

♠

Random Variables over Domains

Michael Mislove Tulane University

Work supported by NSF and ONR ICALP 2005

Nondeterminism vs. Probabilistic Choice

- Nondeterminism: Represents the environment making choices
 - Like riders selecting floors on an elevator
- Probabilistic choice: Represents random events affecting the system
 - Like random stops the elevator makes

Standard Models for Nondeterminism and Probabilistic Choice

◆ ◆

• S - finite set of states

- Nondeterministic choice: $(\mathcal{P}(S), \cup)$
- Probabilistic choice: $(\mathbb{V}(S), \{r+ \mid 0 \le r \le 1\})$ $\mathbb{V}(S) = \{\sum_{i=1}^{n} r_i \delta_{x_i} \mid 0 \le r_i; \sum_i r_i \le 1; x_i \in S\}$

 $\sum_{i=1}^{m} r_i \delta_{x_i r} + \sum_{j=1}^{n} s_j \delta_{y_j} = \sum_{i=1}^{m} r \cdot r_i \delta_{x_i} + \sum_{j=1}^{n} (1-r) \cdot s_j \delta_{y_j}$

$$\sum_{i=1}^{m} r_i \delta_{x_i} \sqsubseteq \sum_{j=1}^{n} s_j \delta_{y_j} \quad \text{iff} \quad \sum_{x_i \in X} r_i \le \sum_{y_j \in X} s_j \\ \forall X \in \mathcal{P}(S)$$

Nondeterminism & Probability

- Each defines an algebraic theory
- Nondeterminism: theory of semilattices $x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z; \quad x \sqcap y = y \sqcap x; \quad x \sqcap x = x$
- Probabilistic choice: theory of probabilistic algebras $x_r + y = y_{1-r} + x$ $x_1 + y = x$ $x_r + x = x$ $(x_r + y)_s + z = x_{r \cdot s} + (y_{\frac{s(1-r)}{1-r \cdot s}} + z)$ if r < 1

Combining Theories

- $\mathcal{P}(\mathbb{V}(S))$ Sets of valuations
- $X_r + Y = \{x_r + y \mid x \in X, y \in Y\}$
- Nondeterministic choice and probabilistic choice are entangled:
 ({δ_x} ∪ {δ_y}) 1/2 + ({δ_x} ∪ {δ_y}) = {δ_x, δ_y, δ_x 1/2 + δ_y}
- $X \sqcap Y = X \cup Y \cup (\cup_r X_r + Y)$
- Theorem (*Tix 1999*/ *M* 2000) The power set induces an endofunctor on probabilistic algebras.

Two Theorems

- Theorem I (Beck) If $\langle S, \eta_S, \mu_S \rangle, \langle T, \eta_T, \mu_T \rangle$: A \rightarrow A are monads, then the following are equivalent:
 - There is a distributive law $d: ST \xrightarrow{\cdot} TS$
 - S lifts to a monad of T-algebras
- Theorem 2 (*Plotkin & Varacca*) There is no distributive law of the power set over the probabilistic power domain, or *vice versa*.

Alternative approach

- Weaken (eliminate) one of the laws: $x_r + y = y_{1-r} + x$ $x_1 + y = x$ $x_r + x = x$ $(x_r + y)_s + z = x_{r \cdot s} + (y_{\frac{s(1-r)}{1-r \cdot s}} + z)$ if r < 1
- New structures (finite) indexed valuations: $IV(X) = [\dot{\cup}_{n>0} \ (\mathbb{R}_+ \times X)^n / \equiv)] \ \cup \{\underline{0}\}$ $(r_i, x_i) \equiv (s_i, y_i) \text{ iff } (\exists \phi \in S(n))$ $(r_{\phi^{-1}(i)}, x_{\phi^{-1}(i)}) = (s_i, y_i) \ (i = 1, \dots, n)$

Understanding Indexed Valuations

•
$$[r_i, x_i]_m \simeq \sum_{i=1}^m r_i \delta_{x_i};$$
 $[1, x] \not\equiv [(\frac{1}{2}, x), (\frac{1}{2}, x)]$

200

•
$$r \cdot [r_i, x_i]_m \mapsto [r \cdot r_i, x_i]_m \colon \mathbb{R}_+ \times IV(X) \to IV(X)$$

•
$$[r_i, s_i]_m \oplus [s_j, y_j]_n = [t_k, z_k]_{m+n}$$

 $(t_k, z_k) = \begin{cases} (r_i, x_i) & \text{if } k \le m \\ (s_j, y_j) & \text{if } m < k \le n \end{cases}$

• $[r_i, x_i]_m + [s_j, y_j]_n = r \cdot [r_i, x_i]_m \oplus (1 - r) \cdot [s_j, y_j]_n$

Universal Properties

- Indexed valuations are real quasi-cones: A + (B + C) = (A + B) + C A + B = B + A r(A + B) = rA + rB r(sA) = (rs)A $0A = \underline{0}, \quad 1A = A$ $\underline{0} + A = A$ $(\underline{r + s})A = rA + sA$ $r, s \in \mathbb{R}_+$ $A, B, C \in IV(X)$ • Theorem (Varacca) IV: Set \rightarrow Set defines a monad of real quasi-cones
 - that enjoys a distributive law over \mathcal{P} . So, $(\mathcal{P} \circ IV)(X)$ is a real quasi-cone that also is a semilattice.

Justifying Indexed Valuations $[r_i, x_i]_m \simeq \sum_{i=1}^m r_i \delta_{x_i}; \qquad [1, x] \not\equiv [(\frac{1}{2}, x), (\frac{1}{2}, x)]$ $f: (P, \mu) \to (X, \Omega) \text{ a random variable.}$ $f: (P, \mu) \to (X, \Omega) \text{ induces } (f \cdot \mu)(U) = \mu(f^{-1}(U))$

Flat: $IV(X) \to \mathbb{P}(X)$ by $Flat([r_i, x_i]_m) = \sum_i r_i \delta_{x_i}$ - morphism of real quasi-cones.

- too coarse

Generalizing to Domains Domain: Partial order in which directed sets have suprema

- $A \subseteq D$ directed if each finite subset has an upper bound in A
- Continuous: x << y iff y ≤ sup A ⇒ x ≤ a ∈ A
 y = sup { x | x << y } directed
 Example: ([0,1], ≤) x << y iff x = 0 or x < y

Categories of Domains

- $f: D \to E$ continuous if f preserves the order and f preserves sups of directed sets Dom – domains and continuous functions
 - not cartesian closed
- BCD bounded complete domains and continuous functions \cap – is cartesian closed
- $\mathsf{RB}-\mathsf{retracts}$ of *bifinite domains* and continuous functions
- \cap is cartesian closed
- FS FS-domains and continuous functions - maximal cartesian closed

Constructing Bag Domains $E \simeq D \times E = \bigcup_n D^n - \text{domain of lists over } D$ - leaves RB, FS invariant - free domain monoid over D $D^n / \equiv_{S(n)}$ – domain of *n*-bags over D - leaves RB, FS invariant $E_C = \bigcup_n (D^n / \equiv_{S(n)})$ – bag domain over D

– leaves RB, FS invariant

– free commutative domain monoid over ${\cal D}$

Applying the Construction $IV(D) = \dot{\cup}_n ((\overline{\mathbb{R}_+} \times D)^n / \equiv_{S(n)}) \cup \{\underline{0}\}$

- leaves RB, FS invariant
- free commutative domain monoid over $\overline{\mathbb{R}_+} \times D$ with $\perp = 0$

 $\mathbb{RV}(D) = \{ [r_i, x_i]_m \in IV(D) \mid \sum_i r_i \leq 1 \} \cup \{ \underline{0} \}$ - discrete random variables over D

Theorem: \mathbb{RV} : $\mathsf{RB} \to \mathsf{RB}$ is a continuous endofunctor; the same is true for FS. Flat: $\mathbb{RV}(D) \to \mathbb{V}(D)$ is an epimorphism.

Summary and Future Work

- Daniele Varacca first defined indexed valuations
 - Used abstract bases
 - No categorical results
- Our work first to introduce random variables
- Categorical results also new
- Bag domain results also new
- Possible further work:
 - Generalize to nondiscrete random variables
 - Applications to quantum computing entropy & majorization