
Analyzing Computational Models

Michael W. Mislove

Tulane University
New Orleans, LA

LSU NSF/SFS Workshop on
Critical Infrastructure Protection

July 2, 2013

Work sponsored by AFOSR & NSF

Outline

Theory: Track A vs Track B

I Some basic background

I Some examples: two presentations from last week at Tulane

I Two more examples: Security-related work

I My own research: Continuous random variables

Mathematical Models
Mathematical constructs – systems – that model computational
processes

Examples:
I Operational models (e.g., automata):

I Give step-by-step representation of computational
processes

I Good for understanding how a process evolves,
or finding bugs

I Often too low-level to prove properties

I Denotational models (e.g., domains):
I Give mathematical models of computational processes
I High level – abstract away from low-level details
I Good for proving process properties

– Compositional
– Automated tool support (proof assistants)

Domains and Computability

I Church-Turing Thesis:
Partial recursive functions f : N⇀ N are the computable
functions.

Domains and Computability

I Church-Turing Thesis:
Partial recursive functions f : N⇀ N are the computable
functions.

I Modeling partial recursives:
I f ≤ g iff dom f ⊆ dom g & g |dom f = f

– Extensional order

I (N⇀ N,≤) chain complete partial order

– supC =
⋃
{f | f ∈ C}

I f = supn∈N f |{0,...,n}

Domains and Computability

I Church-Turing Thesis:
Partial recursive functions f : N⇀ N are the computable
functions.

I F : (N⇀ N)→ (N⇀ N) Scott continuous if
F (supC) = supF (C) for every chain C ⊆ (N⇀ N).

I Example:

F (f)(n) =

1 if n = 0,

n · F (f)(n − 1) if F (f)(n − 1) is defined,

undefined otherwise.

I Fac : N⇀ N satisfies Fac = FIX(F) = supn F
n(∅).

Domains and Computability

I Church-Turing Thesis:
Partial recursive functions f : N⇀ N are the computable
functions.

I Knaster-Tarski-Scott Fixed Point Theorem:
Each Scott continuous selfmap F : (N⇀ N)→ (N⇀ N) has
a least fixed point, FIX(F) = supn F

n(∅).

I Myhill-Shepherson Theorem:
The partial recursives are those f ∈ N⇀ N satisfying
f = FIX(F) for some Scott continuous
F : (N⇀ N)→ (N⇀ N).

I Church-Turing-Scott Thesis:
The computable functions are those that are least fixed points
of Scott continuous selfmaps of (N⇀ N).

Domains and Programming Languages

I More Abstractly (Scott, 1969):
The lambda calculus admits a model M = [D∞ → D∞]
where every term is a Scott continuous selfmap of a
recursively defined domain D∞ ' [D∞ → D∞].

– More generally, every model of the lambda calculus
is a reflexive object in some cartesian closed category.

– Like Set - category of sets and functions

– Only known models are categories of domains

Domains and Programming Languages

I More Abstractly (Scott, 1969):
The lambda calculus admits a model M = [D∞ → D∞]
where every term is a Scott continuous selfmap of a
recursively defined domain D∞ ' [D∞ → D∞].

I Scott’s Program:
I Data types are partially ordered structures
I Programs are Scott continuous maps over data types
I Cartesian closed categories of domains are natural

denotational models

Domains and Programming Languages

I More Abstractly (Scott, 1969):
The lambda calculus admits a model M = [D∞ → D∞]
where every term is a Scott continuous selfmap of a
recursively defined domain D∞ ' [D∞ → D∞].

I Scott’s Program:
I Data types are partially ordered structures
I Programs are Scott continuous maps over data types
I Cartesian closed categories of domains are natural

denotational models

I Moggi’s Program:
I Use monads to model computational effects:

– Power domains for nondeterminism,
– Continuations, exceptions, etc.

I Each arises as family of algebras for an endofunctor on a
category of domains.

Automata

I Automata are among the simplest computational models
I Simple graphical representation
I Illustrate how computations unfold
I Easy to write (for simple processes)
I Limited use for complicated processes
I Not useful for proving general properties

I Simple Example:

s0start

s1

s3

s2

1

0

0

1

0,1

0,1

Language accepted by A:

LA = {10∗, 10∗1}

From Automata to Domains

I A - finite alphabet ⇒ A∞ = A∗ ∪ Aω word monoid over A.

– A∞ partial order in prefix order:
s ≤ t iff su = t for some word u.

– (A∞,≤) chain complete poset

I LA = {10∗, 10∗1} ⊆ {0, 1}∞

From Automata to Domains

I A - finite alphabet ⇒ A∞ = A∗ ∪ Aω word monoid over A.

– A∞ partial order in prefix order:
s ≤ t iff su = t for some word u.

– (A∞,≤) chain complete poset

I LA = {10∗, 10∗1} ⊆ {0, 1}∞

I LA not closed under prefixes,...

... but ↓LA = {s ∈ {0, 1}∞ | s ≤ u ∈ LA} is.

I ↓LA also closed under sups of chains.

So ↓LA = ↓10ω ∪ {10n1 | n ≥ 0} is a domain.

Also a safety property (Alpern & Schneider)

– Can’t distinguish LA from LB = {1(00)∗, 10∗1}

From Automata to Domains

I A - finite alphabet ⇒ A∞ = A∗ ∪ Aω word monoid over A.

– A∞ partial order in prefix order:
s ≤ t iff su = t for some word u.

– (A∞,≤) chain complete poset

I LA = {10∗, 10∗1} ⊆ {0, 1}∞

I Better map: A0 = A ∪ {X}; s 7→ sX : LA → A∞0 .

Differentiates
↓LA = ↓{10n1X | n ≥ 0} ∪ ↓{10nX} ∪ ↓10ω from

↓LB = ↓{10n1X} ∪ ↓{1(02n)X | n ≥ 0} ∪ ↓10ω.

I LA 7→ ↓{sX | s ∈ LA} is one-to-one on regular languages.

– Define s · t =

{
s1t if s = s1X, s1 ∈ A∗,

s otherwise.

From Automata to Domains

I A - finite alphabet ⇒ A∞ = A∗ ∪ Aω word monoid over A.

– A∞ partial order in prefix order:
s ≤ t iff su = t for some word u.

– (A∞,≤) chain complete poset

I LA = {10∗, 10∗1} ⊆ {0, 1}∞

I Better map: A0 = A ∪ {X}; s 7→ sX : LA → A∞0 .

Differentiates
↓LA = ↓{10n1X | n ≥ 0} ∪ ↓{10nX} ∪ ↓10ω from

↓LB = ↓{10n1X} ∪ ↓{1(02n)X | n ≥ 0} ∪ ↓10ω.

I LA 7→ ↓{sX | s ∈ LA} is one-to-one on regular languages.

– Define s · t =

{
s1t if s = s1X, s1 ∈ A∗,

s otherwise.

Supports all regular language constructs in the model

Report for MFPS, LICS and CSF

Last week, three leading theory conferences met at Tulane:

I MFPS - Mathematical Foundations of Programming
Semantics

I LICS - Logic in Computer Science

I CSF - Computer Security Foundations Symposium

I Three leading theory conferences.
I Attracted 250 participants from US, Europe and Far East
I Deliberately co-located to encourage interaction

Here are results from a selection of presentations:

http://www.cs.cornell.edu/Conferences/MFPS29/
http://www.cs.cornell.edu/Conferences/MFPS29/
http://lii.rwth-aachen.de/lics/lics13/
http://csf2013.seas.harvard.edu

Report from MFPS

I System T: simply typed λ-calculus + N:

T ::= N | T × T | T −→ T
P ::= x | MN | λx : T .M

Also includes a recursor R:

R 0 u v → u

R (S t) u v → v (R t u v) t

Report from MFPS

I System T: simply typed λ-calculus + N:

T ::= N | T × T | T −→ T
P ::= x | MN | λx : T .M

I Devised by Gödel to prove relative consistency of arithmetic
I Simplest typed programming language

Report from MFPS

I System T: simply typed λ-calculus + N:

T ::= N | T × T | T −→ T
P ::= x | MN | λx : T .M

I At MFPS, Mart́ın Escardó (Birmingham) proved the following:

The functions f : NN → N denotable by terms of Gödel’s
System T are continuous, and the functions f : 2N → N
denotable by terms of Gödel’s System T are uniformly
continuous using Agda to do the proof!

I Agda proof assistant: Interactive system for writing and
checking proofs; based on intuitionistic type theory, a
foundational system for constructive mathematics developed
by the Swedish logician Per Martin-Löf.

Report from LICS

I At LICS, Prakash Panangaden (McGill) used duality theory to
explain Brzozowski’s Algorithm (1964):

Input: DFA – M = (S ,A, s0,F , δ)
I Reverse transitions, interchange initial and final states
I Determinize the result
I Take the reachable states
I Repeat

Result: The minimal DFA recognizing the same language!

I Joint work by Filippo Bonchi, Marcello Bonsangue, Helle Hvid
Hansen, Prakash Panangaden, Jan Rutten and Alexandra
Silva.

Brzozowski’s Algorithm

s0

s1

s3

s2

1

0

0

1

0,1

0,1

LA = 10∗ + 10∗1

s0

s1

s3

s2

1

0

0

1

0,1

0,1

0∗1 + 10∗1

s1

s1, s2

s0

s0, s1

10

0

11

0

0∗1 + 10∗1

Brzozowski’s Algorithm

s0

s1

s3

s2

1

0

0

1

0,1

0,1

LA = 10∗ + 10∗1

s0

s1

s3

s2

1

0

0

1

0,1

0,1

0∗1 + 10∗1

s1

s1, s2

s0

s0, s1

10

0

11

0

0∗1 + 10∗1

s1

s1, s2

s0

s0, s1

10

0

1
1

0

10∗ + 10∗1

z

w

y

x

1
1

01

0

10∗ + 10∗1

Brzozowski’s Algorithm (cont’d)

I Why does this work?
I Paths in the dual automaton are backtracking from the final

states toward the initial state.
I Reachability assures paths go all the way back to the initial

state.

– Also assures all states in the dual automaton are
observable

I Let’s make this more precise

Reachability

1

ε
��

A∗

δA
��

(A∗)A

ε(∗) = ε and δA(w) : A→ A∗ by δA(w)(a) = wa.

Reachability

1

ε
��

ι

##
A∗

δA
��

r // S

δ
��

(A∗)A
rA
// SA

ι(∗) = s0 and r(w) =

{
s0 if w = ε

δ(r(u), a) if w = ua.

rA : (A∗)A → SA by rA(f) = r ◦ f .

Note: rA ◦ δA = δ ◦ r , as is easily checked.

Reachability

1

ε
��

ι

##
A∗

δA
��

r // S

δ
��

(A∗)A
rA
// SA

ι(∗) = s0 and r(w) =

{
s0 if w = ε

δ(r(u), a) if w = ua.

rA : (A∗)A → SA by rA(f) = r ◦ f .

Note: rA ◦ δA = δ ◦ r , as is easily checked.

An automaton is reachable if every state is reachable.

So, M is reachable iff r is a surjection.

Observability

2

S

f

;;

δ
��

o // 2A
∗

ε?

OO

β
��

SA

oA
// (2A

∗
)A

2 = {0, 1}, f (s) = 1 iff s ∈ F ,

o(s) = {w | (∃s ′ ∈ S) s
w−→s ′},

ε?(L) =

{
1 if ε ∈ L,

0 otherwise.

β(L)(a) = {w | aw ∈ L}.

Observability

2

S

f

;;

δ
��

o // 2A
∗

ε?

OO

β
��

SA

oA
// (2A

∗
)A

2 = {0, 1}, f (s) = 1 iff s ∈ F ,

o(s) = {w | (∃s ′ ∈ S) s
w−→s ′},

ε?(L) =

{
1 if ε ∈ L,

0 otherwise.

β(L)(a) = {w | aw ∈ L}.

An automaton is observable if distinct states generate distinct
languages.

So, M is observable iff o is an injection.

Reachability and Observability

1

ε
��

ι

##

2

A∗

δA
��

r // S

δ
��

f

;;

o // 2A
∗

ε?

OO

β
��

(A∗)A
rA
// SA

oA
// (2A

∗
)A

Determinization is crucial for the following:

Theorem: A deterministic automaton M accepting L is reachable
iff rev(M) is observable accepting rev(L).

Corollary: M is minimal iff M is reachable and observable, iff r is
a surjection and o is an injection.

What does all this have to do with Critical Infrastructure
Protection?

I Cyberinfrastructure relies on computational components for
proper functioning:

Military, financial, transportation, utilities, information....
All require secure command and control mechanisms.

I Show how to use formal methods to analyze and prove
security protocols are correct.

I Utilize process calculi (some probabilistic) and their models
(usually domain-theoretic)

I Reasoning is intricate and proofs are arcane and involved
I Often aided by automated tools

I We’ll discuss two examples:

1. Another paper from the meeting, this time from CSF
2. Example of banking using security automata of Schneider,

modeled using CSP-OZ by Basin, Olderog and Sevinc

From CSF
At the Computer Security Foundations Symposium, Benjamin
Pierce gave a talk about his new DARPA project, Crash/SAFE.
Here’s a rundown of SAFE:

I Clean-slate design of entire system stack:
I Hardware
I System software
I Programming languages

I Support for critical security primitives at all levels (from
hardware up)

I Memory safety (avoid security breaches, e.g., buffer overflows,
dangling pointers, etc.)

I Strong dynamic typing
I Information flow control (IFC) and access control

I Verification of key mechanisms deeply integrated into design
process

From CSF

New hardware: Effective use of resources on security; remove
compiler from TCB (partially); make security
mechanisms available for writing low-level systems
code

OS Level: “Zero-kernel OS”; no overprivileged component

Application level: Breeze – mostly functional, security-oriented PL;
dynamic type- and security checks; every value
annotated with an IFC label; labels public

A crucial aspect of the project is the use of formal methods to
prove code correct using the Coq proof assistant.

Hardware Design

Noninterference: A machine with observation (Ω, | · |,∼) satisfies
termination-insensitive noninterference if for any observer o ∈ Ω
and any pair of indistinguishable initial data ι1 ∼o ι2 and pair of

executions Init(ι1)
t1→∗ and Init(ι2)

t2→∗, |t1|o ∼o |t2|o .

Secure Banking System

I Bank has Users who have Accounts and who can Check
Balances and Transfer Funds between accounts

I Specifications:
I Users and Accounts specified by the sets:

[UserId ,AccID, PIN, TN], Val : PZ, Sum : PN
I Support operations:

I login
I logout
I Check balance
I Request transfer
I Execute transfer
I Abort

Secure Banking System

I Bank has Users who have Accounts and who can Check
Balances and Transfer Funds between accounts

I Specifications:
I Users and Accounts specified by the sets:

[UserId ,AccID, PIN, TN], Val : PZ, Sum : PN
I Support operations:

I login
I logout
I Check balance
I Request transfer
I Execute transfer
I Abort

I Approach (work of Basin, Olderog & Sevinc):
I Define components as security automata
I Translate components into CSP (communications) +

OZ (data).
I Prove security using CSP models.

Security Automata

I A = (Q,S , I , δ) where:
Q – countable set of states
S ⊆ Q – start states
I – countable set of input symbols
δ : Q × I −→ 2Q transition function

I First devised by F. Schneider; variant of Büchi automata.

Security Automata

I A = (Q,S , I , δ) where:
Q – countable set of states
S ⊆ Q – start states
I – countable set of input symbols
δ : Q × I −→ 2Q transition function

I Analysis proceeds by

1) Writing processes as security automata

2) Translating security automata into a specification
language

3) Proving correctness using a denotational model for
specification language.

Security Automata

I A = (Q,S , I , δ) where:
Q – countable set of states
S ⊆ Q – start states
I – countable set of input symbols
δ : Q × I −→ 2Q transition function

I Specification language:
I Combination of CSP and Z:

CSP – process calculus based on communication events
Z – based on set theory and predicate logic

– used for data, state spaces and state transformations

I Write specifications in CSP-OZ and prove they are correct
Translate everything into CSP
For finite data can use FDR tool to prove correctness

CSP Basics
CSP is a process calculus in which processes are specified by the
following BNF:

P ::= STOP | SKIP | a→ P | P u Q

| P2Q | P ‖AQ | P \ A | X

where a ∈ Act, the set of (communication) actions, A ⊆ Act, and
X is a process variable.

CSP Basics
CSP is a process calculus in which processes are specified by the
following BNF:

P ::= STOP | SKIP | a→ P | P u Q

| P2Q | P ‖AQ | P \ A | X

where a ∈ Act, the set of (communication) actions, A ⊆ Act, and
X is a process variable.

Some examples:

I (a→ P) u (b → P) vs (a→ P)2(b → P):

tr(a→ P) = {ε, a} ∪ {a.t | t ∈ tr(P)}
tr((a→ P) u (b → P)) = {ε, a, b} ∪ {a.t | t ∈ tr(P)}

∪{b.t | t ∈ tr(P)}
= tr((a→ P)2(b → P))

I P vT Q iff tr(P) ⊇ tr(Q).

CSP Basics
CSP is a process calculus in which processes are specified by the
following BNF:

P ::= STOP | SKIP | a→ P | P u Q

| P2Q | P ‖AQ | P \ A | X

where a ∈ Act, the set of (communication) actions, A ⊆ Act, and
X is a process variable.

Some examples:

I Need stronger semantics – Failures:

(a→ P) u (b → P) can refuse a and b on the first step, but
(a→ P)2(b → P) cannot.

Fail(P) = {(t,A) | t ∈ tr(P) & P can refuse a ∈ A after t}
I P vF Q iff Fail(P) ⊇ Fail(Q).

CSP Basics
CSP is a process calculus in which processes are specified by the
following BNF:

P ::= STOP | SKIP | a→ P | P u Q

| P2Q | P ‖AQ | P \ A | X

where a ∈ Act, the set of (communication) actions, A ⊆ Act, and
X is a process variable.

I Processes can also name channels:

c .t?→ P(t) : process that listens on channel c and when
receiving an input, then acts like P(t).

c .t!→ P : process that sends output t on channel c and
then acts like P.

Insecure Bank

I The Bank
B ::= (login→ (Bal 2TranReq 2 logout)) ‖C ExecTran

C = {ExecTran}
login ::= 2u∈uid clogin.u?→ SKIP

Bal ::= 2a∈AcctId cBal .a?→ cBal .sa!→ SKIP

TranReq ::= cTranReq.a1?.a2?.s?→ cExecTran.a1!.a2!.s!→ SKIP

ExecTran ::= cExecTran.a1?.a2?.s →
(sa1 := a1 − s)→ (sa2 := a2 + s)→ SKIP

logout ::= clogout .bye?→ STOP

Insecure Bank

I The Bank
B ::= (login→ (Bal 2TranReq 2 logout)) ‖C ExecTran

C = {ExecTran}
login ::= 2u∈uid clogin.u?→ SKIP

Bal ::= 2a∈AcctId cBal .a?→ cBal .sa!→ SKIP

TranReq ::= cTranReq.a1?.a2?.s?→ cExecTran.a1!.a2!.s!→ SKIP

ExecTran ::= cExecTran.a1?.a2?.s →
(sa1 := a1 − s)→ (sa2 := a2 + s)→ SKIP

logout ::= clogout .bye?→ STOP

I A User U ::= (login→ (Bal u TranReq u logout))

login ::= clogin.u!→ SKIP

Bal ::= cBal .a!→ cBal .s?→ SKIP

TranReq ::= cTranReq.a1!.a2!.s!→ SKIP

logout ::= clogout .bye!→ STOP

Insecure Bank
InSecBank ::= U ‖A B, A = {login,Bal ,TranReq, logout}

I The Bank
B ::= (login→ (Bal 2TranReq 2 logout)) ‖C ExecTran

I A User U ::= (login→ (Bal u TranReq u logout))

Securing the Bank

Add a secure SecComp and run in parallel with InSecBank:

SecBank ::= InSecBank ‖B SecComp

B = {login,Bal ,TranReq,Abort, logout,ChkPin,ChkTranReq}

SecComp:

I login ::= clogin.u?.p?→ ChkPin

I ChkPin ::= cChkPin.u?.p?→
((u, p) ∈ Valid → SKIP)2 ((u, p) 6∈ Valid → Abort)

I ChkAcctId ::= cChkAcctId .u?.a?→ · · ·
I ChkTranReq ::= cTranReq.a?.n?→ · · ·

Properties of Secure Bank

SecBank ::= InSecBank ‖B SecComp

B = {login,Bal ,TranReq,Abort, logout,ChkPin,ChkTranReq}

(*) No ExecTran takes place before a successful ChkTranReq

can be shown using:

P0 ::= ChkTranReq.T → P1

2 (2a∈Da→ P0)

P1 ::= ExecTran.a1?.a2?.s?→ P0

2 (2a∈Da→ P0)

D = {login,Bal ,TranReq,Abort, logout,ChkPin,ChkTranReq}

Modeling Probability

I Standard model in domains is Probabilistic Power Domain

Prob(D) – Probability measures with
µ ≤ ν iff µ(U) ≤ ν(U) (∀U open)

I Not well understood

Structure is hard to analyze
Adds complications of probabilistic order to order on D
d 7→ δd : D ↪→ Prob(D) order-embedding

I Doesn’t “play well with other monads”.

Alternative: Random Variable model:

I Restricts order on probability to domain of random variable

I Separates orders, simplifies construction

I Standard approach in probability theory

Continuous Random Variables

I f : (X , µ)→ (Y ,Ω) random variable
I (X , µ) probability space,
I (Y ,Ω) measure space
I f is measurable: f −1(A) measurable (∀A ∈ Ω)
I Continuous if X and Y topological spaces, f continuous

and X , Y endowed with Borel σ-algebras.

Continuous Random Variables

I f : (X , µ)→ (Y ,Ω) random variable

I Assume X , Y domains endowed with Scott topology:

U Scott open iff U = ↑U = {d ∈ D | (∃u ∈ U) u ≤ d} and
supC ∈ U ⇒ U ∩ C 6= ∅, ∀ chains C

BCD – Bounded complete domains & Scott continuous maps
(D,≤) has sups of chains & all non-empty sets have
greatest lower bounds

Continuous Random Variables

I f : (X , µ)→ (Y ,Ω) random variable

I Assume X , Y domains endowed with Scott topology:

CRV (X ,Y) = {(µ, f) | µ ∈ Prob(X), f : suppµ→ Y }
suppµ =

⋂
{C ⊆ X | µ(C) = 1 & C closed}.

Continuous Random Variables

I f : (X , µ)→ (Y ,Ω) random variable

I Assume X , Y domains endowed with Scott topology:

CRV (X ,Y) = {(µ, f) | µ ∈ Prob(X), f : suppµ→ Y }
I C - Cantor tree

Goubault-Larrecq & Varacca, LICS 2011:
BCD closed under

ΘRV(C,P) = {(µ, f) ∈ CRV (C,P) | µ thin}
(µ, f) ≤ (ν, g) iff πsuppµ(ν) = µ & f ◦ πsuppµ ≤ g

I Goal: Understand ΘRV(C,P) construction for P ∈ BCD

Motivating the Order - Automata

I A (generative) probabilistic automaton A has a finite set S of
states, a start state s0 ∈ S , a finite set of actions, Act, and a
transition relation −→ ⊆ S × Prob(Act × S).

I Here’s a simple example with one action, flip:

εstart

0

1

1
2

1
2

1
2

1
2

1
2

1
2

Unfolding the automaton:

ε

1

10

1
2

1
2

0

10

1
2

1
2

1
2

1
2

...
...

...
...

Taking place on C

Motivating the Order - Trace Distributions

I Typically, such automata are modeled by their trace
distributions µi ∈ Prob(C):
µ0 = δε

µ1 = 1
2δ0 + 1

2δ1

µ2 = 1
4δ00 + 1

4δ01 + 1
4δ10 + 1

4δ11
...

I Stripping away the probabilities, we have the following sets
Xi ⊆ C on which the µi are concentrated:

µ0 concentrated on X0 = {ε}
µ1 concentrated on X1 = {0, 1}
µ2 concentrated on X2 = {00, 01, 10, 11}

...
µ∞ concentrated on X∞ = 2ω

Motivating the Order - Trace Distributions

I Stripping away the probabilities, we have the following sets
Xi ⊆ C on which the µi are concentrated:

µ0 concentrated on X0 = {ε}
µ1 concentrated on X1 = {0, 1}
µ2 concentrated on X2 = {00, 01, 10, 11}

...
µ∞ concentrated on X∞ = 2ω

I Notice that the Xns are antichains, and

X0 vC X1 vC X2 vC · · · vC X∞, where

X vC Y ⇔ X ⊆ ↓Y & Y ⊆ ↑X
⇔ πX (Y) = X

The Underlying Structure - Domains and Trees

I 2 = {0, 1}
2∞ = 2∗ ∪ 2ω is a domain under the prefix order.
2∗ – the finite words

2∞ is coherent
Compact in the Lawson topology

Open sets: U = ↑k \ ↑F , k ∈ 2∗,F ⊆ 2∗ finite

The Underlying Structure - Domains and Trees

I 2 = {0, 1}
2∞ = 2∗ ∪ 2ω is a domain under the prefix order.

I AC (2∞) = ({X | Lawson-compact antichain},vC)

X vC Y ⇔ X ⊆ ↓Y & Y ⊆ ↑X
⇔ πX (Y) = X

Subdomain of PC (2∞).

The Underlying Structure - Domains and Trees

I 2 = {0, 1}
2∞ = 2∗ ∪ 2ω is a domain under the prefix order.

I AC (2∞) = ({X | Lawson-compact antichain},vC)

I Theorem: AC (2∞) is a bounded complete domain: all
nonempty subsets have infima.

(∅ 6= F ⊆ AC (2∞) ⇒ inf F = Max(
⋂

X∈F ↓X)

The Underlying Structure - Domains and Trees

I 2 = {0, 1}
2∞ = 2∗ ∪ 2ω is a domain under the prefix order.

I AC (2∞) = ({X | Lawson-compact antichain},vC)

I Theorem: AC (2∞) is a bounded complete domain: all
nonempty subsets have infima.
Moreover, given {Xn}n∈N ⊆ AC (2∞) directed and
X ∈ AC (2∞), TAE:

(i) X = supn Xn

(ii) X = limn Xn in the Vietoris topology on Γ(2∞).

I In particular, any X ∈ AC (2∞) satisfies

X = supn πn(X) = limn πn(X), where

πn : 2∞ → 2≤n is the canonical retraction.

Thin Probability Measures

I µ ∈ Prob(2∞) is thin if suppΛ µ ∈ AC (2∞).

Note: suppΛ µ is in the Lawson topology.

I Define µ ≤ ν iff πsuppΛ µ(ν) = µ

Agrees with usual domain order (qua valuations)
/ functional analysis order via cones.

ΘProb(2∞) = ({µ ∈ Prob(2∞) | µ thin},≤).

Thin Probability Measures

I µ ∈ Prob(2∞) is thin if suppΛ µ ∈ AC (2∞).

I Proposition: (ΘProb(2∞),≤) is a bounded complete
domain: all nonempty subsets have infima.

(∅ 6=M⊆ ΘProb(2∞) ⇒ ∀ν ∈M,

infM = πM(ν), M = infµ∈M suppΛ µ)

Thin Probability Measures

I µ ∈ Prob(2∞) is thin if suppΛ µ ∈ AC (2∞).

I Proposition: (ΘProb(2∞),≤) is a bounded complete
domain: all nonempty subsets have infima.

Moreover, given {µn}n∈N ⊆ ΘProb(2∞) chain and
µ ∈ ΘProb(2∞), TAE:

(i) µ = supn µn

(ii) µ = limn µn in the weak ∗-topology on ΘProb(2∞).

I In particular, any µ ∈ ΘProb(2∞) satisfies

µ = supn πn(µ) = limn πn(µ), where

πn : C = 2∞ → 2≤n ≡ Cn is the canonical retraction.

Adding Function Spaces

I Cn ≡ πn(C) =⇒ Cn
ιn
↪→ C πn−→→ Cn

P ∈ BCD =⇒
f 7→ f ◦ πn : [Cn −→ P] ↪→ [C −→ P] &

g 7→ g ◦ ιn : [C −→ P] −→→ [Cn −→ P].

Adding Function Spaces

I Cn ≡ πn(C) =⇒ Cn
ιn
↪→ C πn−→→ Cn

P ∈ BCD =⇒
f 7→ f ◦ πn : [Cn −→ P] ↪→ [C −→ P] &

g 7→ g ◦ ιn : [C −→ P] −→→ [Cn −→ P].

I P ∈ BCD =⇒ [C −→ P] ∈ BCD:

[C −→ P] ' limn [Cn −→ P] ' limn P
Cn .

Adding Function Spaces

I P ∈ BCD =⇒ [C −→ P] ∈ BCD:

[C −→ P] ' limn [Cn −→ P] ' limn P
Cn .

Defining the Model

I ΘProb(C)× [C −→ P] ∈ BCD if P ∈ BCD.

Adding Function Spaces

I P ∈ BCD =⇒ [C −→ P] ∈ BCD:

[C −→ P] ' limn [Cn −→ P] ' limn P
Cn .

Defining the Model

I ΘProb(C)× [C −→ P] ∈ BCD if P ∈ BCD.

I ΘRV(2∞,P) = {(µ, f) | µ ∈ ΘProb(A∞), f : suppµ −→ P}
– retract of ΘProb(C)× [C −→ P] :

(µ, f) 7→ (πY (µ), f ◦ πY) is the projection

where Y = suppµ.

Possible Applications

I Allow modular construction to add probability to existing
models:

– Lynch, et al.’s Timed I/O Automata
– CSP models

I Part of program to bring information theory to computational
models

– Have results about entropy and channel capacity using
domain theory

– Could apply to programs as channels

I Potential application to quantum information

The End
Thank You!

	Introduction and Outline
	Background
	Overview
	Overview

	Operational Models
	Report for MFPS, LICS and CSF
	Report for MFPS, LICS and CSF
	Report for MFPS, LICS and CSF
	Report for MFPS, LICS and CSF
	Report from LICS
	Relation to Critical Infrastructure Protection
	Basin, Olderog and Vinczi
	Random Variables
	Domains
	Probability on Domains
	Function Spaces

