The Search for Random Variable Monads

Michael W. Mislove

Tulane University
New Orleans, LA

Workshop on Information and Processes
CIAPA, Costa Rica
December 15-18, 2013
Work sponsored by AFOSR \& NSF

The Cantor Tree

$$
\mathcal{C} \simeq \Sigma^{\infty}=\Sigma^{*} \cup \Sigma^{\omega}, \quad \Sigma=\{0,1\}
$$

Build Two Models Based on \mathcal{C} :

1. First from random coin flips
2. Second from "fixing" 1)

Domain Properties of \mathcal{C}

- $\mathcal{C} \simeq\{0,1\}^{\infty}=\{0,1\}^{*} \cup\{0,1\}^{\omega}$ is Scott domain
- \mathcal{C} is a rooted tree
- $X \subseteq \mathcal{C}$ Scott closed $\Rightarrow \exists \pi_{X}: \mathcal{C} \rightarrow X$
- $X \subseteq \mathcal{C}$ Scott closed iff $X=\downarrow$ Max $X \&$
$\operatorname{Max} X$ is Lawson compact antichain.

Flipping Coins

- Random oracles in computation:
- Execute some steps of computation...
- Come to a branch point - need to make a random choice
- Consult an oracle - or, simply flip a coin
- Make choice based on outcome of coin flip
- REPEAT
- Examine first how to model the coin flips
- Utilize structure of trace distributions
- Incorporate into random variable models

Model of coin flipping

Model of coin flipping

Unfolding the automaton:

Model of coin flipping

$$
\begin{aligned}
& \text { Model such automata be their } \\
& \text { trace distributions: } \\
& \quad \vdots \\
& \mu_{2}=\frac{1}{4} \delta_{00}+\frac{1}{4} \delta_{01}+\frac{1}{4} \delta_{10}+\frac{1}{4} \delta_{11} \\
& \mu_{1}=\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1} \\
& \mu_{0}=\delta_{\epsilon}
\end{aligned}
$$

Model of coin flipping

Stripping away the probabilities, we have the following sets on which these measures are concentrated:

$$
\begin{array}{ll}
\mu_{2}=\frac{1}{4} \delta_{00}+\frac{1}{4} \delta_{01}+\frac{1}{4} \delta_{10}+\frac{1}{4} \delta_{11} & X_{2}=\{00,01,10,11\} \\
\mu_{1}=\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1} & X_{1}=\{0,1\} \\
\mu_{0}=\delta_{\epsilon} & X_{0}=\{\epsilon\}
\end{array}
$$

Notice that the $X_{n} \mathrm{~s}$ are antichains, and $X_{0} \sqsubseteq c X_{1} \sqsubseteq c X_{2} \sqsubseteq c \cdots$, where

$$
X \sqsubseteq c Y \Leftrightarrow X \subseteq \downarrow Y \& Y \subseteq \uparrow X
$$

These are Lawson-compact antichains in the Egli-Milner order.

The Underlying Structure - Domains and Trees

- $\Sigma^{\infty}=\Sigma^{*} \cup \Sigma^{\omega}$ is a domain under the prefix order. $K \Sigma^{\infty}=\Sigma^{*}$ - the finite words

Scott topology: $\left\{\uparrow k \mid k \in K \Sigma^{\infty}\right\}$ as basis.

The Underlying Structure - Domains and Trees

- $\Sigma^{\infty}=\Sigma^{*} \cup \Sigma^{\omega}$ is a domain under the prefix order.
$K \Sigma^{\infty}=\Sigma^{*}$ - the finite words
If Σ is finite, then Σ^{∞} is coherent
Compact in the Lawson topology
Open sets: $U=\uparrow k \backslash \uparrow F, \quad k \in \Sigma^{*}, F \subseteq \Sigma^{*}$ finite

The Underlying Structure - Domains and Trees

- $\Sigma^{\infty}=\Sigma^{*} \cup \Sigma^{\omega}$ is a domain under the prefix order.
- $A C\left(\Sigma^{\infty}\right)=(\{X \mid$ Lawson-compact antichain $\}, \sqsubseteq c)$

$$
\begin{aligned}
X \sqsubseteq c Y & \Leftrightarrow X \subseteq \downarrow Y \& Y \subseteq \uparrow X \\
& \Leftrightarrow \pi_{X}(Y)=X
\end{aligned}
$$

Subdomain of $\mathcal{P}_{C}\left(\Sigma^{\infty}\right)$ - convex power domain over Σ^{∞}.

The Underlying Structure - Domains and Trees

- $\Sigma^{\infty}=\Sigma^{*} \cup \Sigma^{\omega}$ is a domain under the prefix order.
- $A C\left(\Sigma^{\infty}\right)=(\{X \mid$ Lawson-compact antichain $\}, \sqsubseteq c)$
- Theorem: $A C\left(\Sigma^{\infty}\right)$ is a Scott domain: all nonempty subsets have infima. Moreover, given $\left\{X_{n}\right\}_{n \in \mathbb{N}} \subseteq A C\left(\Sigma^{\infty}\right)$ directed and $X \in A C\left(\Sigma^{\infty}\right)$, TAE:
(i) $X=\sup _{n} X_{n}$
(ii) $X=\lim _{n} X_{n}$ in the Vietoris topology on $\Gamma\left(\Sigma^{\infty}\right)$.

The Underlying Structure - Domains and Trees

- $\Sigma^{\infty}=\Sigma^{*} \cup \Sigma^{\omega}$ is a domain under the prefix order.
- $A C\left(\Sigma^{\infty}\right)=(\{X \mid$ Lawson-compact antichain $\}, \sqsubseteq c)$
- Theorem: $A C\left(\Sigma^{\infty}\right)$ is a Scott domain: all nonempty subsets have infima. Moreover, given $\left\{X_{n}\right\}_{n \in \mathbb{N}} \subseteq A C\left(\Sigma^{\infty}\right)$ directed and $X \in A C\left(\Sigma^{\infty}\right)$, TAE:
(i) $X=\sup _{n} X_{n}$
(ii) $X=\lim _{n} X_{n}$ in the Vietoris topology on $\Gamma\left(\Sigma^{\infty}\right)$.
- In particular, any $X \in A C\left(\Sigma^{\infty}\right)$ satisfies
$X=\sup _{n} \pi_{n}(X)=\lim _{n} \pi_{n}(X)$, where
$\pi_{n}: \Sigma^{\infty} \rightarrow \Sigma \leq n=\{\sigma| | \sigma \mid \leq n\}$ is the canonical retraction.

Thin Probability Measures

- $\mu \in \operatorname{Prob}\left(\Sigma^{\infty}\right)$ is thin if $\operatorname{supp}_{\wedge} \mu \in A C\left(\Sigma^{\infty}\right)$.

Note: $\operatorname{supp}_{\wedge} \mu$ is in the Lawson topology.

Thin Probability Measures

- $\mu \in \operatorname{Prob}\left(\Sigma^{\infty}\right)$ is thin if $\operatorname{supp}_{\wedge} \mu \in A C\left(\Sigma^{\infty}\right)$.
- Define $\mu \leq \nu$ iff $\pi_{\text {supp }_{\wedge} \mu}(\nu)=\mu$

Agrees with usual domain order (qua valuations) / functional analysis order via cones.

Thin Probability Measures

- $\mu \in \operatorname{Prob}\left(\Sigma^{\infty}\right)$ is thin if $\operatorname{supp}_{\wedge} \mu \in A C\left(\Sigma^{\infty}\right)$.
- Proposition: $\left(\Theta \operatorname{Prob}\left(\Sigma^{\infty}\right), \leq\right)$ is a bounded complete domain: all nonempty subsets have infima. Moreover, given $\left\{\mu_{n}\right\}_{n \in \mathbb{N}} \subseteq \Theta \operatorname{Prob}\left(\Sigma^{\infty}\right)$ directed and $\mu \in \Theta \operatorname{Prob}\left(\Sigma^{\infty}\right)$, TAE:
(i) $\mu=\sup _{n} \mu_{n}$
(ii) $\mu=\lim _{n} \mu_{n}$ in the weak-* topology on $\Theta \operatorname{Prob}\left(\Sigma^{\infty}\right)$.

Thin Probability Measures

- $\mu \in \operatorname{Prob}\left(\Sigma^{\infty}\right)$ is thin if $\operatorname{supp}_{\wedge} \mu \in A C\left(\Sigma^{\infty}\right)$.
- Proposition: $\left(\Theta \operatorname{Prob}\left(\Sigma^{\infty}\right), \leq\right)$ is a bounded complete domain: all nonempty subsets have infima. Moreover, given $\left\{\mu_{n}\right\}_{n \in \mathbb{N}} \subseteq \Theta \operatorname{Prob}\left(\Sigma^{\infty}\right)$ directed and $\mu \in \Theta \operatorname{Prob}\left(\Sigma^{\infty}\right)$, TAE:
(i) $\mu=\sup _{n} \mu_{n}$
(ii) $\mu=\lim _{n} \mu_{n}$ in the weak-* topology on $\Theta \operatorname{Prob}\left(\Sigma^{\infty}\right)$.
- In particular, any $\mu \in \Theta \operatorname{Prob}\left(\Sigma^{\infty}\right)$ satisfies
$\mu=\sup _{n} \pi_{n}(\mu)=\lim _{n} \pi_{n}(\mu)$, where
$\pi_{n}: \Sigma^{\infty} \rightarrow \Sigma \leq n$ is the canonical retraction.

A Random Variables Model

$\Theta \operatorname{Prob}\left(\Sigma^{\infty}\right)$ with $\mu \leq \nu \quad$ iff $\quad \pi_{\text {supp }_{\wedge}} \mu(\nu)=\mu$.
Define the space of continuous random variables over P to be:

$$
\begin{gathered}
\Theta R V\left(\Sigma^{\infty}, P\right)=\quad\left\{(\mu, f) \mid \mu \in \Theta \operatorname{Prob}\left(\Sigma^{\infty}\right) \&\right. \\
\left.f: \operatorname{supp}_{\Lambda} \mu \rightarrow P \wedge \text {-continuous }\right\} \\
(\mu, f) \leq(\nu, g) \text { iff } \pi_{\text {supp }_{\wedge} \mu}(\nu)=\mu \& f \circ \pi_{\text {supp }_{\wedge} \mu} \leq g .
\end{gathered}
$$

A Random Variables Model

$\Theta \operatorname{Prob}\left(\Sigma^{\infty}\right)$ with $\mu \leq \nu \quad$ iff $\quad \pi_{\text {supp }_{\wedge}} \mu(\nu)=\mu$.
Define the space of continuous random variables over P to be:

$$
\begin{aligned}
& \Theta R V\left(\Sigma^{\infty}, P\right)=\left\{(\mu, f) \mid \mu \in \Theta \operatorname{Prob}\left(\Sigma^{\infty}\right) \&\right. \\
& \left.f: \operatorname{supp}_{\wedge} \mu \rightarrow P \wedge \text {-continuous }\right\} \\
& (\mu, f) \leq(\nu, g) \quad \text { iff } \quad \pi_{\text {supp }_{\wedge} \mu}(\nu)=\mu \& f \circ \pi_{\text {supp }_{\wedge} \mu} \leq g .
\end{aligned}
$$

Idea for this due to Goubault-Larrecq and Varacca (LICS 2011).
Now we need to show this is in BCD if P is.

Function Space Component

- $X \sqsubseteq c Y \in A C\left(A^{\infty}\right), P \in \mathrm{BCD} \Longrightarrow$

$$
\begin{aligned}
& f \mapsto f \circ \pi_{X}:[X \longrightarrow P] \hookrightarrow[Y \longrightarrow P] \& \\
& g \mapsto \widehat{g}:[Y \longrightarrow P] \longrightarrow[X \longrightarrow P] \text { by } \widehat{g}(x)=\inf g\left(\pi_{X}^{-1}(x)\right) .
\end{aligned}
$$

Function Space Component

- $X \sqsubseteq c Y \in A C\left(A^{\infty}\right), P \in B C D \Longrightarrow$

$$
f \mapsto f \circ \pi_{X}:[X \longrightarrow P] \hookrightarrow[Y \longrightarrow P] \&
$$

$$
g \mapsto \widehat{g}:[Y \longrightarrow P] \longrightarrow[X \longrightarrow P] \text { by } \widehat{g}(x)=\inf g\left(\pi_{X}^{-1}(x)\right)
$$

- $X \in A C\left(A^{\infty}\right), P \in \mathrm{BCD} \Longrightarrow[X \longrightarrow P] \in \mathrm{BCD}$:

$$
[X \longrightarrow P] \simeq \lim _{n}\left[\pi_{n}(X) \longrightarrow P\right] \simeq \lim _{n} P^{\pi_{n}(X)}
$$

Function Space Component

$$
\begin{aligned}
& \vee X \in A C\left(A^{\infty}\right), P \in \mathrm{BCD} \Longrightarrow[X \longrightarrow P] \in \mathrm{BCD}: \\
& \quad[X \longrightarrow P] \simeq \lim _{n}\left[\pi_{n}(X) \longrightarrow P\right] \simeq \lim _{n} P^{\pi_{n}(X)} . \\
& \left(\bigoplus_{X \in A C\left(A^{\infty}\right)}[X \longrightarrow P], \leq_{R}\right) \in \mathrm{BCD}: \\
& \quad f \leq_{R} g \text { iff } \operatorname{dom} f \sqsubseteq c \operatorname{dom} g \& f \circ \pi_{\operatorname{dom} f} \leq g .
\end{aligned}
$$

Function Space Component

- $X \in A C\left(A^{\infty}\right), P \in \mathrm{BCD} \Longrightarrow[X \longrightarrow P] \in \mathrm{BCD}:$

$$
[X \longrightarrow P] \simeq \lim _{n}\left[\pi_{n}(X) \longrightarrow P\right] \simeq \lim _{n} P^{\pi_{n}(X)} .
$$

- $\left(\bigoplus_{x \in A C\left(A^{\infty}\right)}[X \longrightarrow P], \leq_{R}\right) \in \mathrm{BCD}:$
$f \leq_{R} g \quad$ iff $\quad \operatorname{dom} f \sqsubseteq c \operatorname{dom} g \& f \circ \pi_{\operatorname{dom} f} \leq g$.

Defining the Model

- $\Theta \operatorname{Prob}\left(A^{\infty}\right) \times \bigoplus_{X \in A C\left(A^{\infty}\right)}[X \longrightarrow P] \in \mathrm{BCD}$ if $P \in \mathrm{BCD}$.

Function Space Component

- $X \in A C\left(A^{\infty}\right), P \in \mathrm{BCD} \Longrightarrow[X \longrightarrow P] \in \mathrm{BCD}$:

$$
[X \longrightarrow P] \simeq \lim _{n}\left[\pi_{n}(X) \longrightarrow P\right] \simeq \lim _{n} P^{\pi_{n}(X)} .
$$

- $\left(\bigoplus_{X \in A C\left(A^{\infty}\right)}[X \longrightarrow P], \leq_{R}\right) \in \mathrm{BCD}:$

$$
f \leq_{R} g \quad \text { iff } \quad \operatorname{dom} f \sqsubseteq c \operatorname{dom} g \& f \circ \pi_{\operatorname{dom} f} \leq g .
$$

Defining the Model

- $\Theta \operatorname{Prob}\left(A^{\infty}\right) \times \bigoplus_{X \in A C\left(A^{\infty}\right)}[X \longrightarrow P] \in \mathrm{BCD}$ if $P \in \mathrm{BCD}$.
- For $P \in B C D$
$\Theta R V\left(A^{\infty}, P\right)=\left\{(\mu, f) \mid \mu \in \Theta \operatorname{Prob}\left(A^{\infty}\right), f: \operatorname{supp}_{\wedge} \mu \longrightarrow P\right\}$ is a retract of $\Theta \operatorname{Prob}\left(A^{\infty}\right) \times \bigoplus_{X \in A C\left(A^{\infty}\right)}[X \longrightarrow P]$:

$$
\begin{aligned}
& (\mu, f) \mapsto\left(\pi_{Y}(\mu), f \circ \pi_{Y}\right) \text { is the projection } \\
& Y=\operatorname{supp}_{\wedge} \mu \wedge \operatorname{dom} f .
\end{aligned}
$$

But, this is NOT a Monad
Given $P \in B C D$, define

$$
R V(\mathcal{C}, D)=\Theta \operatorname{Prob}\left(A^{\infty}\right) \times \bigoplus_{X \in A C\left(A^{\infty}\right)}[X \longrightarrow P]
$$

Then there are maps satisfying the monad laws

$\eta(x)=\left(\delta_{\epsilon}\right.$, const $\left._{x}\right)$
But h^{\dagger} is not monotone. :-(

Alternative Model

- Basic idea: Flatten model so concatenation doesn't need to be monotone in first component.
- Leads to model which looks like

$$
1 \text { flip } \oplus 2 \text { flips } \oplus 3 \text { flips } \oplus \cdots \oplus n \text { flips } \oplus \cdots
$$

- Begin with $\operatorname{SProb}(n)=\left\{\sum_{i<n} r_{i} \delta_{i} \mid 0 \leq r_{i} \& \sum_{i} r_{i} \leq 1\right\}$
- $\sum_{i} r_{i} \delta_{i} \leq \sum_{i} s_{i} \delta_{i}$ iff $r_{i} \leq s_{i}(\forall i)$.
- $\sum_{i} r_{i} \delta_{i} \wedge \sum_{i} s_{i} \delta_{i}=\sum_{i}\left(r_{i} \wedge s_{i}\right) \delta_{i}$
- $\perp=0$
- A directed $\Rightarrow(\sup A)(i)=\sup _{\mu \in A} \mu(i)$.

Alternative Model

- Flat random variable domain:

$$
\begin{aligned}
& R V^{b}(D)=\bigoplus_{n}\left(\operatorname{SProb}\left(\{0,1\}^{n}\right) \times D^{\{0,1\}^{n}}\right) \\
& -\left(\mu_{n}, X_{n}\right) \leq\left(\nu_{m}, X_{m}\right) \text { iff } m=n, \mu_{n} \leq \nu_{n}, \text { and } \\
& \quad X_{n}(i) \leq X_{m}(i)(\forall i) .
\end{aligned}
$$

- $f: D \rightarrow E \Rightarrow R V^{b}(f): R V^{b}(D) \rightarrow R V^{b}(E)$

$$
\text { by } R V^{b}(f)\left(\mu_{n}, X_{n}\right)=\left(\mu_{n}, f \circ X_{n}\right) \text {. }
$$

- $R V^{b}(D)$ forms a monad on BCD.
- Problem: $R V^{b}(D)$ makes too many distinctions:

$$
\left(\frac{1}{3} \delta_{0}+\frac{2}{3} \delta_{1},(a, b)\right) \neq\left(\frac{2}{3} \delta_{0}+\frac{1}{3} \delta_{1},(b, a)\right), \text { etc. }
$$

- Solution requires some background work.

Free ordered semigroup

- $P^{*}=\bigoplus_{n>0} P^{n}$ is free ordered semigroup over poset P :
- $w \leq w^{\prime}$ iff $|w|=\left|w^{\prime}\right| \& w_{i} \leq P w_{i}^{\prime}(\forall i \leq|w|)$.
- $w w^{\prime} \in P^{m+n}$ if $w \in P^{m} \& w^{\prime} \in P^{n}$.
- Note (J.-E. Pin): Free ordered monoid is flat.
- Also works for P in BCD, FS, or RB.
- To obtain the free commutative semigroup, we take a quotient:
- $S(n)$ acts on P^{n} by permuting the components.
- $P^{n} / S(n)$ is the set of n-bags over P.
- $\pi_{n}: P^{n} \rightarrow P^{n} / S(n)$ is monotone.
- $\operatorname{COS}(P)=\bigoplus_{n>0} P^{n} / S(n)$ - free commutative ordered semigroup over P.

Free ordered domain

- Rudin's Lemma implies this also works in domains.
- CDS $(P)=\bigoplus_{n>0} P^{n} / S(n)$ - free commutative domain semigroup over domain P.

Apply this to $R V^{b}(D)$ to obtain flat "commutative" random variable domain:

- $C R V^{b}(D)=\bigoplus_{n}\left(\operatorname{SProb}\left(2^{n}\right) \times D^{2^{n}}\right) / S\left(2^{n}\right)$
- Now $\left(\frac{1}{3} \delta_{0}+\frac{2}{3} \delta_{1},(a, b)\right) \equiv\left(\frac{2}{3} \delta_{0}+\frac{1}{3} \delta_{1},(b, a)\right)$, etc.
- But: $\left(\frac{1}{3} \delta_{0}+\frac{2}{3} \delta_{1},(a, b)\right) \not \equiv\left(\frac{1}{3} \delta_{0}+\frac{1}{3} \delta_{1}+\frac{1}{3} \delta_{1},(a, b, b)\right)$
- Still a monad over RB and FS (but not over BCD).

Some Additional Comments

- Work was inspired by Varacca's indexed valuations (2004) and Goubault-Larrecq \& Varacca's work on the first model.
- Jean Goubault-Larrecq is working on a patch to the first model.
- Refines the order
- Tyler Barker also working on a patch
- Redefines the Kleisli lift - somewhat akin to conditional probability
- Remaining question: Can the second model be extended to include recursion on the number of flips?

