Variations on an Interval Domain Theme

Michael Mislove
Joint work with
Keye Martin, Dusko Pavlovic \& James Worrell

Oxford 2006

Outline

- The interval domain
- Probability and Domain Theory
- Majorization and entropy
- The Bayesian Order
- Generalizations

The Interval Domain
 $$
\mathrm{I} \mathbb{R}=(\{[a, b] \mid a \leq b \in \mathbb{R}\}, \supseteq)
$$

- Directed complete
$-D \subseteq P$ directed if $(\forall F \subseteq D$ finite $)(\exists d \in D) F \subseteq \downarrow d$ $D \subseteq \mathbb{R}$ directed iff D is a filterbase
- Each directed subset of P has a least upper bound in P. $D \subseteq I \mathbb{R}$ directed $\Longrightarrow \sqcup D=\bigcap D$
- $I \mathbb{R}$ also continuous:

$$
\begin{aligned}
&- x \ll y \in P \text { iff }(\forall D \text { directed }) y \sqsubseteq \sqcup D \Rightarrow \uparrow x \cap D \neq \emptyset \\
& {[a, b] \ll[c, d] \text { iff }[c, d] \subseteq(a, b) } \\
&-\Downarrow y=\{x \mid x \ll y\} \text { directed } \& y=\sqcup \Downarrow y \\
& {[c, d]=\bigcap\{[a, b] \mid[c, d] \subseteq(a, b)\} }
\end{aligned}
$$

- Originally proposed by Dana Scott as model for functional programming language with abstract data type 'real'.
- $[a, b] \sqsubseteq[c, d]$ means $[c, d]$ has more information than $[a, b]$. Maximal - ideal - elements are points: $[r, r], r \in \mathbb{R}$.

Notice $I \mathbb{R}$ has additional structure:

- $[a, b] \wedge[c, d]=[a \wedge c, b \vee d]$

Works for all non-empty families of intervals - if we add \mathbb{R} to \mathbb{R}. These are called continuous Scott domains
CSD - Continuous Scott domains and Scott continuous maps CSD is a cartesian closed category:

- terminal object
- finite products
- internal hom: $P^{Q}=\operatorname{CSD}[Q, P]$

Escardó took up Scott's proposal to develop Real PCF

Real PCF

- Lazy functional language based on simply typed λ-calculus with recursion
- has real numbers abstract data type realized via interval domain

Operational semantics for Real PCF associates to expressions of type real a shrinking sequence of rational intervals representing the real number.

Model built over $\mathbb{I R}$ is computationally adequate: Intersection of intervals agrees with the $\mathbb{I R}$-based denotational semantics of real expression

But, Real PCF requires parallel evaluation ("dovetailing") for its operational semantics:

$$
\begin{aligned}
& \text { pif: bool } \times \text { real } \times \text { real } \rightarrow \text { real } \\
& \operatorname{pif}(\text { true }, x, y)=x ; \operatorname{pif}(\text { false, } x, y)=y ; \operatorname{pif}(\perp, x, y)=x \sqcap y
\end{aligned}
$$

Requires evaluating b, x, y in parallel and outputting partial results. Used to ensure Real PCF is Turing universal

Recently, Escardó, M. Hofmann \& T. Streicher showed pif is intrinsic: Under mild conditions, any language that is computationally adequate wrt $\mathbb{I R}$ must allow a "weak parallel or:"

$$
\begin{gathered}
\text { wpor: bool } \times \text { bool } \rightarrow\{\perp, \top\} \\
\operatorname{wpor}(x, y)=\top \text { iff } x=\top \text { or } y=\top
\end{gathered}
$$

The Scott Topology

$U \subseteq P$ is Scott open if:

- $U=\uparrow U=\{x \in P \mid(\exists u \in U) u \sqsubseteq x\}$
- $(\forall D$ directed $) \sqcup D \in U \Longrightarrow D \cap U \neq \emptyset$

Note: P continuous \& $x \ll y \in P) \Longrightarrow(\exists z) x \ll z \ll y$ This implies $\Uparrow x=\{y \mid x \ll y\}$ is Scott open.
$f: P \rightarrow Q$ is Scott continuous iff

- f is monotone
- $f(\sqcup D)=\sqcup f(D)$ for D directed.

Domain Models

Notice that $x \mapsto[x, x]: \mathbb{R} \rightarrow \mathbb{R}$ is a homeomorphism onto its image in the relative Scott topology.
$I \mathbb{R}$ is a domain model for \mathbb{R}.
P is a domain model for X if
$\exists \phi: X \rightarrow\left(\operatorname{Max}(P),\left.\sigma(P)\right|_{\operatorname{Max}(P)}\right)$ homeomorphism
P is ω-continuous if $(\exists B \subseteq P)$ countable with $\Downarrow x \cap B$ directed and $x=\sqcup(\Downarrow x \cap B)(\forall x \in P)$

Theorem (Lawson): X is Polish iff X has a domain model into an ω-continuous domain whose Scott and Lawson topologies agree on $\operatorname{Max}(P)$.
$\lambda(P)=\sigma(P) \vee \omega(P), \quad \omega(P)=\langle\{P \backslash \uparrow F \mid F \subseteq P$ finite $\}\rangle$
$\mu: P \rightarrow[0, \infty)^{o p}$ measurement if μ Scott continuous and $x \in \operatorname{Max}(P) \& x \in U \in \sigma(P) \Longrightarrow(\exists \epsilon>0) \mu_{\epsilon}(x) \subseteq U$ $\mu_{\epsilon}(x)=\{y \sqsubseteq x \mid \mu(y) \in[0, \epsilon)\}$
$\operatorname{ker}(\mu)=\{x \in P \mid \mu(x)=0\}$
$\mu: I \mathbb{R} \rightarrow[0, \infty)^{o p}$ by $\mu([a, b])=b-a$

Theorem (Martin \& Reed):

- X is developable \& T_{1} iff $X=\operatorname{ker}(\mu)$ for μ defined on a continuous poset.
- Each Cech-complete, developable space is the kernel of a measurement on a domain.
- But, there is a domain whose maximal elements are a G_{δ} but they are not kernel of any measurement.

These results utilize Mike's Moore space construction.

Probability Theory \& Domains

$\mu: \sigma(P) \rightarrow[0,1]$ valuation if:

- $\mu(\emptyset)=0$
- $\mu(U \cup V)+\mu(U \cap V)=\mu(U)+\mu(V)$
- $U \subseteq V \Longrightarrow \mu(U) \leq \mu(V)$

Theorem (Lawson, Edalat, Saheb-Djarhomi, Alvarez-Manilla) Scott continuous valuations on a domain correspond to subprobability measures.

Probabilistic Power Domain

$\mathbb{V} P=\{\mu \mid \mu$ Scott continuous valuation on $P\}$
$\mu \sqsubseteq \nu$ iff $\mu(U) \leq \nu(U)(\forall U \in \sigma(P))$
$(\mathbb{V} P, \sqsubseteq)$ a domain if P is one.

DCPO, Coh both closed under \mathbb{V}
No known ccc of continuous domains closed under this construct.

For P finite, $\mathbb{V} P=\left\{\Sigma_{x \in P} r_{x} \delta_{x} \mid \Sigma_{x} r_{x} \leq 1,0 \leq r_{x} \leq 1\right\}$ P flat if $x \sqsubseteq y \Longrightarrow x=y$
In this case,

$$
\Sigma r_{x} \delta_{x} \sqsubseteq \Sigma s_{x} \delta_{x} \text { iff } r_{x} \leq s_{x}(\forall x \in P)
$$

Theorem For P flat \& $|P|=n>1, \mathbb{V} P \simeq \mathrm{I}\left([0,1]^{n-1}\right)$ Proof $(\mathrm{n}=2) \operatorname{Max}(\mathbb{V} P)=\left\{r \delta_{x}+(1-r) \delta_{y} \mid 0 \leq r \leq 1\right\}$

$$
r \delta_{x}+(1-r) \delta_{y} \mapsto[r, r]: \operatorname{Max}(\mathbb{V} P) \rightarrow \operatorname{Max}(\mathrm{I}([0,1]))
$$

homeomorphism. Extends because $\left(r \delta_{x}+(1-r) \delta_{y}\right) \wedge\left(s \delta_{x}+(1-s) \delta_{y}=(r \wedge s) \delta_{x}+(1-(r \vee s)) \delta_{y}\right.$
$\left(P,\left\{+_{r} \mid 0 \leq r \leq 1\right\}, *\right)$ uniform choice algebra if

1. $x+{ }_{p} y=y+{ }_{1-p} x$
2. $x+{ }_{1} y=x$
3. $\left(x+_{r} y\right)+_{s} z=x+_{r s}\left(y+_{\frac{s(1-r)}{1-r s}} z\right), \quad r<1$
4. $x+{ }_{r} x=x$
and
$\mathbb{V} P$ is a uniform choice algebra with

$$
\Sigma r_{i} \delta_{x_{i}}+{ }_{r} \Sigma s_{i} \delta_{y_{i}}=\Sigma r r_{i} \delta_{x_{i}}+\Sigma(1-r) s_{i} \delta_{y_{i}}
$$

5. $x * y=y * x$
and $*=\wedge$
6. $x *(y * z)=(x * y) * z$
7. $x * x=x$.

Discrete Random Variables

$f:(X, \mu) \rightarrow(Y, \Omega)$ random variable
$f \mu(A)=\mu\left(f^{-1}(A)\right) \quad(\forall A \in \Omega)$
X countable $\Longrightarrow f$ is discrete. Then

$$
f \mu=\Sigma_{x \in X} r_{x} \delta_{f(x)}, \quad \text { where } \Sigma_{x} r_{x}=1
$$

Theorem

- If D is a domain, then so is $\left(\overline{\mathbb{R}_{+}} \times D\right)^{n} / S(n)$.
- If D is RB or FS , so is $\left(\overline{\mathbb{R}_{+}} \times D\right)^{n} / S(n)$.
$\mathcal{B}^{\mathbb{R}}(D)=\oplus_{n \geq 0}\left(\overline{\mathbb{R}_{+}} \times D\right)^{n} / S(n) \quad-\quad$ separated sum $\mathbb{R} \mathbb{V}(D)=\left\{\left[r_{i}, d_{i}\right]_{n} \in \mathcal{B}^{\mathbb{R}}(D) \mid \Sigma r_{i} \leq 1\right\}$
satisfies laws:

1. $\left\rangle \oplus\left[r_{i}, d_{i}\right]_{n}=\left[r_{i}, d_{i}\right]_{n}\right.$
2. $\left[r_{i}, d_{i}\right]_{m}+{ }_{r}\left[s_{j}, e_{j}\right]_{n}=\left[s_{j}, e_{j}\right]_{n}+{ }_{1-r}\left[r_{i}, d_{i}\right]_{m}$
3. $\left(\left[r_{i}, d_{i}\right]_{m}+{ }_{r}\left[s_{j}, e_{j}\right]_{n}\right)+_{s}\left[t_{k}, f_{k}\right]_{p}$
$=\left[r_{i}, d_{i}\right]+_{r s}\left(\left[s_{j}, e_{j}\right]_{n}+_{\frac{s(1-r)}{1-r_{s}}}\left[t_{k}, f_{k}\right]_{p}\right), r<1$
If D has semilattice operation, then $\mathbb{R} \mathbb{V}(D)$ is a uniform choice algebra. $\mathbb{R V}$ leaves RB and FS invariant.

Majorization

$\left(r_{i}\right),\left(s_{i}\right) \in[0,1]^{n}$ with $\Sigma r_{i}=\Sigma s_{i}=1$
$\left(r_{i}\right) \preceq\left(s_{i}\right) \quad$ iff $\quad \sum_{i=1}^{k} r_{[i]} \leq \Sigma_{i=1}^{k} s_{[i]} \quad\left(k \leq n, r_{[i]}=i^{t h}\right.$ largest $\left.r_{j}\right)$

- Discovered by Muirhead in 1903
- Arises in optimization problems
- economics, algorithms, quantum computing...
- Studied by Hardy, Littlewood and Pólya and by Warshall and Oilkin
Theorem $\left(r_{i}\right) \preceq\left(s_{i}\right)$ iff $\left(r_{i}\right)=M\left(s_{i}\right)$ for some doubly stochastic M.
\preceq is a preorder - not antisymmetric
$\Lambda^{n}=\left(\left\{\left(r_{i}\right) \in[0,1]^{n} \mid \Sigma r_{i}=1, r_{1} \geq r_{2} \geq \cdots \geq r_{n}\right\}, \preceq\right)$
For example

$$
\perp=(1 / n, \ldots, 1 / n) \text { and }(1,0, \ldots, 0) \text { maximal }
$$

Theorem (Martin \& M) ($\left.\Lambda^{n}, \preceq\right)$ is a continuous lattice.
$\left(r_{i}\right) \wedge\left(s_{i}\right)=\left(t_{i}\right)$ where $t_{k}=\left(\Sigma_{i \leq k} r_{i}\right) \wedge\left(\Sigma_{i \leq k} s_{i}\right)-t_{k-1}$

Moreover, entropy is a canonical measurement on $\left(\Lambda^{n}, \preceq\right)$

For $\left(r_{i}\right) \in[0,1]^{n}$ define $o\left(r_{i}\right)=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$ where

$$
\begin{aligned}
& i_{1}=\min \left\{i \mid r_{i}=\max \left\{r_{j} \mid j=1 \ldots, n\right\}\right\} \\
& i_{2}=\min \left\{i \mid r_{i}=\max \left\{r_{j} \mid j=1 \ldots, n, j \neq i_{1}\right\}\right\}
\end{aligned}
$$

For $\left(r_{i}\right),\left(s_{i}\right) \in[0,1]^{n}$ define

$$
\left(r_{i}\right) \sqsubseteq_{M}\left(s_{i}\right) \quad \text { iff } \quad o\left(r_{i}\right)=o\left(s_{i}\right) \&\left(r_{i}\right) \preceq\left(s_{i}\right)
$$

Then $\left([0,1]^{n}, \sqsubseteq_{M}\right)$ is a domain.

On $([0,1] \times D)^{n}$ define $\left(r_{i}, d_{i}\right) \sqsubseteq_{m}\left(s_{i}, e_{i}\right) \quad$ iff $\quad\left(r_{i}\right) \sqsubseteq_{M}\left(s_{i}\right) \& d_{i} \sqsubseteq e_{i}(\forall i)$

Then $\left(([0,1] \times D)^{n}, \sqsubseteq_{m}\right)$ is a domain if D is one.
So, $\operatorname{Maj}(D)_{n}=\left(([0,1] \times D)^{n} / S(n), \sqsubseteq_{m} / \equiv_{m}\right)$ is a domain if D is one.

Inside we find

$$
\left.\Lambda(D)_{n}=\left\{\left(r_{i}, d_{i}\right) \in[0,1] \times D\right)^{n} \mid \Sigma r_{i}=1\right\} / S(n)
$$

also is a domain if D is one.

Extend to $\bigcup_{n} \Lambda(D)_{n}$ by $\left[r_{i}, d_{i}\right]_{m} \sqsubseteq_{w} m\left(s_{j}, e_{j}\right)_{n}$ iff

$$
\Sigma_{i \leq k} r_{[i]} \leq \Sigma_{i \leq k} s_{[i]} \& d_{k} \sqsubseteq e_{k}(\forall k \leq m \leq n)
$$

$\left(\Lambda(D), \sqsubseteq_{w m}\right)$ is a continuous poset (ie., not directed complete). Unclear if its completion lies in any ccc of domains.

Bayesian Order

$\Delta^{n}=\left\{\left(r_{i}\right) \in[0,1]^{n} \mid \Sigma_{i} r_{i} 1\right\}$
$p_{i}: \Delta^{n+1} \rightharpoonup \Delta^{n}$ by $p_{i}\left(r_{j}\right)=\frac{1}{\left(1-r_{i}\right)}\left(r_{1}, \ldots, \widehat{r_{i}}, \ldots, r_{n}\right)$
$n \geq 2 \& x, y \in \Delta^{n+1}$
$x \sqsubseteq_{B} y \quad$ iff $\quad(\forall i)\left(x, y \in \operatorname{dom}\left(p_{i}\right) \Rightarrow p_{i}(x) \sqsubseteq_{B} p_{i}(y)\right)$
$x, y \in \Delta^{2}$
$x \sqsubseteq_{B} y \quad$ iff $\quad\left(y_{1} \leq x_{1} \leq 1 / 2\right)$ or $\left(1 / 2 \leq x_{1} \leq y_{1}\right)$
$x \sqsubseteq_{B} y \quad$ iff
$(\exists \sigma \in S(n))(\forall i)(x \cdot \sigma)_{i}(y \cdot \sigma)_{i+1} \leq(x \cdot \sigma)_{i+1}(y \cdot \sigma)_{i}$
$\left(\Delta^{n}, \sqsubseteq_{B}\right)$ directed complete partial order.
$\left(\Lambda^{n}, \sqsubseteq_{B}\right)$ domain.

Believe same approach as for $\left(\Lambda^{n}(D), \sqsubseteq_{w m}\right)$ will apply here.

Further Work

- What is structure of $\left(\Lambda(D), \sqsubseteq_{w m}\right)$?
- Is $\left(\Lambda(D), \sqsubseteq_{w m}\right)$ image of $\operatorname{Maj}(D)$ under closure operator?
- Extend to quantum case?
- Replace $S(n)$ by unitary group...

