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Abstract Trace theory is a method for model-
ing concurrency in which concurrent computation
is supported explicitly, rather than relying on se-
quential composition, nondeterminism and inter-
leaving.  The state explosion problem arises in
model-checking because of the plethora of states that
can arise in the interleaving approach to modeling
even simple algorithms. In this paper we explore
the relationship between a new approach to using
trace theory to model concurrent computation and
the state explosion problem. Trace theory already
has been recognized as having utility in controlling
the state explosion in such examples; our point of
departure is to wutilize trace theory more directly,
rather than relying simply on the basic tenets of
that approach.
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1 Introduction

Trace theory is an approach to modeling con-
current computation which supports concur-
rent computation directly, rather than start-
ing with sequential composition and using non-
determinism and then interleaving to build a
model for parallel composition — and hence
The latter is the traditional
method for modeling concurrency in program-
ming languages; examples abound see, e.g.
[4]. But the main applications of trace theory
have been to algorithmic analysis and compu-
tational complexity. This is due in part to the
fact that the original purpose of trace theory
was to provide models for Petri nets, them-

concurrency.

selves models for nondeterministic automata.
But there are fundamental problems with the
basic models that trace theory offers that pre-
vent their use as models for programming lan-
guages.

Nonetheless, trace theory has had a powerful
impact on our understanding of concurrency,
and its utility can be found in a wide range
of areas. One of these areas is model check-
ing, where trace theory has provided what are
called “partial order methods.” These methods
afford partial solutions to the state explosion
problem. This problem arises because of the ex-
ponential increase in the number of states that
can arise in a concurrent system as the number
of states of the component processes increases.
This exponential increase prevents exhaustive
search from being an effective method to verify
that such a system meets its specification, and
so alternative methods are needed for valida-
tion. One of these approaches is partial order
methods, whose application relies on the fact
that it often happens that not all states need
to be validated in order to validate the system.
This observation is due to the fact that often
a number of distinct computations all lead to
the same output for a given input. In such a
situation one needn’t explore all these differ-
ent computation paths — exploring one should
suffice. The problem then comes down to the
following issues:

e Find which paths have the same overall
effect on the system.

e For each set of paths having the same ef-
fect, find a representative path to validate.



e Find effective methods to carry out the
previous two steps.

Recently [2] trace-theoretic models have been
devised which have the structure of a domain
in which the concatenation operation of trace
theory is continuous. Such structures have long
been used to provide models for programming
languages, primarily because of the ease with
which recursion can be modeled in them. In
[1] a simple concurrent programming language
is presented which uses the concatenation op-
erator of trace theory as its primary operation,
and the resource traces model of [2] is used
as the basis for a denotational model for this
language. The main result of [1] is a congru-
ence theorem between an operational model for
the language under study and the denotational
model built using the resource traces model,
thus allowing for the first time a denotational
semantics for true concurrency that supports
recursion in the underlying language.

The thrust of this paper is to explore the
utility of the language and its models presented
in [1] as a methodology for applying trace the-
ory in model checking. We focus on the work
in the seminal thesis [3] as our main source
for partial order methods in model checking,
and we show how the language from [1] can
be used to address some of the issues raised in
that work. In particular, the need for a flexible
modeling system that emerges in [3] seems in
part to be satisfied by the results in [1].

The rest of the paper is organized as follows.
In the next section we present a brief summary
of the approach to model checking that is the
focus of [3]. Then, in the following section,
we present a brief outline of the approach to
concurrency that is taken in [1]. The next sec-
tion the explores the use of the work in [1] as
a method for modeling the concurrent systems
studied in [3]; in particular, we explore the po-
tential that the models of [1] have for study-
ing the issues raised in [3]. While our results
are very preliminary, we believe they show a
promising avenue for achieving the needs out-
lined in the list of goals given above.

2 Partial order methods for
model checking

In this section we present a brief synopsis of
the application of partial order methods to
model checking. Our presentation focuses on
the work in [3], which is a survey of results
along this line. We find this a particularly ap-
propriate presentation for our purposes, since
one of the central issues in [3] is the myriad re-
lations which arise in the application of partial
order methods to distinct problems.

The approach taken in [3] views a concurrent
system as a quadruple (P, O, T, sg), where

P is a finite set of processes, Pi,...,Ppy
which are pairwise disjoint, each with lo-
cal states, and each of which can operate
on the objects in O.

O is a finite set of objects, O1,...,0,, each of
which consists of a pair (V;, OP;), where
V; is the set of values that are possible for
the object, and OP, is the set of operations
that can be applied to the object.

T is a finite set of transitions of the system.

sp €ES=P x---P, xV; x---V, is the ini-
tial state of the system. In general, global
states consist of a local state s(i) for each
process P;, and a value v; € V; for each
object O;.

Processes act not only on their own local
states, but also on the objects in O. This latter
is done by taking an input IN; to process P;
together with a value v; of object O; and asso-
ciating an output in OUT; and a corresponding
value v € ;.

Transitions in this system are quadruples,
t = (L,G,C, L") consisting of partial control
states L, L' C Ui<mPj. The assumption is that
LNP; and L' N P; contain at most one element,
and LNP; # 0 iff L'NP; p; i.e., each local state
has at most component from any of the P;, and
both L and L' have local states in P; iff either
one does. This enforces a component-like ac-
tion of transitions on processes. The second
component G of a transition is a guard, which



consists of a conjunction of conditions each of
which can test the current value of objects, but
cannot change their values. The third compo-
nent is the command C which is a self-map of
Vi x -+ xV,. This command consists of the se-
quential composition of operations on objects
and must satisfy the condition that, once one
of these operations has modified an object O;,
then no succeeding element of the command C
can operate on O;.

The transition ¢ is enabled in a state s iff
L C s and G is true in s. From this it follows
that L has at most value in each process PF;,
although there may be many states in which ¢
is enabled. It also follows that transitions are
deterministic because execution of a transition
leads to a unique successor state, L'.

In [3] a semantics is presented for the sys-
tems we have just described. Using a labeling
function v»: T — X and the resulting automa-
ton Ag = (%,S5,A,sp) whose actions come
from the alphabet > and whose transition re-
lation is

A={(s,a,8) | (FteT)s s A vt)=al}.

The interest then becomes the states of Ag
that are reachable from sy. Since the system
is assumed finite, Ag has only finitely many
states, and so, in principle, one could explore
all the states of the system. Unfortunately, this
is not a practical approach to analyzing the
system
ponent grows, the number of states of the sys-
tem grows exponentially (according to the pos-
sible interleavings of the possible transitions).
Thus methods are sought to perform an anal-
ysis of the system without exploring all states.

as the number of states of each com-

One approach to such analyses is based on
the observation that if two transitions ¢ and
t' are independent e.g., if neither affects the
states of the other — then #t' = t't in terms
of the result of applying both states in turn.
Clearly one need not explore both ¢t and #'t
in this case exploring one will do. Partial
order methods can be viewed as an attempt to
be more precise about which transitions can
be regarded as independent, with the aim of

doing a selective search of the state space in
which only one execution path is explored for
each family of transitions that are mutually in-
dependent. It is interesting to note that there
does not seem to be one fixed notion of inde-
pendence that is applicable for all applications,
and so part of the problem is to find notions
of independence that lead to sets of transitions
that:

e result in transitions whose order of compu-
tation is irrelevant in terms of the output
of the computation, and

e which provide relations on the set of tran-
sition that provide tractable equivalence
classes of independent transitions. Il.e.,
there are efficient algorithms for comput-
ing the sets of transitions that become
identified as being independent of one an-
other.

In [3], the “underlying” notion of dependency
(the opposite of independence) can be stated
as follows:

Definition 3.1: A binary relation D CT x T
is a walid dependency relation iff (Vi,t' € T)
(t,t') ¢ D implies Vs € S

1. Tf ¢ is enabled in state s € S and s — s,
then t' is enabled in s iff ¢’ is enabled in

s’

2. If t and ¢’ are both enabled in s, then there

. . tt’
is a unique state s’ such that s — s’ and

t't
s — s

The problem is that these conditions for a
valid dependency relation are difficult to ver-
ify, and so a great deal of the discussion in [3]
focuses on sufficient conditions for a valid de-
pendency relation which are practical to vali-
date for transitions of the system. As we shall
see in the next section, some of these conditions
also allow the semantic models developed in [1]
to be used to model the system under study.



3 A model for true concur-
rency

In this section we outline the results from [1]
which present a simple concurrent program-
ming language and give both an operational
and a denotational model for the language. In
addition, it is shown that these two seman-
tics are equivalent, in the sense that the be-
havior that the operational semantics assigns
to a term of our language is the same as the
meaning of the term in the denotational model
(such a result is called a congruence theorem
because it shows that the behavior mapping
the operational mode defines is a congruence
with respect to all the operations the language
supports).

The approach presented in [1] is based on
resource traces, developed in [2]. In this ap-
proach, one begins with an alphabet ¥ of
actions which processes in the language can
execute, together with a resource mapping
res: ¥ — P(R) which associates to each action
a € X a non-empty set of resources it needs
to complete its execution. One can view these
resources as ports, memory, etc. or even the
states of the system that the action needs to
read from or write to. From this mapping one
determines the dependency relation as

(a,b) € D & res(a) Nres(b) # 0,

so that actions are dependent iff they share
some resource. Thus, if we vary the resources
R or the resource mapping res, then we vary
which actions are independent and which are
dependent.

The language £ studied in [1] has a BNF-like
syntax consisting of

pu=STOP |a|pop]|plr \p|clp |z | recz.p.

Here, STOP is the deadlocked process, a € %
is the process that executes the action a and
normally terminates, and pogq is the concurrent
computation of the two component processes:
in this composition, independent actions are
allowed to commute past one another, while
dependent actions must occur in the order in

which they are written. For a set R C R of re-
sources, the process p|r acts like p, except that
all actions must have their resources lying in-
side R. If C' C R is a set of resources, then we
can regard them as channels over which dis-
tinct processes can synchronize, and then p(|/l q

is the process which forces the components to
synchronize on the channels in C', and that per-
form actions whose resources do not intersect
C or the resources of the other component in-
dependently. If these conditions are violated,
then the synchronized product deadlocks. Fi-
nally, z € X is a process variable, and recx.p
denotes recursion in the variable z.

3.1 A denotational semantics for £

An easily defined denotational model for the
language L is presented in [1] uses the resource
mapping and is based on the resource traces
model of [2]. The approach taken in [1] is to ex-
tend the resource mapping res: ¥ — P(R) to a
mapping res: L — P(R) which assigns to each
process its set of resources. One first defines
this mapping for finitary terms  those with-
out process variables. The easiest way to do
this is to define an interpretation of each of the
operators from the BNF for £ on P(R). For
example, we can interpret STOP as R, each ac-
tion s € ¥ as res(a), each of o and || as union,

and restriction to the subset R C R%s intersec-
tion with R. This makes P(R) into an algebra
with the same signature as the finitary portion
of L. Of course, our language also has process
variables, and so we cannot properly define the
extension of res to all of £ without first assign-
ing resources to each variable z. Using the set
of semantic resources, P(R)X of such assign-
ments, the algebra structure we have just de-
fined on P(R) extends to the set of continuous
maps [P(R)* — P(R)], and this also has an
interpretation of variables z € X and of recur-
sion, this last using least fixed points (with the
usual set containment order on P(R)). Then
universal algebra ensures there is an algebra
homomorphism from £ to [P(R)* — P(R)]
since L is the initial algebra of this signature.



The definitive denotational model for L is
more complicated. It relies on the notion of a
resource trace as defined in [2]. Briefly, a trace
over the alphabet ¥ is an isomorphism class of
a labeled graph (V, E,\) where V is a count-
able set of vertices, E C V xV is a set of edges,
and A\:V — 3 is a labeling which satisfies the
property that the pair (v,v') € E iff A(v) and
A(v") are dependent in 3 or are equal. The set
of equivalence classes of traces with finite ver-
tex sets is isomorphic to the trace monoid ob-
tained by considering the quotient space ¥*/ =
of finite words over 3 modulo the congruence =
(with respect to concatenation of words) gener-
ated by the family {(ab, ba) | (a,b) € 1}, where
1 is the set of pairs of independent actions. The
problem is that, while the concatenation oper-
ation for words induces a monoid operation of
concatenation of traces, this operation is not
monotone with respect to the prefix order re-
lation given by: p < ¢ iff (3r) ¢ = por. This is
a partial order on the set of traces, and it is left
cancellative; i.e, the trace r for which ¢ =por
is unique (just as for words).

This defect of traces was corrected in [2] with
the notion of a resource trace. This begins with
the notion of the resources at infinity of a trace,
which are defined as resinf(p) = N{res(k'p) |
k <p Ak is finite}. Gastin and Teodosiu then
define the set of resource traces as the family

F={(r,R) | risatrace A resinf(r) C R}.

Using the same techniques as described above,
but with this richer notion of concatenation
of resource traces, we can make F and then
[F¥ — F] into an algebra with the signature
of £, and then again deduce the existence of
an algebra homomorphism M: £ — [FX — .
The interesting aspect of the denotational se-
mantics is that the meaning of a recursive term
is not given as a least fixed point. Indeed,
the least element of ' is the pair (1,R), which
claims all resources, and so using this as the
starting point for iterating a self-map would
prevent any other action from occurring. This
problem is remedied by first computing for a
recursive term recz.p the set of resources R
needed only for it to complete its execution,

Table 1: Some Transition Rules for £

a %, SKIP
a
a /
b —p
.o
a /
poq7p oq

q % ¢, res(a) Nres(p, o) =
a

poq{}p0¢

SN h r_
p 1 where o' = olx — res(rec x.p, 0]

rec z.p %, p'[rec x.p/x]
a

and then iterating the self-map that is the
meaning of p starting at the pair (1, R). This
means that only those actions which actually
require resources that p needs are blocked, and
all other actions can commute with this recur-
sive term.

3.2 An operational semantics for £

An operational semantics for £ also is pre-
sented in [1]. This semantics is derived from a
set of transition rules which indicate which ac-
tions a process in the language can execute. By
following all possible paths of execution, one
discovers the behavior of a process. The com-
plete set of transition rules for £ are presented
in [1]; Table 1 lists only those that are rele-
vant to our discussion; here SKIP = STOP|;
denotes normal termination, and o: X — L is
a syntactic environment. The fact that the be-
havior of a term — i.e., the maximal trace that
it can execute under these rules, and there is
one and only one — is the same as the deno-
tational meaning of the term as given by the
mapping M described above means that we
can either calculate the behavior using these
rules, or we can calculate it using the prop-
erties of the mapping M, which is an algebra
homomorphism.



4 Relating models and seman-
tics

We now describe some relations between the
presentation of partial order methods that we
outlined in Section 2 to the semantic consider-
ations of Section 3. The main point is rather
simple to state:

Models for partial order methods can be
captured by the semantic models for L.

Implicit in this statement is the assertion that
we can view the trace equivalence class of each
word of the automaton Ag as the meaning of
a term in the language £. We show how to
accomplish this for a specific set of syntactic
conditions that define a valid dependency re-
lation in Section 2. Recall that the conditions
for a valid dependency relation of Definition 3.1
are hard to validate directly, and so a number
of sufficient conditions are studied in [3] which
produce valid dependency relations, but which
are more tractable. One of those sets of condi-
tions for transitions ¢ and #’ to be independent
are:

1) The set of processes P; that are active for
t is disjoint from the set of processes for
which ¢’ is active, and

2) the set of objects that are accessed by ¢ is
disjoint from the set of processes that are
accessed by t'.

Let’s make the following assumptions about
our system.

1. The family of all processes and objects,
taken together, are pairwise disjoint.

2. The labeling function v: T — X satisfies
v(t) = v(t) iff

e The processes active for ¢ are the
same as the processes active for #/,
and

e The objects accessed by t are the
same as the objects accessed by t'.

Of course, if v is one-to-one, then these
conditions are trivially satisfied.

Now, define the set of resources R = PUT
to be the union of the sets of processes and
objects of our system, and define the resource
map res: 2. — R by

res(a) = {P;|(3teT,) P is active for t}
U {0; | (3t € T,) O; is accessed by t},

where T, = {t € T | v(t) = a} for each a € X.
The conditions we have imposed on v guar-
antee that res is well-defined. Moreover, the
following result is clear:

Proposition 4.1: The transitions ¢ and t' are
independent as defined by conditions 1) and 2)
above iff the associated actions v(t) and v(t')
are independent in the sense that res(v(at)) N
res(v(t')) = 0. O

Thus we can view the transitions of our sys-
tem as having the same independence proper-
ties as the actions a € X. Moreover, the work
cited from [1] implies that we can regard the
words of the automation Ag as being gener-
ated by terms of the language £, and so the
equivalence classes of these words are the same
as the equivalence classes of the associated se-
mantic mapping M: £ — [FX — F]. Finally,
since this mapping is equivalent to the one de-
fined by the behavior mapping the operational
semantics defines, words from A are equiva-
lent iff they terms which generate them have
the same behaviors as given by the transition
system for the operational semantics of £. We
can summarize all this in the following

Theorem 4.2: Let w and w' be words of the
automaton Ag for the concurrent system out-
lined in Section 2, and let p and p’ be any two
terms from £ whose meanings are the equiva-
lence class of w and w', respectively. Then w
and w' are equivalent in A for the indepen-
dence relation defined by 1) and 2) above iff
M(p) = M(p'), iff p and p' have the same be-
havior under the operational semantics defined
for L. O



5 Summary

We have described the approach to partial or-
der methods outlined in [3] and the denota-
tional and operational semantics developed in
[1] for a simple parallel programming language.
Using these as basis. we have presented a rela-
tion between the two, showing how the seman-
tics of [1] captures the equivalence of compu-
tation paths represented by the automaton for
the concurrent system being analyzed in [3].
This means that the problem of finding equiv-
alent computation paths can be solved by the
problem of deciding which terms of the lan-
guage studied in [1] have the same meaning.
The methods of semantics both denotational
and operational — are thus available to help
analyze concurrent systems. In particular, we
can utilize the fact that we are dealing with
a language L which can be viewed as a uni-
versal algebra and so the equivalence relation
that identifies words with their trace equiva-
lence class is an algebra congruence.

Unfortunately, it is unclear what contribu-
tion this provides, other than the obvious one
of validating a strong connection between two
areas. In fact, we have presented only one ex-
ample of a independence relation which trans-
lates faithfully from the model-checking setting
to the semantics setting. Our intention is to in-
vestigate further which of the relations studied
in [3] as well as in other approaches using par-
tial order methods are amenable to the tech-
niques we have described. Since much effort
has been put into finding efficient algorithms
for computing selective searches in the model-
checking setting, it is apparent that those algo-
rithms may have utility in the semantics com-
munity by providing efficient computational
strategies for finding the operational behavior
of terms from our language L. In the other di-
rection, it is hoped that the modularity with
which the denotational meaning of terms in
the language can be analyzed will provide some
help to the model-checking community in find-
ing more efficient selective search algorithms.
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