A(nother) Random Variable Monad

Preliminary Report

Michael W. Mislove

Tulane University
New Orleans, LA

Domains Xl
Cork, August 26, 2015

Work sponsored by US AFOSR & NSF



A Disclaimer

» This is NOT a talk about stochastic processes or Skorohod's
Theorem.

Apologies — a funny thing happened on the way to the
talk...

> Instead, I'll talk about some preliminary results on
computational models for probabilistic choice.

Active theme over last several years
Other talks at the meeting: Plotkin, Barker, Jung



Some History

> The probabilistic powerdomain is the traditional domain model for
probabilistic choice.

» Realized on DCPO as V(D) — the space of Scott-continuous
valuations of O(D)

» Defines a monad on DCPO

» Leaves Coh invariant, but
no CCC of domains is known to be invariant

» No distributive law wrt power domains

> Varacca (2003) devised a monad that overcomes these problems
» Weakens the probabilistic law: p +, p # p.

> Based on Varacca's work, M. (2007) devised a monad of finite
random variables that leaves RB and FS invariant, and satisfies a
distributive law.



Some History
> The probabilistic powerdomain is the traditional domain model for
probabilistic choice.
> Varacca (2003) devised a monad that overcomes these problems
» Weakens the probabilistic law: p +, p # p.

> Based on Varacca's work, M. (2007) devised a monad of finite
random variables that leaves RB and FS invariant, and satisfies a
distributive law.

> Goubault-Larrecq and Varacca (2011) proposed a monad of
continuous random variables, but the Kleisli lift failed to be Scott
continuous.

» Their work inspired this work — and that by Tyler Barker you'll hear
after this talk.



Some Background

» Random variables versus Prob
» Order on Prob(D) is more complicated than that on D:
pwCv iff p(U) <v(U) (YU open)
d+— 64: D — Prob(D) unit of monad
> Idea of Random Variables:
Choose fixed domain C for which Prob(C) is well-behaved,
and use

f: C — D to define outcomes of probabilistic choices in C



Some Background

» Random variables versus Prob
» Which domain C to choose?

Use the Cantor tree — the full binary tree together with the
Cantor set at the top:

C
() ) ()
O, (1)
©

» So, the model looks like Prob(C) x [C — D] for a domain D



Sanity Check
RanV/(D) = Prob(C) x [C — D] defines a functor:

g:D—E — RanV(g)(f)=(ngof).



Sanity Check

But to be a monad, we need a Keisli lift:
Prob(C) x [C — D]

D - Prob(C) x [C — E]

where np(d) = (4, consty).

If h' (. f) = (v.g),
giseasy: f:C—>D&moh:D—-E = g=mohof:C— E.



Sanity Check

But to be a monad, we need a Keisli lift:
Prob(C) x [C — D]

D - Prob(C) x [C — E]

where np(d) = (4, consty).
If A (1, f) = (v.8),
For v, we should combine £ and the family {m; o ho f(d)}desupp u-

Suppose (1 = ) ¢ radq is simple. Then we expect:

ht <Z r4dd, f) = <Z rg(6g @ m o ho f(d)),m 0 ho f>

deF deF

where ® is a composition operation on measures.

® also should also be monotone!



More Background

> Prob forms a monad on:
» Comp — category of compact T, spaces and continuous maps
Algebras are compact affine spaces

» CompMon — category of compact monoids and continuous
monoid morphisms

Algebras are compact affine monoids

» CompGrp — category of compact groups and continuous group
maps

Algebras again compact affine monoids — right adjoint changes
to M — H(].M)

» On CompMon, the monoid operation on Prob(S, -, e) is convolution:
*: Prob(S) x Prob(S) — Prob(S) by

prv(A) = (uxv)(A) = pxv(-7H(A)) = pxv({{x.y) | x-y € A}).



More Background
> An ordered monoid is a monoid (S, -, €) which has a partial order
relative to which -: S x S — S is monotone.

» C is a monoid under concatenation, but it is not an ordered
monoid.

» C,={0,1}>*U{0,1}*\/ with the prefix order, and let
/ H _
s-t:{St IfS—S.\/
s otherwise
» (Cy,+,+/) is a compact ordered monoid.

> Prob is a monad on CompOrdMon — category of compact, ordered
monoid and continuous, monotone monoid morphisms.

The convolution operation on Prob(S, -, e, <) is monotone:
pCp vV = puxvCu xv.

» This applies to any bounded complete domain in the Lawson
topology — in paricular to C,,.



Towards a Monad
The monad should be: RanV/(D) = Prob(C,/) x [C,; — D] where

ol \

D b Prob(C\/) X [C\/ — E]
where:
no = (b, consty) and for p = Z rgdy
deF

hf(u, f) = <Z ry4(8g * (w0 ho f(d)),moho f>

deF



Towards a Monad

Prob(C\/) X [C\/ — D]

D b Prob(C\/) X [C\/ — E]
where:
np = (d,consty) and for = Z rgdq
deF
hT(:U7 f) = <Z rd(5d*(7rlohof(d)),7r20ho f>
deF
ToDo's:

> Validate monad structure — May require restricting p to be “thin”

» Work out equational laws



Towards a Monad

Prob(C\/) X [C\/ — D]

D - Prob(C,/) x [C.; — E]
where:
np = (0, consty) and for = Z ryby
deF
hT(,Uv f) = <Z rd(5d * (71'1 oho I-'(d))’ﬁ2 oho f>
deF
ToDo's:

> Devise closed form for probability component with p non-discrete

= lim Z rdy = p"*"v=Iim Z e (O * (1 0 ho f(x))

xEF, xeF,



	Random Variables

