The Search for Random Variable Monads

Michael W. Mislove

Tulane University
New Orleans, LA

Workshop on Information and Processes
CIAPA, Costa Rica
December 15 — 18, 2013

Work sponsored by AFOSR & NSF

The Cantor Tree

C~¥>*=y"ux¥ ¥={01}
Build Two Models Based on C :

1. First from random coin flips
2. Second from “fixing” 1)

Domain Properties of C
» C~{0,1}* ={0,1}*U{0,1}* is Scott domain
» (C is a rooted tree
» X CC Scott closed = drx: C — X
» X C C Scott closed iff X = [Max X &

Max X is Lawson compact antichain.

Flipping Coins

» Random oracles in computation:
» Execute some steps of computation...

» Come to a branch point — need to make a random choice
» Consult an oracle — or, simply flip a coin
> Make choice based on outcome of coin flip

» REPEAT
» Examine first how to model the coin flips

» Utilize structure of trace distributions

» Incorporate into random variable models

Model of coin flipping

start — 3

NI

NI=

N|=

N|=

Model of coin flipping

Unfolding the automaton:

N|=

NI=

start — 3

NI

N|=

Model of coin flipping

Model such automata be their
trace distributions:

fi2 = 800 + 3001 + 1610 + 2011
p1 = 360 + 361

/J’O:(SE

Model of coin flipping
Stripping away the probabilities, we have the following sets on
which these measures are concentrated:

pio = 2800 + 1001 + 2610 + 2611 Xp = {00,01,10,11}
pi1 = 500 + 361 X; = {0,1}

Ho = Oc Xo = {€}

Notice that the X,s are antichains, and

XoEc X1 Ec X2 Ec -+ -, where

XCcY & XCLY &Y CHX.

These are Lawson-compact antichains in the Egli-Milner order.

The Underlying Structure - Domains and Trees

> Y =3*UXYis a domain under the prefix order.
KX = ¥* — the finite words

Scott topology: {Tk | k € KX} as basis.

The Underlying Structure - Domains and Trees

> Y =3*UXYis a domain under the prefix order.
KX = ¥* — the finite words

If X is finite, then X°° is coherent
Compact in the Lawson topology

Open sets: U =1k \TF, ke X* FCX* finite

The Underlying Structure - Domains and Trees

> Y =3*UXYis a domain under the prefix order.
» AC(X*°) = ({X | Lawson-compact antichain}, C¢)

XCcY & XClY&YCtX
= Wx(Y):X

Subdomain of P¢(X°°) — convex power domain over .

The Underlying Structure - Domains and Trees
> Y =3*UXYis a domain under the prefix order.
» AC(X*) = ({X | Lawson-compact antichain}, C¢)

» Theorem: AC(X*°) is a Scott domain: all nonempty subsets
have infima. Moreover, given {X,}neny € AC(X*°) directed
and X € AC(X>), TAE:

(i) X =sup, X,
(i) X = lim, X, in the Vietoris topology on I'(X*°).

The Underlying Structure - Domains and Trees
> Y =3*UXYis a domain under the prefix order.
» AC(X*) = ({X | Lawson-compact antichain}, C¢)

» Theorem: AC(X*°) is a Scott domain: all nonempty subsets
have infima. Moreover, given {X,}neny € AC(X*°) directed
and X € AC(X>), TAE:

(i) X =sup, Xy

(i) X = lim, X, in the Vietoris topology on I'(X*°).
> In particular, any X € AC(X*°) satisfies

X = sup, mp(X) = lim, my(X), where

Tt £ — X" = {0 | |o| < n} is the canonical retraction.

Thin Probability Measures
> 1 € Prob(X) is thin if suppy u € AC(X>°).
Note: suppp p is in the Lawson topology.

Thin Probability Measures
> 1 € Prob(X) is thin if suppy u € AC(X>°).
» Define p < v iff mgupp, u(v) = 1

Agrees with usual domain order (qua valuations)
/ functional analysis order via cones.

Thin Probability Measures

> 1 € Prob(X) is thin if suppy u € AC(X>°).

» Proposition: (©Prob(X>°), <) is a bounded complete
domain: all nonempty subsets have infima. Moreover, given
{ltn}nen € OProb(X>°) directed and p € © Prob(X>°), TAE:

(1) 1= sup, fin
(il) p = limy p in the weak-* topology on © Prob(¥X>°).

Thin Probability Measures

> 1 € Prob(X) is thin if suppy u € AC(X>°).

» Proposition: (©Prob(X>°), <) is a bounded complete
domain: all nonempty subsets have infima. Moreover, given
{ltn}nen € OProb(X>°) directed and p € © Prob(X>°), TAE:
(1) 1= sup, fin
(il) p = limy p in the weak-* topology on © Prob(¥X>°).

> In particular, any € © Prob(¥X) satisfies
w=sup, mp(p) = lim, mp(p), where

T £° — ¥ is the canonical retraction.

A Random Variables Model
©Prob(X>) with u < v iff 7upp, u(v) = p.
Define the space of continuous random variables over P to be:

ORV(E>,P) = {(p,f)|n € OProb(X™) &
f: suppp u — P A-continuous}

(u, £) < (v, 8) ff Tsuppy u(V) = 1 & f o Toupp, u < 8-

A Random Variables Model
©Prob(X>) with u < v iff 7upp, u(v) = p.
Define the space of continuous random variables over P to be:

ORV(E>,P) = {(p,f)|n € OProb(X™) &
f: suppp u — P A-continuous}
(u, £) < (v, 8) ff Tsuppy u(V) = 1 & f o Toupp, u < 8-

Idea for this due to Goubault-Larrecq and Varacca (LICS 2011).
Now we need to show this is in BCD if P is.

Function Space Component
» XCc Y eAC(A®),PeBCD =
fofomx: [X — Pl—=[Y — P&
g—=g: [Y—P—[X— Plbyg(x)= infg(ﬁ)_(l(x)).

Function Space Component

» XCc Y € AC(A®),P ¢ BCD —
frformx: [X— Pl [Y — Pl &
g 8: [Y — Pl —» [X — P] by g(x) = inf g(mx'(x)).
» X € AC(A*),P € BCLD = [X — P] € BCD:
[X — P] = limp[mn(X) — P] ~ lim, P™(X).

Function Space Component
» X € AC(A*),P e BCLD = [X — P] € BCD:
[X — P] ~ limp[mp(X) — P] ~ lim,, P™(X),
> (Dxeac(a=)X — P],<g) € BCD:
f<rg iff domfCcdomg & fomgomsr < g.

Function Space Component

> X € AC(A®),P € BCD = [X — P] € BCD:
[X — P] ~ |im,,[7r,,(X) — P] ~ lim, pra(X)

> (Dxeaca=)[X — P, <gr) € BCD:
f<rg iff domf Ccdomg & fomgomr < g.

Defining the Model
» ©Prob(A>) x @XeAC(Am)[X — P] € BCD if P € BCD.

Function Space Component
» X € AC(A*),P e BCLD = [X — P] € BCD:
[X — P] ~ limp[mp(X) — P] ~ lim,, P™(X),
> (Dxeac(a=)X — P],<g) € BCD:
f<rg iff domfCcdomg & fomgomsr < g.

Defining the Model

> ©Prob(A™) x @xeac(a=)[X — P] € BCD if P € BCD.
» For P € BCD
ORV(A>, P) = {(i,f) | u € ©Prob(A>), f: suppy p — P}
is a retract of ©Prob(A™) X @ xcac(a=)[X — P
(p, f) = (my (), f omy) is the projection
Y = suppp 4 A dom f.

But, this is NOT a Monad
Given P € BCD, define

RV(C,D) = ©Prob(A*) x EH [X — P
XEAC(A>®)

Then there are maps satisfying the monad laws

RV(C, D)

D RV(C, E)

h

n(x) = (Je, consty)

But h' is not monotone. :-(

Alternative Model

» Basic idea: Flatten model so concatenation doesn’t need to
be monotone in first component.

» Leads to model which looks like
1flip® 2 flips® 3 flips® --- & n flipsd - - -
» Begin with SProb(n) = {Zi<n rdi|0<r& >, n< 1}

> Zi r,-6,- < ZI-S;6; iff ri <s; (VI)

> D it N Y sidi =D (ri A si)di
> J_: 0
> A directed = (sup A)(i) = sup,ea p(i)-

Alternative Model

» Flat random variable domain:

RV’ (D) =D (SProb({O, 117) x D{Ovl}”)

> (ptny Xn) < (Wmy Xm) iff m=n, u, < v,, and
Xo(i) < Xun(i) (V).
f:D— E = RV°(f): RV’(D) — RV*(E)
by RV’ (£)(ttns Xn) = (i, f 0 Xp).
RV"(D) forms a monad on BCD.
Problem: RV®(D) makes too many distinctions:
(360 + 301, (a, b)) # (300 + 301, (b, a)), etc.

Solution requires some background work.

v

v

v

v

Free ordered semigroup

> P = @ P" is free ordered semigroup over poset P:
n>0

»w <w iff |w=|w| & w <pw! (Vi<]wl|).
»ww' € P ifwe P™& w e P
» Note (J.-E. Pin): Free ordered monoid is flat.

» Also works for P in BCD, FS, or RB.

» To obtain the free commutative semigroup, we take a
quotient:

» S(n) acts on P" by permuting the components.
» P"/S(n) is the set of n-bags over P.
» m,: P" — P"/5(n) is monotone.

» COS(P) = @ P"/S(n) — free commutative ordered

] n>0
semigroup over P.

Free ordered domain

» Rudin’'s Lemma implies this also works in domains.

» CDS(P) = @ P"/S(n) — free commutative domain

n>0
semigroup over domain P.

Apply this to RV’(D) to obtain flat “commutative” random
variable domain:

> CRV"(D) = €] (SProb(2") x D*") /S(2")

» Now (%50 + %61, (a, b)) = (%50 + %51, (b, a)), etc.
» But: (%50 + %(51, (a, b)) * (%50 + %51 + %(51, (a, b, b))
» Still a monad over RB and FS (but not over BCD).

Some Additional Comments

» Work was inspired by Varacca's indexed valuations (2004) and
Goubault-Larrecq & Varacca's work on the first model.

» Jean Goubault-Larrecq is working on a patch to the first
model.

» Refines the order
» Tyler Barker also working on a patch
» Redefines the Kleisli lift — somewhat akin to conditional
probability

» Remaining question: Can the second model be extended to
include recursion on the number of flips?

	Background
	Overview

	Domains
	Probability on Domains
	Function Spaces
	But, this is NOT a Monad Over Domains

