Analyzing Computational Models

Michael W. Mislove

Tulane University New Orleans, LA

LSU NSF/SFS Workshop on Critical Infrastructure Protection July 2, 2013 Work sponsored by AFOSR & NSF

Outline

Theory: Track A vs Track B

- Some basic background
- ► Some examples: two presentations from last week at Tulane
- ► Two more examples: Security-related work
- My own research: Continuous random variables

Mathematical Models

Mathematical constructs – systems – that model computational processes

Examples:

- Operational models (e.g., automata):
 - Give step-by-step representation of computational processes
 - Good for understanding how a process evolves, or finding bugs
 - Often too low-level to prove properties
- Denotational models (e.g., domains):
 - Give mathematical models of computational processes
 - High level abstract away from low-level details
 - Good for proving process properties
 - Compositional
 - Automated tool support (proof assistants)

Church-Turing Thesis:
 Partial recursive functions f: N → N are the computable functions.

• Church-Turing Thesis:

Partial recursive functions $f: \mathbb{N} \rightarrow \mathbb{N}$ are the computable functions.

Modeling partial recursives:

•
$$f \leq g$$
 iff dom $f \subseteq \text{dom } g \& g|_{\text{dom } f} = f$

- Extensional order

•
$$(\mathbb{N} \rightarrow \mathbb{N}, \leq)$$
 chain complete partial order
- sup $C = \bigcup \{f \mid f \in C\}$

•
$$f = \sup_{n \in \mathbb{N}} f|_{\{0,\ldots,n\}}$$

• Church-Turing Thesis:

Partial recursive functions $f: \mathbb{N} \rightarrow \mathbb{N}$ are the computable functions.

► $F: (\mathbb{N} \to \mathbb{N}) \to (\mathbb{N} \to \mathbb{N})$ Scott continuous if $F(\sup C) = \sup F(C)$ for every chain $C \subseteq (\mathbb{N} \to \mathbb{N})$.

• Example:

$$F(f)(n) = \begin{cases} 1 & \text{if } n = 0, \\ n \cdot F(f)(n-1) & \text{if } F(f)(n-1) \text{ is defined,} \\ \text{undefined} & \text{otherwise.} \end{cases}$$

• Fac: $\mathbb{N} \to \mathbb{N}$ satisfies $Fac = FIX(F) = \sup_n F^n(\emptyset)$.

- Church-Turing Thesis:
 Partial recursive functions f: N → N are the computable functions.
- Knaster-Tarski-Scott Fixed Point Theorem:
 Each Scott continuous selfmap F: (N → N) → (N → N) has a least fixed point, FIX(F) = sup_n Fⁿ(Ø).
- Myhill-Shepherson Theorem: The partial recursives are those f ∈ N → N satisfying f = FIX(F) for some Scott continuous F: (N → N) → (N → N).

 Church-Turing-Scott Thesis: The computable functions are those that are least fixed points of Scott continuous selfmaps of (N → N).

Domains and Programming Languages

- More Abstractly (Scott, 1969): The lambda calculus admits a model M = [D[∞] → D[∞]] where every term is a Scott continuous selfmap of a recursively defined domain D[∞] ≃ [D[∞] → D[∞]].
 - More generally, *every* model of the lambda calculus is a reflexive object in some *cartesian closed category*.
 - Like Set category of sets and functions
 - Only known models are categories of domains

Domains and Programming Languages

- More Abstractly (Scott, 1969): The lambda calculus admits a model M = [D[∞] → D[∞]] where every term is a Scott continuous selfmap of a recursively defined domain D[∞] ≃ [D[∞] → D[∞]].
- Scott's Program:
 - Data types are partially ordered structures
 - Programs are Scott continuous maps over data types
 - Cartesian closed categories of *domains* are natural denotational models

Domains and Programming Languages

- More Abstractly (Scott, 1969): The lambda calculus admits a model M = [D[∞] → D[∞]] where every term is a Scott continuous selfmap of a recursively defined domain D[∞] ≃ [D[∞] → D[∞]].
- Scott's Program:
 - Data types are partially ordered structures
 - Programs are Scott continuous maps over data types
 - Cartesian closed categories of *domains* are natural denotational models
- Moggi's Program:
 - Use monads to model computational effects:
 - Power domains for nondeterminism,
 - Continuations, exceptions, etc.
 - Each arises as family of algebras for an endofunctor on a category of domains.

Automata

- Automata are among the simplest computational models
 - Simple graphical representation
 - Illustrate how computations unfold
 - Easy to write (for simple processes)
 - Limited use for complicated processes
 - Not useful for proving general properties
- Simple Example:

Language accepted by A:

$$L_A = \{10^*, 10^*1\}$$

A - finite alphabet ⇒ A[∞] = A^{*} ∪ A^ω word monoid over A.
- A[∞] partial order in *prefix order:* s ≤ t iff su = t for some word u.
- (A[∞], ≤) chain complete poset
L_A = {10^{*}, 10^{*}1} ⊆ {0,1}[∞]

• A - finite alphabet $\Rightarrow A^{\infty} = A^* \cup A^{\omega}$ word monoid over A.

-
$$A^{\infty}$$
 partial order in *prefix order:*
 $s \leq t$ iff $su = t$ for some word u .

– (A^{∞}, \leq) chain complete poset

•
$$L_A = \{10^*, 10^*1\} \subseteq \{0, 1\}^\infty$$

► *L_A not* closed under prefixes,...

... but
$$\downarrow L_A = \{s \in \{0,1\}^{\infty} \mid s \leq u \in L_A\}$$
 is.

• $\downarrow L_A$ also closed under sups of chains.

So $\downarrow L_A = \downarrow 10^{\omega} \cup \{10^n 1 \mid n \ge 0\}$ is a domain.

Also a safety property (Alpern & Schneider)

- Can't distinguish L_A from $L_B = \{1(00)^*, 10^*1\}$

• A - finite alphabet $\Rightarrow A^{\infty} = A^* \cup A^{\omega}$ word monoid over A. $-A^{\infty}$ partial order in *prefix order*: s < t iff su = t for some word u. $-(A^{\infty},\leq)$ chain complete poset • $L_{\Delta} = \{10^*, 10^*1\} \subset \{0, 1\}^{\infty}$ • Better map: $A_0 = A \cup \{\checkmark\}$; $s \mapsto s \checkmark : L_A \to A_0^{\infty}$. Differentiates $\downarrow L_A = \downarrow \{10^n 1 \checkmark \mid n \ge 0\} \cup \downarrow \{10^n \checkmark\} \cup \downarrow 10^{\omega}$ from $\downarrow L_B = \downarrow \{10^n 1 \checkmark \} \cup \downarrow \{1(0^{2n}) \checkmark \mid n \geq 0\} \cup \downarrow 10^{\omega}.$ • $L_A \mapsto \bigcup \{ s \checkmark \mid s \in L_A \}$ is one-to-one on regular languages. - Define $s \cdot t = \begin{cases} s_1 t & \text{if } s = s_1 \checkmark, s_1 \in A^*, \\ s & \text{otherwise.} \end{cases}$

• A - finite alphabet $\Rightarrow A^{\infty} = A^* \cup A^{\omega}$ word monoid over A. $-A^{\infty}$ partial order in *prefix order*: s < t iff su = t for some word u. $-(A^{\infty}, <)$ chain complete poset • $L_{\Delta} = \{10^*, 10^*1\} \subset \{0, 1\}^{\infty}$ • Better map: $A_0 = A \cup \{\checkmark\}$; $s \mapsto s \checkmark : L_A \to A_0^{\infty}$. Differentiates $\downarrow L_A = \downarrow \{10^n 1 \checkmark \mid n \ge 0\} \cup \downarrow \{10^n \checkmark\} \cup \downarrow 10^{\omega} \text{ from}$ $\downarrow L_B = \downarrow \{10^n 1 \checkmark \} \cup \downarrow \{1(0^{2n}) \checkmark \mid n > 0\} \cup \downarrow 10^{\omega}.$ ► $L_A \mapsto \bigcup \{ s \checkmark \mid s \in L_A \}$ is one-to-one on regular languages. - Define $s \cdot t = \begin{cases} s_1 t & \text{if } s = s_1 \checkmark, s_1 \in A^*, \\ s & \text{otherwise.} \end{cases}$

Supports all regular language constructs in the model

Report for MFPS, LICS and CSF

Last week, three leading theory conferences met at Tulane:

- MFPS Mathematical Foundations of Programming Semantics
- ► LICS Logic in Computer Science
- ► CSF Computer Security Foundations Symposium
 - Three leading theory conferences.
 - ► Attracted 250 participants from US, Europe and Far East
 - Deliberately co-located to encourage interaction

Here are results from a selection of presentations:

Report from MFPS

• System T: simply typed λ -calculus + \mathbb{N} :

$$\mathcal{T} ::= \mathbb{N} \mid \mathcal{T} \times \mathcal{T} \mid \mathcal{T} \longrightarrow \mathcal{T} P ::= x \mid MN \mid \lambda x : \mathcal{T}.M$$

Also includes a *recursor* R:

$$R 0 uv \rightarrow u$$

$$R (St) uv \rightarrow v (Rt uv) t$$

Report from MFPS

System T: simply typed λ -calculus + \mathbb{N} :

$$\mathcal{T} ::= \mathbb{N} \mid \mathcal{T} \times \mathcal{T} \mid \mathcal{T} \longrightarrow \mathcal{T} P ::= x \mid MN \mid \lambda x : \mathcal{T}.M$$

- Devised by Gödel to prove relative consistency of arithmetic
- Simplest typed programming language

Report from MFPS

System T: simply typed λ -calculus + \mathbb{N} :

$$\mathcal{T} ::= \mathbb{N} \mid \mathcal{T} \times \mathcal{T} \mid \mathcal{T} \longrightarrow \mathcal{T} P ::= x \mid MN \mid \lambda x : \mathcal{T}.M$$

- At MFPS, Martín Escardó (Birmingham) proved the following: The functions f: N^N → N denotable by terms of Gödel's System T are continuous, and the functions f: 2^N → N denotable by terms of Gödel's System T are uniformly continuous using Agda to do the proof!
 - Agda proof assistant: Interactive system for writing and checking proofs; based on intuitionistic type theory, a foundational system for constructive mathematics developed by the Swedish logician Per Martin-Löf.

Report from LICS

 At LICS, Prakash Panangaden (McGill) used duality theory to explain Brzozowski's Algorithm (1964):

Input: DFA – $M = (S, A, s_0, F, \delta)$

- Reverse transitions, interchange initial and final states
- Determinize the result
- Take the reachable states
- Repeat

Result: The minimal DFA recognizing the same language!

 Joint work by Filippo Bonchi, Marcello Bonsangue, Helle Hvid Hansen, Prakash Panangaden, Jan Rutten and Alexandra Silva.

Brzozowski's Algorithm

 $0^{*}1 + 10^{*}1$

 $L_A = 10^* + 10^*1$

 $0^*1 + 10^*1$

Brzozowski's Algorithm

*s*₁, *s*₂

0 (

 $0^*1 + 10^*1$

*s*₀, *s*₁

 s_1, s_2

0

*s*₀

0

1

 s_1

 $10^{*} + 10^{*}1$

 $10^{*} + 10^{*}1$

Brzozowski's Algorithm (cont'd)

- Why does this work?
 - Paths in the dual automaton are *backtracking* from the final states toward the initial state.
 - Reachability assures paths go all the way back to the initial state.
 - Also assures all states in the dual automaton are *observable*
- Let's make this more precise

Reachability

 $egin{array}{c} 1 & & & \ & \downarrow^{\epsilon} & & \ & A^{*} & & \ & \downarrow^{\delta_{A}} & & \ & (A^{*})^{A} \end{array}$

$$\epsilon(*)=\epsilon$$
 and $\delta_A(w)\colon A o A^*$ by $\delta_A(w)(a)=waa$

Reachability

Reachability

So, M is reachable iff r is a surjection.

Observability

$$2 = \{0, 1\}, f(s) = 1 \text{ iff } s \in F,$$

$$o(s) = \{w \mid (\exists s' \in S) \ s \xrightarrow{w} s'\},$$

$$\epsilon?(L) = \begin{cases} 1 & \text{if } \epsilon \in L, \\ 0 & \text{otherwise.} \end{cases}$$

$$\beta(L)(a) = \{w \mid aw \in L\}.$$

Observability

An automaton is *observable* if distinct states generate distinct languages.

So, M is observable iff o is an injection.

Reachability and Observability

Determinization is crucial for the following:

Theorem: A deterministic automaton M accepting L is reachable iff rev(M) is observable accepting rev(L).

Corollary: M is minimal iff M is reachable and observable, iff r is a surjection and o is an injection.

What does all this have to do with Critical Infrastructure *Protection?*

 Cyberinfrastructure relies on computational components for proper functioning:

Military, financial, transportation, utilities, information.... All require secure command and control mechanisms.

- Show how to use *formal methods* to analyze and prove security protocols are correct.
 - Utilize process calculi (some probabilistic) and their models (usually domain-theoretic)
 - ► Reasoning is intricate and proofs are arcane and involved
 - Often aided by automated tools
- We'll discuss two examples:
 - 1. Another paper from the meeting, this time from CSF
 - 2. Example of *banking* using security automata of Schneider, modeled using *CSP-OZ* by Basin, Olderog and Sevinc

From CSF

At the Computer Security Foundations Symposium, Benjamin Pierce gave a talk about his new DARPA project, Crash/SAFE. Here's a rundown of SAFE:

- Clean-slate design of entire system stack:
 - Hardware
 - System software
 - Programming languages
- Support for critical security primitives at all levels (from hardware up)
 - Memory safety (avoid security breaches, e.g., buffer overflows, dangling pointers, etc.)
 - Strong dynamic typing
 - Information flow control (IFC) and access control
- Verification of key mechanisms deeply integrated into design process

From CSF

New hardware: Effective use of resources on security; remove compiler from TCB (partially); make security mechanisms available for writing low-level systems code

OS Level: "Zero-kernel OS"; no overprivileged component Application level: Breeze – mostly functional, security-oriented PL; dynamic type- and security checks; every value annotated with an IFC label; labels public

A *crucial aspect* of the project is the use of formal methods to prove code correct using the Coq proof assistant.

Hardware Design

Noninterference: A machine with observation $(\Omega, |\cdot|, \sim)$ satisfies termination-insensitive noninterference if for any observer $o \in \Omega$ and any pair of indistinguishable initial data $\iota_1 \sim_o \iota_2$ and pair of executions $Init(\iota_1) \xrightarrow{t_1} *$ and $Init(\iota_2) \xrightarrow{t_2} *$, $|t_1|_o \sim_o |t_2|_o$.

Secure Banking System

- Bank has Users who have Accounts and who can Check Balances and Transfer Funds between accounts
- Specifications:
 - Users and Accounts specified by the sets:

 $[\textit{UserId},\textit{AccID},\textit{PIN},\textit{TN}], \textit{VaI}:\mathbb{PZ},\textit{Sum}:\mathbb{PN}$

- Support operations:
 - Iogin
 - Iogout
 - Check balance
 - Request transfer
 - Execute transfer
 - Abort

Secure Banking System

- Bank has Users who have Accounts and who can Check Balances and Transfer Funds between accounts
- Specifications:
 - Users and Accounts specified by the sets:

 $[\textit{UserId},\textit{AccID},\textit{PIN},\textit{TN}], \textit{VaI}:\mathbb{PZ},\textit{Sum}:\mathbb{PN}$

- Support operations:
 - Iogin
 - logout
 - Check balance
 - Request transfer
 - Execute transfer
 - Abort
- ► Approach (work of Basin, Olderog & Sevinc):
 - Define components as security automata
 - Translate components into CSP (communications) + OZ (data).
 - Prove security using CSP models.

Security Automata

• $A = (Q, S, I, \delta)$ where: Q - countable set of states $S \subseteq Q$ - start states I - countable set of input symbols $\delta: Q \times I \longrightarrow 2^Q$ transition function

First devised by F. Schneider; variant of Büchi automata.

Security Automata

• $A = (Q, S, I, \delta)$ where: Q - countable set of states $S \subseteq Q$ - start states I - countable set of input symbols $\delta: Q \times I \longrightarrow 2^Q$ transition function

- Analysis proceeds by
 - 1) Writing processes as security automata
 - 2) Translating security automata into a *specification language*
 - 3) Proving correctness using a denotational model for specification language.

Security Automata

- $A = (Q, S, I, \delta)$ where: Q - countable set of states $S \subseteq Q$ - start states I - countable set of input symbols $\delta: Q \times I \longrightarrow 2^{Q}$ transition function
- Specification language:
 - Combination of *CSP* and *Z*:
 - CSP process calculus based on communication events
 - Z based on set theory and predicate logic
 - used for data, state spaces and state transformations
 - Write specifications in CSP-OZ and prove they are correct Translate everything into CSP
 For finite data can use FDR tool to prove correctness

CSP is a process calculus in which processes are specified by the following BNF:

$$P ::= STOP \mid SKIP \mid a \rightarrow P \mid P \sqcap Q$$
$$\mid P \sqcap Q \mid P \mid_A Q \mid P \setminus A \mid X$$

where $a \in Act$, the set of (communication) actions, $A \subseteq Act$, and X is a process variable.

CSP is a process calculus in which processes are specified by the following BNF:

$$P ::= STOP \mid SKIP \mid a \to P \mid P \sqcap Q$$
$$\mid P \sqcap Q \mid P \mid_A Q \mid P \setminus A \mid X$$

where $a \in Act$, the set of (communication) actions, $A \subseteq Act$, and X is a process variable.

Some examples:

CSP is a process calculus in which processes are specified by the following BNF:

$$P ::= STOP \mid SKIP \mid a \to P \mid P \sqcap Q$$
$$\mid P \sqcap Q \mid P \mid_A Q \mid P \setminus A \mid X$$

where $a \in Act$, the set of (communication) actions, $A \subseteq Act$, and X is a process variable.

Some examples:

• Need stronger semantics – *Failures*:

 $(a \rightarrow P) \sqcap (b \rightarrow P)$ can *refuse a* and *b* on the first step, but $(a \rightarrow P) \square (b \rightarrow P)$ cannot. $Fail(P) = \{(t, A) \mid t \in tr(P) \& P \text{ can refuse } a \in A \text{ after } t\}$ $\blacktriangleright P \sqsubseteq_F Q \text{ iff } Fail(P) \supseteq Fail(Q).$

CSP is a process calculus in which processes are specified by the following BNF:

$$P ::= STOP \mid SKIP \mid a \to P \mid P \sqcap Q$$
$$\mid P \sqcap Q \mid P \mid_A Q \mid P \setminus A \mid X$$

where $a \in Act$, the set of (communication) actions, $A \subseteq Act$, and X is a process variable.

• Processes can also name *channels*:

- $c.t? \rightarrow P(t)$: process that listens on channel c and when receiving an input, then acts like P(t).
- $c.t! \rightarrow P$: process that sends output t on channel c and then acts like P.

Insecure Bank

► The Bank

$$B ::= (login \rightarrow (Bal \Box TranReq \Box logout)) \parallel_{C} ExecTran$$

$$C = \{ExecTran\}$$

$$login ::= \Box_{u \in uid} c_{login}.u? \rightarrow SKIP$$

$$Bal ::= \Box_{a \in Acctld} c_{Bal}.a? \rightarrow c_{Bal}.s_{a}! \rightarrow SKIP$$

$$TranReq ::= c_{TranReq}.a_{1}?.a_{2}?.s? \rightarrow c_{ExecTran}.a_{1}!.a_{2}!.s! \rightarrow SKIP$$

$$ExecTran ::= c_{ExecTran}.a_{1}?.a_{2}?.s \rightarrow$$

$$(s_{a_{1}} := a_{1} - s) \rightarrow (s_{a_{2}} := a_{2} + s) \rightarrow SKIP$$

$$logout ::= c_{logout}.bye? \rightarrow STOP$$

Insecure Bank

► The Bank
$$B ::= (login \rightarrow (Bal \Box TranReq \Box logout)) \parallel_{C} ExecTran$$

$$C = \{ExecTran\}$$

$$login ::= \Box_{u \in uid} c_{login}.u? \rightarrow SKIP$$

$$Bal ::= \Box_{a \in Acctld} c_{Bal}.a? \rightarrow c_{Bal}.s_a! \rightarrow SKIP$$

$$TranReq ::= c_{TranReq}.a_1?.a_2?.s? \rightarrow c_{ExecTran}.a_1!.a_2!.s! \rightarrow SKIP$$

$$ExecTran ::= c_{ExecTran}.a_1?.a_2?.s \rightarrow$$

$$(s_{a_1} := a_1 - s) \rightarrow (s_{a_2} := a_2 + s) \rightarrow SKIP$$

$$logout ::= c_{logout}.bye? \rightarrow STOP$$

► A User $U ::= (login \rightarrow (Bal \sqcap TranReq \sqcap logout))$

$$login ::= c_{login}.u! \rightarrow SKIP$$

$$Bal ::= c_{Bal}.a! \rightarrow c_{Bal}.s? \rightarrow SKIP$$

$$TranReq ::= c_{TranReq}.a_1!.a_2!.s! \rightarrow SKIP$$

$$logout ::= c_{logout}.bye! \rightarrow STOP$$

Insecure Bank

 $InSecBank ::= U \parallel_A B, \quad A = \{login, Bal, TranReq, logout\}$

- ► The Bank $B ::= (login \rightarrow (Bal \Box TranReq \Box logout)) \parallel_C ExecTran$
- ▶ A User $U ::= (login \rightarrow (Bal \sqcap TranReq \sqcap logout))$

Securing the Bank

Add a secure SecComp and run in parallel with InSecBank:

SecBank ::= InSecBank $||_B$ SecComp B = {login, Bal, TranReq, Abort, logout, ChkPin, ChkTranReq} SecComp:

- $login ::= c_{login}.u?.p? \rightarrow ChkPin$
- ChkPin ::= $c_{ChkPin}.u?.p? \rightarrow$

 $((u, p) \in Valid \rightarrow SKIP) \square ((u, p) \notin Valid \rightarrow Abort)$

- ChkAcctId ::= $c_{ChkAcctId}.u?.a? \rightarrow \cdots$
- ChkTranReq ::= $c_{TranReq}$.a?.n? $\rightarrow \cdots$

Properties of Secure Bank

SecBank ::= InSecBank ||_B SecComp

B = {login, Bal, TranReq, Abort, logout, ChkPin, ChkTranReq}
(*) No ExecTran takes place before a successful ChkTranReq can be shown using:

$$P_0 ::= ChkTranReq. T \rightarrow P_1$$
$$\Box (\Box_{a \in D} a \rightarrow P_0)$$
$$P_1 ::= ExecTran.a_1?.a_2?.s? \rightarrow P_0$$
$$\Box (\Box_{a \in D} a \rightarrow P_0)$$

 $D = \{ login, Bal, TranReq, Abort, logout, ChkPin, ChkTranReq \}$

Modeling Probability

► Standard model in domains is Probabilistic Power Domain

Prob(D) – Probability measures with $\mu \leq \nu$ iff $\mu(U) \leq \nu(U)$ ($\forall U$ open)

Not well understood

Structure is hard to analyze Adds complications of probabilistic order to order on D $d \mapsto \delta_d \colon D \hookrightarrow Prob(D)$ order-embedding

► Doesn't "play well with other monads".

Alternative: Random Variable model:

- Restricts order on probability to domain of random variable
- Separates orders, simplifies construction
- Standard approach in probability theory

- $f: (X, \mu) \rightarrow (Y, \Omega)$ random variable
 - (X, μ) probability space,
 - (Y, Ω) measure space
 - f is measurable: $f^{-1}(A)$ measurable ($\forall A \in \Omega$)
 - Continuous if X and Y topological spaces, f continuous and X, Y endowed with Borel σ-algebras.

- $f: (X, \mu) \rightarrow (Y, \Omega)$ random variable
- ► Assume *X*, *Y* domains endowed with Scott topology:
 - $\begin{array}{l} U \text{ Scott open iff } U = \uparrow U = \{d \in D \mid (\exists u \in U) \ u \leq d\} \text{ and} \\ \sup C \in U \ \Rightarrow \ U \cap C \neq \emptyset, \ \forall \text{ chains } C \end{array}$
 - BCD Bounded complete domains & Scott continuous maps (D, \leq) has sups of chains & all non-empty sets have greatest lower bounds

•
$$f: (X, \mu) \rightarrow (Y, \Omega)$$
 random variable

 $CRV(X, Y) = \{(\mu, f) \mid \mu \in Prob(X), f : \operatorname{supp} \mu \to Y\}$ supp $\mu = \bigcap \{C \subseteq X \mid \mu(C) = 1 \& C \text{ closed}\}.$

- $f: (X, \mu) \rightarrow (Y, \Omega)$ random variable
- ► Assume X, Y domains endowed with Scott topology: $CRV(X, Y) = \{(\mu, f) \mid \mu \in Prob(X), f : \text{ supp } \mu \rightarrow Y\}$
- ▶ C Cantor tree

Goubault-Larrecq & Varacca, LICS 2011: BCD closed under

$$\begin{array}{ll} \Theta RV(\mathcal{C},P) &=& \{(\mu,f) \in CRV(\mathcal{C},P) \mid \mu \ thin\}\\ (\mu,f) \leq (\nu,g) \quad \text{iff} \quad \pi_{\operatorname{supp}\mu}(\nu) = \mu \ \& \ f \circ \pi_{\operatorname{supp}\mu} \leq g \end{array}$$

► Goal: Understand $\Theta RV(C, P)$ construction for $P \in BCD$

Motivating the Order - Automata

- A (generative) probabilistic automaton A has a finite set S of states, a start state s₀ ∈ S, a finite set of actions, Act, and a transition relation → ⊆ S × Prob(Act × S).
- ► Here's a simple example with one action, *flip*:

Motivating the Order - Trace Distributions

- Typically, such automata are modeled by their trace distributions μ_i ∈ Prob(C):
 μ₀ = δ_ε
 μ₁ = ½δ₀ + ½δ₁
 μ₂ = ¼δ₀₀ + ¼δ₀₁ + ¼δ₁₀ + ¼δ₁₁
 ⋮
- Stripping away the probabilities, we have the following sets $X_i \subseteq C$ on which the μ_i are *concentrated*:
 - $\begin{array}{l} \mu_0 \text{ concentrated on } X_0 = \{\epsilon\} \\ \mu_1 \text{ concentrated on } X_1 = \{0,1\} \\ \mu_2 \text{ concentrated on } X_2 = \{00,01,10,11\} \\ \vdots \end{array}$

 μ_∞ concentrated on $X_\infty=2^\omega$

Motivating the Order - Trace Distributions

Stripping away the probabilities, we have the following sets X_i ⊆ C on which the μ_i are *concentrated*:

 $\mu_0 \text{ concentrated on } X_0 = \{\epsilon\}$ $\mu_1 \text{ concentrated on } X_1 = \{0, 1\}$ $\mu_2 \text{ concentrated on } X_2 = \{00, 01, 10, 11\}$ \vdots $\mu_{\infty} \text{ concentrated on } X_{\infty} = 2^{\omega}$ • Notice that the X_n s are *antichains*, and

 $X_0 \sqsubseteq_C X_1 \sqsubseteq_C X_2 \sqsubseteq_C \cdots \sqsubseteq_C X_\infty$, where

$$X \sqsubseteq_C Y \quad \Leftrightarrow \quad X \subseteq \downarrow Y \And Y \subseteq \uparrow X$$

 $\Leftrightarrow \quad \pi_X(Y) = X$

2 = {0,1}
 2[∞] = 2^{*} ∪ 2^ω is a *domain* under the prefix order.
 2^{*} - the finite words
 2[∞] is *coherent* Compact in the *Lawson topology*

Open sets: $U = \uparrow k \setminus \uparrow F$, $k \in 2^*, F \subseteq 2^*$ finite

Subdomain of $\mathcal{P}_{\mathcal{C}}(2^{\infty})$.

► 2 = {0,1}

 $2^\infty=2^*\cup 2^\omega$ is a domain under the prefix order.

- $AC(2^{\infty}) = (\{X \mid \text{Lawson-compact antichain}\}, \sqsubseteq_C)$
- ► Theorem: AC(2[∞]) is a bounded complete domain: all nonempty subsets have infima.

 $(\emptyset \neq \mathcal{F} \subseteq AC(2^{\infty}) \Rightarrow \inf \mathcal{F} = Max(\bigcap_{X \in \mathcal{F}} \downarrow X)$

► 2 = {0,1}

 $2^\infty = 2^* \cup 2^\omega$ is a domain under the prefix order.

- $AC(2^{\infty}) = (\{X \mid \text{Lawson-compact antichain}\}, \sqsubseteq_C)$
- ► Theorem: AC(2[∞]) is a bounded complete domain: all nonempty subsets have infima. Moreover, given {X_n}_{n∈ℕ} ⊆ AC(2[∞]) directed and X ∈ AC(2[∞]), TAE:

(i)
$$X = \sup_n X_n$$

(ii) $X = \lim_{n} X_{n}$ in the Vietoris topology on $\Gamma(2^{\infty})$.

• In particular, any $X \in AC(2^{\infty})$ satisfies

$$X = \sup_n \pi_n(X) = \lim_n \pi_n(X)$$
, where

 $\pi_n \colon 2^\infty \to 2^{\leq n}$ is the canonical retraction.

Thin Probability Measures

μ ∈ Prob(2[∞]) is thin if supp_Λ μ ∈ AC(2[∞]).
 Note: supp_Λ μ is in the Lawson topology.

• Define
$$\mu \leq \nu$$
 iff $\pi_{\operatorname{supp}_{\Lambda} \mu}(\nu) = \mu$

Agrees with usual domain order (*qua* valuations) / functional analysis order via cones.

$$\Theta Prob(2^{\infty}) = (\{\mu \in Prob(2^{\infty}) \mid \mu \text{ thin}\}, \leq).$$

Thin Probability Measures

- $\mu \in Prob(2^{\infty})$ is thin if $supp_{\Lambda} \mu \in AC(2^{\infty})$.
- ► Proposition: (ΘProb(2[∞]), ≤) is a bounded complete domain: all nonempty subsets have infima.

 $(\emptyset \neq \mathcal{M} \subseteq \Theta Prob(2^{\infty}) \Rightarrow \forall \nu \in \mathcal{M},$ $\inf \mathcal{M} = \pi_{\mathcal{M}}(\nu), \quad \mathcal{M} = \inf_{\mu \in \mathcal{M}} \operatorname{supp}_{\Lambda} \mu)$

Thin Probability Measures

- $\mu \in Prob(2^{\infty})$ is thin if $supp_{\Lambda} \mu \in AC(2^{\infty})$.
- ► Proposition: (ΘProb(2[∞]), ≤) is a bounded complete domain: all nonempty subsets have infima.

Moreover, given $\{\mu_n\}_{n\in\mathbb{N}} \subseteq \Theta Prob(2^{\infty})$ chain and $\mu \in \Theta Prob(2^{\infty})$, TAE:

(*i*)
$$\mu = \sup_{n} \mu_{n}$$

(ii) $\mu = \lim_{n \to \infty} \mu_n$ in the weak *-topology on $\Theta Prob(2^{\infty})$.

▶ In particular, any $\mu \in \Theta Prob(2^{\infty})$ satisfies

 $\mu = \sup_n \pi_n(\mu) = \lim_n \pi_n(\mu)$, where $\pi_n \colon \mathcal{C} = 2^{\infty} \to 2^{\leq n} \equiv \mathcal{C}_n$ is the canonical retraction.

•
$$C_n \equiv \pi_n(\mathcal{C}) \implies C_n \stackrel{\iota_n}{\hookrightarrow} \mathcal{C} \xrightarrow{\pi_n} \mathcal{C}_n$$

 $P \in \text{BCD} \implies$
 $f \mapsto f \circ \pi_n \colon [\mathcal{C}_n \longrightarrow P] \hookrightarrow [\mathcal{C} \longrightarrow P] \&$
 $g \mapsto g \circ \iota_n \colon [\mathcal{C} \longrightarrow P] \longrightarrow [\mathcal{C}_n \longrightarrow P].$

•
$$C_n \equiv \pi_n(C) \implies C_n \stackrel{\iota_n}{\hookrightarrow} C \xrightarrow{\pi_n} C_n$$

 $P \in \mathsf{BCD} \implies$
 $f \mapsto f \circ \pi_n \colon [C_n \longrightarrow P] \hookrightarrow [C \longrightarrow P] \&$
 $g \mapsto g \circ \iota_n \colon [C \longrightarrow P] \longrightarrow [C_n \longrightarrow P].$
• $P \in \mathsf{BCD} \implies [C \longrightarrow P] \in \mathsf{BCD}:$
 $[C \longrightarrow P] \simeq \lim_n [C_n \longrightarrow P] \simeq \lim_n P^{C_n}.$

►
$$P \in \mathsf{BCD} \implies [\mathcal{C} \longrightarrow P] \in \mathsf{BCD}$$
:
 $[\mathcal{C} \longrightarrow P] \simeq \lim_{n} [\mathcal{C}_{n} \longrightarrow P] \simeq \lim_{n} P^{\mathcal{C}_{n}}.$

Defining the Model

•
$$\Theta Prob(\mathcal{C}) \times [\mathcal{C} \longrightarrow P] \in \mathsf{BCD} \text{ if } P \in \mathsf{BCD}.$$

►
$$P \in \text{BCD} \implies [\mathcal{C} \longrightarrow P] \in \text{BCD}$$
:
 $[\mathcal{C} \longrightarrow P] \simeq \lim_{n} [\mathcal{C}_{n} \longrightarrow P] \simeq \lim_{n} P^{\mathcal{C}_{n}}.$

Defining the Model

- $\Theta Prob(\mathcal{C}) \times [\mathcal{C} \longrightarrow P] \in \mathsf{BCD} \text{ if } P \in \mathsf{BCD}.$
- ► $\Theta RV(2^{\infty}, P) = \{(\mu, f) \mid \mu \in \Theta Prob(A^{\infty}), f: \operatorname{supp} \mu \longrightarrow P\}$ - retract of $\Theta Prob(\mathcal{C}) \times [\mathcal{C} \longrightarrow P]:$ $(\mu, f) \mapsto (\pi_Y(\mu), f \circ \pi_Y)$ is the projection where $Y = \operatorname{supp} \mu$.

Possible Applications

- Allow modular construction to add probability to existing models:
 - Lynch, et al.'s Timed I/O Automata
 - CSP models
- Part of program to bring *information theory* to computational models
 - Have results about entropy and channel capacity using domain theory
 - Could apply to programs as channels
- Potential application to quantum information

Thank You!