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The Interval Domain
IR = ({[a, b] | a ≤ b ∈ R},⊇)

• Directed complete

– D ⊆ P directed if (∀F ⊆ D finite) (∃d ∈ D) F ⊆ ↓d

D ⊆ IR directed iff D is a filterbase
– Each directed subset of P has a least upper bound in P .

D ⊆ IR directed =⇒ 'D =
⋂

D



• IR also continuous:

– x ! y ∈ P iff (∀D directed) y $ %D ⇒↑ x ∩D )= ∅
[a, b] ! [c, d] iff [c, d] ⊆ (a, b)

– ⇓ y = {x | x ! y} directed & y = % ⇓ y

[c, d] =
⋂
{[a, b] | [c, d] ⊆ (a, b)}

• Originally proposed by Dana Scott as model for functional programming
language with abstract data type ‘real’.

• [a, b] ! [c, d] means [c, d] has more information than [a, b].
Maximal – ideal – elements are points: [r, r], r ∈ R.



Notice IR has additional structure:

• [a, b] ∧ [c, d] = [a ∧ c, b ∨ d]

Works for all non-empty families of intervals – if we add R to IR.
These are called continuous Scott domains
CSD – Continuous Scott domains and Scott continuous maps
CSD is a cartesian closed category:

• terminal object

• finite products

• internal hom: PQ = CSD[Q,P ]

Escardó took up Scott’s proposal to develop Real PCF



Real PCF

• Lazy functional language based on simply typed λ-calculus
with recursion

• has real numbers abstract data type realized via interval domain

Operational semantics for Real PCF associates to expressions of type real
a shrinking sequence of rational intervals representing the real number.

Model built over IR is computationally adequate: Intersection of intervals
agrees with the IR-based denotational semantics of real expression



But, Real PCF requires parallel evaluation (“dovetailing”) for its operational
semantics:

pif : bool × real × real → real

pif(true, x, y) = x; pif(false, x, y) = y; pif(⊥, x, y) = x $ y

Requires evaluating b, x, y in parallel and outputting partial results.
Used to ensure Real PCF is Turing universal

Recently, Escardó, M. Hofmann & T. Streicher showed pif is intrinsic:
Under mild conditions, any language that is computationally adequate wrt IR
must allow a “weak parallel or:”

wpor : bool × bool → {⊥,$}

wpor(x, y) = $ iff x = $ or y = $



The Scott Topology
U ⊆ P is Scott open if:

• U =↑U = {x ∈ P | (∃u ∈ U) u % x}

• (∀D directed) 'D ∈ U =⇒ D ∩ U *= ∅

Note: P continuous & x , y ∈ P ) =⇒ (∃z) x , z , y
This implies ⇑ x = {y | x , y} is Scott open.
f : P → Q is Scott continuous iff

• f is monotone

• f("D) = "f(D) for D directed.



Domain Models
Notice that x !→ [x, x] : R→ IR is a homeomorphism onto
its image in the relative Scott topology.

IR is a domain model for R.

P is ω–continuous if (∃B ⊆ P ) countable with
⇓x ∩B directed and x = %(⇓x ∩B) (∀x ∈ P )

P is a domain model for X if

∃φ : X → (Max(P ),σ(P )|Max(P )) homeomorphism



Theorem (Lawson): X is Polish iff X has a domain model
into an ω–continuous domain whose Scott and Lawson
topologies agree on Max(P ).

µ : IR→ [0,∞)op by µ([a, b]) = b− a

ker(µ) = {x ∈ P | µ(x) = 0}

λ(P ) = σ(P ) ∨ ω(P ), ω(P ) = 〈{P\ ↑F | F ⊆ P finite}〉

µ : P → [0,∞)op measurement if µ Scott continuous and

x ∈ Max(P ) & x ∈ U ∈ σ(P ) =⇒ (∃ε > 0) µε(x) ⊆ U

µε(x) = {y ' x | µ(y) ∈ [0, ε)}



Theorem (Martin & Reed):

• X is developable & T1 iff X = ker(µ) for
µ defined on a continuous poset.

• Each Cech-complete, developable space is the kernel of a
measurement on a domain.

• But, there is a domain whose maximal elements are a Gδ but
they are not kernel of any measurement.

These results utilize Mike’s Moore space construction.



Probability Theory & Domains
µ : σ(P ) → [0, 1] valuation if:

• µ(∅) = 0

• µ(U ∪ V ) + µ(U ∩ V ) = µ(U) + µ(V )

• U ⊆ V =⇒ µ(U) ≤ µ(V )

Theorem (Lawson, Edalat, Saheb-Djarhomi, Alvarez-Manilla)
Scott continuous valuations on a domain correspond to
subprobability measures.



Probabilistic Power Domain
VP = {µ | µ Scott continuous valuation on P}
µ ! ν iff µ(U) ≤ ν(U) (∀U ∈ σ(P ))

(VP,!) a domain if P is one.

DCPO, Coh both closed under V
No known ccc of continuous domains closed under
this construct.



P flat if x ! y =⇒ x = y

In this case,
Σrxδx ! Σsxδx iff rx ≤ sx (∀x ∈ P )

For P finite, VP = {Σx∈P rxδx | Σxrx ≤ 1, 0 ≤ rx ≤ 1}

Theorem For P flat & |P | = n > 1, VP ! I([0, 1]n−1)
Proof (n=2) Max(VP ) = {rδx + (1− r)δy | 0 ≤ r ≤ 1}

rδx + (1− r)δy #→ [r, r] : Max(VP )→ Max(I([0, 1]))

homeomorphism. Extends because

(rδx + (1− r)δy) ∧ (sδx + (1− s)δy = (r ∧ s)δx + (1− (r ∨ s))δy



VP is a uniform choice algebra with

Σriδxi +r Σsiδyi = Σrriδxi + Σ(1− r)siδyi

and ∗ = ∧

(P, {+r | 0 ≤ r ≤ 1}, ∗) uniform choice algebra if

1. x +p y = y +1−p x

2. x +1 y = x

3. (x +r y) +s z = x +rs (y + s(1−r)
1−rs

z), r < 1

4. x +r x = x

and

5. x ∗ y = y ∗ x

6. x ∗ (y ∗ z) = (x ∗ y) ∗ z

7. x ∗ x = x.



Discrete Random Variables
f : (X, µ) → (Y,Ω) random variable

fµ(A) = µ(f−1(A)) (∀A ∈ Ω)

X countable =⇒ f is discrete. Then

fµ = Σx∈X rxδf(x), where Σxrx = 1
Theorem

• If D is a domain, then so is (R+ ×D)n/S(n).

• If D is RB or FS, so is (R+ ×D)n/S(n).



BR(D) = ⊕n≥0(R+ ×D)n/S(n) − separated sum
RV(D) = {[ri, di]n ∈ BR(D) | Σ ri ≤ 1}

If D has semilattice operation, then
RV(D) is a uniform choice algebra.

RV leaves RB and FS invariant.

satisfies laws:

1. 〈 〉 ⊕ [ri, di]n = [ri, di]n

2. [ri, di]m +r [sj , ej ]n = [sj , ej ]n +1−r [ri, di]m

3. ([ri, di]m +r [sj , ej ]n) +s [tk, fk]p
= [ri, di] +rs ([sj , ej ]n + s(1−r)

1−rs
[tk, fk]p), r < 1



Majorization

• Discovered by Muirhead in 1903

• Arises in optimization problems
– economics, algorithms, quantum computing...

• Studied by Hardy, Littlewood and Pólya
and by Warshall and Oilkin

Theorem (ri) ! (si) iff (ri) = M(si)
for some doubly stochastic M .

(ri), (si) ∈ [0, 1]n with Σri = Σsi = 1

(ri) " (si) iff Σk
i=1r[i] ≤ Σk

i=1s[i] (k ≤ n, r[i] = ith largest rj)



! is a preorder – not antisymmetric

Λn = ({(ri) ∈ [0, 1]n | Σri = 1, r1 ≥ r2 ≥ · · · ≥ rn},#)

Theorem (Martin & M) (Λn,!) is a continuous lattice.

(ri) ∧ (si) = (ti) where tk = (Σi≤kri) ∧ (Σi≤ksi)− tk−1

Moreover, entropy is a canonical measurement on (Λn,!)

For example

⊥= (1/n, . . . , 1/n) and (1, 0, . . . , 0) maximal



For (ri), (si) ∈ [0, 1]n define

(ri) "M (si) iff o(ri) = o(si) & (ri) # (si)

Then ([0, 1]n,"M ) is a domain.

For (ri) ∈ [0, 1]n define o(ri) = {i1, i2, . . . , in} where

i1 = min{i | ri = max{rj | j = 1 . . . , n}}
i2 = min{i | ri = max{rj | j = 1 . . . , n, j "= i1}}
.
.
.



On ([0, 1]×D)n define

(ri, di) "m (si, ei) iff (ri) "M (si) & di " ei (∀i)

Then (([0, 1]×D)n,"m) is a domain if D is one.

So, Maj(D)n = (([0, 1]×D)n/S(n),"m / ≡m)

is a domain if D is one.
Inside we find

Λ(D)n = {(ri, di) ∈ [0, 1]×D)n | Σri = 1}/S(n)

also is a domain if D is one.



(Λ(D),!wm) is a continuous poset (ie., not directed
complete). Unclear if its completion lies in any ccc of domains.

Extend to
⋃

n Λ(D)n by [ri, di]m !w m(sj , ej)n iff

Σi≤kr[i] ≤ Σi≤ks[i] & dk ! ek (∀k ≤ m ≤ n)



Bayesian Order
∆n = {(ri) ∈ [0, 1]n | Σiri1}
pi : ∆n+1 ⇀ ∆n by pi(rj) = 1

(1−ri)
(r1, . . . , r̂i, , . . . , rn)

n ≥ 2 & x, y ∈ ∆n+1

x #B y iff (∀i)(x, y ∈ dom(pi) ⇒ pi(x) #B pi(y))

x, y ∈ ∆2

x #B y iff (y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1)



x !B y iff

(∃σ ∈ S(n))(∀i)(x · σ)i(y · σ)i+1 ≤ (x · σ)i+1(y · σ)i

(∆n,!B) directed complete partial order.

(Λn,!B) domain.

Believe same approach as for (Λn(D),!wm) will apply here.



Further Work
• What is structure of (Λ(D),!wm)?

• Is (Λ(D),!wm) image of Maj(D) under closure operator?

• Extend to quantum case?

– Replace S(n) by unitary group...


