Random Variables
 over Domains

Michael Mislove
Tulane University

Work supported by NSF and ONR ICALP 2005

Nondeterminism vs. Probabilistic Choice

- Nondeterminism: Represents the environment making choices
- Like riders selecting floors on an elevator
- Probabilistic choice: Represents random events affecting the system
- Like random stops the elevator makes

Standard Models for Nondeterminism and Probabilistic Choice

- S - finite set of states
- Nondeterministic choice: $(\mathcal{P}(S), \cup)$
- Probabilistic choice: $(\mathbb{V}(S),\{r+\mid 0 \leq r \leq 1\})$

$$
\mathbb{V}(S)=\left\{\sum_{i=1}^{n} r_{i} \delta_{x_{i}} \mid 0 \leq r_{i} ; \sum_{i} r_{i} \leq 1 ; x_{i} \in S\right\}
$$

$\sum_{i=1}^{m} r_{i} \delta_{x_{i} r}+\sum_{j=1}^{n} s_{j} \delta_{y_{j}}=\sum_{i=1}^{m} r \cdot r_{i} \delta_{x_{i}}+\sum_{j=1}^{n}(1-r) \cdot s_{j} \delta_{y_{j}}$

$$
\begin{aligned}
& \sum_{i=1}^{m} r_{i} \delta_{x_{i}} \sqsubseteq \sum_{j=1}^{n} s_{j} \delta_{y_{j}} \quad \text { iff } \quad \sum_{x_{i} \in X} r_{i} \leq \sum_{y_{j} \in X} s_{j} \\
& \forall X \in \mathcal{P}(S)
\end{aligned}
$$

Nondeterminism \& Probability

- Each defines an algebraic theory
- Nondeterminism: theory of semilattices

$$
x \sqcap(y \sqcap z)=(x \sqcap y) \sqcap z ; \quad x \sqcap y=y \sqcap x ; \quad x \sqcap x=x
$$

- Probabilistic choice: theory of probabilistic algebras

$$
\begin{aligned}
x_{r}+y=y_{1-r}+x & x_{1}+y=x \quad x_{r}+x=x \\
\left(x_{r}+y\right)_{s}+z= & x_{r \cdot s}+\left(y_{\frac{s(1-r)}{1-r \cdot s}}^{1-z)} \text { if } r<1\right.
\end{aligned}
$$

Combining Theories

- $\mathcal{P}(\mathbb{V}(S))$ - Sets of valuations
- $X_{r}+Y=\left\{x_{r}+y \mid x \in X, y \in Y\right\}$
- Nondeterministic choice and probabilistic choice are entangled:
$\left(\left\{\delta_{x}\right\} \cup\left\{\delta_{y}\right\}\right)_{\frac{1}{2}}+\left(\left\{\delta_{x}\right\} \cup\left\{\delta_{y}\right\}\right)=\left\{\delta_{x}, \delta_{y}, \delta_{x \frac{1}{2}}+\delta_{y}\right\}$
- $X \sqcap Y=X \cup Y \cup\left(\cup_{r} X_{r}+Y\right)$
- Theorem (Tix $1999 /$ M- 2000)

The power set induces an endofunctor on probabilistic algebras.

Two Theorems

- Theorem I (Beck)

If $\left\langle S, \eta_{S}, \mu_{S}\right\rangle,\left\langle T, \eta_{T}, \mu_{T}\right\rangle: \mathrm{A} \rightarrow \mathrm{A}$ are monads, then the following are equivalent:

- There is a distributive law $d: S T \dot{\rightarrow} T S$
- S lifts to a monad of T-algebras
- Theorem 2 (Plotkin \& Varacca)

There is no distributive law of the power set over the probabilistic power domain, or vice versa.

Alternative approach

- Weaken (eliminate) one of the laws:

$$
\begin{aligned}
x_{r}+y=y_{1-r}+x & x_{1}+y=x \\
\left(x_{r}+y\right)_{s}+z & =x_{r \cdot s}+\left(y_{\frac{s(1-r)}{1-r \cdot s}}^{1}+z\right) \text { if } r<1
\end{aligned}
$$

- New structures - (finite) indexed valuations:

$$
\begin{gathered}
\left.I V(X)=\left[\dot{U}_{n>0}\left(\mathbb{R}_{+} \times X\right)^{n} / \equiv\right)\right] \cup\{\underline{0}\} \\
\left(r_{i}, x_{i}\right) \equiv\left(s_{i}, y_{i}\right) \text { iff }(\exists \phi \in S(n)) \\
\left(r_{\phi^{-1}(i)}, x_{\phi^{-1}(i)}\right)=\left(s_{i}, y_{i}\right)(i=1, \ldots, n)
\end{gathered}
$$

Understanding Indexed Valuations

- $\left[r_{i}, x_{i}\right]_{m} \simeq \sum_{i=1}^{m} r_{i} \delta_{x_{i} ;} ; \quad[1, x] \not \equiv\left[\left(\frac{1}{2}, x\right),\left(\frac{1}{2}, x\right)\right]$
- $r \cdot\left[r_{i}, x_{i}\right]_{m} \mapsto\left[r \cdot r_{i}, x_{i}\right]_{m}: \mathbb{R}_{+} \times I V(X) \rightarrow I V(X)$
- $\left[r_{i}, s_{i}\right]_{m} \oplus\left[s_{j}, y_{j}\right]_{n}=\left[t_{k}, z_{k}\right]_{m+n}$

$$
\left(t_{k}, z_{k}\right)= \begin{cases}\left(r_{i}, x_{i}\right) & \text { if } k \leq m \\ \left(s_{j}, y_{j}\right) & \text { if } m<k \leq n\end{cases}
$$

- $\left[r_{i}, x_{i}\right]_{m r}+\left[s_{j}, y_{j}\right]_{n}=r \cdot\left[r_{i}, x_{i}\right]_{m} \oplus(1-r) \cdot\left[s_{j}, y_{j}\right]_{n}$

Universal Properties

- Indexed valuations are real quasi-cones:

$$
\begin{array}{rl}
A+(B+C)=(A+B)+C & A+B=B+A \\
r(A+B)=r A+r B & r(s A)=(r s) A \\
0 A=\underline{0}, \quad 1 A=A & \underline{0}+A=A \\
& r, s \in \mathbb{R}_{+} A, B, C \in I V(X)
\end{array}
$$

- Theorem (Varacca)
$I V:$ Set \rightarrow Set defines a monad of real quasi-cones that enjoys a distributive law over \mathcal{P}. So, $(\mathcal{P} \circ I V)(X)$ is a real quasi-cone that also is a semilattice.

Justifying Indexed Valuations

$\left[r_{i}, x_{i}\right]_{m} \simeq \sum_{i=1}^{m} r_{i} \delta_{x_{i} ;} ; \quad[1, x] \not \equiv\left[\left(\frac{1}{2}, x\right),\left(\frac{1}{2}, x\right)\right]$
$f:(P, \mu) \rightarrow(X, \Omega)$ a random variable.
$f:(P, \mu) \rightarrow(X, \Omega)$ induces $(f \cdot \mu)(U)=\mu\left(f^{-1}(U)\right)$

- too coarse

Flat: $\operatorname{IV}(X) \rightarrow \mathbb{P}(X)$ by $\operatorname{Flat}\left(\left[r_{i}, x_{i}\right]_{m}\right)=\sum_{i} r_{i} \delta_{x_{i}}$

- morphism of real quasi-cones.

Generalizing to Domains

Domain: Partial order in which directed sets have suprema

- $A \subseteq D$ directed if each finite subset has an upper bound in A
- Continuous: $x \ll y$ iff $y \leq \sup A \Rightarrow x \leq a \in A$

$$
y=\sup \{x \mid x \ll y\}-\text { directed }
$$

Example: $([0, \mathrm{I}], \leq) \quad x \ll y$ iff $x=0$ or $x<y$

Categories of Domains

$f: D \rightarrow E$ continuous if f preserves the order and f preserves sups of directed sets

Dom - domains and continuous functions

- not cartesian closed

BCD - bounded complete domains and continuous functions $\cap \quad-i s$ cartesian closed
RB - retracts of bifinite domains and continuous functions
$\cap \quad-i s$ cartesian closed
FS - FS-domains and continuous functions

- maximal cartesian closed

Constructing Bag Domains
 $E \simeq D \times E=\dot{U}_{n} D^{n}-$ domain of lists over D
 - leaves RB, FS invariant
 - free domain monoid over D

$D^{n} / \equiv_{S(n)}$ - domain of n-bags over D

- leaves RB, FS invariant
$E_{C}=\dot{U}_{n}\left(D^{n} / \equiv_{S(n)}\right)$ - bag domain over D
- leaves RB, FS invariant
- free commutative domain monoid over D

Applying the Construction
 $$
I V(D)=\dot{U}_{n}\left(\left(\overline{\mathbb{R}_{+}} \times D\right)^{n} / \equiv_{S(n)}\right) \cup\{\underline{0}\}
$$

- leaves RB, FS invariant
- free commutative domain monoid over $\overline{\mathbb{R}_{+}} \times D$ with $\perp=0$

$$
\mathbb{R} \mathbb{V}(D)=\left\{\left[r_{i}, x_{i}\right]_{m} \in I V(D) \mid \sum_{i} r_{i} \leq 1\right\} \cup\{\underline{0}\}
$$

- discrete random variables over D

Theorem: $\mathbb{R V}: \mathrm{RB} \rightarrow \mathrm{RB}$ is a continuous endofunctor; the same is true for FS . Flat: $\mathbb{R} \mathbb{V}(D) \rightarrow \mathbb{V}(D)$ is an epimorphism.

Summary and Future Work

- Daniele Varacca first defined indexed valuations
- Used abstract bases
- No categorical results
- Our work first to introduce random variables
- Categorical results also new
- Bag domain results also new
- Possible further work:
- Generalize to nondiscrete random variables
- Applications to quantum computing - entropy \& majorization

