The Search for Random Variable Monads

Michael W. Mislove

Tulane University New Orleans, LA

Workshop on Information and Processes CIAPA, Costa Rica December 15 – 18, 2013

Work sponsored by AFOSR & NSF

The Cantor Tree

$$\mathcal{C} \simeq \Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}, \quad \Sigma = \{0,1\}$$

Build Two Models Based on ${\mathcal C}$:

- ${\bf 1.} \ {\sf First \ from \ random \ coin \ flips}$
- 2. Second from "fixing" 1)

Domain Properties of C

$$ightharpoonup \mathcal{C} \simeq \{0,1\}^\infty = \{0,1\}^* \cup \{0,1\}^\omega$$
 is Scott domain

ightharpoonup C is a rooted tree

▶
$$X \subseteq \mathcal{C}$$
 Scott closed $\Rightarrow \exists \pi_X : \mathcal{C} \to X$

► $X \subseteq \mathcal{C}$ Scott closed iff $X = \bigcup Max \ X$ & $Max \ X$ is Lawson compact antichain.

Flipping Coins

- ► Random oracles in computation:
 - ► Execute some steps of computation...
 - ► Come to a branch point need to make a random choice
 - ► Consult an oracle or, simply flip a coin
 - ► Make choice based on outcome of coin flip
 - ▶ RFPFAT
- Examine first how to model the coin flips
 - Utilize structure of trace distributions
- ► Incorporate into random variable models

Model such automata be their trace distributions:

$$\mu_2 = \frac{1}{4}\delta_{00} + \frac{1}{4}\delta_{01} + \frac{1}{4}\delta_{10} + \frac{1}{4}\delta_{11}$$

$$\mu_1 = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$$

$$\mu_0 = \delta_{\epsilon}$$

Stripping away the probabilities, we have the following sets on which these measures are *concentrated*:

$$\begin{array}{ll} \vdots & & \vdots \\ \mu_2 = \frac{1}{4}\delta_{00} + \frac{1}{4}\delta_{01} + \frac{1}{4}\delta_{10} + \frac{1}{4}\delta_{11} & X_2 = \{00,01,10,11\} \\ \mu_1 = \frac{1}{2}\delta_0 + \frac{1}{2}\delta_1 & X_1 = \{0,1\} \\ \mu_0 = \delta_\epsilon & X_0 = \{\epsilon\} \\ \end{array}$$

Notice that the X_n s are antichains, and

$$X_0 \sqsubseteq_C X_1 \sqsubseteq_C X_2 \sqsubseteq_C \cdots$$
, where

$$X \sqsubseteq_C Y \Leftrightarrow X \subseteq \downarrow Y \& Y \subseteq \uparrow X.$$

These are Lawson-compact antichains in the Egli-Milner order.

• $\Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$ is a *domain* under the prefix order.

$$\ensuremath{K} \Sigma^\infty = \Sigma^*$$
 – the finite words

Scott topology: $\{\uparrow k \mid k \in K\Sigma^{\infty}\}$ as basis.

• $\Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$ is a *domain* under the prefix order.

$$K\Sigma^{\infty} = \Sigma^*$$
 – the finite words

If Σ is finite, then Σ^{∞} is coherent Compact in the Lawson topology

Open sets: $U = \uparrow k \setminus \uparrow F$, $k \in \Sigma^*, F \subseteq \Sigma^*$ finite

- $ightharpoonup \Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$ is a *domain* under the prefix order.
- $\qquad \qquad \blacktriangle \ \, \mathit{AC}(\Sigma^{\infty}) = (\{X \mid \mathsf{Lawson\text{-}compact antichain}\}, \sqsubseteq_{\mathit{C}})$

$$X \sqsubseteq_{\mathcal{C}} Y \quad \Leftrightarrow \quad X \subseteq \downarrow Y \& Y \subseteq \uparrow X$$

 $\Leftrightarrow \quad \pi_X(Y) = X$

Subdomain of $\mathcal{P}_{\mathcal{C}}(\Sigma^{\infty})$ – convex power domain over Σ^{∞} .

- $\blacktriangleright \Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$ is a *domain* under the prefix order.
- ► $AC(\Sigma^{\infty}) = (\{X \mid \text{Lawson-compact antichain}\}, \sqsubseteq_C)$
- ▶ **Theorem:** $AC(\Sigma^{\infty})$ is a Scott domain: all nonempty subsets have infima. Moreover, given $\{X_n\}_{n\in\mathbb{N}}\subseteq AC(\Sigma^{\infty})$ directed and $X\in AC(\Sigma^{\infty})$, TAE:
 - and $X \in AC(Z)$, TAE

(i) $X = \sup_{n} X_n$

(ii) $X = \lim_{n} X_n$ in the Vietoris topology on $\Gamma(\Sigma^{\infty})$.

- $ightharpoonup \Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$ is a *domain* under the prefix order.
- ► $AC(\Sigma^{\infty}) = (\{X \mid \text{Lawson-compact antichain}\}, \sqsubseteq_C)$
- ▶ **Theorem:** $AC(\Sigma^{\infty})$ is a Scott domain: all nonempty subsets have infima. Moreover, given $\{X_n\}_{n\in\mathbb{N}}\subseteq AC(\Sigma^{\infty})$ directed and $X\in AC(\Sigma^{\infty})$, TAE:
 - $(i) X = \sup_{n} X_{n}$
 - (ii) $X = \lim_n X_n$ in the Vietoris topology on $\Gamma(\Sigma^{\infty})$.
- ▶ In particular, any $X \in AC(\Sigma^{\infty})$ satisfies

$$X = \sup_n \pi_n(X) = \lim_n \pi_n(X)$$
, where

$$\pi_n \colon \Sigma^\infty o \Sigma^{\leq n} = \{\sigma \mid |\sigma| \leq n\}$$
 is the canonical retraction.

▶ $\mu \in Prob(\Sigma^{\infty})$ is thin if $supp_{\Lambda} \mu \in AC(\Sigma^{\infty})$.

Note: $supp_{\Lambda} \mu$ is in the *Lawson* topology.

- ▶ $\mu \in Prob(\Sigma^{\infty})$ is thin if $supp_{\Lambda} \mu \in AC(\Sigma^{\infty})$.
- ▶ Define $\mu \le \nu$ iff $\pi_{\mathsf{supp}_{\mathsf{A}}\,\mu}(\nu) = \mu$

Agrees with usual domain order (*qua* valuations) / functional analysis order via cones.

- ▶ $\mu \in Prob(\Sigma^{\infty})$ is thin if $supp_{\Lambda} \mu \in AC(\Sigma^{\infty})$.
- ▶ **Proposition:** $(\Theta Prob(\Sigma^{\infty}), \leq)$ is a bounded complete domain: all nonempty subsets have infima. Moreover, given $\{\mu_n\}_{n\in\mathbb{N}}\subseteq\Theta Prob(\Sigma^{\infty})$ directed and $\mu\in\Theta Prob(\Sigma^{\infty})$, TAE:
 - (i) $\mu = \sup_{n} \mu_n$
 - (ii) $\mu = \lim_n \mu_n$ in the weak-* topology on $\Theta Prob(\Sigma^{\infty})$.

- ▶ $\mu \in Prob(\Sigma^{\infty})$ is thin if $supp_{\Lambda} \mu \in AC(\Sigma^{\infty})$.
- ▶ **Proposition:** $(\Theta Prob(\Sigma^{\infty}), \leq)$ is a bounded complete domain: all nonempty subsets have infima. Moreover, given $\{\mu_n\}_{n\in\mathbb{N}}\subseteq\Theta Prob(\Sigma^{\infty})$ directed and $\mu\in\Theta Prob(\Sigma^{\infty})$, TAE:
 - (i) $\mu = \sup_{n} \mu_n$
 - (ii) $\mu = \lim_n \mu_n$ in the weak-* topology on $\Theta Prob(\Sigma^{\infty})$.
- ▶ In particular, any $\mu \in \Theta Prob(\Sigma^{\infty})$ satisfies $\mu = \sup_{n} \pi_{n}(\mu) = \lim_{n} \pi_{n}(\mu)$, where

$$\mu = \sup_{n} \pi_n(\mu) = \min_{n} \pi_n(\mu)$$
, where

 $\pi_n \colon \Sigma^\infty \to \Sigma^{\leq n}$ is the canonical retraction.

A Random Variables Model

$$\Theta Prob(\Sigma^{\infty})$$
 with $\mu \leq \nu$ iff $\pi_{\operatorname{supp}_{\Lambda} \mu}(\nu) = \mu$.

Define the space of *continuous random variables over P* to be:

$$\Theta RV(\Sigma^{\infty}, P) = \{(\mu, f) \mid \mu \in \Theta Prob(\Sigma^{\infty}) \& f : \operatorname{supp}_{\Lambda} \mu \to P \Lambda \text{-continuous}\}$$

$$(\mu,f) \leq (\nu,g) \quad \text{iff} \quad \pi_{\operatorname{supp}_{\Lambda} \mu}(\nu) = \mu \,\,\&\,\, f \circ \pi_{\operatorname{supp}_{\Lambda} \mu} \leq g.$$

A Random Variables Model

$$\Theta Prob(\Sigma^{\infty})$$
 with $\mu \leq \nu$ iff $\pi_{\mathsf{supp}_{\Lambda} \mu}(\nu) = \mu$.

Define the space of *continuous random variables over P* to be:

$$\Theta RV(\Sigma^{\infty}, P) = \{(\mu, f) \mid \mu \in \Theta Prob(\Sigma^{\infty}) \& f : \operatorname{supp}_{\Lambda} \mu \to P \Lambda \text{-continuous}\}$$

$$(\mu,f) \leq (\nu,g) \quad \text{iff} \quad \pi_{\mathsf{supp}_{\Lambda}\,\mu}(\nu) = \mu \ \& \ f \circ \pi_{\mathsf{supp}_{\Lambda}\,\mu} \leq g.$$

Idea for this due to Goubault-Larrecq and Varacca (LICS 2011). Now we need to show this is in BCD if P is.

► $X \sqsubseteq_C Y \in AC(A^{\infty}), P \in BCD \implies$

$$f \mapsto f \circ \pi_X \colon [X \longrightarrow P] \hookrightarrow [Y \longrightarrow P] \&$$

 $f\mapsto f\circ \pi_X\colon [X\longrightarrow P]\hookrightarrow [Y\longrightarrow P]\&$ $g\mapsto \widehat{g}\colon [Y\longrightarrow P]\longrightarrow [X\longrightarrow P] \text{ by } \widehat{g}(x)=\inf g(\pi_X^{-1}(x)).$

$$X \sqsubseteq_C Y \in AC(A^{\infty}), P \in BCD \implies f \hookrightarrow f \circ \pi_{X^{\infty}} [X \longrightarrow P] \hookrightarrow [Y \longrightarrow F]$$

$$f \mapsto f \circ \pi_X \colon [X \longrightarrow P] \hookrightarrow [Y \longrightarrow P] \&$$

$$g \mapsto \widehat{g} \colon [Y \longrightarrow P] \longrightarrow [X \longrightarrow P] \text{ by } \widehat{g}(x) = \inf g(\pi_X^{-1}(x)).$$

 $[X \longrightarrow P] \simeq \lim_n [\pi_n(X) \longrightarrow P] \simeq \lim_n P^{\pi_n(X)}$.

►
$$X \in AC(A^{\infty}), P \in BCD \implies [X \longrightarrow P] \in BCD$$
:

- ► $X \in AC(A^{\infty}), P \in BCD \implies [X \longrightarrow P] \in BCD$:
 - $[X \longrightarrow P] \simeq \lim_n [\pi_n(X) \longrightarrow P] \simeq \lim_n P^{\pi_n(X)}.$
- $(\bigoplus_{X \in AC(A^{\infty})} [X \longrightarrow P], \leq_R) \in \mathsf{BCD}:$ $f <_R g \quad \text{iff} \quad \mathsf{dom} \ f \sqsubseteq_C \ \mathsf{dom} \ g \ \& \ f \circ \pi_{\mathsf{dom} \ f} < g.$

- ► $X \in AC(A^{\infty}), P \in BCD \implies [X \longrightarrow P] \in BCD$: $[X \longrightarrow P] \simeq \lim_{n} [\pi_{n}(X) \longrightarrow P] \simeq \lim_{n} P^{\pi_{n}(X)}$.
- $(\bigoplus_{X \in AC(A^{\infty})} [X \longrightarrow P], \leq_R) \in \mathsf{BCD}:$ $f <_R g \quad \text{iff} \quad \mathsf{dom} \ f \sqsubseteq_C \ \mathsf{dom} \ g \ \& \ f \circ \pi_{\mathsf{dom} \ f} < g.$

Defining the Model

▶ $\Theta Prob(A^{\infty}) \times \bigoplus_{X \in AC(A^{\infty})} [X \longrightarrow P] \in BCD$ if $P \in BCD$.

- ► $X \in AC(A^{\infty}), P \in BCD \implies [X \longrightarrow P] \in BCD$: $[X \longrightarrow P] \simeq \lim_{n} [\pi_{n}(X) \longrightarrow P] \simeq \lim_{n} P^{\pi_{n}(X)}$.
- $(\bigoplus_{X \in AC(A^{\infty})} [X \longrightarrow P], \leq_R) \in \mathsf{BCD}:$ $f \leq_R g \quad \text{iff} \quad \mathsf{dom} \, f \sqsubseteq_C \, \mathsf{dom} \, g \, \& \, f \circ \pi_{\mathsf{dom} \, f} \leq g.$

Defining the Model

- ▶ $\Theta Prob(A^{\infty}) \times \bigoplus_{X \in AC(A^{\infty})} [X \longrightarrow P] \in BCD$ if $P \in BCD$.
- ▶ For $P \in BCD$

$$\Theta RV(A^{\infty}, P) = \{ (\mu, f) \mid \mu \in \Theta Prob(A^{\infty}), f : \operatorname{supp}_{\Lambda} \mu \longrightarrow P \}$$
 is a retract of $\Theta Prob(A^{\infty}) \times \bigoplus_{X \in AC(A^{\infty})} [X \longrightarrow P] :$

$$(\mu, f) \mapsto (\pi_Y(\mu), f \circ \pi_Y)$$
 is the projection

$$Y = \operatorname{supp}_{\Lambda} \mu \wedge \operatorname{dom} f$$
.

But, this is NOT a Monad

Given $P \in BCD$, define

$$RV(C, D) = \Theta Prob(A^{\infty}) \times \bigoplus_{X \in AC(A^{\infty})} [X \longrightarrow P]$$

Then there are maps satisfying the monad laws

$$RV(C, D)$$

$$D \xrightarrow{h^{\dagger}} RV(C, E)$$

$$\eta(x) = (\delta_{\epsilon}, \mathsf{const}_x)$$

But h^{\dagger} is not monotone. :-(

Alternative Model

- ▶ Basic idea: Flatten model so concatenation doesn't need to be monotone in first component.
- ► Leads to model which looks like
- 1 flip \oplus 2 flips \oplus 3 flips $\oplus \cdots \oplus n$ flips $\oplus \cdots$
- ▶ Begin with $SProb(n) = \left\{ \sum_{i < n} r_i \delta_i \mid 0 \le r_i \& \sum_i r_i \le 1 \right\}$

 - $\blacktriangleright \sum_{i} r_{i} \delta_{i} \wedge \sum_{i} s_{i} \delta_{i} = \sum_{i} (r_{i} \wedge s_{i}) \delta_{i}$

 - ► A directed \Rightarrow (sup A)(i) = sup_{$u \in A$} $\mu(i)$.

Alternative Model

Flat random variable domain:

$$\mathit{RV}^{\flat}(D) = igoplus_n \left(\mathsf{SProb}(\{0,1\}^n) imes D^{\{0,1\}^n}
ight)$$

- $(\mu_n, X_n) < (\nu_m, X_m)$ iff $m = n, \mu_n < \nu_n$, and $X_n(i) < X_m(i) \ (\forall i)$.
- ▶ $f: D \to E \Rightarrow RV^{\flat}(f): RV^{\flat}(D) \to RV^{\flat}(E)$ by $RV^{\flat}(f)(\mu_n, X_n) = (\mu_n, f \circ X_n)$.
 - $ightharpoonup RV^{\flat}(D)$ forms a monad on BCD.
 - ▶ Problem: $RV^{\flat}(D)$ makes too many distinctions:
 - $(\frac{1}{2}\delta_0 + \frac{2}{2}\delta_1, (a, b)) \neq (\frac{2}{3}\delta_0 + \frac{1}{3}\delta_1, (b, a)), \text{ etc.}$
 - Solution requires some background work.

Free ordered semigroup

- $ightharpoonup P^* = \bigoplus P^n$ is free ordered semigroup over poset P:
 - $w \le w'$ iff $|w| = |w'| \& w_i \le_P w'_i \ (\forall i \le |w|).$
 - $ww' \in P^{m+n}$ if $w \in P^m \& w' \in P^n$.
 - ▶ Note (J.-E. Pin): Free ordered monoid is flat.
- ▶ Also works for *P* in BCD, FS, or RB.
- ► To obtain the free *commutative* semigroup, we take a quotient:
 - ▶ S(n) acts on P^n by permuting the components.
 - $ightharpoonup P^n/S(n)$ is the set of *n*-bags over *P*.
 - $\blacktriangleright \pi_n \colon P^n \to P^n/S(n)$ is monotone.
- ► $COS(P) = \bigoplus_{n>0} P^n/S(n)$ free commutative ordered semigroup over P.

Free ordered domain

- ► Rudin's Lemma implies this also works in domains.
- ► $CDS(P) = \bigoplus_{n>0} P^n/S(n)$ free commutative domain semigroup over domain P.

Apply this to $RV^{\flat}(D)$ to obtain flat "commutative" random variable domain:

- ► Now $(\frac{1}{3}\delta_0 + \frac{2}{3}\delta_1, (a, b)) \equiv (\frac{2}{3}\delta_0 + \frac{1}{3}\delta_1, (b, a))$, etc.
- ► But: $(\frac{1}{3}\delta_0 + \frac{2}{3}\delta_1, (a, b)) \neq (\frac{1}{3}\delta_0 + \frac{1}{3}\delta_1 + \frac{1}{3}\delta_1, (a, b, b))$
- Still a monad over RB and FS (but not over BCD).

Some Additional Comments

- ► Work was inspired by Varacca's *indexed valuations* (2004) and Goubault-Larrecg & Varacca's work on the first model.
- ▶ Jean Goubault-Larrecq is working on a patch to the first model.
 - Refines the order
- ► Tyler Barker also working on a patch
 - ► Redefines the Kleisli lift somewhat akin to conditional probability
- Remaining question: Can the second model be extended to include recursion on the number of flips?