is not algebraic. In
fact, K(f) = @ for any function in this space. (This example is taken from
3])

So, one might ask what cartesian closed categories exist within ALG. The
first one we note is probably the best-known.

Definition 3.15 A domain P is a Scott domain if P is closed under the
formation of non-empty infima.

Theorem 3.16 The category SD of Scott domains and continuous maps is
cartesian closed. O

Clearly the product of Scott domains is another such, so the proof of this
result requires only consideration of the function space. Here, a little work
is required. The pointwise infimum of a family of continuous maps between
Scott domains surely is well-defined, but it is not necessarily continuous. What
one has to take for the infimum is the largest Scott continuous map which is
pointwise below the pointwise infimum. Of course, even once it is shown
that this map exists and that it is the infimum. it also needs to be shown
that the family of continuous maps between Scott domains is algebraic. Here
one explicitly shows that every continuous function is the supremum of “step
functions” which clearly are compact elements in the function space. By taking
finite sub-suprema of such step-functions, one sees that the compact elements
of the function space form a basis.

A larger cartesian closed category of domains is obtained in the following
way.

Definition 3.17 An embedding—projection pair (e,p): P — ) between do-
11
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mains P and () is a pair of continuous maps e: P — ) and p: () — P satisfying
e poe=1p, and

N €Opng.

Actually, an e-p pair is a special case of a Galois adjunction between the
domains P and (): e is the lower adjoint and p the upper adjoint.

Definition 3.18 A domain P is SEFP if there is a sequence of finite posets
and e-p pa‘irsv {(eﬂ,71+11p'n,+171): I)n, — Pn,-l—] }WEN such that

P~ IIIII(RH (pnwnfl ©0--+0 pm«l»lm)mﬁnGN)
n

>~ COliT{ll(P,,, (en—]n 0---0 e7n771+1)7n§n€N)

This definition only makes sense once one shows that the indicated limit
and colimit both exist and that they coincide. This was first demonstrated
by PLOTKIN [43]. Plotkin constructed the category SFP of SFP-objects and
continuous maps in order to have a cartesian closed category that was closed
under all the operators he needed to create the sort of semantic models he had
in mind. In particular, he needed a cce that was closed under the Plotkin power
domain construct, and this is something that is not true of Scott domains.
Plotkin also conjectured the following result, which was proved by SmyTH [51].

Theorem 3.19 SMYTH [51]
The category SFP of SFP-objects and continuous maps is the largest cartesian
closed category of w-algebraic domains. O

In his celebrated thesis [30], JUNG greatly extended our knowledge about
maximal cartesian closed categories of domains. He first showed that the
category of bifinite domains — those that are simultaneously the limit and
colimit of a directed family of finite posets under e-p pairs — is cartesian
closed, and in fact is maximal such among those ccc’s of domains. He also
defined the following class of domains.

Definition 3.20 An L-domain is a domain P in which |« is a complete lattice
for each x € P.

Theorem 3.21 JunG [30]
There are two maximal cartesian closed full subcategories of domains:
o The category BIFIN of bifinite domains and continuous maps, and

o The category LDOM of L-domains and continuous maps. O

3.4 Categorical Generalizations

One of the basic aspects of the Scott topology is that directed sets converge
to their suprema. Moreover, Tarski’s Theorem guarantees that continuous
selfmaps on cpo’s have least fixed points that can be computed in a simple
way simply iterate the function starting at the least element. SMYTH AND
PLOTKIN [53] were the first to elevate these ideas to the categorical level.
In their approach, categories of cpo’s and continuous maps were viewed as
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“large cpo’s” in which colimits of what are called “expanding sequences” in
[3] correspond to suprema in a cpo. Furthermore, domains satisfying desired
properties can be viewed as “fixed points” of associated continuous endofunc-
tors of the category, and these “fixed points” can be calculated in a way similar
to the calculation of the least fixed point of a continuous selfmap of a cpo.
We now outline this material along with the interesting phenomena that arise
in related categories. All of this material is presented in detail in Section 5 of

In order to mimic Tarski’s Theorem at the level of a category A of cpo’s,
we first need to order A. This is accomplished by defining not a partial order
on A, but rather a pre-order a reflexive, transitive relation  on A.

Definition 3.22 Let D and E be cpo’s. We write D C FE if and only if there
is an embedding-projection pair (e,p): D — E.

Lemma 3.23 C is a pre-order on the class of ¢po’s.

Proof. It is clear that the relation is reflexive, since the identity map forms
an e-p pair on any cpo. Transitivity follows from the fact that (ey 0 ey, p; 0
po): D1 — Dy is an e-p pair if (e, p1): D1 — Dy and (ey, po): Dy — D3 are e-p
pairs. O

Note, however, that it is unclear what it means for two dcpo’s to be equiv-
alent under C.

Example 3.24 Let I = [0.1] denote the unit interval, £ = I x I the unit
square in the product order, and

D=([1/2.1/2] x [1/2.1/2)) U {(z.2) | 1/2 < 2 < 1},

Clearly D is a sub-cpo of E, and it is easy to see that there is a projection
mapping p: E — D so that the embedding i: D — FE together with p forms
an embedding-projection pair. But, likewise, E' can be embedded in D as the
lower square, and this also has an associated projection p': D — E. Thus D
and E are equivalent under C, but they clearly are not isomorphic as cpo’s.

Even though C is not a partial order, we can still use it as if it were one,
and so our next goal is to show that increasing sequences on cpo’s in this order
have “least upper bounds”.

Definition 3.25 Let (e,,p,): D, = D,11 be a sequence of e-p pairs for each
n € N. We define

Do = {(#n)nen € H Dy | po(ny1) = a0}y
neN
and we endow D, with the order inherited from HneN D,,. It is not hard to
show that D, is a sub-cpo of HneN D,,, since the maps p,, all are continuous.
We also can define embedding-projection pairs (E,, P,): D, — DL by
P,((zy)nen) = 2, and E,(x) = (fin(2)ien). where fi;: D; — D; by
pio---opj_y if1 <y,
fii =1 1p, if © = j, and
ei_10---0¢; if1>j.

13
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Theorem 3.26 If (¢,,p,): D, — D,y1 is a sequence of e-p pairs for each
n € N, then (E,,P,): D, — Du as defined above is a sequence of e-p pairs
satisfying E, = E, 11 0e, and P, = p, o P,y for each n € N.

Moreover, if A is a cpo and (E!,, P): D, — A is a sequence of e-p pairs
satisfying E), = E . oe, and P) = p, o P, for each n € N, then there is a
unique e-p pair (E, P): Do — A such that E o E,, = E!, and P, o P = P! for
each n € N.

Finally, if (E!,,P!): D, — A is a co-cone over the sequence (€,.p,): D, —
D, 1, then the co-cone is co-limiting if and only if 14 = | |(E] o P!). O

Let CPO,, be the category of cpo’s and e-p pairs; i.e., the objects of the
category are c¢po’s, and morphisms are pairs of embedding-projection map-
pings between objects. The point of the previous result is that we can regard
(Doo, ((Ew, Py): D,y = Dog)nen) as a co-cone over the diagram (e, p,): D, —
D, 41)nen in CPO,,. and this result asserts that it is co-limiting. Viewed as
a colimit, D then is the “least” upper bound of the sequence Dy C --- C
D, C D,.;---, and so the category CPO of ¢po’s and continuous maps has
least upper bounds relative to the order C. The construction shows that this
also holds for every full subcategory of CPO that is complete. Note also that
CPO has a least cpo - the one-point cpo { L}, since there is an obvious e-p
pair from {1} to any cpo P.

The next point is to single out a family of continuous endofunctors for
which we can prove an analogue of Tarski’s Theorem. The obvious definition
for continuity would be that a functor preserves least upper bounds, as defined
in Theorem 3.26. But to make this precise, we first record a result that shows
CPO is closed under limits and colimits.

Theorem 3.27 If (P, {(eij.pij): P; = Pj}i<jer) is a diagram in CPO,,, then

lim(P,j, {])ij}igje]) ~ CO]iHl(P,j, {eij}f§j€1>' O

So. if one has a diagram (P, {(e;;.pi;): P — P;}i<jer) in CPO,,. then

the limit of the diagram (P,.{pi;: Pi = P;}i<jesr) and the colimit of the dia-

gram (P;.{e;;: P, = P;},<jer) both exist and they coincide. This limit can be
regarded either as a colimit or a limit in the category CPO by taking the appro-
priate projection from CPO,,. This result allows for a fine analysis of the limit
of such a diagram. and this in turn is very useful in applying the techniques
that are needed to construct domains to satisfving certain equations.

We already have seen that the colimit of a sequence (P, {(e;;.pi;): P —
P;}ticjer) in CPO can be regarded as the least upper bound of the sequence.
Moreover, the order on CPO ensures that all functors between categories of
cpo’s are monotonic: if (e.p): P — () is an e-p pair in a category A of cpo’s
and F:A — B is a functor, then (F(e), F(p)): F(P) — F(Q) also is an e-p
pair. So what remains is to find the appropriate sense in which functors should
be continuous.

Definition 3.28 Let A and B be co-complete categories of cpo’s and con-
tinuous maps. The functor F:A — B is continuous if for every diagram
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(Pi. ((eij, pij): Pi = Pjt)icjer) n Agy,
F(COlil’ll(I)i, {eji}i§j6[)> ~ COHHI(F(B), {F(ej[)},jgjg).

While this seems a reasonable definition for continuity (albeit somewhat
opposite from the usual definition of a continuous functor), it can be a difficult
property to prove. The following result shows that there is a simple test that
makes it easy to show certain functors are continuous.

Definition 3.29 The functor F: A — B between full subcategories of CPO is
locally continuous if for all objects P and @) of A,

F:[P = Q] = [F(P) = F(Q)]

1s continuous.

This definition does make sense: indeed, because operations on [D — E]
are defined pointwise, even though [D — E] and [F(D) — F(E)] are not
necessarily objects of A or B, respectively, nonetheless they are cpo’s and
F:[D — E] — [F(D) — F(E)] is a well-defined function, so it makes perfect
sense that it might be continuous.

Theorem 3.30 PLOTKIN [44], SMYTH & PLOTKIN [53]
If F: A — B is a locally continuous functor between full subcategories of CPO,
then F: A — B is continuous. a

Now, let F: CPO — CPO be an endofunctor and let (e,p): {L} — F({Ll})
be the natural e-p pair. If we let F¥ be the identity functor, then the following
is the analogue to Tarski’s Theorem we have been seeking:

Corollary 3.31 Tarski’s Theorem for Categories of Cpo’s

Let F: A — A be a continuous endofunctor on a full, complete subcategory of
CPO. Then (F™(e), F™(p)): F"({L1}) — F"T'({L}) is a sequence of e-p pairs
and

H: {("Iln>n€N | Fn(})> ('/L'n+l) - '/I/‘n:}
~colim(F"({L}), (F™ o0 F")(€)pemen)

satisfies F(II) ~ 1. Moreover, 1 is the least such cpo, in the sense of Theo-
rem 3.26. O

Since local continuity implies continuity, we can find a domain satisfying
a desired isomorphism by starting with a continuous endofunctor F: CPO —
CPO and seeking a cpo P satisfying F'(P) ~ P. The technique for finding
such a cpo P is to apply Tarski’s Theorem 3.31: iterate the functor I starting
with the least domain, { L}, using the canonical e-p pair from { L} to F({L}).
One should note the analogy to finding fixed points of continuous selfmaps of
cpo’s. We present perhaps the simplest example.

Example 3.32 Let L: CPO — CPO by L(P) = PU{Ll}, where L& P, and
for f: P — (),
L) L(P) = L(Q) by L(f)(r) = { /1) T w € P

1 otherwise.
15
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Thus, L is the lift functor which adds a new bottom to the ¢po P and which
extends a continuous map between cpo’s by sending the new bottom in the
domain cpo to the new bottom in the range cpo. Clearly L is an endofunctor
of CPO, and the local continuity of L should be obvious.

In seeking a cpo P satisfying L(P) ~ P, we start with the cpo {1} and
the embedding-projection pair (e, p) between { L} and the cpo L({L}) which
sends L to the least element of L({L}), and the projection which is the only
map from L({L}) to {L}. This leads to the following diagram in CPO,,:

, (o) . L™ (p) ;
L5 L T 220 - 27 S LD

Theorem 3.27 then implies that
li;n (L"({LD AL (p) o -+ 0 L™ (p) }menen)
 ~colim (I ({L}), {L™(¢) 0 -+ 0 L™ (€) o enen)
~ ()T,

where (N, <)T is the natural numbers in the usual order with a top element
added. It is important to note that the reason this is the colimit of the diagram
(L"({ L), {L™(e) o -+ 0 L" () },ncnen) is that the colimit is taken in CPO,
where all objects must be directed complete. Hence, the colimit in POS —
(N, <) — must have a largest element added to make it a cpo.

Now, since L is locally continuous, it is continuous. Hence

(N.<)T ~ L((N, <)1),

and this provides a solution to the equation L(P) ~ P.

In analogy to the situation with continuous selfmaps of cpo’s, the solution
L(P) ~ P we just found is least relative to the pre-order we have placed on
CPO. There is another way to state this fact, which utilizes the notions of
F-algebras.

Definition 3.33 Let F': A — A be an endofunctor on a category A. The object
A of Ais an F-algebra if there is a morphism m4: F(A) — A in the category
A. If A and B are F-algebras. then an F'-homomorphism from A to B is an
A-morphism f: A — B such the the following diagram commutes:

F
F(A) 7 F(B)
TA B
f
A B

It F:A — A is a locally continuous endofunctor on the full subcategory A
of CPO, and if A contains the object { L}, then we can form the object

T= colim((F"({L})nen). {F™"(e) 0 -0 F""'(e) fuznen).
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where e:{L} — F({L}) is the embedding sending L to the least element of
F({L}). and this satisfies F'(I) ~ [. Recall that a map f: P — @ between
cpo’s is strict if it preserves the least element of . The proof of the following
result can be found in [3].

Theorem 3.34

(i) If A is an F-algebra for which ma: F(A) — A is an isomorphism, then
there is a least I'-homomorphism fp a: A — B for any F-algebra B.

(ii) T is a sub-cpo of every fized point B ~ F(B) of F.

(iii) [ is an initial F-algebra in the category Ay of A-objects and strict contin-
wous maps from A. O

So, if we take the case F' = L. the lift functor, then this says that the
lift algebra (N, <)T is a lift algebra in CPO that is the “least fixed point” in
the category in the sense that there is a least homomorphism from it to any
other lift algebra. Moreover, if we force the least element of (N, <)" to be
mapped to the least element of a target lift algebra B, then there is a unique
lift, algebra homomorphism from (N, <)' to B.

Lastly, in Section 5.3 we will see how the assignment P +— [P — P] can be
made functorial, and how the techniques outlined here allow one to construct
a non-degenerate fixed point for the associated functor. This result provides
us with a model of the untyped lambda calculus of Church and Curry.

3.5 Further Results

The results we have outlined begin to make a case that domain theory has
a number of interesting results to offer. From the start, there have been
several attempts to duplicate the results we describe in other settings. For
example, a number of authors have examined the possibility of developing
analogous results in categories of metric spaces. Most notable among these is
the seminal result of AMERICA AND RUTTEN [6] where it was shown that one
of the most important techniques  solving “recursive domain equations” (like
our lift algebra equation) can be carried out in the metric setting. Analogous
results also have been obtained by FLAGG AND KOPPERMAN [17] who use the
different setting of quantales. Perhaps the most penetrating results so far have
been obtained by WAGNER [59] who has shown that the domain-theoretic and
metric space approaches can be understood as instances of a common theme.
This theme is to regard the categories CPO and MET as enriched categories.
For CPO, the enrichment is over the two-point lattice, while for MET, it is over
the quantale (R°", +) of real numbers in the opposite order equipped with +
as the tensor product.

Another point that is worth making is that there are concerted attempts
to understand just what portion of the properties of CPO are fundamental to
a basis for theoretical computation. In this regard, we mention two research
efforts:

(i) The work of FREYD [19] on algebraically compact categories. If T is an
17
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endofunctor of a category C, then T'-Inv denotes the category of triples
(A, f,g) where (A, f) is a T-algebra, (A, g) is a T-coalgebra, and f o g
and g o f are the identity maps. T is algebraically bounded if T'-Inv has
an object that is both terminal and initial. If C is bi-complete (i.e., every
covariant endofunctor of C or of C°" has an initial algebra), then C is
algebraically compact if every endofunctor is algebraically bounded. For
example, the category of countable sets is algebraically complete. These
notions appear to characterize what is necessary for each endofunctor to
have a “least fixed point” in the category.

(ii) The work of PLOTKIN, FIORE, ef al on a “system of axioms for domain
theory.” The axiom system postulates a pair of categories in which there
is a forgetful functor from one to the other whose left adjoint is “analogous
to” the lift functor. The relation between CPO and CPO, is the prime
example: here CPO; is the category of cpo’s and strict continuous maps.
The forgetful functor from CPO; to CPO has lift as its left adjoint. The
motivation is that (N, <)" is an initial lift algebra, and this is exactly
what is needed to develop a theory of w-cpo’s and continuous maps
partial orders with least element where countable chains have least upper
bounds, and in which maps preserve the suprema of such chains.

4 Domains as Topological Spaces

The “traditional approach” to domain theory emphasizes realizing domains
as depo’s P which are isomorphic to the family IdI(K(P)) of order ideals
of the set of compact elements. The results in [3] extend this approach to
continuous domains by utilizing the notion of an abstract basis. In our opinion,
this approach suffers from the drawback of having to deal with approximable
relations, which we view as much less intuitive than continuous functions.
In this section we outline an alternative approach that emphasizes topology,
perhaps to the detriment of not highlighting the algebraic character of domains
that the traditional approach offers. Nonetheless, we believe this approach has
some intuitive advantages.

4.1 Order-theoretic Topology

To begin, we recall the well-worn connection between topology and algebra
that has been extensively studied under the rubric “order-theoretic topology.”
A basic reference for this approach is the book [28]. However, we prefer to
focus on the closed sets of a topological space, rather than the open sets.

Let TOP be the category of topological spaces and continuous maps.

Definition 4.1 If X is a topological space, then we define the family I'X) =
{C C X | C = C} of closed subsets of X. If f: X — Y is continuous, we
define T'(f):T(Y) = T(X) by D(F)(C) = f~4(C).

Definition 4.2 A Brouwerian lattice is a complete lattice L for which =V
(ANC) = /\ye@("' V y) for all & € L and all families C C L. A morphism of
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Brouwerian lattices is a mapping f: L — M that preserves all infima and all
finite suprema.

Theorem 4.3 If CBL denotes the category of Brouwerian lattices and Brouw-
erian lattice maps, then I': TOP — CBL"Y is a contravariant functor. 0.

To go back the other way, we first need some terminology.

Definition 4.4 For a complete lattice L, an element p € L is co-prime if for
all I C L finite, if p C VF, then FN 1p # (. We denote by Spec,, (L) the
family of co-primes of L.

For example, given a topological space X, the set {x} is co-prime in T'(X)
for each & € X. Note that the least element of L cannot be co-prime, since
F = () is a possibility.

We want to topologize Spec, (L), so we make the following definition.

Definition 4.5 If L is a lattice, we define C' C Spec, (L) to be closed if
C =lx N Spec, (L) for some 2 € L. The hull-kernel topology on Spec,, (L) has
these sets as its family of closed sets.

Of course, for this definition to make sense, it must be shown that the
family of closed sets we have defined is closed under all intersections and
all finite unions. The former is true since (\{l2; N Specy (L) | i € T} =]
(A, i) NSpec, (L), while the latter is an easy exercise using the fact that all
elements of Spec, (L) are co-prime.

Proposition 4.6 Let ¢: L — M be a morphism of Brouwerian lattices. We
define the lower adjoint of ¢ by ¢.: M — L by ¢.(x) = Aot (tx). Then:
(i) pod. > 1y and ¢u0¢ < 1;; d.e., (¢, 0.) is a Galois adjunction between
L and M.
(i) ¢« preserves all suprema.
(iii) ¢« (Spec,, (M)) C Spec,, (L).

(iv) &ulspec, (m): Specy (M) = Specy (L) is hull-kernel continuous.

Proof. It is clear that ¢. is well-defined since M is a complete lattice, and
part (i) is then a routine exercise. Since ¢ preserves all infima, part (ii) follows
from the general theory of adjunctions. Part (iii) follows from the fact that ¢
preserves finite suprema, and part (iv) again is easy. O

Using this Proposition, we can prove the following result.

Corollary 4.7 There is a functor Spec: CBL? — TOP given by Spec(L) =
Spec, (L), and for ¢p: L — M, Spec(¢) = dulspec,(1)- O

Our aim is to use the functors Spec and I' to establish as equivalence of
categories, but this is not true in the generality we are in. For example, not
every topological space is of the form Spec, (L) for some complete Brouwerian
lattice L. Indeed, the unit ny: X — Spec, (T'(X)) satisfies ny(z) = {x}. and
so this map is injective if and only if X is T;. On the other side, the co-unit
€L — T'(Specy, (L)) given by €, (x) = \/ X N Spec, (L) certainly is onto,
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but it is one-to-one if and only if every « € L is the supremum of the set
lr N Spec, (L). We make these special spaces and lattices the subject of our
next definitions.

Definition 4.8 A closed subset ' C X of the topological space X is rre-
ducible if C' is a co-prime in I'(X); i.e., if C' is not the union of two proper
closed subsets. The space X is sober if every irreducible closed subset €' sat-
isfies C' = m for a unique point x € X. We let SOB denote the category of
sober spaces and continuous maps.

The following proposition is routine.
Proposition 4.9
(i) If L is a complete Brouwerian lattice, then Specy(L) is a sober space in
the hull-kernel topology.
(ii) If X is a topological space, then nx: X — Spec,(I'(X)) is a continuous

and open mapping onto its image. O

Corollary 4.10 The functor Spec o I: TOP — SOB is left adjoint to the
inclusion functor. O

For a topological space X, the space Spec,, (I'(X)) is called the sobrification
of X; it is the largest space having the same topology as X.
On the lattice side, we have the following.

Definition 4.11 A complete Brouwerian lattice L has enough co-primes if
x = \/(lxr NSpec, (L)) forall z € L. We let SCBL denote the category of such
lattices and maps ¢,: L — M that are upper adjoints to CBL-maps from M
to L.

Proposition 4.12

(i) If X is a topological space, then T'(X) has enough co-primes.

(ii) If L is a complete Brouwerian lattice, then the mapping €;,: L — T'(Spec,, (L))
15 a monomorphism of complete Brouwerian lattices. O

Corollary 4.13 The functor I' o Spec: CBL — SCBL s left adjoint to the
inclusion functor. 0O

A complete Brouwerian lattice also is called spatial if L has enough co-
primes. All of this culminates in the following result.

Theorem 4.14 The functors I'|sog: SOB — SCBL® and Spec|scgrer: SCBLP
— SOB form a dual equivalence. O

4.2 Continuous Posets

We know by now that we can endow each dcpo with its Scott topology, and
obviously this would be a way to take advantage of the equivalence of cate-
gories we have just outlined. Unfortunately, in this generality, it is not clear
whether every depo can be retrieved from its Scott topology. But we will be
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able to do this for continuous depo’s, and it is convenient to generalize from
the setting of depo’s just a bit.

Definition 4.15 Let P be a poset. If x,y € P, then we write 2 < y if, for
all directed sets D C P, if | | D exists in P and y C | | D, then DN ta # (.
We say P is continuous if, for all y € P.

e ly={r e P|r <y} is directed, and

«y=1d

Likewise, © € P is compact iff @ < x, and P is an algebraic poset if K(x)
is directed and satisfies @ = | | K(x) for all - € P. We let CPOS denote the

category of continuous posets and Scott continuous maps, and APOS denote
the full subcategory of algebraic posets.

The only difference between the definitions we just made and the earlier
notions of continuity and algebraicity is that we no longer assume the under-
lying poset P is directed complete. Algebraic and continuous posets also have
been studied in [36] and in [61], respectively. We shall see that the equiva-
lence just outlined for sober spaces and spatial Brouwerian lattices yields a
very satisfying theory for the categories CPOS and APOS. We begin our study
with the following result. whose proof is the same as that for Proposition 3.11.

Lemma 4.16 If P is a continuous poset, then < satisfies the property
INT 1€y = (IzeP)rk2ky
Hence, {yx 1s Scott open for each x € P. O

Lemma 4.17 If P is a continuous poset and C' € Spec, (I'(P)), then {x €
C |t NC £ 0} is directed and C = | {1z [fte N C £ 0}.

Proof. Any closed set C' = |J{Jx | x € C'} and each & € P satisfies 2 = | |
since P is continuous. Thus, C' = |J{Jx |ffz N C # 0}. Suppose that x,y € C
satisfy o NC' # O Ay NC. If Nty NC = B, then C = (C\ fz) U(C\ fy)
is the disjoint union of proper closed sets, which means C' & Spec, (I'(P)). This
shows {x € C' |[flz N C # B} is directed. And since C = J{lx |flz N C # (@},
it follows that C' = | |[{lx |tz N C # 0}. O

Proposition 4.18 If P is a continuous poset, then
(i) Specy(T'(P)) is a depo.
(ii) C < D € Spec, (I'(P)) iff (Fr < y€e P)C Clr <z CD.
(iii) Spec, (['(P)) is continuous.
)

The mapping np: P — Spec (I'(P)) is a homeomorphism onto its image,
and the topology np(P) inherits from the Scott topology on Spec,, (I'(P))
is the hull-kernel topology of np(P).

1\

Proof. If L is a complete lattice and D C L is a directed family of co-primes,
then it is easy to show that | | D also is co-prime. This shows (i).

For (ii), suppose that + < y € P and that D C Spec, (I'(P)) is a directed
family of closed sets whose supremum dominates [y. Then y € [JD. Since
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x < y, it follows that fju is a Scott open set containing y, and so |J D N fa # 0.
Since closed sets are lower sets, there is some set C' in the family D with x € C,
and this means @ C C. Thus Jo <y in Spec, (['(P)). It then follows that
C < D for any sets C' and D with ¢' Clx and |y C D.

Conversely, if C < D in Spec, (I'(P)), then the preceding lemma implies
D = | |{lx e n D # B}, and this supremum is directed. Hence, (3x € D)
ffr N D # 0 & C Clx. Since i N D # (. Lemma 4.16 implies there is some
y € DN Az with )y ND # . Then the first part of the proof implies @ < ]y.
and so C' Cla <y C D, which proves part (ii).

Part (iii) follows from part (ii), Lemma 4.17 and the continuity of P. The
first part of (iv) follows from the fact that P is T in the Scott topology. Since
directed sets in Specy (I'(P)) converge to the same point in the Scott topology
of Specy(I'(P)) as they do in the hull-kernel topology (since Spec, (I'(P))
is closed under directed suprema in I'(P)), the identity map is continuous
from the Scott topology to the hull-kernel topology. Conversely, if C' € U C
Spec, (T'(P)) and U is Scott open, then there is some x € P with C' € {D |
N D #P} CU. Then

Spec, (C(P))\{D |ffe N D # 0} ={D € Spec, (I'(P)) | DN frz = B}
= {D € Spec,(T(P)) | D C P\ i},

which clearly is hull-kernel closed, and so the topologies are the same. O

Since Spec,, (I'(P)) is sober for any continuous poset, P, the following result
is clear.

Corollary 4.19 The functor Spec o I': CPOS — CON is left adjoint to the
forgetful functor. Hence, the continuous poset P is sober if and only iof P is a
depo. O

Thus, the sobrification of a continuous poset is a continuous depo with
“the same way-below relation.” Of course, we can restrict our attention to
the algebraic case to obtain the following.

Corollary 4.20 If P is an algebraic poset, then Spec, (I'(P)) is an algebraic
depo with K (Spec,, (T(P))) = {lk | k € P}. Hence, P is a depo if and only P
s sober in the Scott topology. O

One might ask which algebraic posets P satisfy the property that Idl(P) =~
Specy (T'(P)) the answer is the following.

Proposition 4.21 An algebraic poset P satisfies 1d1(P) =~ Spec, (I'(P)) if
and only if P = K(P). O

All of the material we have presented has been for continuous posets, and
the resulting directed complete partial orders are continuous depo’s. Clearly
a similar development can be made for continuous posets with least element,
and then the resulting directed complete partial order would be ¢po’s.

Our stated motivation was to present a theory that avoided the use of
approximable relations. This theory does that, but it does not have the “purely
algebraic” flavor that using approximable relations affords. On the other hand,
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this theory provides a nice example of how the sobrification functor can yield
pleasing results relating categories of incomplete partial orders to ones that are
complete. This highlights that fact that sober spaces might best be thought
of in terms of completeness, rather than separation.

Finally, one might ask whether the theory we have presented can be ex-
tended to a larger class of posets endowed with the Scott topology. While
this may be true, such a theory cannot include all depo’s as the target of the
sobrification functor, as JOHNSTONE’S example [28] of a depo whose Scott
topology is not sober shows.

4.3  Duality Theories

One of the appealing aspects of domain theory is the fact that rich duality
theories can be devised for it. These theories rely on both aspects of domains:
their intrinsic topological structure as represented by the Scott topology, and
their intrinsic algebraic structure, represented by the role that compact ele-
ments play in the structure of domains. The basic theory relies on analyzing
the use of spectral theory of the previous section somewhat more carefully.

In applying the sobrification functor, we “passed through” the family I'(P)
for P a continuous poset. Since P and Specy (I'(P)) have the same closed sets,
we can investigate the complete Brouwerian lattice I'(P) assuming that P is
a continuous poset or a continuous depo.

Definition 4.22 A complete lattice L is continuous if L is a continuous cpo.
Likewise, L is algebraic if L is algebraic as a cpo. The lattice L is bicontinuous
(resp., bialgebraic) if both L and L°P are continuous (resp., algebraic).

An examination of the proof of part ii) of Proposition 4.18 shows that
r < y € Pimplies o <y in T'(P) for a continuous poset P. It then follows
that, if ; < y; for each i = 1....n, then U; lx; < U; Jy; in T'(P). It then is
routine to show that any closed subset C of a continuous poset P satisfies

C=| {IF | F CC finite & |F < C}.

That is, I'(P) is a continuous ¢po.

Dually, it can be shown that P\ f{ty is way-below P\ fta in (I'(P),D)
if + < y € P, again for P a continuous poset. If ' C P is closed, then
C=(W{P\N\F | F C P\ C finite}, and P\ fF <« C in (I'(P), D) for each
such F'. Since this family is easily seen to be directed under reverse inclusion,
it follows that (I'(P), D) also is continuous. Hence T'(P) is bicontinuous if P is
a continuous poset. Since T'(P) is Brouwerian, [20], Proposition VII-2.9 then
implies that I'(P) also is completely distributive.

Theorem 4.23 If P is a continuous poset, then T'(P) is a completely dis-
tributive bicontinuous lattice.  Moreover, C° < D in T'(P) if and only if
there are finite subsets F.G C P such that C ClF <|{G C D. Dually,
C < D in (T'(P),D) if and only if there are finite subsets F,G C P such that
CDOP\NF <K<P\NGDD.

Moreover, T(P) is algebraic if and only if P is algebraic, in which case
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K(I'(P)) = {tF | F C K(P) finite}, and K(I'(P)°*) = {P\ tF | F C
K(P) finite}. O

Lawson duality also asserts that the converse of this Theorem holds. Namely,
if L is a completely distributive, bicontinuous lattice, then Spec, (L) is a con-
tinuous depo and L ~ I'(Spec, (L)) (ct. [33]).

Theorem 4.23 can be raised to the level of a duality theory by applying
the general equivalence between sober spaces and spatial complete Brouwerian
lattices. Indeed, the continuous functions between continuous depo’s are the
Scott continuous maps, and these correspond precisely to the maps between
the respective closed-set lattices that preserve all suprema and co-primes. To
state this precisely, we let CDCPO denote the category of continuous depo’s
and Scott continuous maps, and BDL denote the category of bicontinuous
completely distributive lattices and maps preserving all suprema and all co-
primes.

Theorem 4.24 The functors T'|cpcpo: CDCOP — BDL and Spec
CDCOP form an equivalence.

BDLBDI— —

These functors further cut down to an equivalence between the full subcat-
egories ALG of algebraic depo’s and BAL of bialgebraic completely distributive
lattices. O

4.4 Power Domains

One of the most important constructs for semantics is that of power domains.
The idea is to have a model for nondeterminism. There are three traditional
power domains. and these constructs can be defined purely algebraically 1i.e.,
order-theoretically. We begin with the definitions, and then proceed to recast
them topologically.

Nondeterministic choice is meant to be a binary operation which satisfies
some simple algebraic rules: associativity, commutativity and idempotency.
Thus, a model of nondeterministic choice is simply a semilattice. The tradi-
tional path to building a model for nondeterminism is to start with a model
for sequential composition and perhaps some additional operations as well,
and then to construct a model for nondeterminism “on top” of the existing
model. Thus one usually begins with a continuous algebra relative to some
signature ¥ (i.e., a Y-algebra whose underlying set is a continuous c¢po such
that the interpretation of all of the operations is continuous), and seeks to
add a semilattice operation to the model. The following development mod-
ularizes this by first constructing free ordered semilattices over posets, and
then extending them naturally to be continuous algebras.

Definition 4.25 Let P be a poset. We define the family
(a) Len(P) ={lF | 0 # F C P finite} with
WFCGIff JFClG and [F+ [G=l(FUQG).
(b) Usn(P) ={1F |} # F C P finite} with
TF CytG iff 1G C1tF and  1F 4+ 171G =NF U G).
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(¢) Cau(P) ={(F)=lFN1TF | #£ F C P finite} with
(F)Ec (G) iff |FE G &TF EptG and (F) + (IG) = (FUG).

Proposition 4.26 Let POS be the category of posets and monotone maps.

(1) If SUP is the category of sup-semilattices and sup-semilattice maps, then
the functor L:POS — SUP by L(P) = La,(P) and L(f)(IF) =Lf(F) is
left adjoint to the forgetful functor from SUP to POS.

(i) If INF is the category of inf-semilattices and inf-semilattice maps, then
the functor U:POS — INF by U(P) = Usn(P) and U(f)(1F) =1f(F) is
left adjoint to the forgetful functor from INF to POS.

(iii) If OSEM s the category of ordered semilattices and ordered-semilattice
maps, then the functor C:POS — OSEM by C(P) = Cx,(P) and C(f)({F))
= (f(F)) is left adjoint to the forgetful functor from OSEM to POS.

Proof. We outline the proof for (iii); the others are similar. Let P be a poset
and S an ordered semilattice (i.e., a semilattice with a partial order relative
to which the semilattice operation is monotone), and suppose f: P — S is a
monotone map.

The family C'(P) = Cy,(P) is a semilattice under the operation ((F), (G)) —
(FUG). Moreover, if (F1) C¢ (Fy) and (Gy) T (Ga), then

W(FiUGh)) =UF UGY) =lFU Gy CLFU Gy =L((F, U GY)),
and, similarly,
(I U G)) =1(F2 U Gy) =1HU G2 CTRU TG =1((F U Gh)).

Thus the semilattice operation is monotone on Cg, (P).

Now, define C(f): Cs,(P) — S by C(f)((F)) = x1 * -+ % 2, where F =
{1,...,2,} and * is the semilattice operation on S. It is routine to show C(f)
is well-defined and that C(f) is a semilattice map. Finally, C(f)({«x}) = f(x)
is clear, and this is the unique semilattice map from Cy,(P) to S satisfying
this property since Cj,(P) is generated by the image of P under the map

xe {a} = {a}). a

In Section 3 we pointed out that the category of algebraic depo’s and Scott
continuous maps is equivalent to the category of posets and approximable
relations. There is another relationship between the category of DCPO depo’s
and Scott continuous maps and the category POS of posets and monotone
maps that is worth pointing out.

Proposition 4.27 The functor 1dl: POS — DCPO defined by 1dl(P) = {I C
P |0 #1I=]I directed} and IAL(f)(I) =] f(I) is left adjoint to the forgetful

functor.

Proof. Certainly Idl(P) is a dcpo for any poset P. And if f: P — Q is
a monotone map from the poset P to the dcpo @), then we can define the
mapping f: [AI(P) — Q by (f)(I) = || f(I). Since f is monotone and I is an
ideal, it follows that f(I) is directed, so this supremum is well-defined. And
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if C C @ is a Scott-closed set, then
fHC)={T e ld(P) || |f(I) e C} ={I € 1dI(P) | f(I) C C}.

It is clear that this is a lower set in Idl(P), and it is routine to show that this
family is closed under directed suprema (which are just increasing unions).
Moreover, if we define np: P — Idl(P) by np(x) =lx, then this map is
continuous and _fo np = f, and this is the unique continuous map ¢: Idl(P) —
() satistying g o np = f since np(P) is Scott-dense in Id1(P). a

Next, we note the following result.

Proposition 4.28 If S is an ordered semilattice, then 1d1(S) = {I C P |
I =11 is directed} is an algebraic depo which also is a semilattice, and the
semilattice operation on 1d1(S) induced from that of S is continuous.

Proof. Let «:S xS — S be the semilattice operation on S. We define
: Id1(S) xId1(S) — I1d1(S) by IxJ =l{axy |z € I &y € J}. Since I and .J are
directed and *: S x S — S is monotone, it follows that {x*xy |2z € [ & y € J}
also is directed, and so I % .J is an ideal of S. Also, using Proposition 4.27
and the fact that Idl(P x Q) = Idl(P) x Idl(Q) for all posets P and Q. the
fact that «: S x .S — S is monotone implies that *:Id1(S) x Id1(S) — Idl(S)

1s continuous. O

Note that a corollary of this last result is that, if S is a sup- (respectively,
an inf-) semilattice, then so is Idl(S) under the operation induced from the
semilattice operation from S.

Corollary 4.29 The restriction of the functor Idl to each of the categories
SUP, INF and OSEM, respectively, is a left adjoint to the inclusion functor from
the associated category of continuous semilattices and continuous semilattice
maps. The composition of this restriction with each of the left adjoints L,
U and C giwves a left adjoint to the inclusion of the associated category of
continuous semilattices into POS, respectively. O

This last result can be used along with the following purely categorical
result to lift the free ordered semilattices just constructed to free algebraic
semilattices, thus building of universal algebraic semilattices over algebraic
cpo’s.

Theorem 4.30 [37] Let A, B and C be categories, and suppose Fag: A — B is
left adjoint to Upg: B — A, and that Fac: A — C is left adjoint to Upc: C — A.
Also, suppose there is a functor Ugc: C — B satisfying Uag 0 Ugc ~ 2Uac.
and finally suppose that for each object b in B, there is an object Gb in A such
that FagGb ~ b. Then there is a left adjoint Fgc: B — C to Ugc given by
Fgcb = FacGb and Fgc o Fag ~ Fac.

2 By ~ we mean natural isomorphism.
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O

Our particular application of this Theorem is to the case that A = POS
is the category of posets and monotone maps, B = CPO is the category of
algebraic cpo’s, and Fup = Idl is the ideal functor. The function G on objects
of B associates to each algebraic cpo P the set K(P) of compact elements of
P. By choosing C to be an appropriate category of algebras over POS in the
case of power domains, these will be categories of continuous semilattices we
find that having a universal C-algebra over a poset K'(P) naturally leads to a
universal C-algebra over the algebraic cpo P. We see that each of the power
domains arises in exactly this fashion, so the construction of these objects
has been broken down into two steps: first form the appropriate free ordered
semilattice over the family of compact elements of an algebraic cpo, and then
apply Corollary 4.29 to obtain the free continuous algebra over the cpo.

We let
ADCPO denote the category of algebraic depo’s and continuous maps,

ASUP denote the category of algebraic depo’s having a continuous sup-semi-
lattice operation and continuous maps preserving finite suprema,

AINF denote the category of algebraic depo’s which also have a continuous
inf-semilattice operation and continuous maps preserving finite infima, and

ASEM denote the category of algebraic decpo’s having a continuous semilattice
operation and continuous maps preserving finite products.
Theorem 4.31 HENNESSY & PLOTKIN [23]
(i) The functor Pr: ADCPO — ASUP defined by
Pr(P) =1dlo Ly, (K(P)) and Pr.(f): Pr.(P) = Pr(Q) by
PulfII) = [{If(F) |0+ F CK(P) & |F el
is left adjoint to the forgetful functor from ASUP to ADCPO.

(ii) The functor Py: ADCPO — AINF defined by
PU(P) =1Idlo Uﬁn (A’(P)) and P{f(f) 73((]—)) — p((Q) by

Pu(f)(I) =] [{tF(F)|0#F C K(P) & 1F € I}
is left adjoint to the forgetful functor from AINF to ADCPO.

(ii1) The functor Pc: ADCPO — ASEM defined by
Po(P) =1dl o C (K(P)) and Pe(f): P (P) — P (Q) by

Pe(H) = | [{{FF) 10 # F CK(P) &(F) € 1}
is left adjoint to the forgetful functor from ASEM to ADCPO.
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Proof. Again we confine ourselves to an outline of the last assertion, the oth-
ers being similar. We know from Proposition 4.26 that the functor C' from POS
to OSEM is left adjoint to the forgetful functor, and Corollary 4.29 implies the
restriction of the functor Idl is left adjoint to the forgetful functor from ASEM
to OSEM. Corollary 4.29 further implies that Idl|osem o C:POS — ASEM
is left adjoint to the inclusion, and Theorem 4.30 then implies it induces
Pc: ADCPO — ASEM which is left adjoint to the inclusion. Given the def-
initions of Idl and of C, it is routine to show that Pr acts on objects and
morphisms as indicated. O

If we apply the construction for the free sup-semilattice to K (P) for an
algebraic poset P, and then take the ideal completion to obtain P, (P), then
we have the lower power domain, or the Hoare power domain, as it sometimes
is called. Similarly, Py (P) is the upper power domain, or Smyth power domain
using the free inf-semilattice over K(P), and Pc(P) is the convex power do-
main or Plotkin power domain over the algebraic depo P. It was first pointed
out in [23] that each of these yields a left adjoint to the forgetful functor from
a category of ordered semilattice depo’s into ALG.

Theorem 4.31 serves to define the three traditional power domains for all
algebraic depo’s. The first of these also has a simple topological representation.

Proposition 4.32 If P is an algebraic depo, then Pr(P) ~ (I'g(P), C), where
Lo(P) denotes the family of non-empty closed subsets of P.

Proof. For non-empty, finite subsets F, G of K(P), F Cp G iff FF ClG iff
LF ClG, and this implies the mapping JF —F: Ly, (K(P)) — T(P) is an
isomorphism of Lg,(P) onto K(I'g(P)). Clearly this mapping preserves the
semilattice operation, and since each of Idl(Lg, (K (P)),Ey) and I'y(P) is an
algebraic depo, the isomorphism extends to one of the structures themselves.O

This leads to a definition of an analogue to the lower power domain for
continuous dcpo’s. We let SUPCON denote the category of continuous depo’s
endowed with a Scott continuous sup-semilattice operation and Scott contin-
uous maps preserving the sup-semilattice operation.

Proposition 4.33 The functor I'y: CON — SUPCON which sends each con-
tinuous depo P to To(P) endowed with the union operation, and each mapping
f:P — Q to the sup-semilattice mapping To(f)(C) = f(C) is left adjoint to
the forgetful functor.

Proof. The functor clearly is well-defined on objects. And the unit of the
adjunction is the mapping = +—]z: P — T'¢(P). Suppose that S is a sup-
semilattice continuous dcpo and that f: P — S is continuous. Then we
can define Tg(f)(L2) = f(x) for each € P. Given C € T'((P), we have
C =|H{F |[IF C C,F finite}, and this sup is directed. So we can extend
Lo(f) by defining To(f)(C) = | |(Vsf(F)), This mapping is well-defined and

continuous. O

For the other power domains — the upper and convex — we require some
more development and a restriction of the class of depo’s considered for a
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topological analogue for them to be derived. We begin with the following
definition.

Definition 4.34 A subset S C X of the topological space X is saturated if
it is the intersection of the open sets that contain it.

[t is routine to show that a subset A C X of a topological space X is
compact if and only if Sat(A) = ({U | A C U open} is saturated. Moreover,
the saturated subsets of a partially ordered set endowed with the Scott topol-
ogy are precisely the upper sets; this follows since P\ | is Scott open for all
r € P.

Theorem 4.35 HOFMANN AND MISLOVE [24]
Let X be a sober space, and let F be a filter basis of compact saturated subsets
of X. Then

(i) N F is compact, and
(i) of F C U with U open, then there is some C € F such that C C U. O

This theorem can be proved by first showing that the family of Scott
compact saturated subsets of a sober space X is isomorphic to the semilattice
of Scott-open filters in the lattice of Scott-open subsets of X. A simple analysis
of this structure then yields the result. Alternatively, as in [31], a direct proof
can be given.

[t is important to note that the second part of the theorem implies that if
the intersection of a filter basis of compact saturated sets is empty, then one
of them is empty.

Finally, recall from Corollary 4.19 that continuous dcpo’s are sober in the
Scott topology, so the above result applies to them.

We now are ready to give a topological representation of the upper power
domain. This result was first discovered by SMYTH [52] for the case of do-
mains. Given the tools at our disposal, however, we can extend the definitions
to all continuous depo’s. To begin, let INFCON denote the category of con-
tinuous depo’s which also have a continuous inf-semilattice operation, and
continuous, inf-preserving maps, and recall CON denotes the category of con-
tinuous dcpo’s and continuous maps.

Proposition 4.36 Let P be a continuous depo, and let C(P) denote the family
of non-empty Scott compact, saturated subsets of P. Then:

(i) (C(P),V) is a continuous depo inf-semilattice.

(ii) The functor C:CON — INFCON which associates C(P) to the contin-
uwous depo P, and to the continuous mapping f: P — () the mapping
C(f):C(P) — C(Q) by C(f)(C) =1 f(C) is left adjoint to the forgetful

functor.
(iii) If P is algebraic, then (C(P),U) ~ (Py(P),U).
Proof. Suppose P is continuous. Then each compact saturated subset C' of P

can be written as the filtered intersection of sets of the form 1F, where C' CTF
and F C P is finite. Conversely, Theorem 4.35 implies that each filtered
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intersection of sets of the form TF for F© C P finite is Scott compact, and so
this accounts for all compact saturated subsets of P. Moreover, Theorem 4.35
also implies that C(P) is a dcpo under reverse containment.

Now, suppose C' is saturated and compact, and C C{F for F' C P finite.
If F is a filter basis of compact saturated subsets of P such that C' D [ F,
then since } F' is Scott open and C' CF, Theorem 4.35 again implies that
X CAF for some X € F. It follows that 1F < C in C(P) (in the opposite
order). The continuity of P then implies (C(P), D) is a continuous depo, and
it is clear that union is a continuous inf-semilattice operation on (C(P), D).
This proves (i).

For part (ii), it is clear that C: CON — INFCON is well-defined. Suppose S
is a continuous depo with a continuous inf-semilattice operation. and suppose
f:P — S is continuous. If C € C(P), then C = N{1F | C CNF & Ffinite}.
Then f(1 F) = xgf(F) is well-defined,?® and f(@) = | {*xsf(F) | C Cp
I & F finite} defines F(C). If F C C(P) is directed. then | | F = () F. and
clearly {f C)| C e F} C S isfiltered. Now, |_|f F) Cg f(ﬂ F) holds just
because f is monotone.

Conversely, let f(ﬂ F) €fts for some s € S. Then f(ﬂ F) = {*xsf(F) |
N F CNF & Ffinite}, and so there is some finite subset ' C P with (| F CHF
and s E,g xg f(F). Since F is a neighborhood of [} F, Theorem 4.35 implies
C C fYU) for some C' € F. and the monotonicity of f then implies s Eg
xsf(F) Cg f( Y. Since f(NF) = Ug{s € S| s < F(NF)}, we conclude
that | |4 f( = f (N F), and this implies ,)E:C(P) — S is continuous. This
map clearly preserves finite infs, and it is completely determined by f. This
proves (ii).

For part (iii), we note that the proof of the second part shows that C' =
L{TF | C C(\F & F finite} characterizes the way-below relation in (C(P), D).
If P is algebraic, then the finite sets F' C P such that C CF can be taken
to consist of compact elements. in which case {1 =TF. It then follows that
K(Py(P)) ={tF |0 # F C K(P) finite} is a basis for C(P), and so Py (P)

and C(P) are isomorphic. a

This affords the desired generalization of the upper power domain to con-
tinuous depo’s. Obtaining a generalization of the convex power domain re-
quires more work still. To derive the result we seek. we restrict ourselves to
an interesting subclass of continuous depo’s.

Definition 4.37 A domain P is coherent if it is Scott compact and the in-
tersection of Scott-compact saturated subsets of P again is Scott compact.

Proposition 4.38 A compact domain P is coherent if and only if
(VF,G C K(P) finite)(3H C K(P) finite) TF N1G =1H.
More generally, a continuous compact depo P is coherent iff

(VF,G C P finite) TF NG is compact.

3 By *sF we mean the product in S of the elements of the finite set F.
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Proof. First, suppose P is a domain. If F, G C K(P) are finite, then clearly
TF and 1G are Scott compact, and so coherence implies the same is true of
TF N 1G. But this set also is Scott open, and so it is the union of sets of the
form 1k, for k € K(P). Then compactness implies we can find finitely many
such compact elements whose union is the set TF N TG, and this is the finite
set H we seek.

To show the converse, first recall the sets of the form 1% for k € K(P) are
a basis for the Scott topology, and any compact upper set A is the intersection
of a filter basis of sets of the form T/, for F' C K (P) finite. So, given compact
upper sets A and B, we conclude that

AnB=({1F [ ACF} n(((1G | B <16
=({1FN1G | A CHF & B C1G)

where the sets F and G all are finite subsets if K(P) and the intersections are
filtered. Theorem 4.35 then shows that A N B is compact.

More generally, if P is a coherent dcpo and F,G C P are finite, then TF
and TG are compact, and so the same is true of 1F N 1G. Conversely, if this
condition holds and C, D C P are compact, then we can write each of these
sets as a filtered intersection of sets of the form 7F where F is finite and the
set in question is within {}F/. The same argument as in the algebraic case then

implies C' N D is compact. O

So far we have focused on the Scott topology on dcpo’s. We now introduce
a refinement of that topology.

Definition 4.39 Let P be a continuous depo. We define the Lawson topology
on P to be the smallest topology for which U\ 1F is open for all U C P Scott
open and all ¥ C P finite.

It is routine to show that the collection {f{tx\ TF | x € P & F' C P finite}
is a basis for the Lawson topology on a continuous depo P; in particular, if P
is algebraic, then {2} U F' can be taken to be consist of compact elements.

Proposition 4.40 Let P be a continuous depo. Then

(i) The Lawson topology on P is Hausdorff and the order C is closed in P X P
in the product of the Lawson topologies.

(i) The Lawson topology on an algebraic depo P is totally disconnected.

(iii) P 1s coherent if and only if the Lawson topology is compact.

Proof. For (i), let x,y € P with x [Z y. Since P is continuous, there is some
2z € Pwith : <  and 2z £ y. Then & €fyz, y € P\ 1z, and these are disjoint
Lawson-open sets. This same argument shows that (P x P)\ C is open in the
product of the Lawson topologies.

For (ii), we simply note that the basis 1A\ T F where & € K(P) and
F C K(P) is finite consists of clopen subsets of P, since Tk is clopen in the
Lawson topology if k is compact.

Finally, for (iii), we first assume that P is coherent, and we employ the
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Alexander subbasis theorem to show P is Lawson compact. Note that a sub-
basis for the Lawson topology consists of sets of the form {tz and P\ Tz, for
x € P. Assume that

P=(J{t=1zeAhuJ{P\1:]=-€B})

Since P is coherent, the sets N{1z | = € F' C B finite} are saturated and com-
pact, and this family is filtered. Thus, Theorem 4.35 implies the intersection
{1z | = € B} is compact and saturated, and it does not intersect P\ 1z for
any z € B. It follows that {12 | 2z € B} CU{ftz | = € A}, and so there
is a finite subcover, ({12 | 2 € B} C U.cp 11z, where F is a finite subset of
A. Now, since U,cp 12 is open and contains ({12 | = € B}, Theorem 4.35
implies there is a finite subset G C B with N.cq T2 C U.cp 2. It then follows
that {1z | 2 € F} U{P\ 1z | 2 € G} is a finite subcover of P, and so P is
Lawson compact.

The converse that P Lawson compact implies P coherent follows from
the fact that 7F is a Lawson-closed, hence compact, upper set for any finite
set [, and the fact that Lawson compact upper sets are Scott compact in any
continuous depo (which is easy to show). a

Note that the second part of this result gives substance to Scott’s intuition
that algebraic depo’s are zero-dimensional. Also, note that the last part of
the proof shows that the Scott-compact saturated sets i.e., the members of
the Smyth power domain C(P)  all are Lawson-closed sets in P.

Given a subset X C P of a depo P, we define (X)) =|X N 17X, the convex
hull of X.

Proposition 4.41 Let P be a coherent continuous decpo. Then T'\(P) =
{X C P | X is A\ — closed} is a continuous lattice with respect to reverse
inclusion. In particular, T'y(P) is compact and Hausdorff in its Lawson topol-

0gy.

Proof. Since P is coherent, P is compact and Hausdorff in the Lawson topol-
ogy. It is then routine to show that each compact subset X C P is the filtered
intersection of the family X = {Y C X | X CY°*, Y A—closed}. Moreover,
if the intersection of a filter basis F of A-closed sets satisfies (| F C X, then
for any Y €l X, there is some F' € F with F C Y. This means Y < X for
each Y €|} X, so this set deserves its name. O

Proposition 4.42 Let P be a coherent continuous dcpo, and suppose F C
'\(P) is a filter basis of A\-compact subsets of P. Then

N7 = 7).

Thus the family of Lawson closed, order-convexr subsets of P is a continuous
lattice under reverse inclusion, and X <Y for such sets if and only if Y C
X,

Proof. If X is a closed subset of P. then X is compact and so TX and
1 X also are closed, hence compact, all because P is coherent. Thus, X
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(X):T\(P) — I'\(P) is well-defined, and it clearly is monotone with respect
to reverse inclusion. Thus ([ F) C () (F)-

For the converse, we suppose that @ € (\pcz(F). Then, for each I € F,
there is a pair of elements ap.bp € F with ap C 2 C bp. Since P is compact
in the Lawson topology, the nets {ap} per, {bp}prer must have subnets which
converge to points a,b € P, and, wlog, we assume that the nets {ap}per and
{bp} per already converge to these points, respectively. Since each of the sets
in F is closed and F is a filter basis, we must have a,b € F for each F € F,
and so a,b € (VF. And, since the order C on P is closed in the product
Lawson topology and ap £ 2 C bp for all F, it follows that « C 2« C b. Hence
HANS <ﬂ 7:>, so the two sets are equal.

Now, since the mapping X — (X):T)\(P) — T['\(P) preserves filtered
intersections, it is a continuous kernel operator, and so its image, which is
precisely the family of Lawson closed. order-convex subsets of P, also is a
continuous lattice under reverse inclusion. The characterizing property of the
way below relation in this lattice follows from the same property in T')(P)
(cf. [20], Corollary TV-1.7). a

Definition 4.43 For a coherent continuous depo P, let
D(P) = {C C P|C=1CNA1C, IC € To(P) & 1C € C(P))},
and define C T, C"iff JC E,0C" and 1C Cy1C.

Proposition 4.44 Let P be a coherent continuous depo. Then

i) D(P)={C CP|0#£C=tCNn]C= ﬁk} is the family of non-empty
Lawson closed order-conver subsets of P.

(ii) If C, D € D(P) and D C C°* (the interior in the Lawson topology), then
there 1s a finite subset F' CTC such that F ClD and D C\F.

Proof. The forward inclusion of part (i) follows from the fact that Scott-
closed sets are Lawson closed, as are Scott-compact saturated sets. The reverse
inclusion follows from the fact that coherent continuous depo’s are Lawson
compact.

For part (ii), since P is coherent, D and hence 1D are Lawson-compact.
Then the continuity of P implies 1D = ({{F | F finite & F Cl]D}, and this
intersection is filtered. Since D C C°*, it follows that 1D C (1C)°, and so
Theorem 4.35 implies the result. 0O

Note that Proposition 4.42 shows that (D(P),D) is a continuous ¢po in
which X <V if and only if Y C X, We now investigate the other order on
D(P).

Proposition 4.45 If P is a coherent continuous depo, then (D(P),Cp) is a
continuous depo in which

C < D iff (3F C P finite) C CTp (F)Cp D & D CHF.
and for which the operation
(C.D)— (C.D)=1(C UD)N Y(C UD):D(P) x D(P) = D(P)
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18 continuous.

Proof. Assume that F C D(P) is T p-directed and let A = J{1C | C € F}~
be the Scott closure of the union of the lower sets of the members of . Then A
is Scott closed, and hence also Lawson closed. Now, the sets {AN1C | C' € F}
form a filtered intersection, and each is non-empty and Lawson compact since
P is coherent, so their intersection also is non-empty and Lawson compact
(e.g., by Theorem 4.35). Let B be that intersection. We claim that B =
|_|,D(P) F. Indeed, it is obvious that B C1TC for all ¢ € F. For the other
direction C ClB for each C € F given @ € C € F, the fact that F is
C p-directed implies that T2 N (A N FC’) is non-empty and compact for each
C' € F, so Theorem 4.35 shows the same is true of the T2 N B. Thus B is an
upper bound for F, and a similar argument shows that B is the least upper
bound of F in the order Cp, so (D(P),Cp) is a depo.

Next, if C' € D(P), then C' is a convex Lawson-closed subset of P, and 1C
is Lawson compact, hence also Scott compact. So, we can write TC as the
filtered intersection of sets TF where C' C{tF' and F is finite. Clearly we can
arrange it so that F ClC for each such F. Then (F) =]FN1F € D(P), and
(F) Cp C. We now show that (F) <, C.

First, since 1C CH F, if F C D(P) is directed and C' Cp | |F, then
| |F C1C C{tF. The first part of the proof implies | |[F = N{AN 1C" |
C' e F}, where A = J{JC" [ C" € F}". Since this expresses | | F as a filtered
intersection, Theorem 4.35 implies there is some Cy € F with AN 1Cy CNF.
Thus, Cy C AN 1tCy) CNF CH(F).

On the other hand, C' Cjp | | F also implies that C C || | F, and so FF C
|| 7. Using the facts that | | F = ..U Fn 1C"), that F ClC C || | F,
and that F is finite, we conclude there is some Cy € F with F C (. Since
F is directed, we can choose a Cy € F such that Cy,C7 Cp Cy, and it then
follows that (F) £, Cy. This all goes to show that (F') <, C' in D(P), as
claimed.

It is easy to show that the family {(F) | Ffinite, (F) Cp C&C Co
F} is Cp-directed, so we conclude that D(P) is continuous and that {(F') |
finite, (F) Cp C&C C F} is a basis for the way-below set of each C' in
D(P). Hence, (D(P),Cp) is continuous and if ! < C in D(P), then there
is some F' C P finite with C' Cp (F) Cp €' and C CF.

The proof that (C, D) — (C,D): D(P) x D(P) — D(P) is continuous is
straightforward. O

Thus, (D(P). D) is a coherent continuous depo by Proposition 4.42, while
(D(P).Cp) continuous depo by Proposition 4.45. We now investigate the
relationship between these distinct orders on D(P). We begin with a technical
lemma.

Lemma 4.46 Let F' C P be a finite subset of the continuous depo P. If F' is
an antichain, then

PolF) = [X € D(P) | X CIF & X (F\ {x}) (Vi € F)
Proof. If (F) Cp X, then X C1F and F ClX, and it is easy to show that
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X is in the set on the right side of the claimed equality using the fact that F
is an antichain. Conversely, if X is in the set on the right side of the claimed
equality, then X CTF, and since X 1(F \ {z}) for any € F, it must be
that T2 N X # () for each x € F. But, then for each 2 € X, (Jy € X)z C y,
which means x €y ClX. Hence FF ClX, so FCp X. O

Proposition 4.47 Let P be a coherent continuous depo. Then

(i) The identity mapping on D(P) is continuous from the A-topology on
(D(P),D) to the Scott topology on (D(P),Ep).

(ii) The identity mapping on D(P) is continuous from the A\-topology on
(D(P),D) to the lower topology on (D(P),Cp).

Proof. For (i), we note that given C € U C (D(P),Cp) with U Scott open,
then there is a finite subset F C P with C' efyp (F) Ctc,(F) C U. By
substituting the minimal elements of F' for F' itself, we may assume that F
is an antichain, and so (F) = F. Now, if F is a singleton set, then
(F) = {D € D(P) | D C{ F}, which is Scott open in (D(P),D). Thus
C €Np <F> cU.

In case F has more than one element, we also can assume that C has
more than one minimal element (for otherwise we are back in the case of one
element in F'). Then we also can assume that C' €fz for any x € F: if x € F
with C' Ctz, then the fact that C is closed in the A\-compact space PP implies
that there is a finite set G C P with C Cf} G and z €1G. We also can
choose the elements of G so that C' €1y for any y € G (since C has more than
one minimal element), and so we can substitute the finite set G for F in our

argument. Now we consider the A-open subset of (D(P), D) given by

o (FY\ 12 (User T\ {x})),

which consists of the sets in D(P) that are subsets of the Scott-open set {p F
but are not subsets of the set U,ep T(F \ {x}). Clearly C is in this set, which
is A-open since T5 () (F)) is the Scott interior in (D(P), D) of the set T(F).
Moreover, any set X which lies in this set satisfies (F') T, X by the previous
lemma. This shows part (i).

For part (ii), if C € D(P)\ 1p D for some D € D(P), then C 1D or
D g|C. In the first case, 1D € D(P) as P is coherent, and C' € D(P)\ 15 1D.
Moreover, if X € D(P)\ 15 1D then X ¢1D, and so X € D(P)\ tpD.

Finally, in the second case, D ¢| C implies x €| C for some x € D.
Then T2 N C = ), and since C' is compact, we can choose y < x in P with
tyNC = @. It follows that P\ f}f y € D(P) and C' C (P\ {t y)°*. Thus
P\ 1+ vy <)o) C. and if X € D(P) with P\ { y <(p(p),o) X. then
XNty =10.and so DZp X. O

Corollary 4.48 If P is a coherent continuous depo, then so is (D(P),Cp).

Proof. Since (D(P),D) is coherent, its A-topology is compact, and the -
topology of (D(P),CEp) is Hausdorff. The previous Proposition then implies
these topologies are the same, so the A-topology of (D(P),Cp) also is compact,
making (D(P),Ep) coherent. O
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Lemma 4.49 IfS is a coherent continuous depo with a continuous semilattice
operation xS X S — S, then there is a continuous mapping fs:D(S) — S
such that fs({C' U D)) = fs(C) * fs(D) and fs({x}) =x for allx € S.

Proof. Tfwy- - xu,, Cgypx- -y, it F={a,....0,} and G ={y. ..., Yn }
are finite subsets of S with (F) Cp (G). This implies that ({ay,...,2,,}) —
xq % -k 1y, 1s well-defined and monotone on sets of the form ({xy,..., 2, }).
Since each set C' € D(S) is the directed supremum of sets of the form (F') for
F finite, we have a well-defined mapping fs: D(S) — S. To see that fq is a
continuous, assume f¢(C) € U C S is Scott open. Then there is some finite
subset F' C S with C' C{tF C U, and clearly we can assume F' = C'. Hence,
C eftps)(F) C fH(U), so f¢ {(U) € D(S) is open. It also is routine to check
that this mapping preserves the semilattice operation on finitely generated
subsets of S, and so it must on all of D(S) by continuity. Finally, if 2 € S,
then clearly f¢({z}) = x. O

Theorem 4.50 Let SCCON be the category of coherent continuous semilattice
depo’s and Scott continuous semilattice maps. Then:

(i) The functor D:CCON — SCCON which assigns to each coherent con-
tinuous dcpo P the coherent continuous semilattice D(P), and to each
morphism f: P — Q the mapping D(f)(C) = (f(C)) is left adjoint to the
forgetful functor from SCCON to CCON.

(i) If P is algebraic, then (D(P) Ep) ~ (Pc(P),.Cc).

Proof. If P is a coherent continuous dcpo, then the previous result implies
D(P) is a coherent continuous semilattice. Suppose S is a coherent continuous
semilattice and f: P — S is continuous. Then the previous results about
the lower and upper power domains imply there are continuous semilattice
maps f:To(P) = Ty(S) and fi: Py(P) = Py(S) that uniquely extend the
map f. It is routine to show that the mappings C —]C:D(P) — Ty(P)
and C —1C:D(P) — Py(P) are continuous semilattice maps, and then the
mapping C' +— fL(iC) ﬂﬁ;(TC): D(P) — D(S) also is a continuous semilattice
mapping. If we compose this map with fg:D(S) — S, we have the desired
map. This proves part (i).

Part (ii) follows from part (ii) of the previous result, where we showed that
the sets of the form (F) with F finite form a a basis at C for each C' € D(P).
If P is algebraic, then we can assume the finite sets F' consist solely of compact
elements, and so this basis is isomorphic the the basis K(Pq(P)) = {(F) |
) # F C K(P) finite}. 0

These results end our presentation of the power domain constructions. For
each of the three “standard” power domains, we have constructed an analogous
power domain over continuous coherent domains, and shown these topological
constructions agree with the algebraic ones in the case the domain PP on which
they are built is algebraic.
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4.5 Abramsky’s Program

Domains have demonstrated utility in devising models for high-level program-
ming languages. Part of this modeling process includes devising logics that
allow one to reason about the programming language under study. One of the
most impressive accomplishments in the area of domain theory has been the
work of ABRAMSKY [2] in which a tight connection between domain-theoretic
models and program logics is detailed. We very briefly outline these results
here.

Abramsky’s starting point is the realization that, for domains, the compact
elements completely determine the domain, and for logics, the Lindenbaum
algebra provides a definitive model from which the logic can be recovered.
So, if there were a canonical way to create a domain from the Lindenbaum
algebra of a logic, and a canonical way to create a Lindenbaum algebra from
the compact elements of a domain. then this would lead to a canonical method
for associating domains to logics and vice-versa.

Now, a Lindenbaum algebra is a special sort of distributive lattice. If one
wants a classical logic, then this algebra should be Boolean. On the other
hand, if one seeks an intuitionistic logic, then the lattice should be a Heyting
algebra. If one starts with a domain D, then K (D) can be identified with
certain Scott open sets  the basis {1k | k € K(D)}. In fact, we can take the
distributive lattice KQ(D) = {C C D | C' is compact and Scott open}.

Lemma 4.51 For a domain D, KQ(D)={1F |0 # F C K(D) finite}. O

Now, if D also is coherent, then the family KQ(D) is a lattice, and so we
can view it as the Lindenbaum algebra of some logic. And this logic will be
intuitionistic, since its Lindenbaum algebra is a Heyting algebra.

We can carry this a bit further. The Scott-open sets are ones that are “in-
accessible by directed suprema.” Viewing the compact elements as represent-
ing finite amounts of information, the set T4 then represents any information
that supersedes that of k. But the point is that we can observe in finite time
whether the supremum of a directed set gets in Tk.

On the other hand, 1 F, for F C K(D) finite, is Scott-compact. This
means it is determined by a finite amount of finite information. Thus, the
sets in KQ(D) form the basis of the “topology of the finitely observable,” as
Abramsky likes to phrase it.

Going back the other way, given a Lindenbaum algebra L, what domain
could it represent? If we look at the algebra KQ(P) for P a coherent domain,
we see it is the sets Tk for k& € K(P) that we need to retrieve. In the algebra
KQ(P), these are distinguished by the fact that {1k | & € K(P)} is the set
the co-primes. So, it is Stone Duality that we need to apply to retrieve the
domain P from the lattice KQ(P).

Of course, this all is rather fatuous, since it is not so easy to take any
domain even any coherent domain P and figure out what logic has Lin-
denbaum algebra KQ(P). So what is needed is a method for going back and
forth between domains and logics in a way that allows one to identify precisely
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the logic that a given domain generates. This is where Abramsky’s program
focuses. He sets out a number of basic constructors of domain theory and
shows how each corresponds to a constructor for the proof system in the Lin-
denbaum algebra of the desired logic. In the end, his theory can be applied
to domains freely generated by these constructors.

Abramsky’s theory applies to the category SFP of SF P-objects and contin-
uous maps. This is reasonable, since the domains should be countably based
to reflect computational reality, and some of the constructors are well-behaved
only if the domains in question are coherent. The fact that SFP is the largest
cartesian closed category of countably-based domains that are coherent makes
it the right target for Abramsky’s theory.

The domain constructors Abramsky incorporates are the following:

o Lift: L(P) =Py,

o Coalesced sum: P& () the disjoint union of P and () with the least elements
identified.

e Products: P X @),

» Function space: [P — Q)],

» Power domains: To(P),C(P), and D(P), and

* Recursion.

WINSKEL [60] was the first to observe that each of the power domains can
be characterized logically by suitable modal operators; the lower power do-
main corresponds to the sometimes operator, the upper power domain to the
eventually operator, and the convex power domain to the combination of the
two.

The inclusion of recursion in this list is fundamental. It is based on the
notion of an admissible predicate on a cpo  a non-empty Scott-closed subset
of the cpo and the Principle of Fized Point Induction (ct. [56]):

If f:P — P is a monotone selfmap of a cpo and if f(x) satisfies a given
admissible property whenever x does, then fixf also satisfies the property.

An important outstanding question is how to extend Abramsky’s theory to
domains that are not freely generated. The problem is reflected by the fact
that quotients of domains need not be algebraic  they can be continuous.
But, even if the quotients in question again are domains, there still is no clear
way to extend Abramsky’s theory to handle them. More concretely, the model
for the language CSP [10] is intrinsically a Scott domain, and it would be very
nice to have an extension of Abramsky’s theory that provided a logic for this
model.

5 The Lambda Calculus

Topology is at the center of the only known approach to giving models of
the untyped lambda calculus. This system originally was devised by ALONZO
CHURCH in the 1930’s in an attempt to find a foundation for mathematics and
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logic that placed functions at the forefront. While Church’s original formu-
lation had inconsistencies, CURRY put forth subsystems that are consistent.
Because the theory focuses on the computational aspects of functions, in the
spirit of, say, the First Recursion Theorem, it attracted the attention of com-
puter scientists. But the lack of mathematical models for the theory made it
little more than a “formal and unmotivated notation,” in the words of DANA
ScoTT (cf. the Foreword to [20]). Not long after he made this observation,
however. Scott found the first of a whole family of models for the system, and
thus began the present-day study of the calculus in earnest.

5.1 Syntax

We begin our discussion of the lambda calculus by describing the calculus and
what it means to have a model for it. Let C denote a set of constants, V a
set of identifiers or variables, and then consider the following set of BNF-like
production rules:

(1) Mu=cl|ax| MM| \x.M,

where ¢ € C' and * € V. One way to think of the rules given above is as
the signature of a (single-sorted) universal algebra. In this case, the algebra
has nullary operators (i.e., constants) ¢ € C' and @ € V, a family of unary
operators {Ar.— | © € V}, and one binary operator, (M. N) — MN, which
is given as the third clause of the set. This operator is called application, and
it is meant to be an abstract model for the application of a function (the first

M in the clause) to its argument (the second M in the clause). The operator
in the last clause is called abstraction, and it is meant to model the way we
can take, say, the polynomial 22 and make it into a function z — 2% R — R,
here defined on the reals. So, in lambda notation, the function f:R — R by
f(x) = 2 would be denoted Az : R. 2%

The term A : R .22 is from a typed universe, where functions are specified
as having specific domains (and codomains). The type of this term is given
by the syntax x : R, which denotes that the variable x is restricted to the set
R of real numbers. But the calculus whose syntax is given in equation (1)
has no such restriction; all terms are assumed to have the same domain - the
family of all objects defined by the syntax. In this sense, the untyped lambda
calculus could also be viewed as a wunityped system, where there is just one
type. Since terms either can be arguments for functions (the second M in
the application clause of the BNF), or functions (the first M in the clause),
the abstraction clause provides a way of taking a term and making it into a
function of the variable x; the term Az.M makes the term M into a function
of the variable x.

With no further rules, then, the lambda calculus whose abstract syntax
is given above is simply the initial universal algebra with the signature just
described. This algebra counsists of all terms we can create by repeatedly
applying the operators, starting with the constant terms C'UX. Such algebras
often are called term algebras.

But the lambda calculus is not meant to be just an abstract anomic uni-
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versal algebra. Indeed, it is supposed to be an abstract model of functions and
how they operate. This is why Church chose to focus on the two operations we
have included: application and abstraction. In order to model functions more
accurately, we impose three conversion rules; these simply are equations we
want to hold in the algebra, and so the calculus is really the universal algebra
we get as above, modulo the algebra congruence the following rules generate:

(o)  Av.M = \y.M[y/z], for y neither free nor bound in M.
() (Ae.M)N = M[N/z].
(n)  Ax.Mx = M, for x not free in M.

We let A(C') denote the set of terms of the lambda calculus with constants
from S, modulo the equations («), () and (n). These rules presuppose the
notions of when a variable is bound in a term (i.e., within the scope of a A-
abstraction), and when it is free (not within such a scope). In essence, the
a-rule says that being a function of a variable has nothing to do with the
name of the particular variable that is used. The (-rule provides the vital link
between the two operators application and abstraction via the usual notion
of substitution. And, finally, the n-rule says that all terms can be regard as
functions. Certainly all functions we encounter satisfy these laws. and so it
seems reasonable to include them in the calculus.

5.2 The Notion of a Lambda Model

One question to consider is what sort of models the calculus might have. Since
the calculus is meant to be an abstract version of functions. we expect to find
some mathematical model D in which

e the constants ¢ € C are interpreted as constants in [¢] e D,
o the variables @ € X also are constants in [2] € D,
e the term Ax.M is interpreted as a function [Ax.M]: D — D.
e application M N is interpreted as the application of the term M interpreted
as a function [M]: D — D to the term [N] € D.

In all. this says we expect to find a mathematical object D which is a universal
algebra with the same signature as the calculus, and a homomorphism of
universal algebras [—]: A(C') — D from the terms of the calculus to D. Of
course, the calculus and the identity map form one such model, but it is
difficult to think of any other model.

This difficulty is reflected in certain aspects of the calculus. For example,
the idea that objects can be functions and arguments for functions at the same
time seems a bit odd. The fact that all terms “live at the same level” seems

unintuitive. This clash with intuition is brought home when we consider the
term

\r.xx.

4 Tt is traditional to denote the semantic meaning of a term x in a model by [z].
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This certainly is a valid term of our calculus. And for any term M of the
calculus, it expresses the fact that we can apply M to itself; (\z.xx)M = MM
by the §-rule. Since (Ax.zx) can be applied to any term of the calculus, each
selfmap of the domain arising as the interpretation of an element of the calculus
must also be an element of the domain. Transporting this to our hoped-for
model D, we see that there must some way to interpret each element of D as
a selfmap of D. This means. that, at least, there must be maps

(2) pD—=[D—= D] and e:[D— D] — D suchthat poe=1,p).

Here, [D — D] denotes the family of selfmaps of D. In general then, we seek
a mathematical object D satisfying the equations (2) in whatever universe
D resides in. What seems to be required minimally is a cartesian closed
category A and an object D from A for which A(D, D) is a retract of D in A.
Such objects are called reflexive, so we seek a reflexive object is some cartesian
closed category as a model for the calculus.

We note that A(C') also has an operation of composition intrinsically de-
fined on it:

Proposition 5.1 The operation (M. N) — MoN = Ax. MNz: A(C)xXA(C) —
A(C) defines a monoid structure on A(C') whose identity is the term I =
Arv.r.

Proof. This is a routine verification using the conversion rules (a) — (). O

Lemma 5.2 If X is an object of a ccc A, then [X — X| has a monoid struc-
ture.

Proof. This also is a standard result about cartesian closed categories. A
proof can be found in the appendix of [25]. O

Using these observations, and denoting by MON the category of monoids
and monoid homomorphisms, we now can formulate precisely what we mean
by a lambda model.

Definition 5.3 An object X in a ccc Ais a lambda model if there is a mapping
p: X == [X — X] and maps

o :A(C) == X in SET, and

* ¢:(A(C).0) = ([X = X].0) in MON

such that ¢ = po ¢ and ¢(M)((N)) = »(MN).

[¥ = X]x X — .
PXYP /
Woappa (o)
1’\(0) X 1’\(0)

From this definition, it is clear that we are interested only in models that
are SET-based. The following result clarifies the situation further; a more
complete presentation about this connection can he found in Chapter 9 of [7]:

41



MISLOVE

Theorem 5.4 There i1s a one-to-one correspondence between models of the
untyped lambda calculus and reflexive objects in ccc’s. O

We remark that there are other notions of what a lambda model should
be. Of particular note are the results of [34] which elaborate the relationships
between a number of approaches to defining this concept, as well as the de-
tailed discussion in [7]. These involve concepts such as combinatory algebras
and combinatory models.

For us, the question is how to find an example of a non-degenerate reflexive
object in a ccc. The place to start a search for a lambda model is the category
SET of sets and functions. But, there Cantor’s Lemma says no non-degenerate
set can admit its space of selfmaps as a quotient, let alone a retract. It turns
out that, with one exception, it is relatively difficult to find cartesian closed
categories that have any non-degenerate reflexive objects. We'll say more
about the search for reflexive objects in other categories in a moment, but
first we want to present the construction of one such model.

5.3 Finding a Lambda Model

While the first mathematical model of the untyped lambda calculus was found
by SCOTT in the category of algebraic lattices and Scott-continuous functions
[49], there is an underlying construction technique which is applicable much
more broadly, and which highlights the nature of the model much better than
simply reiterating Scott’s construction verbatim.

We begin with the observation that what makes SET fail to have a non-
degenerate model is that there are too many functions in SET. Namely, the
set of selfmaps of a non-degenerate set has larger cardinality than the set
itself, and this is what is getting in the way. But, if we restrict our attention
to topological spaces and continuous maps, then this no longer is a problem.
For example, the space of continuous selfmaps of a space X is of the same
cardinality as X, providing X has a dense subspace of cardinality smaller
than the cardinality of X. For example, [[R — R]| = |R]| for precisely this
reason. But, it turns out that finding a model in Hausdorft spaces is not a
simple matter  in fact, it remains an unsolved problem. So, we turn our
attention to spaces not satisfying such a strong separation condition.

One place to find such spaces is within the area of partially ordered sets.
As we have seen, the categories DCPO and CPO are cartesian closed, and the
Scott topology is Ty but rarely 7. Moreover, we already have encountered
a technique for finding domains with desired properties — solving recursive
domain equations. Our example of the domain (N°?, <) ~ L(N°P, <) is a case
in point. So, one way to find a cpo satisfying our needs would be to seek a
solution of a similar domain equation.

The problem is to find a non-degenerate cpo that is isomorphic to its cpo of
continuous selfmaps. We cannot expect an actual set-inclusion [P — P] C P,
since this is forbidden within Zermelo-Frankel set theory by the Foundation
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Axiom,? so the the nearest we can come is an isomorphism. In this approach,
the likely equation is P ~ [P — P], and this gives rise to the operator
F(P) =[P — P] on cpo’s. However, this operator has P in two places, and
it is not at all clear how to turn F into a functor. We now recall a definition
that allows us to overcome this problem.

If P and @ are depo’s, then the pair of Scott-continuous maps e: P — ()
and p: ) — P is an embedding-projection pair if poe = 1p and poe < 1. Given
an embedding-projection pair (e, p): P — @, we can define related functions

F(e):[P =Pl —=[Q — Q] by F(e)(f)=eofop,
and

F(p):[Q = Q] —=[P—P] by F(p)(f)=pofoe.
Moreover, these mappings F(e) and F(p) are Scott-continuous, since they

are defined via composition. The following result captures an important fact
about embedding-projection pairs.

Lemma 5.5 If (e,p): P — Q is an embedding-projection pair, then so is the
pair of mappings (F(e), F(p)):[P — P] = [Q — Q).

Proof. If f: P — P, then F(e)(f) =eo fop:Q — Q and so
(F(p) o F(e))(f) =po(cofoploc=],
since po e = 1p. Similarly, for g € [Q — Q],
(F'(e) o F(p))(g) =eo(pogoe)op <y
since e o p < 1g. O

Both DCPO and CPO are complete categories: the limit of diagram ®: G —
DCPO defined on the directed graph G = (N, E) is the usual family

1&19(@(71), b(e))moeve = {(1n) € H D(n) | ®e)(an,) = p,. 0 =n; = nj}.
neN

Both categories also are co-complete: the colimit of the diagram ®:G —
DCPO is the ideal completion under directed suprema of the colimit in POS.
Theorem 3.27 shows that for embedding-projection pairs, the limit and colimit
that arise naturally are in fact the same: If ®:G — DCPO,, is a diagram in
the category of depo’s and embedding-projection pairs. For each edge e in G,
let ®(e) = (e;j,pij), where e = n; — n;. Then

Hm {(®(n),p;;) |n € Nye=n; = n;} ~lim {(®(n),e;) | n € Nye =n; — n,}.
— —
If we start with the canonical embedding-projection pair
(ep):{L, T} = F{L,T}) where e(x)(y) =z and p(f) = f(L),
then we can consider the object

I = colim(F*({L, T}), {F"(e) o0 F™(e)},,<pnen)-

® This follows by a simple argument using the von Neumann definition of ordered pair
(z,y) = {{z}, {#,y}} and the identification of functions as sets of ordered pairs.
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We would like to claim that F(I') ~ I, but to do this, we need to know that
F is continuous. Since F' is not the same sort of functor as before, we need
the following definitions and result.

Definition 5.6 Let F:A°® x B — C be a functor defined on categories of
depo’s which is contravariant in its first argument and covariant in its second
(such a functor is said to be of mized variance). We say F' is continuous if for
all diagrams ®: G — A, and all diagrams ®": G’ — B,,,, we have

F(]iAnl((I)(n), ®(e))(n.e)ca X coliéll((I)'('n")7 '(€")) (nr enec)
zcolign(F(q)(n) X ®'(n')). F(®(e) x ®'(€'))((n.e).(n".eyecixer)-
Also, G is locally continuous if for all objects P, P of A and ()1, Q)» of B,
G (A" x B)((P1, Q1) (2. Q2)) = C(G(P1. Q1). G(P, Q1))

is continuous.
In analogy to Theorem 3.30, we have the following;:

Proposition 5.7 If G:A°® x B — C s mized variance, locally continuous
functor, then G is a continuous functor. O

Applying this to our functor F: CPO°? x CPO — CPO, we see that local
continuity of F is sufficient to prove the desired isomorphism I' ~ F(T').
And, indeed, the proof that F' is locally continuous is straightforward. The
object thus defined, I' ~ F(I') is the Dy-model first discovered by Scott
[50]. This rather general treatment of how to construct such a model is taken
from Section 5 of [3]. where more details of proofs can be found, and where
further results about the canonicity of solutions to domain equations for mixed
variance, locally continuous functors also can be found.

There is one subtle point we have skipped over here. Namely, in generating
the fixed point I', we started with the domain {1, T} instead of the least
domain, {L}. Of course, the reason is that were we to apply the functor
F(P) =[P — P] to {L}, we would never get anywhere, and our solution to
P ~ [P — P] would be {L}. But there is a way to bring this construction
into the realm of generality considered in Section 3.4. Namely, we redefine the
functor F. Instead of using F'(P) = [P — P], we can take instead the functor
F(P) = A, @ [P — PJ]. where A, is the flat domain defined on the set A
of constants we wish to include in the syntax of the calculus, and & denotes
coalesced sum. Since this set A can be assumed to include the variables, it is
non-empty, and so the resulting domain P ~ F(P) must be non-degenerate.
For example, taking A to be a singleton vields the original D -model of Scott.

5.4 The Search for Other Models

We now have constructed a non-degenerate model of the untyped lambda
calculus in CPO. An interesting question is whether models exist in other
categories. We already commented that this is not possible in SET. The “next
place” one might look is the category POS of posets and monotone maps.
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5.4.1 Models 1 POS

It is well-known that POS is cartesian closed: the terminal object is the one-
point poset. products are ordered in the product order, and the internal hom
is the space of monotone maps.

Definition 5.8 If P is a poset, we let L(P) = {Y C P |Y =|Y} denote the
family of lower sets of P.

The following result of GLEASON AND DILWORTH is crucial to our devel-
opment.

Theorem 5.9 GLEASON & DILWORTH [21]
If P s a poset, then there is no monotone surjection of a subposet of P onto

L(P). O
We also need the following result, whose proof is straightforward.

Lemma 5.10 If f: P* — Q) is an injection, then x — X\ @) P — [Q — 2]
15 also an injection, where 2 denotes the two-point lattice. O

Theorem 5.11 POS has no non-degenerate lambda models.

Proof. ABRAMSKY

Suppose that P is a poset and that [P — P] is a retract of P in POS. If P is
an antichain (i.e., if P is a set with the discrete order), then [P — P] = P?,
and the result follows from Cantor’s Lemma.

So we assume P is not an antichain. Then there are ¢ < b € P, and so
XP\jo: P — 2 retracts P onto 2. Then [P — 2] is a retract of [P — PJ, and
hence also of P. Applying the same reasoning again, we sce that [P — P] —
2] also is a retract of P. But, the mapping

I'— xp:L(P)® = [P — 2]

is an order-isomorphism, and this implies that L(P) is isomorphic to a sub-
poset of [[P — P] — 2]. Since the latter is a retract of P, there is some
subposet @ C P which maps under the retraction onto L(P), and this con-
tradicts the Gleason—Dilworth Theorem. O

We should note that an alternative proof of this is contained in [12].

5.4.2  Models in Complete Ultrametric Spaces
Another well-known ccc is the category CU of complete ultrametric spaces
and non-expansive mappings. In this category, the terminal object is the one-
point space, products are given the product metric, and the internal hom is
the space of non-expansive mappings between the spaces. We proceed to show
that CU has no non-degenerate lambda models.

Definition 5.12 A metric d: X x X — R" is an ultrametric if (Va,y,z €
X) d(x, z) = max(d(x, y), d(y, 2)).

Lemma 5.13 If (X.d) is an ultrametric space and x € X and € > 0, then
B(x,¢€) is closed as well as open.
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Proof. Suppose that y & B(x,€) Then d(x,y) > €. Now consider B(y, €). We

claim B(z,€) N B(y.€) = (. Indeed, if = € B(x,€) ﬁ B(y. €), then d(z,z) < €
and d(y,z) < e. Hence, € = d(x,J) = max(d(z, z),d( 2)) < max(e, €) = €
which is a contradiction. O

Finally, we recall the paradozical combinator Ye A(C') defined by
YM = Nf u. fax) f(ax).

A routine calculations show that, for all terms M in A(C), M(YM) = YM;
i.e., YM is a fixed point of M. This means that in any lambda model, each
selfmap must have a fixed point.

Theorem 5.14 CU has no non-degenerate lambda models.

Proof. PLOTKIN
If X is a non-degenerate complete ultrametric space, then there are distinct
point a,b € X. If d(a,b) = €, then B(a,¢€) is a clopen ball in X which does
not contain b. The mapping f: X — X by

Flr) = {a it v & Bla.¢€), and

b otherwise,

clearly has no fixed points. Moreover, it is non-expansive. If z,y € B(a,€) or
x,y € X\ Bla,e), then f(x) = f(y), so this is clear. On the other hand, if
x € B(a,e) and y € X \ B(a, €), then the argument in the proof of the lemma
shows that d(z.y) > €, and so d(f(x), f(y)) = € < d(x,y). Thus X cannot be
a lambda model. a

It is interesting that this proof is quite different from the ones for SET and
POS, both of which relied on a cardinality principle. Of course, knowing that
all selfmaps in a lambda model must have fixed points already says topological
spaces that are lambda models must be connected.

5.4.3 Hausdorff Lambda Models
A last category we consider in our search for lambda models is a ccc of Haus-
dorff spaces. If one starts with the category of compact spaces and continuous
maps, then the natural ccc one comes to is the category K of k-spaces and
continuous maps. A K-space is a topological space in which a subset is open
if and only if its intersection with each compact subset of the space is open
in the subspace. If we are given a topological space X, we can “k-ify” it by
taking the topology generated by the sets satisfying this property. The basic
results about the category K are contained in [54]. They include the fact that
the terminal object is the one-point space, that the product is obtained by “k-
ifying” the product topology, and the internal hom is the space of continuous
maps endowed with the “k-ification” of the compact-open topology.

In the last subsection, we introduced the combinator Y which assigns to
each term of the lambda calculus a “canonical” fixed point. Along with Y
there is another combinator, IX. This combinator is defined by

K=AMN.M
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and it gives a way of recognizing constant functions in the lambda calculus. In
fact, it is not hard to show that K(M)N = M using f-reduction. Moreover,
Y o K =TI is the identity operator.

Our first result about non-degenerate lambda models in K eliminates com-
pact spaces. To obtain this result, we first derive a simple result from the
theory of compact semigroups. This result is not new; it can be found, e.g.,
in [27].

Proposition 5.15 Let (S,) be a compact monoid. If v,y € S satisfy v -y =
lg, theny o = 1g.

Proof. First, we show that any compact semigroup 7" has a smallest closed
ideal My satisfying My C I for any (closed) ideal I C T. Indeed, the semi-
group T itself is an ideal, and if I and .J are closed ideals, then sois I -.J, the
set-product of I with .J. Moreover, I-.J C I,.J.so IN.J # (). Thus, the family
of non-empty. closed ideals is filtered, and so it has a non-empty intersection.
This intersection also is an ideal, and so it must be the minimal ideal we seek.

Next, we note that. if T" is commutative, then My is a group. Indeed, if
x € My, then x - My C My is compact (being a translate of a compact set),
and T - (x-Myp) =T -(Myp-2) = (T -My) -2 C My-x =x-Mp. Dually,
(x-Mp)-T=x-(My-T)Cx- Mp. Thus, x- My is an ideal, and so it must
be equal to My as My is minimal. Similarly. My = My - x, so My is indeed a
group.

Finally. let 2,y € S with S a compact monoid, and suppose 2-y = 1g. Let
S, = {a™ | n € N} be the closed subsemigroup of S that  generates. Since the
semigroup of powers of x is commutative and multiplication is continuous on
S, it follows that S, is a commutative, and so this is a compact, commutative
semigroup. Its minimal ideal Mg, then is a group, and we let ¢ = ¢? be the
identity of this group. Furthermore, since Mg, is a group, x - e € Mg, has an
inverse #~! in this group.

We claim that ¢ = 1g. Indeed, since ¢ € S, there is a net {a"} C
{2 | n € N} such that e = lim, 2"*. Now, S is compact, and so the net
{y"*} has a cluster point, and by picking subnets if necessary, we can assume
limy" =z € S. Then, 2" - y" = 14 for all n € N, and so

N

e-z=1lima" -y = 1g,

and this means

lg=e-z=(e-e)-z=e-(e-2)=¢-1lg=c.
Now, r-e=ux-15 = x, and so x is a member of the group of units of S, and
21 is the inverse of # in S. But since z - y = 1g4. it follows that y = 2~ !, and
soy-x = 1lg as well. O
Theorem 5.16 HOFMANN & MISLOVE [25] There are no non-degenerate,
compact Hausdorff lambda models in K.

Proof. Suppose that X is a compact Hausdorff space that is a reflexive object
in K. Then [X — X] is a retract of X, and so it too is compact and Hausdorff.
[X — X] also is a topological semigroup under the operation of composition,
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and the identity map is the identity of this semigroup. Now, the combinators
Y and K can be recognized in [X — X]. and so there are functions Y, K €
[X — X] satistying the property that Y o ' = 1y. It is routine to verify
that the combinator K gives rise to the “constant picker” K(z): X — X by
K(z)(y) = x. Hence, the image of X under K consists of the constant maps.

Now, the previous Proposition shows that in the compact monoid [X —
X],if s-t =1y, then t-s5 = 1y as well. It follows that K oY = 1y in
[X — X, and this in turn implies that 1y € K(X) is a constant map. Hence,
X is degenerate. O

Of course, this result doesn’t eliminate non-degenerate lambda models
from K; it merely says they cannot be compact. The class of possible models
can be shrunk further by the following result. It is taken from [26].

Proposition 5.17 Let X be a lambda model in a ccc A, and suppose that Z
is a retract of X in A. Then there is a morphism Yy in A([Z — Z]. Z) such
that f(Y4(f)) =Y, (f) for all f € [Z — Z].

Proof. Since X is a lambda model, [X — X] is a retract of X in A, and
the interpretation Yy of the paradoxical combinator Y in [X — X] implies
each morphism f € [X — X] satisfies f(Yy(f)) = Yx(f). Now,if : Z > X:7

expresses Z as a retract of X in A, then it is routine to show that the mappings
ferofou|[Z 27— [X = X]andg—iogom[X = X]| = [Z = 7]

express [Z — Z] as a retract of [X — X]. Another calculation shows that
fraYx(rofou):[Z — Z] = Z produces a fixed point combinator for
[Z — Z], and clearly Y, = moYyonmo—ou: Z — Z is the desired morphism.O

Recall that the unit interval [0, 1] in the usual topology is an absolute
neighborhood retract.

Theorem 5.18 HOFMANN & MISLOVE [26]
If X is a normal space that contains a homeomorphic image of [0, 1], then X
cannot be a lambda model.

Proof. Tndeed, if X is normal and contains a copy of [0,1], then there is
a retraction of X onto [0,1]. Then the previous result implies [0, 1] has a
continuous fixed-point picker. But this is not true. Indeed, consider the
mapping

H:[0.1] = [[0. 1] = [0, 1]] by H(1)(x) {2”' +1-2t if0<t<1/2,

(1—2t)x if1/2 <t <1.
The fixed points of the mappings H(t) are

{1} ifo<t<1/2

Fix(H(t)) =< [0,1] ift=1/2,

{0}y if1/2<t<1.
Clearly Fix cannot be made to be a continuous function on the arc of functions
{H(t) |t €[0,1]}. a
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RICE [46] has an alternative approach to proving these results. His meth-
ods rely more on the syntactical structure of the lambda calculus, and less on
the structure of the objects of K.

5.5 Models of the N-calculus

The calculus we have focused on has included the constant combinator K
= Azy.x. This calculus is sometimes called the “call-by-name” calculus, since
it does not require evaluating terms before other terms can be applied to them.
Another calculus is the Al-calculus, which corresponds to the
calculus. We begin by giving its syntax.

4

‘call-by-value”

The Al-calculus includes:
* the constants ¢ € C' and the variables x € X,
e the application M N of any term M in Al to any term N in A/, and
o the abstraction Ax.M only if € FV(M), the set of free variables of M.
Clearly, this eliminates the constant functions from the calculus. In fact, any
term of the A-calculus can be defined from terms in the Al-calculus and the
combinator K = Azy.z (cf. [8]). But our argument showing compact Hausdorff
models of the A-calculus are degenerate uses the combinator K crucially. To
prove a similar result for the Al-calculus, we first define three combinators:
¢ B = \ryz.a(yz),
o C* = Ary.yr, and
o (I) = Al = A (Ay.y), the so-called list of 1.
B is the combinator that instantiates composition in the calculus. The follow-
ing result is a routine computation.

Proposition 5.19 In the Al-calculus, we have
(1) BCHI)y = Azt.t(=1), and
(i) B{I)Cx =1. O

Corollary 5.20 There are no non-degenerate compact Hausdorff models of
the AI-calculus.

Proof. According to Proposition 5.15, if there is a compact Hausdorff model,
then Az.x =1 = Azt.t(z]). If we take any element a in the model, then this
implies @ = (Az.x)a = (Azt.t(zl)a = At.t(al). So, for any b in the model,
ab = (At.t(al))b = b(al). Taking a = I, we see that b = 1b = b(II) = bl for all
b in the model, and so ab = b(al) = ba.

Now, by a basis for the calculus we mean a family K of terms such that
every term in the calculus can be realized as the application of terms in XC;
i.e., every term of the calculus is in the set of terms that K generates under
the operation of application. A result of Rosser (cf. [47] and Proposition 9.3.7
of [8]) states that the terms

e [ = Ar.x, and
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o J = hwayz.wa(wzy)

form a basis for the Al-calculus. But, according to our result above, J =1] =
JI, and so the only terms that I and .J generate are powers of J. But, further,

J=1=J1 = ayza(zy) =T,
and so further,
J=1=10=11=\yz.2y =1"
and finally.
J=1=10=11T=X2z2=1

Thus. the model is degenerate. a

Furio HONSELL is to be thanked for pointing out to the author that
the combinators B, C* and (I) can be used as described above to show that
compact Hausdorff models of the Al-calculus also are degenerate in the same
way as K and Y can be used to show compact Hausdorff models of the A-
calculus are degenerate.

6 Programming Languages and Other Applications

Domain theory began in an attempt by DANA SCOTT to avoid the untyped
lambda calculus and find a more intuitive, mathematical structure for pro-
viding models for programming languages. As it happened. the search also
produced the first mathematical models of the untyped lambda calculus. But
we have not said much about the methods used to build programming lan-
guage models themselves. We close this paper with some comments along this
line; they are more hints at places to look for details than they are precise
descriptions of such models themselves.

The “classical” languages which domain theory has proven most useful for
modeling are functional languages; this is understandable, since the lambda
calculus itself is a prototypical such language. An excellent introduction here
is the book by GUNTER [22]. A great deal of research has gone into this area,
and Gunter’s book also is a good resource for finding further applications along
this line.

An area which the author has been motivated by is process algebra and
languages supporting concurrent computation. Among the most prominent
of these are the languages CSP studied by HOARE., BROOKES, ROSCOE,
REED  citebhr84,1188 and others at Oxford, and CCS, invented by MIL-
NER[35] and studied by many people. In either case, the approach is to focus
on the communication events that take place between machines running in a
concurrent environment, rather than on the actual computations each machine
makes. Domain theory has proved a fruitful tool in this area. For example, the
seminal paper of HENNESSY and PLOTKIN [23] showed how power domains
correspond to forms of nondeterminism. The paper [37] carries this theme
further by showing for a simple parallel programming language how each of
the power domains corresponds to a distinct form of nondeterminism.

=
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Process algebra also provides an interesting contrast to two opposing ap-
proaches for giving denotational models. As we have tried to demonstrate
from the outset, the role of domain theory is to give meanings to recursive
constructs, and the property of domains that facilitates this is the least fixed
point property that continuous selfmaps on domains enjoy. Indeed, these fixed
points not only exist, they are canonical. The alternative approach here is to
use complete metric spaces and the Banach Fixed Point Theorem. This ap-
proach has been championed by DE BAKKER and his colleagues [13]. This ap-
proach has a shortcoming, however, in that it requires a restriction to so-called
guarded terms in order to guarantee the associated selfmaps are contractive.

A synthesis between the domain-theoretic and metric-space approaches
also has begun to emerge. A seminal result is the paper of AMERICA AND
RUTTEN [6] in which it is shown how to solve recursive domain equations
within the metric space world. Further work along this line has been done
by FLAGG AND KOPPERMAN [18], as well as ALESSI, BALDAN, BELLE AND
RUTTEN [5]. But the most extensive results along the lines of synthesizing
domain theory and metric spaces are due to WAGNER [59].

Our discussion of power domains focused on presenting them first in their
original algebraic formulation, and then from a topological view. There are
topological analogues to these constructs, which have evolved from the original
Vietoris hyperspaces. These constructs have received new interest because of
the work of EDALAT [14 16]. In these works Edalat has found new and exciting
applications of domain theory to the areas of fractals, neural networks and
perhaps most notably to the theory of integration. Indeed, Edalat has used
domain theory to provide a very simple derivation of the Riemann integral
and, at the same time, he has found solutions to problems that do not seem
available from the more traditional methods.

Lastly, we mention set theory as an area of application. One of the mo-
tivations for Church in devising the lambda calculus was to provide a new
foundation for mathematics. Through work on set theory and process alge-
bra, ACzEL [4] devised a new formulation for set theory in which he replaces
the traditional Foundation Axiom by a more general axiom that allows a
much wider family of sets - including ones that contain themselves as mem-
bers. This set theory has special appeal for theoretical computation, since
it provides simple models for processes that want to “call themselves.” An
obvious topic is then the relation between this new set theory and the more
“traditional” domain theory. One aspect of this relation is presented in [38],
where it is shown how to present a domain-theoretic model for the hereditar-
ily finite portion of Aczel’s theory. A direct application of Aczel’s theory to
providing programming models also can be found in [48].
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