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Abstract

This paper presents a fundamental study of similarity and bisimilarity for labelled
Markov processes: a particular class of probabilistic labelled transition systems. The
main results characterize similarity as a testing preorder and bisimilarity as a testing
equivalence.

In general, labelled Markov processes are not required to satisfy a finite-branching
condition—indeed the state space may be a continuum, and the transitions given by
arbitrary probability measures. Nevertheless we show that in order to characterize
bisimilarity it suffices to use finitely branching labelled trees as tests.

Our results involve an interaction between domain theory and measure theory.
One of the main technical contributions is to show that one can construct a final
object in a suitable category of labelled Markov processes by solving a domain
equation D = V(D)ACt, where V is the probabilistic powerdomain. Given a labelled
Markov process whose state space is an analytic space, bisimilarity arises as the
kernel of the unique map to the final labelled Markov process. In passing we also
show that the metric for approximate bisimilarity introduced by Desharnais, Gupta,
Jagadeesan and Panangaden generates the Lawson topology on the domain D.
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1 Introduction

It is a notable feature of concurrency theory that there are many different no-
tions of process equivalence. These are often presented in an abstract manner,
e.g., using coinduction or domain theory. Ultimately, however, one would like
to know that any proposed notion of equivalence has some interpretation in
terms of the observable behaviour of a process. One way of formalizing this
is via a testing framework [1,5,16,20]. The idea is to specify an interaction
between a tester and the process. The latter is typically seen as a black box
with hidden internal state and an interface consisting of buttons by which the
tester may affect the execution of the process. If the tester cannot distinguish
two processes then they are deemed equivalent. By varying the power of the
tester one recovers different equivalences and preorders, e.g., trace equivalence,
failures equivalence, simulation, bisimulation, etc.

This paper presents a testing framework characterizing similarity and bisimi-
larity for labelled Markov processes or LMPs. One can view LMPs as prob-
abilistic versions of the classical labelled transition systems from concurrency
theory, or, alternatively, as indexed collections of discrete-time Markov pro-
cesses in the sense of classical probability theory. More precisely, a labelled
Markov process consists of a measurable space (X, ) of states, a family Act
of actions, and, for each a € Act, a transition probability function p_ , that,
given a state z € X, yields the probability p,.(A) that the next state of the
process will be in the measurable set A € X after performing action a.

While probabilistic transition systems have been studied quite widely in con-
currency theory, the tendency is to consider discrete probability. For instance,
the probabilistic labelled transition systems of Larsen and Skou [20] are LMPs
where all the transition probabilities are given by discrete distributions. The
foundational paper [8] presents a suite of examples to motivate the idea of
looking at measurable state spaces and continuous distributions. For our pur-
poses however the primary motivation is provided by the idea that labelled
Markov processes provide the right level of generality for developing the basic
theory of testing—even if ultimately one is only interested in discrete state-
spaces. In particular, the same class of tests characterize bisimilarity in the
discrete case and in the continuous case.

The most basic notion of process equivalence is trace equivalence. In the
present setting this would say that two LMPs are equal if they can both
accept any given trace with the same probability. Another important notion
of process equivalence is bisimilarity. This notion, due to Park and Milner
[21,22], asserts that processes are bisimilar iff any action by either can be
matched with the same action by the other, and the resulting processes are
also bisimilar. Larsen and Skou adapted the notion of bisimilarity to discrete



probabilistic systems, by defining an equivalence relation R on states to be
a bisimulation if related states have exactly matching probabilities of mak-
ing transitions into any R-equivalence class. Later the theory of probabilistic
bisimilarity was extended beyond the discrete setting by Edalat, Desharnais
and Panangaden [8]. In the probabilistic case, as in the nondeterministic case,
bisimilarity has an asymmetric counterpart, called similarity.

In a nutshell the main result of this paper is that bisimilarity for LMPs is
‘tree equivalence’ (as opposed to trace equivalence). That is, we define a class
of tests, which are technically just labelled trees, and show that two states
of an LMPs are bisimilar just in case they pass each test with the same
probability. The branching structure of these trees corresponds to the slogan
that bisimilarity is a branching-time equivalence.

A given class of tests also induces a preorder on an LMP, where one state is
above another if it passes each test with at least as high probability. We show
that the class of trees alluded to above is not sufficient to capture similarity
as a testing preorder. To remedy this we have to augment the test language
to include the observation of failures. Interestingly the proof that the given
class of tests characterizes similarity has a very different flavour from the
corresponding proof for bisimilarity.

Next we give, section by section, a summary of the contents of the paper.

Section 2 presents some preliminary notions from domain theory and measure
theory.

In Section 3 we formally introduce LMPs and the appropriate morphisms
between them: zig-zag maps. While bisimulations could just be defined to be
the kernels of zig-zag maps, following [11], we show that for an LMP whose
state space is analytic there is a less abstract relational characterization.

After introducing the probabilistic powerdomain V(D) in Section 4, in Section
5 we investigate the Lawson topology on V(D), characterizing it as a weak
topology in the sense of measure theory.

In Section 6 we show that the canonical solution of the domain equation
D = V(D)**" can be given the structure of a final LMP. The significance of
this construction is that we can reduce questions about LMPs in general to
questions about the domain D—and so take advantage of certain nice prop-
erties of D, like Lawson compactness.

In order to study bisimilarity on an LMP, Desharnais, Gupta, Jagadeesan
and Panangaden [9] introduce a kind of dual space: a certain lattice of mea-
surable functions on the state space. In Section 7, applying the reduction
technique alluded to above, we study this class of functions in the case of the



final LMP. In this case the given functions are all Lawson continuous. Using
this observation we show that two states of an LMP are bisimilar iff they
are indistinguishable by functions in the dual space. This result is the foun-
dation for our main theorems concerning testing. These theorems are proven
in Section 8.

2 Preliminaries

In this section we outline some basic definitions and results from domain
theory and from measure theory. This is intended as a convenient summary
for the reader. A more detailed treatment of the relevant domain theory and
measure theory can be found respectively in Gierz et al. [14] and Arveson [4].

2.1 Domain Theory

Let (P,C) be a poset. Given A C P, we write 1 A for the set {x € P | (Ja €
A)a C z}; similarly, | A denotes {z € P | (Ja € A)x C a}. A directed
complete partial order (depo) is a poset P in which each directed set A has a
least upper bound, denoted LIA. If P is a dcpo, and z,y € P, then we write
x < y if each directed subset A C D with y C UA satisfies T2z N A # 0.
We then say x is way-below y. Let {y = {z € D | x < y}; we say that P is
continuous if it has a basis, i.e., a subset B C P such that for each y € P,
Ly N B is directed with supremum y. We use the term domain to mean a
continuous dcpo. If a continuous dcpo has a countable basis we say that it is
w-continuous.

A subset U of a domain D is Scott-open if it is an upper set (i.e., U = 1U)
and for each directed set A C D, if UA € U then ANU # (). The collection
op of all Scott-open subsets of D is called the Scott topology on D. If D is
continuous, then the Scott topology on D is locally compact, and the sets
A2 where z € D form a basis for this topology. Given domains D and F, a
function f: D — FE is continuous with respect to the Scott topologies on D
and F iff it is monotone and preserves directed suprema: for each directed

ACD, f(UA) =Uf(A).

In fact the topological and order-theoretic views of a domain are interchange-
able. The order on a domain can be recovered from the Scott topology as the
spectalization preorder. Recall that for a topological space X the specialization
preorder < C X x X is defined by z < y iff z € Cl(y).

Another topology of interest on a domain D is the Lawson topology. This is



the join of the Scott topology and the lower interval topology, where the latter
is generated by sub-basic open sets of the form D \ 1z. Thus, the Lawson
topology has the family {fz \ 1 F | = € D,F C D finite} as a basis. The
Lawson topology on a domain is always Hausdorff. A domain that is compact
in its Lawson topology is called coherent.

2.2  Measure Theory

Recall that a o-field ¥ on a set X is a collection of subsets of X containing ()
and closed under complements and countable unions. The pair (X, X) is called
a measurable space. For any collection C of subsets on X there is a smallest
o-field containing C, written ¢(C). In case X is a topological space and C is
the class of open subsets, then ¢(C) is called the Borel o-field on X. One can
split the definition of a o-field into two steps. A collection of subsets of X is
called a m-system if it closed under finite intersections. A collection of subsets
of X closed under countable disjoint unions, complements, and containing the
empty set is called a A-system. The m — A\ theorem [13] states that if P is a
m-system, L is a A-system, and P C L, then o(P) C L.

If ¥ = 0(C) for some countable set C, then we say that 3 is countably generated.
We say that (X, X)) is countably separated if there is a countable subset C C %
such that no two distinct elements of X lie in precisely the same members
of C. A topological space is a Polish space if it is separable and completely
metrizable.

Given a measurable space (X,Y), we say that A C X is (X-)measurable if
A € X.If (X', %) is another measurable space, a function f: X — X' is said
to be measurable if f~'(A) € ¥ for each A € Y. Measurable spaces and
functions form a category Mes. The limit of a diagram in Mes in obtained by
equipping the limit of the underlying diagram in the category of sets with the
smallest o-field structure making all the projections measurable.

A function pu: ¥ — [0,1] is a subprobability measure on (X, %) if u(U, A,) =
>n 4(Ay) for any countable family of pairwise disjoint measurable sets {A,}.

3 Labelled Markov Processes

Assume a fixed countable set Act of actions or labels. A labelled Markov
process is just an Act-indexed family of Markov processes on the same state
space.



Definition 1 A labelled Markov process (LMP) is a triple (X, %, u) consist-
ing of a set X of states, a o-field 2 on X, and a transition probability function
X x Act x ¥ — [0, 1] such that

(1) for all x € X and a € Act, the function iz 4(-) : ¥ — [0, 1] is a subprob-
ability measure, and

(2) for all a € Act and A € X, the function p_,(A) : X — [0, 1] is measur-
able.

This is the so-called reactive model of probabilistic processes. The function
H—q describes the reaction of the process to the action a selected by the
environment. Given that the process is in state z and action a is selected,
Uz.q(A) is the probability that the process makes a transition to a state in A.
Note that we consider subprobability measures, i.e., positive measures with
total mass no greater than 1. We interpret 1 — pu, ,(X) as the probability of
refusing action a in state x. In fact, if every transition measure had mass 1,
then all processes would be bisimilar (cf. Definition 3).

An important special case is when the o-field ¥ is taken to be the powerset
of X. Then, for all actions a and states x, the subprobability measure i, ,(-)
is completely determined by a discrete subprobability distribution. This case
corresponds to the original probabilistic transition system model of Larsen
and Skou [20].

A natural notion of a map between labelled Markov processes is given in:

Definition 2 Given labelled Markov processes (X, %, p) and (X', X' u'), a
measurable function f: X — X' is called a zig-zag map if whenever A’ €
Y,x € X, and a € Act, then iz o(f~1(A")) = iy o(A)-

Probabilistic bisimulations (henceforth just bisimulations) are the relational
counterparts of zig-zag maps, and can also be seen, in a very precise way,
as the probabilistic analogues of the strong bisimulations of Park and Milner
[21,22]. They were first introduced in the discrete case by Larsen and Skou
[20]. The notion of bisimulation was extended to LMPs in [8,11]. (Though
our formulation is slightly different as we explain below.)

Definition 3 Let (X,X, u) be a labelled Markov process and R a reflexive
relation on X. For A C X, write R(A) for the image of A under R. We say
that R is a simulation if it satisfies condition (i) below, and we say that R is
a bisimulation if it satisfies both conditions (i) and (ii).

(i) 2Ry = (Va € Act)(VA € £)(A = R(4) = 1aa(A) < 1y.0(A)).
(ii) wRy = (Va € Act) (Ha(X) = pya(X) ).

We say that two states are (bi)similar if they are related by some (bi)simulation.



The notions of simulation and bisimulation are very close, reflecting the fact
that LMPs are like deterministic systems. The extra condition p,.(X) =
Hy,o(X) in the definition of bisimulation can be seen as a ‘readiness’ condition:
related states perform given actions with the same probability. It may not be
immediately apparent that the notion of bisimulation is symmetric, however
this fact is straightforward as we now show.

Proposition 4 Suppose R is a bistimulation on a labelled Markov process
(X,3, p). Then the inverse R™! is also a bisimulation.

PROOF. Given z,y € X, A € ¥ and a € Act, we have the following chain
of implications.

rR'yand A= R '(A)=yRrand X \ A= R(X \ A)
= fya(X \ A) < plea(X\ A)
:>,um,a(X) - ,uz,a(X \ A) < ,Uy,a(X) - Ny,a(X \ A)
= taa(A) < pya(4).

It is straightforward that the relational composition of two bisimulations on
(X,%, u) is again a bisimulation and that the union of any family of bisim-
ulations is a bisimulation. In particular, there is a largest bisimulation on
(X,%, u) and it is an equivalence relation. For an equivalence relation R the
two criteria in Definition 3 can be compressed into the following more intuitive
condition:

zRy = (Va € Act)(VA € £)(A = R(A) = f154(A) = p1y4(A4)) .

In words: related states have matching probabilities of jumping into any mea-
surable block of equivalence classes. This is actually the definition of bisimu-
lation in [8].

Propositions 5 and 8 make precise the connection between bisimulations and
zig-zag maps. These results are implicit in [8], and our proofs recapitulate
arguments from there. The one novelty below is in our use of the existence
of a final LMP whose state space is a Polish space. This plays a similar role
to the countable logic characterizing bisimilarity from [8]. We spell out this
small variation in order to make our paper more self-contained.

Proposition 5 Fvery bisimulation equivalence is the kernel of a zig-zag map.



PROOF. Given a measurable space (X, ) and an equivalence relation R on
X, let X be the greatest o-field on the set of R-equivalence classes X/R such
that the quotient map ¢: X — X/R is measurable. Thus Xz = {E | ¢ '(F) €
Y} Now if (X, X, ) is an LMP and R is a bisimulation, it is easy to see that

/LRIX/RXACtXER—) [0,1]

defined by (1g)g],e(E) = tase(¢”'(F)) is well-defined and is the unique tran-
sition probability function making ¢ a zig-zag map. O

To prove a converse to Proposition 5 we need to use the following two results
about analytic measurable spaces. A measurable space is said to be analytic
if it is the image of the measurable map from one Polish space to another.

Theorem 6 (Corollary 3.3.1[4]) Let f: (X,X) —» (X', X') be a surjective
measurable map, where (X,X) is analytic and (X', is countably separated.
Then (X', %) is also analytic.

Theorem 7 (Theorem 3.3.5[4]) If (X,X) is an analytic measurable space
and 3y a countably generated sub-o-field of ¥ that separates points in X (given
x,y € X withx # vy, there exists A € Xg withx € A andy & A), then ¥y = X.

The importance of analycity in the present context was first realized in [8].
We do not know if the result below is true without such an assumption.

Proposition 8 Given a zig-zag map f: (X, 2, uy — (X', X' 'y with (X, %)
an analytic measurable space, the kernel of f is contained in a bisimulation.

PROOF. By Theorem 22 there is a final LMP whose state space is a Polish
space. Since the kernel of f is contained in the kernel of the unique zig-zag map
from (X, 3, u) to this final LMP we may, without loss of generality, assume
that (X', ¥') is a Polish space. Let R C X x X denote the kernel of f, and
q: (X,X) = (X/R,Xg) the quotient map in Mes. It remains to show that R
is a bisimulation.

Consider the following two sub-o-fields 3, 35 C 3.
L= {f HA) |Aex)
Yo={AeX|A=R(A)}

It is straightforward that ¥; C ¥y C ¥. Observe also that ¢(X;) := {q(A) |
A€ X} and ¢(32) :={q(A) | A € £y} are both o-fields on X/R with

q(X1) C q(¥) C k.



But X/R is countably separated, being a subobject of the Polish space X',
and so it is an analytic space by Theorem 6. From the fact that X' is count-
ably generated and separates points it is readily seen that ¢(¥;) is count-
ably generated and separates points in X/R. It follows from Theorem 7 that
q(X1) = ¢(Xs) = Xk and thence that 3; = 3.

Suppose z,y € X are chosen such that xRy and £ C X is an R-closed ¥-
measurable set. Then E € Y5 by definition of Y5, and so E € ¥4, i.e., there
exists A € ¥/ with E = f~!(A). Now given a € Act,

paa(E) = W),a(A) = Hygy),a(A) = tya(E) .

4 The Probabilistic Powerdomain

We briefly recall some basic definitions and results about valuations and the
probabilistic powerdomain. For more details see Jones [18].

Definition 9 Let (X, 1) be a topological space. A valuation on X is a mapping
w: T — [0, 1] satisfying:

strictness
uh =0
e monotonicity
U CV wmplies pU C puV
e modularity
p(UUV)+pu(UNV)=puU+ pV forallU,V.
e Scott continuity
w(Uier Ui) = sup,e; pU; for every directed family {U;}ier.

Each element x € X gives rise to a valuation d, defined by 6,(U) =1ifz € U,
and 0, (U) = 0 otherwise. A simple valuation has the form " ¢ 4 7,0, Wwhere A
is a finite subset of X, r, € [0,1], and > ,c4 70 < 1.

We write VX for the space whose points are valuations on X, and whose
topology is generated by sub-basic open sets of the form {u | uU > r}, where
U € 7 and r € [0,1]. The specialization order on VX with respect to this
topology is given by p C u iff pU < p/'U for all U € 7. V extends to an endo-
functor on Top—the category of topological spaces and continuous maps—Dby
defining V(f)(u) = po f! for a continuous map f.

Suppose D is a domain regarded as a topological space in its Scott topology.
Jones [18] has shown that the specialization order defines a domain structure



on VD, with the set of simple valuations forming a basis. Furthermore, it
follows from the following proposition that the topology on VD is actually the
Scott topology with respect to the pointwise order on valuations.

Proposition 10 (Edalat [12]) A net (uo) converges to u in the Scott topol-
ogy on VD iff liminf u U > pU for all Scott-open U C D.

Finally, Jung and Tix [19] have shown that if D is a coherent domain then so
is VD. In summary we have the following proposition.

Proposition 11 The endofunctor V: Top — Top preserves the subcategory
wCoh of coherent w-continuous domains and Scott-continuous maps.

The fact that we define the functor V on Top rather than just on a category
of domains has a payoff later on.

Obviously, valuations bear a close resemblance to measures. In fact, any val-
uation on a domain D may be uniquely extended to a measure on the Borel
o-field generated by the Scott topology on D [3, Corollary 4.3]. Conversely, any
Borel measure on an w-continuous domain defines a valuation when restricted
to the open sets [3, Lemma 2.5]. (w-continuity is needed here since measures
do not in general satisfy the Scott continuity condition in the definition of
valuations.) Henceforth we treat valuations and measures on w-continuous
domains as interchangeable; thus, for instance, we integrate Borel measurable
functions against valuations. We also note that on w-continuous domains the
Borel o-field generated by the Scott topology coincides with the Borel o-field
generated by the Lawson topology.

5 The Lawson Topology on VD

Given an w-continuous domain D, we define the weak topology* on VD
to be the weakest topology such that for any Lawson continuous function
f: D —[0,1], the map u — [ fdu is continuous. An alternative characteriza-
tion is that a net of valuations (u,) converges to p in the weak topology iff
liminf 1, O > pO for each Lawson open set O (cf. [23, Thm I1.6.1]). Next we
show that for a coherent domain D, the Lawson topology on VD coincides
with the weak topology.

Proposition 12 (Jones [18]) If u € VD is an arbitrary valuation, then,
given a finite set A C D, > ,caTaba T p iff (VB C A) Y uepra < (1 B).

* The definite article is a bit misleading here since there is more than one weak

topology in the present context. Indeed, both the Scott and Lawson topologies on
VD can be seen as weak topologies.

10



Proposition 13 Given a finite subset ' C D, 0<r<1 and e >0, there exists
a finite set G of simple valuations such that for any valuation p, p(tF) <r
implies u ¢ 1G and p(TF) > r + € implies p € 1G.

PROOF. Write F' = {z1,...,2,}. Let 6 = ¢/n and define f5:[0,1] — [0, 1]
by fs(z) = max{md | mé < x,m € N}. Next we define G to be the finite set

= {Zri&w lr<Y ri<land {r,...,r,} C Ranf(g}.
i=1 i=1

Now suppose that (1 F) < r. From the definition of G one sees that v € G
implies v(1 F') > r. It immediately follows from Proposition 12 that u & 1G.

On the other hand, suppose that u(1F) > r +e. We show that p € 1G. To
this end, let r; = f5(u(T2; \ Uj<; T2;)) fori € {1,...,n}. Now

u(tF) - Z TF) Z s(p(tzi\ U 1z))

Jj<i

Z( (rai\ U 1) - (u(mi\mxm)
nd =

§<i j<i

It follows that 7 ;7; > 7 and so Y7 ; rid,, € G.

Finally, we observe that Y7, 7;0,, T p since, if B C {1,...,n}, then

Yori= fa(u(tzi\ Utz) <Dopttz\ Jre) < u(tB).

i€EB i€B 7<i i€B 7<i

O

Proposition 14 A net (ua) converges to p in the lower interval topology on
VD iff imsup uo E < puE for all finitely generated upper sets E.

PROOF. Suppose po — p. Let E =1 F, where F is finite, and suppose € >0
is given. Then by Proposition 13 there is a finite set G of simple valuations
such that y &€ 1 G and for all valuations v, v ¢ 1 G implies vE < uF +¢. Then
we conclude that limsup o E < puE + € since the net p, is eventually in the
open set VD \ 1G.

Conversely, suppose o, 7 p. Then p has a sub-basic open neighbourhood
VD \ 1 p such that some subnet s never enters this neighbourhood. We can

11



assume that p = Y ,c4 740, is a simple valuation. Since p [Z p there exists
B C A such that Y ,cp 7o > pu(1 B). But ug(t B) > Yucp 7o > p(1 B) for all .
Thus limsup po (1 B) > p(1tB). O

Corollary 15 Let (o) be a net in VD. Then {u,) converges to u in the
Lawson topology on VD iff

(1) liminf pu U > pU for all Scott-open U C D, and
(2) limsup uo E < pE for all finitely generated upper sets E C D.

PROOF. Combine Propositions 10 and 14. O

Corollary 16 If D is Lawson compact, then so is VD and the weak and
Lawson topologies agree on VD.

PROOF. Recall [23, Thm I1.6.4] that the weak topology on the space of
Borel measures on a compact Hausdorff space is itself compact. By Corollary
15, the Lawson topology on VD is coarser than the weak topology. But it is
a standard fact that if a compact topology is finer than a Hausdorff topology
then the two must coincide. O

The Lawson compactness of VD was first proved by Jung and Tix in [19].
Their proof is purely domain-theoretic and doesn’t use the compactness of
the weak topology.

6 A Final Labelled Markov Process

In this section we show that one may construct a final labelled Markov process
as a fixed point D = V(D)*®* of the probabilistic powerdomain. In order
to prove this result it is convenient to use the notion of a coalgebra of an
endofunctor.

Definition 17 Let C be a category and F: C — C a functor. An F-coalgebra
consists of an object C' in C together with an arrow f:C — FC in C. An
F-homomorphism from an F-coalgebra {C, f) to an F-coalgebra (D, g) is an
arrow h: C — D in C such that Fho f = goh:

c—r—p (1)
)
FC——FD

12



F-coalgebras and F-homomorphisms form a category whose final object, if it
exists, is called the final F'-coalgebra.

Next we recall a standard construction of a final F-coalgebra. Let C be a
category with a final object 1 and with limits of all w°P-chains (i.e., diagrams
indexed by the poset w°P). Given an endofunctor F': C — C we may form the
following w°P-chain

1 Frdt P s 2)

To be precise, the sequence of objects F™1 is defined inductively by F**!1 =
F(F™1). The unique map F1 — 1 is denoted !, and the maps F"! are defined
inductively by F"™! = F(F™).

We denote the limit cone of the chain (2) by {F¥1 - F"1},,. The uni-
versal property of this cone entails that there is a unique ‘connecting map’

F(F“1) 5 F1 such that T - [ = Fm,_q for each n < w.

Proposition 18 [[2]] If the connecting map f is an isomorphism, then (F“1, f~1)
s a final F'-coalgebra.

Given a measurable space X = (X, ), we write MLX for the set of subprobabil-
ity measures on X. For each measurable subset A C X we have an evaluation
function p4: MX — [0, 1] sending p to pA. We take MX to be a measurable
space by giving it the smallest o-field such that all the evaluations p4 are
measurable. (In fact this is the smallest o-field such that integration against
any measurable function g: X — [0, 1] yields a measurable map MIX — [0, 1].)
Next, M is turned into a functor Mes — Mes by defining M(f)(u) = po f=!
for f: X - Y and p € MX. This functor is studied by Giry [15].

Given a labelled Markov process (X, 3, i), the transition probability function
p may be regarded as a measurable map X — M(X)A°, where (—)A¢ denotes
Act-fold product in Mes. That is, labelled Markov processes are nothing but
coalgebras of the endofunctor MA°* on the category Mes. Furthermore it is
easy to verify that the coalgebra homomorphisms are precisely the zig-zag
maps.

Next, we relate the functor M to the probabilistic powerdomain functor V.
To mediate between domains and measure spaces we introduce the forgetful
functor U: wCoh — Mes which maps a coherent domain to the Borel measur-
able space generated by the Scott topology. Note in passing that the o-field
underlying UD is also the Borel o-field with respect to the Lawson topology
on D, and can thus be regarded as the Borel o-field on a Polish space.

Proposition 19 MoU=TUo V.

13



PROOF. Suppose D is a coherent domain with a countable basis. Since valu-
ations on D in its Scott topology are in one-to-one correspondence with Borel
measures on U(D), we have a bijection between the points of the measurable
spaces MU(D) and UV(D). It remains to show that the underlying o-field
structures are the same.

Since D is w-continuous, the Scott topology on D is separable, and we may
choose a countable basis P of Scott-open sets that is closed under finite inter-
sections and finite unions. The set of Borel subprobability measures on D can
be given a o-field structure in the following ways.

31 is the smallest o-field such that p, is measurable for each Borel set
A C D. This is the o-field underlying MU(D).

Y9 is the smallest o-field such that p, is measurable for each A € P.

Y3 is the Borel o-field generated by the Scott topology on VD. This is the
o-field underlying UV(D).

To complete the proof of the proposition we show that ¥; = ¥, = 3.
e >, =Y, Clearly ¥y C ¥;. For the converse, consider
L={ACD|py is Yo-measurable}.

L is a A-system, i.e., it is closed under countable disjoint unions, comple-
ments and it contains D. Also, by definition of ¥y, we have that P is a
m-system contained in £. By the A — 7 theorem we have that £ contains
the o-field generated by P; but this is the whole Borel o-field on D. Thus
Y1 C ¥y by minimality of ;.

e Yy = Y3 Given A € P, the evaluation map ps: VD — [0, 1] is Scott-
continuous and thus Y3-measurable. By minimality of ¥, it follows that
Yy C ¥3. Conversely, 3, is generated by sets {u | pA > g} for A € P and
g € Q. But this is a countable basis for the Scott topology on VD; thus Y
contains all Scott-open sets, and X3 C ¥y by minimality of ¥3. O

The following proposition collects together some standard facts about limits
in Mes and wCoh. For this reason we do not give a detailed proof, though we
explain the significance of the hypotheses and give pointers to the literature.

Proposition 20
(i) wCoh is closed under countable products of pointed domains.
(#i) wCoh is closed under w°P-limits where the bonding maps are Scott-continuous

upper adjoints.
(i1i) U preserves the limits in (i) and (ii).
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PROOF. Limits in the category of dcpos and Scott-continuous functions are
created by the forgetful functor to the category of sets (via the pointwise
order) [14, Proposition IV-4.3]. The full subcategory wCoh is not in general
closed under such limits; however it is closed under countable products of
pointed domains [17, Lemma VII-3.1] and w®P-limits where the bonding maps
are Scott-continuous upper adjoints [14, Exercise IV-4.15].

Part (iii) follows from the conjunction of two standard facts. Firstly, the rel-
evant limits in wCoh are also limits in Top, where domains are regarded as
topological spaces in their Scott topology. Next, the forgetful functor from Top
to Mes preserves countable limits of separable spaces (see, e.g., [23, Theorem
1.10)). O

Starting with the final object 1 of wCoh, we construct the chain

| cty Act)2) Act)3)
1 — VAct 1 & (VAct)21 (V<_) (VACI;)31 (V<_) L.

(3)

and write {(VAt)@1 oy (VAct)n1}, _ for the limit cone. The map VA1 = 1
has a lower adjoint since VA1 has a least element. Thus each bonding map
in (3) has a lower adjoint.

Proposition 21

(i) The image of (3) under U: wCoh — Mes is the chain
| ct Ac 1
1 mtery Y ey CED (M — (4)

similarly obtained by iterating the functor M.

(11) U((vAct )wl) — (MAct )wl'

(iii) The image of the connecting map VA (VA1) — (VAT ynder U is
the connecting map MAC (MA)«1) — (MA)«1,

PROOF. First note that Proposition 19 and 20(iii) imply that MA<t o U = Uo
VA<t Part (i) immediately follows. Next, (i) follows from (i) and Proposition
20. Finally (iii) follows from (ii) and Proposition 19. O

Theorem 22 There is a final labelled Markov process whose state space is a
Polish space.

PROOF. The endofunctor VA : wCoh — wCoh is locally continuous: i.e., for
each pair of objects D, E € wCoh the action on homsets

(VA p g : wCoh(D, E) — wCoh(V(D)A V(E)A)
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is Scott-continuous. Thus the fixed-point theorem of Smyth and Plotkin [24]
tells us that the connecting map VA ((VA®)¥1) — (VA)¥] is an isomor-
phism. By Proposition 21 (iii) the connecting map MA® (MA)“1 — (MA)«1
is also an isomorphism. By Proposition 18 the inverse of this last map makes
(MA)@1 a final MA-coalgebra. Moreover, since (M*!)“1 is Lawson compact,
and any second countable compact Hausdorff space is metrizable, (MA)“1 ig
a Polish space. O

Remark 23 The solution of the domain equation D = V(D) has already
been considered by Desharnais et al. [11]. What is new here is the observation
that this domain s final as a labelled Markov process. By similar reasoning,
D in its Scott topology can be given the structure of a final coalgebra of the
endofunctor VA on Top. We exploit this last observation in Lemma 28.

7 Functional Expressions and Metrics

In this section we recall the definition of a metric for approrimate bisimilarity
due to Desharnais, Gupta, Jagadeesan and Panangaden [9]. Intuitively the
metric measures the behavioural proximity of states of an LMP. We show
that this metric generates the Lawson topology on the domain D = V(D)*
from Remark 23. The primary use of the results here is to be found in the
analysis of testing in the following section. However in passing we are also able
to deduce some new facts about the metric in and of itself.

Definition 24 The set F of functional expressions s given by the grammar

f =1 |min(fy, fo) | max(fi, fo) [(a)f | fOq
where a € Act and g € [0,1] N Q.

The syntax for functional expressions is closely related to the modal logic
presented below in Equation (14), Section 9. One difference is that the modal
connective (a) and truncated subtraction replace the single connective (a),.
However the intended semantics is quite different.

Fix a constant 0 < ¢ < 1. Given a labelled Markov process (X, %, i), a func-
tional expression f determines a measurable function f§: X — [0, 1] according
to the following rules. (We elide the subscript and superscript in f$ where no
confusion can arise.)
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1(z)=1
min(f, g)(z) =min(f(z), g(z))
max(f, g)(z) =max(f(z), g(x))
(f © ¢)(z) =max(f(x) — ¢,0)
(a)f)(z)=c[ fdpsa

In particular, (a)f is the composition

x2=mvx 050, 1-=500,1]

The left-hand map is measurable by definition of an LMP, while the mid-
dle map is measurable if f is measurable. Thus (a)f is measurable if f is
measurable.

The interpretation of a functional expression f is relative to the prior choice
of the constant c. The role of this constant is to discount observations made
at greater modal depth. The interpretation of f is also relative to a particular
LMP; however we have the following proposition.

Proposition 25 Suppose g: (X, %, uy — (Y, X', ') is a zig-zag map. Then for
each functional expression f € F, f = fy o g.

PROOF. The proof is by a straightforward induction on the structure of
feFk O

Given an LMP (X, X, u), Desharnais et al. [9] defined a metric® d% on the
state space X by

i(w,9) = sup|fi () = f50).

It is shown in [9] that zero distance in this metric coincides with bisimilarity.
Roughly speaking, the smaller the distance between states, the closer their
behaviour. The exact distance between two states depends on the value of ¢,
but one consequence of our results is that the topology induced by the metric
d% is the same for any value of ¢ in the open interval (0, 1).

Example 26 In the labelled Markov process below, d(sg, s3) = ¢28. The two

5 Strictly speaking we should say that d% is a pseudometric, since distinct states
may have distance 0.
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states are bisimilar just in case 6 = 0.

S1
a,% 'X,%-l—&
S0 a,l S3
a,% A—J
52

Now consider the domain D 2 V(D)*®* from Remark 23 qua labelled Markov
process; denote the transition probability function by u.

Proposition 27 For any f € F, the induced map f: D — [0, 1] is monotone
and Lawson continuous.

PROOF. The proof is by induction on f € F. The only non-trivial case is
f = (a)g; then f: D — [0,1] is given by the composite

D—t-vy(D)A " yD Lot [0,1] (5)

Note that each map above is Lawson continuous—the last one by the induction
hypothesis and Corollary 16. O

Define a preorder < on D by
z g yiff f(z) < f(y) for all f € F.

Since each functional expression gets interpreted as a monotone function, x C
y implies x < y. Theorem 29 asserts that the converse also holds. In order to
prove this result we need the following lemma.

Note that in the lemma we distinguish between an upper set V' C D, and a
<-upper set U C D (z € U and z < y implies y € U).

Lemma 28 Ifa € Act, © <y and U C D is Scott-open and <-upper, then
pa,a(U) < pya(U).

PROOF. Let K = {z1,...,2,} C U and z € D\ U be given. For each
i€ {1,...,m}, since z; £ z, there exists g; € F such that g;(x;) > ¢;(2). Since
F is closed under truncated subtraction, and each g; is Lawson continuous, we
may, without loss of generality, assume that g;(z;) >0 and g; is identically zero
on a Lawson open neighbourhood of z. Moreover, if we set g, = max; g;, then
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g, € Fisidentically zero in a Lawson open neighbourhood of z and is bounded
away from 0 on 1 K. Such a function g, can be exhibited for any z € D \ U.

Since D\U is Lawson compact (being Lawson closed) we can pick z1, ..., 2, €
D\ U such that f = min; g,, is identically zero on D\ U and is bounded away
from zero on 1T K by, say, r > 0. Finally, setting h = min(f,r), we get

1
peat K) < [ B < [ By < a0,
where the middle inequality follows from ({a)h)(z) < ({(a)h)(y).

Since U is the (countable) directed union of sets of the form 1 K for finite
K C U, it follows that p;4(U) < iy o(U). O

Theorem 29 The order on D coincides with <
PROOF. Let op denote the Scott topology on D and 7 the topology of Scott-

open <-upper sets. Consider the following diagram, where ¢ is the continuous
map given by tx = x.

<D,fD>L>V<D,ID>A“ (6)
(D,7)— - = = - —>V(D,7';ACt

Since ¢ is a bijection there is a unique function x' making the above diagram
commute in the category of sets.

Recall that the topology on V(D,7) is generated by sub-basic opens of the
form {v | vU>r} for U € 7 and 0<r<1. The inverse image of such a set under
i’ is Scott-open by the Scott continuity of y and is <-upper by Lemma 28.
Thus g is a continuous map and yields a VA-coalgebra structure on (D, 7).

The finality of the VA®-coalgebra ((D,op), 1), as indicated in Remark 23,
implies that ¢ has a continuous left inverse, and is thus a homeomorphism.
Hence, for each y € D, the Scott-closed set |y is 7-closed, and thus <-lower.
Thus ¢ < y impliesz Cy. O

Corollary 30 (Theorem 4.10[10]) Let (X, 3, u) be a labelled Markov pro-
cess with X an analytic space. Denote by «~ the bisimilarity relation on X.

Then x «~ vy iff f5(x) = f%(y) for all functional expressions f € F.

PROOQOF. Let g denote the unique zig-zag map from (X, X, u) to the final
LMP, i.e., the domain D from Remark 23. Then
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xwy<g(xr) =g(y) by Propositions 5 and 8
& folg(x)) = fi(g(y)) for all f € F, by Theorem 29
& f5(z) = f5(y) for all f € F, by Proposition 25.

O

Remark 31 Corollary 30 has already appeared as [10, Theorem 4.10]. The
proof there is quite different. Among other things it relies on a modal logic
characterizing bisimilarity from [8], a translation between functional expres-
stons and formulas of the modal logic, and an approrimation scheme for re-
covering an arbitrary LMP as the join of a chain of finite-state approzrimants.
These last two points are discussed at greater length in Section 9. We should
add that [10] also proves that given an LMP (X, ¥, u), x € X is simulated by
y € X just in case f§(x) < f§(y) for all functional expressions f.

Since we view the domain D as a labelled Markov process, we can consider
the metric d$, as defined in Section 3. We will need the following result.

Proposition 32 (Lemma 4.6[9]) Suppose 0 <c <1 and Act is finite. Then
given € > 0, there exists finite F' C F such that for all x,y € D

0< dyla,y) ~sup | fpla) ~ F(w)] <c.

Theorem 33 For 0<c<1 and finite Act the Lawson topology on D is induced
by d5,.

PROOF. The Lawson topology on D is compact. By Theorem 29, df, is a
metric (not just as pseduometric), and so it induces a Hausdorff topology.
Thus it suffices to show that the Lawson topology is finer than the topology
induced by d5,. Now if z, — z in the Lawson topology, then f(z,) — f(z)
for each f € F, since each functional expression is interpreted as a Lawson
continuous map. Now, by Proposition 32, d5,(z,,x) > 0asn —oco. O

Remark 34 Both hypotheses in the above theorem are necessary. In partic-
ular it is shown in [9] that the topology induced by d% differs for ¢ <1 and
c=1.

We defined a metric d% for each labelled Markov process X. However, if one
thinks of a labelled Markov process X = (X, X, u) as being equipped with a
distinguished (initial) state sx, then one can define a metric d° on the class
LMP of all labelled Markov processes by

d°(X,Y) = sup|[fx (sx) — fy(sv)l.

feF
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Corollary 35 For 0 < c<1 the topology on LMP induced by d° is compact
and independent of the value of c.

PROOF. Consider the function LMP — D mapping a labelled Markov
process X to the image of the distinguished state sx under the unique zig-zag
map X — D. By Proposition 25 this map is an isometry (i.e., a distance
preserving map) (LMP,d) — (D, d$%). Furthermore this map it is clearly
surjective. The stated results now easily follow from Theorem 33. O

8 Testing

In this section we characterize similarity on an LMP as a testing preorder, and
bisimilarity as a testing equivalence. The testing formalism we use is that set
forth by Larsen and Skou [20]. (See also Abramsky [1] and Bloom and Meyer
[5] for similar formalisms.) The idea is to specify an interaction between an
experimenter and a process; the way a process responds to the various kinds
of tests determines a simple and intuitive behavioural semantics.

A typical intuition is that a process is a black box whose interface to the
outside world includes a button for each action a € Act. The most basic
kind of test is to try and press one of the buttons: either the button will
go down and the process will make an invisible state change (corresponding
to a labelled transition), or the button doesn’t go down (corresponding to a
refusal). An important question arises as to which mechanisms are allowed
to combine the basic button-pushing experiments. Here, following Larsen and
Skou, we suppose that the tester can save and restore the state of the process
at any time. Or rather we make the equivalent assumption that the tester can
make multiple copies of the process in order to experiment independently on
one copy at a time. The facility of copying or replicating processes is crucial
in capturing branching-time equivalences like bisimilarity.

Definition 36 The test language Ty is given by the grammar
teo=wlat]| {tr,...,tn)
where a € Act.

The term w represents the test that does nothing but successfully terminate.
The term at represents the test: press button a, and in case of success proceed
with the test ¢. We usually abbreviate aw to just a. Finally, (¢1, ..., t,) specifies
the test: make n copies of (the current state of) the process and perform the
test t; on the i-th copy for each 7. Notice that tests are just finitely branching
labelled trees.
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Definition 37 Given a labelled Markov process (X, %, u), we define an in-
dexed family {P(—,t) e, of real-valued random variables on (X, %) by

P(z,w)=1
P(z,at)= [ P(—,t)dpz,
P(z,{t1,...,tn))=P(z,t1) - ... - P(z,t,).

Intuitively P(x,t) is the probability that state x passes test t.

Theorem 38 Let (X,X, u) be a labelled Markov process. Then x,y € X are
bisimilar just in case P(x,t) = P(y,t) for each test t € Ty.

PROOF. For the purposes of this proof we introduce the augmented language
T, with grammar given by

tre=wl|at]| (t,...,t) | rit1 + 7ota, (7)
where a € Act and r,79 € R.
Given z € X the function P(z,—) is extended from Ty to Ty by defining
P(z,71t1 + 7maote) = 11 P(x,t1) + roP(x, ts).
(Note that P(x,t) can no longer be regarded as a probability.)

P(—,t) is a bounded real-valued function on X for each ¢ € T;. Let .4 denote
the closure of the family of these functions in the Banach algebra of all bounded
real-valued functions on X equipped with the supremum norm. Then A is
a closed sub-algebra, i.e., it is closed under sums, scalar multiplication and
(pointwise) products. Now it is well-known that any such sub-algebra is also
closed under (pointwise) binary minima and maxima, see, e.g., Johnstone [17].
We recall the argument for the reader’s convenience.

It is enough to show that f € A implies |f| € A since

max(f,g) = 3(f+9)+3f — gl

Without loss of generality, since A is closed under scalar multiplication, we
may suppose that —1 < f < 1. Let g=1— f2; then 0 < ¢ < 1, and

=) =1 -9
1:3...(2n—3)

=l-59—50" = — 50" -

But this sum converges uniformly; thus | f| € A.
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It is now clear that A contains the interpretations of all functional expressions
f € F (where the constant c is set to 1).

Next we claim that for each ¢t € T there exist t1,...,tx € Toand ry,...,r, € R
such that P(—,t) = ¥ r,P(—,t;). This is easily shown by induction on
t € Ty using the identities

P(z,a(rity + rate)) =11 P(x, aty) + ro P(x, ats)
P(.T, <t, Tltl + T2t2>) :Tlp(.’lj, <t, t1>) + TQP(LL‘, <t, t2>) .

Now suppose z,y € X are such that P(z,t) = P(y,t) for all t € T,. It follows
from the claim that P(z,t) = P(y,t) for all t € Ty. Thus f(z) = f(y) for all
functional expressions f € F, and = and y are bisimilar by Corollary 30. O

Theorem 38 generalizes and simplifies a result of Larsen and Skou [20, The-
orem 6.5]. The generalization is that Larsen and Skou’s result only applied
to discrete probabilistic transition systems satisfying the minimal deviation
assumption. This last condition says that there is a fixed € > 0 such that any
transition probability u,.({y}) is an integer multiple of . The way in which
Theorem 38 simplifies [20, Theorem 6.5] is that the test language Tq contains
no negative observations or failures. We explain this point in more detail below
where we actually introduce failures in order to test for similarity.

Given the fact that bisimilarity on an LMP is just mutual similarity, one might
conjecture that x € X is simulated by y € X just in case P(z,t) < P(y,t) for
all t € Ty. However the next example shows that this is not the case.

Example 39 Consider the labelled Markov process (X,X, ) over label set
Act = {a, b} depicted below.

To Yo

T hn Y2
lb[%] lb[l]

T2 Ys

It is readily verified that P(xq,t) < P(yo,t) for allt € Ty. However xq is not
stmulated by yo. In particular, x1 is only simulated by ys, but the probability
of moving from xy to x1 is greater than the probability of moving from yo to

Ya.

There is no hope of using the extended test language T; to characterize sim-
ulation since it allows negative scalar multiples of tests—so the probability
of passing a test is not monotone with respect to the simulation order. On
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the other hand, if we were to restrict attention to a sublanguage of tests that
are positive linear combinations of elements of Ty, then in the example above
we would still have P(zg,t) < P(yo,t) for all such tests t. Nevertheless the
solution we outline below does follow the general idea of using a ‘monotone’
subset of T; as a test language.

One can think of the tuple ¢t = (t1,...,t,) as a conjunction in that ¢ succeeds
if each of its components succeeds. In order to capture simulation the idea is
to consider more general truth-functional ways of combining tests.

Definition 40 For each n € N, the set Fma(n) of propositional formulas on
variables py, ..., p, is generated by the syntax

pu=T|p|eVe|lpAp.

Under the standard Boolean semantics each ¢ € Fma(n) is interpreted as a
function ¢p: B* — B, where B = {false, true}. We also consider a real-valued
semantics where ¢ € Fma(n) is interpreted as a function ¢g: [0,1]" — [0, 1].
Given r1,...,7r, € [0, 1], consider n independently distributed Booelan-valued
Bernoulli random variables X1, ..., X,,, where X; takes value true with prob-
ability r;. We define

er(r1, ... 1mn) = P(ep(X1,. .., X,) = true).
Definition 41 The test language T, is given by the grammar
te=at|(ty,...,t,) [p € Fma(n)].

Given a labelled Markov process (X, %, u) and z € X, we extend the definition
of the function P(x,—) from Tq to T, by

P(z,o(t1,...,tn)) = or(P(z,t1),..., Pz, t,)) .

A test t € T, can be viewed as a tree whose edges are labelled with elements
of Act and such that an n-way branching node is labelled by an element of
Fma(n). Intuitively the test ¢ = ¢(t1,...,t,) is implemented as follows. Make
n copies of the current state of the process; run test t; on the i-th copy;
record success for t if ¢ is true under the (Boolean) valuation v € B" given by
v; = true iff ¢; succeeds.

If o = p1A---Apy, then p(p1, . .., pp) exactly corresponds to the test (¢, ..., ,)
from the test language Ty. On the other hand, it is straightforward to see how
©(t1,...,t,) can be encoded as a term in T; using the principle of inclusion-
exclusion. Thus the test language T, lies strictly between Ty and T;.
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If ¢ = p1 V py we abbreviate p(t1,%3) to t; V ta. This test succeeds if either
disjunct succeeds. The notation t; A %5 is interpreted similarly. Note however
that the ‘distributive law’ @(t1,t2) A ¥(t1,t2) = (@ A 9)(t1,t2) does not hold
in general. For instance, the two copies of #; of the left-hand side represent
independent tests.

Theorem 42 Let (X, %, p) be a labelled Markov process. Then x € X is sim-
ulated by y € X iff P(x,t) < P(y,t) for all tests t € T,.

Example 43 Recall the process from Example 39 and consider the test t =
a(bV b). Then P(xg,t) = 3/8 while P(yo,t) = 1/4. Thus t witnesses the fact
that xo 1s not stmulated by yo.

The rest of this section is devoted to a proof of Theorem 42. This proof has a
statistical flavour and is strikingly different from that of Theorem 38.

Definition 44 Let (X,3, u) be a labelled Markov process. Recall that each
functional expression f € F defines a function X — [0,1] (again, take c = 1).
Given f € F, 0 < a<pf <1 and § >0, we say that t € T, is a test for
(f,,B,0) if for all z € X,

Whenever f(z) > [ then P(x,t)
Whenever f(z) < « then P(z,t)

1—96;
J.

NNV

Thus, if test ¢ succeeds on state x, then with high confidence we can assert
that f(x)>a. On the other hand, if ¢ fails on state x then with high confidence
we can assert that f(z) < f.

Lemma 45 Let (X,X, u) be a labelled Markov process. Then for any f € F,
0<a<pB <1 andd >0, there is a test t for (f, o, B,9).

PROOF. The proof proceeds by induction on f € F. The cases f = 1 and
f = g © q are straightforward and we omit them.

(1) f = min(f1, f2). By induction, let ¢; be a test for (f;, a, 8,9/2) fori =1, 2.
Then we take t = t; Aty as a test for (f, «, 5,06). Now

min(fi, f2)(z) > B = fila) > f and fu(x) > B
= P(z,t;) >1—06/2 and P(z,t) >1—7§/2
= P(z,t) > 1 -9,
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and

min(fi, f2)(#) < a= fi(z) <a or fo(z) < a
:>P( 2.1) <5/2 or Plats) < 6/2
P(z,t) < 0/2.

(2) f = max(fi, fo). Let t; be a test for (f;,a, 3,0/2) for i = 1,2. Then we
take t = t1 V t3 as a test for (f, «, 5, ). The justification is similar to the

case above.
(3) f = (a)g. Pick n € N and ¢ > O By the induction hypothesis, for 1 <
i < n we have a test t; for (g, *,0"). Pick ¢ € Fma(n) such that

oB(P1, - - -, Pn) = true iff %|{z | pi = true}| > 2t

The rest of the proof is a calculation to show that for suitably large n
and small 0', t = p(aty, ..., at,) can be used as a test for (f, «, 3,0).
Fix z € X. Let 6,,...,0, be independent {0, 1}-valued Bernoulli ran-
dom variables, where §; = 1 with probability P(z,at;). Furthermore,
define 0 = (1/n) >, 0;. Thus P(z,t) = P(6 > MTD‘)
The induction hypothesis is that for 1 <i < n

gly) =1 :>P(y,) >1-4¢ (8)
g <= Py, t) < 0. 9)

We estimate P(z, at;) by conditioning on the value of g using (8) and (9).

: 1
(1 =0 tsa {g > %} < Pz, ati) < paa {g > ZT} + 6" (10)
Since E[f] = ?, P(z,at;), it follows that
( ' n o,
{ = } E[9 Zuma{g>—}+5

Whence, by a straightforward manipulation of terms in the summation,

n_ i i+1 " (i1 i
=Y ta{ s <o< b < B Spna{ << )40
( )izzlnuw,a ~<g<— [6] izzlnuz,a —<g<—+

Thus we can choose ¢’ small enough and n large enough to ensure that
|E[0] - fgd,ulm,a| < ﬁ;_a' (11)

Since V[0] = (1/n?) ¥, V[6;] < 1/n, by Chebyshev’s inequality [13], for
large n it holds that

P{lo-El) <2} >1-0 (12)
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It is straightforward that the choice of ¢’ and n required to make (11)
and (12) true can be made independently of z € X. Now

((a)g)(x) = B = [gdps. > B by definition of {a)g
éEM/wmbﬂﬂ)
=P (0> ﬂ*“) 1—-6 by (12)
= P(z,t) > 1—

Similarly it follows that ((a)g)(z) < @ = P(z,t) <. O

Theorem 42 now follows from Lemma 45 using the characterization of simu-
lation in terms of functional expressions from Remark 31.

9 Conclusion and Related Work

The theme of this paper has been the use of domain-theoretic and coalgebraic
techniques to analyze labelled Markov processes. These systems generalize the
discrete labelled probabilistic processes investigated by Larsen and Skou [20].
Our main results extend and simplify the work of Larsen and Skou on the
connection between probabilistic bisimulation and testing. The direction of
this generalization, and the ideas and techniques we use, are mainly inspired by
the work of Desharnais, Edalat, Gupta, Jagadeesan and Panandagen [8,9,11].
In particular, as we now explain, there are several interesting parallels between
the results reported here and their work on the logical characterization of
bisimilarity.

A central result of Larsen and Skou [20] was a logical characterization of
bisimilarity for discrete LMPs satisfying the minimum deviation assumption.
The formulas in their logic were generated by the grammar

pu=TleAplpVel{a)ge| A (13)
where a € Act and ¢ € [0,1] N Q.

This is a probabilistic version of Henessey-Milner logic. The semantics is given
by a satisfaction relation F between states of a labelled Markov process and
formulas. In particular, one has z F (a),¢ if the probability that z makes an a-
labelled transition to the set of states satisfying ¢ exceeds ¢. Also z F A, just
in case no a-transition is possible from x. This logic characterizes bisimilarity
in the sense that states satisfy the same formulas just in case they are bisimilar.
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In generalizing the result of Larsen and Skou beyond the discrete case Deshar-
nais et al. [8] realized that an even simpler logic, generated by the grammar

pu=T oA |{a)yp, (14)

is sufficient to characterize bisimilarity for all LMPs. This is reflected in our
observation that negative observations, or failures, are not needed to test for
bisimilarity. Indeed the grammar for the ‘cut down’ logic is similar in form to
the grammar for tests in Definition 36.

It was later shown in [11] that the logic (14) is inadequate to characterize
similarity: one needs to include disjunction. Again this is reminiscent of the
observation that the test language in Definition 36 doesn’t characterize simi-
larity: one needs to consider failures and upward closed sets of observations.
Having said this, the analogy is not perfect: at no stage does [11] ever use the
negative construct A, in their logic.

We would like also to clarify the relationship between parts of this work and
the paper [11] on approximating LMPs. That work features the same domain
equation D & V(D)ACt appearing in the present paper; furthermore, the au-
thors exhibit a two-stage construction for interpreting an arbitrary LMP in
D. In the first stage they show how to interpret a finite-state LMP as an ele-
ment of D. The second stage utilizes a method for unfolding and discretizing
an arbitrary LMP X = (X, X, u) into finite-state approximants. In fact they
produce a sequence of finite approximants, which is a chain in the simulation
order, and such that any formula satisfied by X is also satisfied by one of the
finite approximants. Then they define the interpretation of X in the domain D
to be the join of the interpretations of its finite approximants. Using their re-
sults on the logical characterization of bisimilarity they show that each LMP
is bisimilar to its interpretation in D. It follows that their domain-theoretic
semantics is the same as our final semantics.

As far as we are aware it was de Vink and Rutten [25] who were the first to
study probabilistic transition systems as coalgebras. However, since they work
with ultrametric spaces, their results only apply in the discrete setting, not
to arbitrary LMPs. It was also noted in [8] that LMPs are coalgebras of the
Giry functor, although this observation was not developed there.

An interesting problem, suggested by the development in Section 8, would
be to realize the final LMP as the Gelfand-Naimark dual of an equationally
presented C*-algebra. The idea would be to take the syntax in Section 8 (7)
and quotient by a suitable set of equations to get a commutative ring with
unity. An issue that is as yet unresolved is how to define a suitable norm in
order to get a C*-algebra. We conjecture that this can be done, and moreover
that the final LMP can be recovered as the space of characters of the resultant
algebra.
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