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Abstract

In previous work we have investigated a notion of approximate bisimilarity for
labelled Markov processes. We argued that such a notion is more realistic and
more feasible to compute than (exact) bisimilarity. The main technical tool used
in the underlying theory was the Hutchinson metric on probability measures. This
paper gives a more fundamental characterization of approximate bisimilarity in
terms of the notion of (exact) similarity. In particular, we show that the topology
of approximate bisimilarity is the Lawson topology with respect to the simulation
preorder. To complement this abstract characterization we give a statistical account
of similarity, and by extension, of approximate bisimilarity, in terms of the process
testing formalism of Larsen and Skou.

1 Introduction

A labelled Markov process consists of a measurable space (X, Σ) of states, a
family Act of actions, and a transition probability function µ−,− that, given
a state x ∈ X and an action a ∈ Act, yields the probability µx,a(A) that the
next state of the process will be in the measurable set A ∈ Σ after performing
action a in state x. These systems are a generalization of the probabilistic
labelled transition systems with discrete distributions considered by Larsen
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and Skou [16]. Labelled Markov processes provide a simple operational model
of reactive probabilistic systems.

The basic notion of process equivalence in concurrency is bisimilarity. This
notion, due to Park [19], asserts that processes are bisimilar iff any action by
either can be matched with the same action by the other, and the resulting
processes are also bisimilar. Larsen and Skou adapted the notion of bisimilar-
ity to discrete probabilistic systems, by defining an equivalence relation R on
states to be a bisimulation if related states have exactly matching probabili-
ties of making transitions into any R-equivalence class. Later the theory of
probabilistic bisimilarity was extended beyond the discrete setting by Edalat,
Desharnais and Panagaden [8]. From quite early on, however, it was realized
that for probabilistic systems a notion of approximate bisimilarity might prove
more appropriate than a notion of exact bisimilarity. One advantage of such a
notion is that it is more informative: one can say that two processes are almost
bisimilar, even though they do not behave exactly the same. More fundamen-
tally, one could even argue that the idea of exact bisimilarity is meaningless
if the probabilities appearing in the model of a system are approximations
based on statistical data, or if the algorithm used to calculate bisimilarity is
not based on exact arithmetic.

Desharnais, Gupta, Jagadeesan and Panangaden [9] formalized a notion
of approximate bisimilarity by defining a metric 1 on the class of labelled
Markov processes. Intuitively the smaller the distance between two processes,
the more alike their behaviour; in particular, they showed that states are at
zero distance just in case they are bisimilar. The original definition of the
metric in [9] was stated through a real-valued semantics for a variation of
Larsen and Skou’s probabilistic modal logic [16]. Later it was shown how to
give a coinductive definition of this metric using the Hutchinson metric on
probability measures [4]. Using this characterization [5] gave an algorithm
based on linear programming to approximate the distance between the states
of a finite labelled Markov process.

The fact that zero distance coincides with bisimilarity can be regarded as
a sanity check on the definition of the metric. The papers [9,4] also feature
a number of examples showing how processes with similar transition proba-
bilities are close to one another. A more precise account of how the metric
captures approximate bisimilarity is given in [6], where it is shown that con-
vergence in the metric can be characterized in terms of the convergence of
observable behaviour; the latter is formalized by Larsen and Skou’s process
testing formalism [16]. As Di Pierro, Hankin and Wiklicky [21] argue, such an
account is vital if one wants to use the metric to generalize the formulations
of probabilistic non-interference based on bisimilarity.

Both of the above mentioned characterizations of the metric for approxi-
mate bisimilarity are based on the idea of defining a distance between mea-

1 Strictly speaking, a pseudometric since distinct processes can have distance zero.
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sures by integration against a certain class of functions, which is a standard
approach from functional analysis. But it is reasonable to seek an intrinsic
characterization of approximate bisimilarity. In this paper we give such a
characterization. We show that the topology induced by the metric described
above coincides with the Lawson topology on the domain that arises by en-
dowing the class of labelled Markov processes with the probabilistic simulation
preorder. The Lawson topology is an example of an intrinsic topology 2 on an
ordered set. Thus we can define approximate bisimilarity purely in terms of
exact similarity and without reference to auxiliary notions such as integration
against a particular class of functions.

Our results are based on a simple interaction between domain theory and
measure theory. This is captured in Corollary 5.6 which shows that the Lawson
topology on the probabilistic powerdomain of a coherent domain agrees with
the weak topology on the family of subprobability measures on the underlying
coherent domain, itself endowed with the Lawson topology. A simple corollary
of this result is that the probabilistic powerdomain of a coherent domain is
again coherent, a result first proved by Jung and Tix [15] using purely domain-
theoretic techniques.

We use the coincidence of the Lawson and weak topologies to analyze a
recursively defined domain D of probabilistic processes first studied by De-
sharnais et al. [10]. The key property of the domain D is that it is equivalent
(as a preordered class) to the class of all labelled Markov processes equipped
with the simulation preorder. The proof of this result in [10] makes use of
a discretization construction, which shows how an arbitrary labelled Markov
process can be recovered as the limit of a chain of finite state approxima-
tions. In this paper, we give a more abstract proof: we use the coincidence of
the Lawson and weak topologies to show that the domain D has a universal
property: namely, it is final in a category of labelled Markov processes.

A minor theme of the present paper is to extend the characterization
of approximate bisimilarity in terms of the testing formalism of Larsen and
Skou [16]. We show that bisimilarity can be characterized as testing equiv-
alence, where one records only positive observations of tests. On the other
hand, characterizing similarity requires one also to record negative observa-
tions, i.e., refusals of actions.

2 Labelled Markov Processes

We assume a fixed, countable set Act of actions.

Definition 2.1 A labelled Markov process is a triple 〈X, Σ, µ〉 consisting of
a set X of states, a σ-field Σ on X, and a transition probability function
µ : X × Act× Σ→ [0, 1] such that

2 This means that the topology is defined solely in terms of the order.
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(i) for all x ∈ X and a ∈ Act, the function µx,a(·) : Σ → [0, 1] is a subprob-
ability measure, and

(ii) for all a ∈ Act and A ∈ Σ, the function µ−,a (A) : X → [0, 1] is measur-
able.

The function µ−,a describes the reaction of the Markov process to the
action a selected by the environment. This represents a reactive model of
probabilistic processes. Given that the process is in state x and reacts to
the action a chosen by the environment, µx,a(A) is the probability that the
process makes a transition to a state in the set of states A. Note that we
consider subprobability measures, i.e. positive measures with total mass no
greater than 1, to allow for the possibility that the process may refuse an
action. The probability that the process in state x will refuse the action a is
1− µx,a(X).

An important special case occurs when the σ-field Σ is taken to be the
powerset of X and, for all actions a and states x, the subprobability measure
µx,a(·) is completely determined by a discrete subprobability distribution. This
case corresponds to the original probabilistic transition system model of Larsen
and Skou [16].

A natural notion of a map between labelled Markov processes is the fol-
lowing:

Definition 2.2 Given labelled Markov processes 〈X, Σ, µ〉 and 〈X ′, Σ′, µ′〉, a
measurable function f : X → X ′ is called a zigzag map if whenever A ∈ Σ′, x ∈
X and a ∈ Act, then µx,a(f

−1(A)) = µ′
fx,a(A).

Probabilistic bisimulations (henceforth just bisimulations) were first intro-
duced in the discrete case by Larsen and Skou [16]. They are the relational
counterpart of zigzag maps and can also be seen, in a very precise way, as the
probabilistic analogues of the strong bisimulations of Park and Milner [18].
The definition of bisimulation was extended to labelled Markov processes in
[8,10].

Definition 2.3 Let 〈X, Σ, µ〉 be a labelled Markov process. A reflexive re-
lation R on X is a simulation if whenever xRy and a ∈ Act, then for all
measurable A ⊆ X with R(A) = A, µx,a(A) 6 µy,a(A). We say that R is a
bisimulation if it also holds that whenever xRy then µx,a(X) = µy,a(X). Two
states are bisimilar if they are related by some bisimulation.

Proposition 2.4 Let R be a bisimulation on the labelled Markov process
〈X, Σ, µ〉. Then R−1 also is a bisimulation. Consequently, the relation

RX =
⋃

{R | R is a bisimulation}

is a bisimulation on X that is an equivalence relation, and that satisfies

xRXy ⇔ µx,a(E) = µy,a(E) (∀a ∈ Act & ∀E = RX(E) ⊆ X measurable).
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Proof. Let R be a simulation on X. Then R−1 is reflexive since R is. If
xR−1y, then yRx, and so µy,a(A) 6 µx,a(A) for all measurable A ⊆ X. But
since R is a bisimulation, we also have muy,a(X) = µx,a(X); since µ−,− is
a family of measures, µ−,−(X) = µ−,−(A) + µ−,−(X \ A) for all measurable
A ⊆ X. Hence

µy,a(A) = µy,a(X)− µy,a(X \ A) = µx,a(X)− µy,a(X \ A)

≥ µx,a(X)− µx,a(X \ A) = µx,a(A).

Since the same inequality holds for X \ A in place of A, we conclude that
µy,a(A) = µx,a(A). This implies R−1 also is a bisimulation.

The result just proved shows that

R ⊆ {(x, y) | µx,a(A) = µy,a(A) (∀a ∈ Act & ∀A measurable)}

for each bisimulation R. But it also is obvious that the right side defines a
bisimulation, and so

RX = {(x, y) | µx,a(A) = µy,a(A) (∀a ∈ Act & ∀A measurable)}.

The fact that RX is an equivalence relation also is clear. 2

The notions of simulation and bisimulation are very close in the prob-
abilistic case. The extra condition µx,a(X) = µy,a(X) in the definition of
bisimulation allowed us to show that xRy implies µx,a(E) = µy,a(E) for all
a ∈ Act and measurable R-closed E ⊆ X. We note that this characterization
of when two elements of X are in some bisumlation entails infinite precision,
and this is the source of the fragility in the definition of bisimilarity. This
motivates defining a notion of approximate bisimilarity.

2.1 A Metric for Approximate Bisimilarity

We recall a variant of Larsen and Skou’s probabilistic modal logic [16], and
a real-valued semantics due to Desharnais et al. [9]. The set of formulas of
probabilistic modal logic (PML), denoted F , is given by the following gram-
mar:

f ::= > | f ∧ f | f ∨ f | 〈a〉f | f −· q

where a ∈ Act and q ∈ [0, 1] ∩Q.

The modal connective 〈a〉 and truncated subtraction −· replace a single
connective 〈a〉q in Larsen and Skou’s presentation.

Fix a constant 0 < c < 1 once and for all. Given a labelled Markov process
〈X, µ〉, a formula f determines a measurable function f : X → [0, 1] according
to the following rules:

• > is interpreted as the constant function 1,

• ∧ is interpreted as minimum,

• ∨ is interpreted as maximum,
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• (f −· g)(x) = max{0, f(x)− g(x)}, and

• (〈a〉f)(x) = c
∫

fdµx,a for each a ∈ Act.

Thus the interpretation of a formula f depends on c. The role of this constant
is to discount observations made at greater and greater modal depth.

Given a labelled Markov process 〈X, µ〉, one defines a metric dDGJP on X
by

dDGJP (x, y) = sup
f∈F
|f(x)− f(y)| .

It is shown in [9] that zero distance in this metric coincides with bisimilarity.
Roughly speaking, the smaller the distance between states, the closer their
behaviour. The exact distance between two states depends on the value of c,
but one consequence of our results is that the topology induced by the metric
dDGJP is independent of the original choice of c.

Example 2.5 In the labelled Markov process below, dDGJP (s0, s3) = c2δ.
The two states are bisimilar just in case δ = 0.
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3 Domain Theory

Let (P,v) be a poset. Given A ⊆ P , we write ↑A for the set {x ∈ P | (∃a ∈
A) a v x}; similarly, ↓A denotes {x ∈ P | (∃a ∈ A) x v a}.

A directed subset A ⊆ P of a poset P is one for which every finite subset
of A has an upper bound in A, and a directed complete partial order (dcpo)
is a poset P in which each directed set A has a least upper bound, denoted
tA. If P is a dcpo, and x, y ∈ P , then we write x� y if each directed subset
A ⊆ D with y v tA satisfies ↑x ∩ A 6= ∅. We then say x is way-below y. Let

↓↓y = {x ∈ D | x � y}; we say that P is continuous if it has a basis, i.e., a
subset B ⊆ P such that for each y ∈ P , ↓↓y ∩B is directed with supremum y.
We use the term domain to mean a continuous dcpo.

A subset U of a domain D is Scott open if it is an upper set (i.e., U = ↑U)
and for each directed set A ⊆ D, if tA ∈ U then A ∩ U 6= ∅. The collection
ΣD of all Scott-open subsets of D is called the Scott topology on D. If D
is continuous, then the Scott topology on D is locally compact, and the sets
↑↑x where x ∈ D form a basis for this topology. Given domains D and E, a
function f : D → E is continuous with respect to the Scott topologies on D
and E iff it is monotone and preserves directed suprema: for each directed
A ⊆ D, f(tA) = tf(A).
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In fact the topological and order-theoretic views of a domain are inter-
changeable. The order on a domain can be recovered from the Scott topology
as the specialization preorder. Recall that for a topological space X the spe-
cialization preorder 6⊆ X ×X is defined by x 6 y iff x ∈ Cl(y).

Another topology of interest on a domain D is the Lawson topology. This
topology is the join of the Scott topology and the lower interval topology,
where the latter is generated by sub-basic open sets of the form D \↑x. Thus,
the Lawson topology has the family {↑↑x\↑F | x ∈ D, F ⊆ D finite} as a basis.
The Lawson topology on a domain is always Hausdorff. A domain which is
compact in its Lawson topology is called coherent.

4 The Probabilistic Powerdomain

We briefly recall some basic definitions and results about valuations and the
probabilistic powerdomain.

Definition 4.1 Let (X, Ω) be a topological space. A valuation on X is a
mapping µ : Ω→ [0, 1] satisfying:

(i) µ∅ = 0.

(ii) U ⊆ V ⇒ µU 6 µV .

(iii) µ(U ∪ V ) + µ(U ∩ V ) = µU + µV , U, V ∈ Ω

Departing from standard practice, we also require that a valuation is Scott
continuous as a map (Ω,⊆)→ ([0, 1], 6).

Each element x ∈ X gives rise to a valuation δx defined by δx(U) = 1 if
x ∈ U , and δx(U) = 0 otherwise. A simple valuation has the form

∑

a∈A raδa

where A is a finite subset of X, ra > 0, and
∑

a∈A ra 6 1.

We write VX for the space whose points are valuations on X, and whose
topology is generated by sub-basic open sets of the form {µ | µU > r}, where
U ∈ Ω and r ∈ [0, 1]. The specialization order on VX with respect to this
topology is given by µ v µ′ iff µU 6 µ′U for all U ∈ Ω. V extends to an
endofunctor on Top – the category of topological spaces and continuous maps
– by defining V(f)(µ) = µ ◦ f−1 for a continuous map f .

Suppose D is a domain regarded as a topological space in its Scott topology.
Jones [14] has shown that the specialization order defines a domain structure
on VD, with the set of simple valuations forming a basis. Furthermore, it
follows from the following proposition that the topology on VD is actually the
Scott topology with respect to the pointwise order on valuations.

Proposition 4.2 (Edalat [11]) A net 〈µα〉 converges to µ in the Scott topol-
ogy on VD iff lim inf µαU > µU for all Scott open U ⊆ D.

Finally, Jung and Tix [15] have shown that if D is a coherent domain then
so is VD; we present an alternative proof of this result in Corollary 5.6. In
summary we have the following proposition.
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Proposition 4.3 The endofunctor V : Top→ Top preserves the subcategory
ωCoh of coherent domains with countable bases equipped with their Scott topolo-
gies.

The fact that we define the functor V over Top rather than just considering
the probabilistic powerdomain as a construction on domains has a payoff later
on.

Obviously, valuations bear a close resemblance to measures. In fact, any
valuation on a coherent domain D may be uniquely extended to a measure on
Borel σ-algebra generated by the Scott topology (equivalently by the Lawson
topology) on D [2]. Thus we may consider the so-called weak topology on VD.
This is the weakest topology such that for each Lawson continuous function
f : D → [0, 1], Φf (µ) =

∫

fdµ defines a continuous function Φf : VD → [0, 1].
Alternatively, it may be characterized by saying that a net of valuations 〈µα〉
converges to µ iff lim inf µαO > µO for each Lawson open set O (cf. [20, Thm
II.6.1]). We emphasize that the weak topology on VD is defined with respect
to the Lawson topology on D.

5 The Lawson Topology on VD

In this section we show that for a coherent domain D, the Lawson topology
on VD coincides with the weak topology.

Proposition 5.1 [Jones [14]] Suppose µ ∈ VD is an arbitrary valuation, then
∑

a∈A raδa v µ iff (∀B ⊆ A)
∑

a∈B ra 6 µ(↑B).

Proof. If U ∈ ΣD, then U∩A = ↑A(U∩A) and (
∑

a∈A raδa)(U) =
∑

a∈A∩U ra,
so
∑

a∈B ra 6 µ(↑B) (∀B ⊆ A) clearly implies (
∑

a∈A raδa)(U) ≤ µ(U).

Conversely, suppose that
∑

a∈A raδa v µ, and let B ⊆ A. Then

↑B = ∩{U | B ⊆ U ∈ ΣD},

which implies
µ(↑B) = inf

B⊆U∈ΣD
µ(U).

Since (
∑

a∈A raδa)(U) ≤ µ(U) for all U ∈ ΣD, it follows that
∑

a∈B ra ≤
∑

a∈↑B ra ≤ µ(↑B). 2

Corollary 5.2 If µ ∈ VD then µ = t{
∑

a∈A raδa |
∑

a∈A raδa v µ}.

Proof. Suppose ν ∈ VD satisfies
∑

a∈A raδa v µ implies
∑

a∈A raδa v ν. Let
U ∈ ΣD, and let A ⊆ U be finite. Define ra = µ(↑↑a) − µ(∪a<a′∈A

↑↑a′). Then
∑

a∈A raδa is simple and if B ⊆ A, then
∑

a∈B ra ≤
∑

a∈↑B ra = µ(↑↑B) ≤
µ(↑B), so

∑

a∈A raδa v µ by the Proposition. Thus
∑

a∈A raδa v ν, so
∑

a∈B ra ≤ ν(↑B) for all B ⊆ A, also by the Proposition.

Now, µ ∈ VD implies µU = t{µ(↑↑A) | A ⊆ U finite}, and for each A ⊆ U
finite, µ(↑↑A) =

∑

a∈A ra ≤ ν(↑A). Also, νU ≥ ν(↑A) for all A ⊆ U finite,
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from which we conclude that

µU = t{µ(↑↑A) | A ⊆ U finite} ≤ νU.

Since U ∈ ΣD is arbitrary, we have µ v ν, and so µ = t{
∑

a∈A raδa |
∑

a∈A raδa v µ}. 2

Proposition 5.3 Let F = {x1, ..., xn} ⊆ D, 0<r<1 and ε>0 be given. Then
there exists a finite set G of simple valuations such that for any valuation µ,
µ(↑F ) < r implies µ 6∈ ↑ G and µ(↑F ) > r + ε implies µ ∈ ↑G.

Proof. Let δ = ε/n and define fδ : [0, 1]→ [0, 1] by fδ(x) = max{mδ | mδ �
x, m ∈ N}. Next we define G to be the finite set

G =

{

n
∑

i=1

riδxi
| r <

n
∑

i=1

ri 6 1 and {r1, ..., rn} ⊆ Ran fδ

}

.

Now suppose that µ(↑F )<r. From the definition of G one sees that ν ∈ G
implies ν(↑F ) > r. It immediately follows from Proposition 5.1 that µ 6∈ ↑ G.

On the other hand, suppose that µ(↑F ) > r + ε. We show that µ ∈ ↑G.
To this end, let ri = fδ(ν(↑ xi \

⋃

j<i ↑xj)) for i ∈ {1, ..., n}. Now

µ(↑F )−
n
∑

i=1

ri = µ(↑F )−
n
∑

i=1

fδ(µ(↑xi \
⋃

j<i

↑ xj))

=

n
∑

i=1

(

µ(↑xi \
⋃

j<i

↑xj)− fδ(µ(↑xi \
⋃

j<i

↑ xj))

)

< nδ = ε.

It follows that
∑n

i=1 ri > r and so
∑n

i=1 riδxi
∈ G.

Finally, we observe that
∑n

i=1 riδxi
v µ since, if B ⊆ {1, ..., n}, then

∑

i∈B

ri =
∑

i∈B

fδ(µ(↑xi \
⋃

j<i

↑xj)) 6
∑

i∈B

µ(↑xi \
⋃

j<i

↑xj) 6 µ(↑B).

2

Proposition 5.4 A net 〈µα〉 converges to µ in the lower interval topology on
VD iff lim sup µαE 6 µE for all finitely generated upper sets E.

Proof. Suppose µα → µ. Let E = ↑F , where F is finite, and suppose ε > 0
is given. If µE = 1, then clearly lim sup µαE 6 µE. So, suppose that µE < 1.
Then by Proposition 5.3 there is a finite set G of simple valuations such that
µ 6∈ ↑ G and for all valuations ν, ν 6∈ ↑ G implies νE 6 µE + ε. Then we
conclude that lim sup µαE 6 µE + ε since the net µα is eventually in the open
set VD \ ↑G. Since ε > 0 is arbitrary, we conclude that lim sup µαE 6 µE.

Conversely, suppose µα 6→ µ. Then µ has a sub-basic open neighbourhood
VD \ ↑ ρ such that some subnet µβ never enters this neighbourhood. By
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Corollary 5.2 we can assume that ρ =
∑

a∈A raδa is a simple valuation. Since
ρ 6v µ Proposition 5.1 implies there is some B ⊆ A such that

∑

a∈B ra>µ(↑B).
But µβ(↑B) >

∑

a∈B ra > µ(↑B) for all β. Thus lim sup µα(↑B) > µ(↑B). 2

Corollary 5.5 Let 〈µα〉 be a net in VD. Then 〈µα〉 converges to µ in the
Lawson topology on VD iff

(i) lim inf µαU > µU for all Scott open U ⊆ D.

(ii) lim sup µαE 6 µE for all finitely generated upper sets E ⊆ D.

Proof. Combine Propositions 4.2 and 5.4. 2

Corollary 5.6 If D is Lawson compact, then so is VD and the weak and
Lawson topologies agree on VD.

Proof. Recall [20, Thm II.6.4] that the weak topology on the space of Borel
measures on a compact space is itself compact. By Corollary 5.5, the Lawson
topology on VD is coarser than the weak topology. But the identity map from
a compact topology to a Hausdorff topology is a homeomorphism, since closed
subsets of a compact space are compact, and compact subsets of a Hausdorff
space are closed. 2

The Lawson compactness of VD for D coherent was first proved by Jung
and Tix in [15]. Their proof is purely domain theoretic and doesn’t use the
compactness of the weak topology.

6 A Final Labelled Markov Process

In a previous paper [4] we used the Hutchinson metric on probability measures
to construct a final object in the category of labelled Markov processes and
zigzag maps. Here we show that one may also construct a final labelled Markov
process as a fixed point D of the probabilistic powerdomain. As we mentioned
in the introduction, the significance of this result is that D can be used to
represent the class of all labelled Markov processes in the simulation preorder.

Given a measurable space X = 〈X, Σ〉, we write MX for the set of sub-
probability measures on X. For each measurable subset A ⊆ X we have a
projection function pA : MX → [0, 1] sending µ to µA. We make MX into a
measurable space by endowing it the smallest σ-field such that all the pro-
jections pA are measurable. Next, M is turned into a functor Mes → Mes by
defining M(f)(µ) = µ ◦ f−1 for f : X → Y and µ ∈ MX; see Giry [12] for
details.

Definition 6.1 Let C be a category and F : C → C a functor. An F -coalgebra
consists of an object C in C together with an arrow f : C → FC in C. An
F -homomorphism from F -coalgebra 〈C, f〉 to F -coalgebra 〈D, g〉 is an arrow
h : C → D in C such that Fh ◦ f = g ◦ h:

10
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C D

F (C) F (D)

h

gf

Fh

F -coalgebras and F -homomorphisms form a category whose final object, if it
exists, is called the final F -coalgebra.

Given a labelled Markov process 〈X, Σ, µ〉, µ may be regarded as a mea-
surable map X → M(X)Act. That is, labelled Markov processes are nothing
more than coalgebras of the endofunctor M(−)Act on the category Mes. Fur-
thermore the coalgebra homomorphisms in this case are just the zigzag maps,
cf. [8].

Next, we relate the functor M to the probabilistic powerdomain functor V.
To mediate between domains and measure spaces we introduce the forgetful
functor U : ωCoh→ Mes which maps a coherent domain to the Borel mea-
surable space generated by the Scott topology (equivalently by the Lawson
topology).

Proposition 6.2 The forgetful functor U : ωCoh → Mes satisfies MAct ◦U =
U ◦ VAct.

Proof. The main result of [17] shows that the valuations on an ω-continuous
domain are in one-to-one correspondence with the sub-probability measures
on U(D). This means there is a bijection between the points of the measur-
able spaces MU(D)Act and U(V(D)Act) (recall that Act is countable). Corol-
lary 5.6 implies the Lawson topology on VD coincides with the weak topology
on MUD, so the same is true of the Lawson topology on VDAct and the
product weak topology on (MUD)Act. The σ-algebra on (MUD)Act is gener-
ated by projections pA as A ranges over the σ-algebra generated by the Scott
topology on each factor. This is clearly a subalgebra of the Borel σ-algebra
on U(VDAct). Since D is coherent and ω-continuous, it is a Polish space in
its Lawson topology, so the same is true of (VD)Act. The Unique Structure
Theorem [3] then implies that these σ-algebras are the same. 2

Proposition 6.3 The forgetful functor U : ωCoh→ Mes preserves limits of
ωop-chains.

Proof. This is a straightforward adaptation of [20, Thm I.1.10], using the
fact that the Scott topology of an ω-continuous domain is separable. 2

Starting with the final object of ωCoh, we construct the chain

1
!
←− V1Act = VAct1

VAct!
←− (VAct)21

(VAct)2!
←− (VAct)31

(VAct)3!
←− · · · (1)

by iterating the functor VAct. Writing {(VAct)n1
πn←− (VAct)ω1}n<ω for the

11
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limit cone of this chain, there is a unique ‘connecting’ map (VAct)ω1 ←−
VAct(VAct)ω1 whose composition with πn gives (VAct)πn.

Proposition 6.4

(i) The image of (1) under the forgetful functor U : ωCoh→ Mes is equal to the
chain

1
!
←−MAct1

(MAct)!
←− (MAct)21

(MAct)2!
←− (MAct)31←− · · · (2)

similarly obtained by iterating the functor M.

(ii) The forgetful functor U : ωCoh→ Mes maps (VAct)ω1 to (MAct)ω1.

(iii) The image of the connecting map (VAct)ω1 ← VAct((VAct)ω1) under U is
the connecting map (MAct)ω1←MAct((MAct)ω1).

Proof. (i) follows from Proposition 6.2; then (ii) follows from (i) and Propo-
sition 6.3. Finally (iii) follows from (ii) and Proposition 6.2. 2

Theorem 6.5 The greatest fixed point of the functor V(−)Act can be given
the structure of a final labelled Markov process.

Proof. Define the endofunctor F : ωCoh → ωCoh by F (D) = VDAct. Then
F is locally continnuous: i.e., F : ωCoh(D, E)→ ωCoh(VDAct, VEAct) is Scott
continuous, so the fixed point theorem of Smyth and Plotkin [22] tells us that
the connecting map F ω1←− F (F ω1) is an isomorphism. Proposition 6.4 (iii)
applies to F = V(−)Act and G = M(−)Act and implies that the connecting
map Gω1 ←− G(Gω1) also is an isomorphism. The inverse of this last map
gives Gω1 = Mω1 the structure of a M-coalgebra. That this coalgebra is final
follows from a simple categorical argument, cf. [1]. 2

Remark 6.6 Desharnais et al. [10] consider the solution of the domain equa-
tion D ∼= V(D)Act. Theorem 6.5 shows that D can be given the structure of a
final labelled Markov process. By similar reasoning, D in its Scott topology,
can be given the structure of a final coalgebra of the endofunctor V(−)Act on
Top. We exploit this last observation in Proposition 7.2.

7 A Metric for the Lawson Topology

Now consider the domain D from Remark 6.6 qua labelled Markov process;
denote the transition probability function by µ. For any formula f ∈ F ,
the induced map f : D → [0, 1] is monotone and Lawson continuous. This
follows by induction on f ∈ F using the coincidence of the Lawson and weak
topologies on VD. We define a preorder 4 on D by x 4 y iff f(x) 6 f(y) for
all f ∈ F . Since each formula gets interpreted as a monotone function on D it
holds that x v y implies x 4 y. The theorem below asserts that the converse
also holds.

Theorem 7.1 The order on D coincides with 4.

12
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Desharnais et al. [10] have proven a corresponding version of Theorem
7.1 in which formulas have the usual Boolean semantics. In fact, one can
deduce Theorem 7.1 from this result and another result of the same authors
[9, Corollary 3.8] which relates the Boolean and real valued semantics for the
logic in the case of finite labelled Markov processes. However, we include a
direct topological proof (below) as a nice application of the Lawson = weak
coincidence, and because we will need to use this theorem later.

Note that in the following proposition we distinguish between an upper set
V ⊆ D, and a 4-upper set U ⊆ D (x ∈ U and x 4 y implies y ∈ U).

Proposition 7.2 If a ∈ Act, x 4 y and U ⊆ D is Scott open and 4-upper,
then µx,a(U) 6 µy,a(U).

Proof. Let K = {x1, . . . , xn} ⊆ U and z ∈ D \ U be given. For each j ∈
{1, ..., n}, since xj 64 y, there exists a formula gj ∈ F such that gj(xj) >
gj(z). Since F is closed under truncated subtraction, and each gj is Lawson
continuous, we may, without loss of generality, assume that gj(xj) > 0 and gj

is identically zero in a Lawson open neighbourhood of z.

If we set g = maxj gj, then g ∈ F is identically zero in a Lawson open
neighbourhood of z and is bounded away from 0 on ↑K. Since D\U is Lawson
compact (being Lawson closed) and F is closed under finite minima, we obtain
f ∈ F such that f is identically zero on D \U and is bounded away from zero
on ↑K by, say, r > 0. Finally, setting h = min(f, r), we get

µx,a(↑K) 6
1

r

∫

hdµx,a 6
1

r

∫

hdµy,a 6 µy,a(U),

where the middle inequality follows from (〈a〉h)(x) 6 (〈a〉h)(y).

Since U is the (countable) directed union of sets of the form ↑K for finite
K ⊆ U , it follows that µx,a(U) 6 µy,a(U). 2

Proof of Theorem 7.1: Let ΣD denote the Scott topology on D and τ the
topology of Scott-open, 4-upper sets. Consider the following diagram, where
ι is the identity ιx = x:

(D, ΣD)

ι

��

µ
//V(D, ΣD)Act

VιAct

��

(D, τ) //________ V(D, τ)

(3)

Then ι is continuous as τ ⊆ ΣD. All the solid maps are bijections, so there is
a unique dotted arrow making the diagram commute in the category of sets.
The inverse image of a sub-basic open in V(D, τ) under the dotted arrow is
τ -open by Proposition 7.2. By the finality of 〈D, µ〉 qua V(−)Act-coalgebra, ι
has a continuous left inverse, and is thus a homeomorphism. Hence, for each
y ∈ D, the Scott closed set ↓ y is τ -closed, and thus 4-lower. Thus x 4 y
implies x v y. 2

13



van Breugel, Mislove, Ouaknine and Worrell

Since we view D as a labelled Markov process, we can consider the metric
dDGJP on D as defined in Section 2.

Theorem 7.3 The Lawson topology on D is induced by dDGJP .

Proof. Since the Lawson topology on D is compact, and, by Theorem 7.1, the
topology induced by dDGJP is Hausdorff, it suffices to show that the Lawson
topology is finer. Now, if xn → x in the Lawson topology, then f(xn)→ f(x)
for each f ∈ F , since each formula gets interpreted as a Lawson continu-
ous map. But dDGJP may be uniformly approximated on D to any given
tolerance by looking at a finite set of formulas, cf. [6, Proposition 12]. (This
lemma crucially uses the assumption c<1 from the definition of dDGJP .) Thus
dDGJP (xn, x)→ 0 as n→∞. 2

8 Testing

Our aim in this section is to characterize the order on the domain D as a
testing preorder. The testing formalism we use is that set forth by Larsen and
Skou [16]; the idea is to specify an interaction between an experimenter and a
process. The way a process responds to the various kinds of tests determines
a simple and intuitive behavioural semantics.

Definition 8.1 The set of tests t ∈ T is defined according to the grammar

t ::= ω | a.t | (t1, . . . , tn),

where a ∈ Act.

The most basic kind of test, denoted ω, does nothing but successfully
terminate. a.t specifies the test: see if the process is willing to perform the
action a, and in case of success proceed with the test t. Finally, (t1, . . . , tn)
specifies the test: make n copies of (the current state of) the process and
perform the test ti on the i-th copy for each i. This facility of copying or
replicating processes is crucial in capturing branching-time equivalences like
bisimilarity. We usually omit to write ω in non-trivial tests.

Definition 8.2 To each test t we associate a set Ot of possible observations
as follows.

Oω = {ω
√
} Oa.t = {a×} ∪ {a

√
e | e ∈ Ot} O(t1 ,...,tn) = Ot1 × . . .×Otn .

The only observation of the test ω is successful termination, ω
√
. Upon

performing a.t one possibility, denoted by a×, is that the a-action fails (and
so the test terminates unsuccessfully). Otherwise, the a-action succeeds and
we proceed to observe e by running t in the next state; this is denoted a

√
e.

Finally an observation of the test (t1, ..., tn) is a tuple (e1, ..., en) where each
ei is an observation of ti.
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Definition 8.3 For a given test t, each state x of a labelled Markov process
〈X, µ〉 induces a probability distribution Pt,x on Ot. The definition of Pt,x is
by structural induction on t as follows.

Pω,x(ω
√
) = 1, Pa.t,x(a

×) = 1− µa,x(X), Pa.t,x(a
√
e) =

∫

(λy.Pt,y(e))dµa,x

P(t1,...,tn),x(e1, . . . , en) =
∏n

i=1 Pti,x(ei).

The following theorem, proved in an earlier paper [6], shows how bisimi-
larity may be characterized using the testing framework outlined above. This
generalizes a result of Larsen and Skou from discrete probabilistic transition
systems satisfying the minimal deviation assumption 3 to labelled Markov
processes.

Theorem 8.4 Let 〈X, µ〉 be a labelled Markov process. Then x, y ∈ X are
bisimilar just in case Pt,x(E) = Pt,y(E) for each test t and E ⊆ Ot.

In fact the statement of Theorem 8.4 can be sharpened somewhat, as we
now explain. For each test t there is a distinguished observation, denoted t

√
,

representing complete success – no action is refused. For instance, if t = a.(b, c)
then the completely successful observation is a

√
(b

√
, c

√
).

Corollary 8.5 Let 〈X, µ〉 be a labelled Markov process. Then x, y ∈ X are
bisimilar iff Pt,x(t

√
) = Pt,y(t

√
) for all tests t.

The idea is that for any test t and E ⊆ Ot, the probability of observing E
can be expressed in terms of the probabilities of making completely successful
observations on all the different ‘subtests’ of t using the principle of inclusion-
exclusion. For example, if t = a.(b, c); then the probability of observing

a
√
(b

√
, c×) in state x is equal to Pt1,x(t

√

1 )− Pt,x(t
√
) where t1 = a.b.

Given Corollary 8.5 one might conjecture that x ∈ X is simulated by y ∈ X
if and only if Pt,x(t

√
) 6 Pt,y(t

√
) for all tests t. However, the following example

shows that to characterize simulation one really needs negative observations.

Example 8.6 Consider the labelled Markov process 〈X, µ〉 depicted below,
with distinguished states x and y and label set Act = {a, b}.

x

a, 1
2

��

y
a, 3

4

{{wwwwwwwww
a, 1

4

##G
GGGGGGGG

•

b, 1
2

��

• •

b,1
��

• •

It is readily verified that Pt,x(t
√
) 6 Pt,y(t

√
) for all tests t. However x is

3 This says that the set of probabilities associated to all the different transitions occurring
in the system is finite.
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not simulated by y. Indeed, consider the test t = a.(b, b) with

E = {a
√
(b×, b

√
), a

√
(b

√
, b×), a

√
(b

√
, b

√
)}.

If x were simulated by y, then it follows from Theorem 8.7 that Pt,x(E) 6

Pt,y(E). But it is easy to calculate that Pt,x(E) = 3/8 and Pt,y(E) = 1/4;
thus E witnesses the fact that x is not simulated by y.

The example above motivates the following definition. For each test t we
define a partial order 6t on the set of observations Ot as follows. (We elide
the subscript t when defining the partial order.)

(i) a× 6 a
√
e

(ii) a
√
e 6 a

√
e′ if e 6 e′

(iii) (e1, ..., en) 6 (e′1, ..., e
′
n) if ei 6 e′i for i ∈ {1, ..., n}.

Theorem 8.7 Let 〈X, µ〉 be a labelled Markov process. Then x ∈ X is simu-
lated by y ∈ X iff Pt,x(E) 6 Pt,y(E) for all tests t and upper sets E ⊆ Ot.

The ‘only if’ direction in the above theorem follows from a straightforward
induction on tests. The proof of the ‘if’ direction relies on the definition and
lemma below. The idea behind Definition 8.8 is that one can determine the
approximate value of a PML formula in a state x by testing x. This is inspired
by [16, Theorem 8.4] where Larsen and Skou show how to determine the truth
or falsity of a PML formula using testing. Our approach differs in two respects.
Firstly, since we restrict our attention to the positive fragment of the logic it
suffices to consider upward closed sets of observations. Also, since we interpret
formulas as real-valued functions we can test for the approximate truth value
of a formula. It is this last fact that allows us to dispense with the minimal
deviation assumption and more generally the assumption of the discreteness
of the state space.

Definition 8.8 Let 〈X, µ〉 be a labelled Markov process. Given f ∈ F , 0 6

α < β 6 1 and δ > 0, we say that t ∈ T is a test for (f, α, β) with evidence set
E ⊆ Ot and level significance δ if for all x ∈ X,

1. whenever f(x) > β then Pt,x(E) > 1− δ

2. whenever f(x) 6 α then Pt,x(E) 6 δ,

where Pt,x(E) =
∑

e∈E Pt,x(e).

Thus, if we run t in state x and observe e ∈ E then with high confidence
we can assert that f(x) > α. On the other hand, if we observe e 6∈ E then
with high confidence we can assert that f(x) < β.

Lemma 8.9 Let 〈X, µ〉 be a labelled Markov process. Then for any f ∈ F ,
0 6 α<β 6 1 and δ > 0, there is a test t for (f, α, β) with level of significance
δ and whose associated evidence set E ⊆ Ot is upward closed.

A proof of Lemma 8.9 may be found in an appendix to a fuller version of
this paper [7]. The lemma implies that if Pt,x(E) 6 Pt,y(E) for all tests t and
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upper sets E ⊆ Ot, then f(x) 6 f(y) for all PML formulas f . It follows from
Theorem 7.1 that x is simulated by y. This completes the proof of the ‘if’
direction of Theorem 8.7.

9 Summary and Future Work

The theme of this paper has been the use of domain-theoretic and coalgebraic
techniques to analyze labelled Markov systems. These systems, which gener-
alize the discrete labelled probabilistic processes investigated by Larsen and
Skou [16], have been investigated by Desharnais et al [8,9,10] and in earlier
papers by some of the authors of this paper [4,5,6]. In part, we use domain
theory to replace more traditional functional-analytic techniques in earlier
papers.

In future, we intend to apply our domain theoretic approach in the more
general setting of processes which feature both nondeterministic and proba-
bilistic choice. We believe such a model will be useful in a number of areas,
including for example in the area of non-interference, where it may be possible
to analyze the leak rate of covert channels arising from probabilistic schedulers
in a multithreaded programming language.
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