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Outline

Theory: Track A vs Track B

I Some basic background

I Some examples: two presentations from last week at Tulane

I Two more examples: Security-related work

I My own research: Continuous random variables



Mathematical Models
Mathematical constructs – systems – that model computational
processes

Examples:
I Operational models (e.g., automata):

I Give step-by-step representation of computational
processes

I Good for understanding how a process evolves,
or finding bugs

I Often too low-level to prove properties

I Denotational models (e.g., domains):
I Give mathematical models of computational processes
I High level – abstract away from low-level details
I Good for proving process properties

– Compositional
– Automated tool support (proof assistants)



Domains and Computability

I Church-Turing Thesis:
Partial recursive functions f : N⇀ N are the computable
functions.



Domains and Computability

I Church-Turing Thesis:
Partial recursive functions f : N⇀ N are the computable
functions.

I Modeling partial recursives:
I f ≤ g iff dom f ⊆ dom g & g |dom f = f

– Extensional order

I (N⇀ N,≤) chain complete partial order

– supC =
⋃
{f | f ∈ C}

I f = supn∈N f |{0,...,n}



Domains and Computability

I Church-Turing Thesis:
Partial recursive functions f : N⇀ N are the computable
functions.

I F : (N⇀ N)→ (N⇀ N) Scott continuous if
F (supC ) = supF (C ) for every chain C ⊆ (N⇀ N).

I Example:

F (f )(n) =


1 if n = 0,

n · F (f )(n − 1) if F (f )(n − 1) is defined,

undefined otherwise.

I Fac : N⇀ N satisfies Fac = FIX(F ) = supn F
n(∅).



Domains and Computability

I Church-Turing Thesis:
Partial recursive functions f : N⇀ N are the computable
functions.

I Knaster-Tarski-Scott Fixed Point Theorem:
Each Scott continuous selfmap F : (N⇀ N)→ (N⇀ N) has
a least fixed point, FIX(F ) = supn F

n(∅).

I Myhill-Shepherson Theorem:
The partial recursives are those f ∈ N⇀ N satisfying
f = FIX(F ) for some Scott continuous
F : (N⇀ N)→ (N⇀ N).

I Church-Turing-Scott Thesis:
The computable functions are those that are least fixed points
of Scott continuous selfmaps of (N⇀ N).



Domains and Programming Languages

I More Abstractly (Scott, 1969):
The lambda calculus admits a model M = [D∞ → D∞]
where every term is a Scott continuous selfmap of a
recursively defined domain D∞ ' [D∞ → D∞].

– More generally, every model of the lambda calculus
is a reflexive object in some cartesian closed category.

– Like Set - category of sets and functions

– Only known models are categories of domains
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where every term is a Scott continuous selfmap of a
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I Scott’s Program:
I Data types are partially ordered structures
I Programs are Scott continuous maps over data types
I Cartesian closed categories of domains are natural

denotational models



Domains and Programming Languages

I More Abstractly (Scott, 1969):
The lambda calculus admits a model M = [D∞ → D∞]
where every term is a Scott continuous selfmap of a
recursively defined domain D∞ ' [D∞ → D∞].

I Scott’s Program:
I Data types are partially ordered structures
I Programs are Scott continuous maps over data types
I Cartesian closed categories of domains are natural

denotational models

I Moggi’s Program:
I Use monads to model computational effects:

– Power domains for nondeterminism,
– Continuations, exceptions, etc.

I Each arises as family of algebras for an endofunctor on a
category of domains.



Automata

I Automata are among the simplest computational models
I Simple graphical representation
I Illustrate how computations unfold
I Easy to write (for simple processes)
I Limited use for complicated processes
I Not useful for proving general properties

I Simple Example:

s0start

s1

s3

s2

1

0

0

1

0,1

0,1

Language accepted by A:

LA = {10∗, 10∗1}



From Automata to Domains

I A - finite alphabet ⇒ A∞ = A∗ ∪ Aω word monoid over A.

– A∞ partial order in prefix order:
s ≤ t iff su = t for some word u.

– (A∞,≤) chain complete poset

I LA = {10∗, 10∗1} ⊆ {0, 1}∞



From Automata to Domains

I A - finite alphabet ⇒ A∞ = A∗ ∪ Aω word monoid over A.

– A∞ partial order in prefix order:
s ≤ t iff su = t for some word u.

– (A∞,≤) chain complete poset

I LA = {10∗, 10∗1} ⊆ {0, 1}∞

I LA not closed under prefixes,...

... but ↓LA = {s ∈ {0, 1}∞ | s ≤ u ∈ LA} is.

I ↓LA also closed under sups of chains.

So ↓LA = ↓10ω ∪ {10n1 | n ≥ 0} is a domain.

Also a safety property (Alpern & Schneider)

– Can’t distinguish LA from LB = {1(00)∗, 10∗1}



From Automata to Domains

I A - finite alphabet ⇒ A∞ = A∗ ∪ Aω word monoid over A.

– A∞ partial order in prefix order:
s ≤ t iff su = t for some word u.

– (A∞,≤) chain complete poset

I LA = {10∗, 10∗1} ⊆ {0, 1}∞

I Better map: A0 = A ∪ {X}; s 7→ sX : LA → A∞0 .

Differentiates
↓LA = ↓{10n1X | n ≥ 0} ∪ ↓{10nX} ∪ ↓10ω from

↓LB = ↓{10n1X} ∪ ↓{1(02n)X | n ≥ 0} ∪ ↓10ω.

I LA 7→ ↓{sX | s ∈ LA} is one-to-one on regular languages.

– Define s · t =

{
s1t if s = s1X, s1 ∈ A∗,

s otherwise.



From Automata to Domains

I A - finite alphabet ⇒ A∞ = A∗ ∪ Aω word monoid over A.

– A∞ partial order in prefix order:
s ≤ t iff su = t for some word u.

– (A∞,≤) chain complete poset

I LA = {10∗, 10∗1} ⊆ {0, 1}∞

I Better map: A0 = A ∪ {X}; s 7→ sX : LA → A∞0 .

Differentiates
↓LA = ↓{10n1X | n ≥ 0} ∪ ↓{10nX} ∪ ↓10ω from

↓LB = ↓{10n1X} ∪ ↓{1(02n)X | n ≥ 0} ∪ ↓10ω.

I LA 7→ ↓{sX | s ∈ LA} is one-to-one on regular languages.

– Define s · t =

{
s1t if s = s1X, s1 ∈ A∗,

s otherwise.

Supports all regular language constructs in the model



Report for MFPS, LICS and CSF

Last week, three leading theory conferences met at Tulane:

I MFPS - Mathematical Foundations of Programming
Semantics

I LICS - Logic in Computer Science

I CSF - Computer Security Foundations Symposium

I Three leading theory conferences.
I Attracted 250 participants from US, Europe and Far East
I Deliberately co-located to encourage interaction

Here are results from a selection of presentations:

http://www.cs.cornell.edu/Conferences/MFPS29/
http://www.cs.cornell.edu/Conferences/MFPS29/
http://lii.rwth-aachen.de/lics/lics13/
http://csf2013.seas.harvard.edu


Report from MFPS

I System T: simply typed λ-calculus + N:

T ::= N | T × T | T −→ T
P ::= x | MN | λx : T .M

Also includes a recursor R:

R 0 u v → u

R (S t) u v → v (R t u v) t



Report from MFPS

I System T: simply typed λ-calculus + N:

T ::= N | T × T | T −→ T
P ::= x | MN | λx : T .M

I Devised by Gödel to prove relative consistency of arithmetic
I Simplest typed programming language



Report from MFPS

I System T: simply typed λ-calculus + N:

T ::= N | T × T | T −→ T
P ::= x | MN | λx : T .M

I At MFPS, Mart́ın Escardó (Birmingham) proved the following:

The functions f : NN → N denotable by terms of Gödel’s
System T are continuous, and the functions f : 2N → N
denotable by terms of Gödel’s System T are uniformly
continuous using Agda to do the proof!

I Agda proof assistant: Interactive system for writing and
checking proofs; based on intuitionistic type theory, a
foundational system for constructive mathematics developed
by the Swedish logician Per Martin-Löf.



Report from LICS

I At LICS, Prakash Panangaden (McGill) used duality theory to
explain Brzozowski’s Algorithm (1964):

Input: DFA – M = (S ,A, s0,F , δ)
I Reverse transitions, interchange initial and final states
I Determinize the result
I Take the reachable states
I Repeat

Result: The minimal DFA recognizing the same language!

I Joint work by Filippo Bonchi, Marcello Bonsangue, Helle Hvid
Hansen, Prakash Panangaden, Jan Rutten and Alexandra
Silva.



Brzozowski’s Algorithm

s0

s1

s3

s2

1

0

0

1

0,1

0,1

LA = 10∗ + 10∗1

s0

s1

s3

s2

1

0

0

1

0,1

0,1

0∗1 + 10∗1

s1

s1, s2

s0

s0, s1

10

0

11

0

0∗1 + 10∗1
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Brzozowski’s Algorithm (cont’d)

I Why does this work?
I Paths in the dual automaton are backtracking from the final

states toward the initial state.
I Reachability assures paths go all the way back to the initial

state.

– Also assures all states in the dual automaton are
observable

I Let’s make this more precise



Reachability

1

ε
��

A∗

δA
��

(A∗)A

ε(∗) = ε and δA(w) : A→ A∗ by δA(w)(a) = wa.



Reachability

1

ε
��

ι

##
A∗

δA
��

r // S

δ
��

(A∗)A
rA
// SA

ι(∗) = s0 and r(w) =

{
s0 if w = ε

δ(r(u), a) if w = ua.

rA : (A∗)A → SA by rA(f ) = r ◦ f .

Note: rA ◦ δA = δ ◦ r , as is easily checked.



Reachability

1

ε
��

ι

##
A∗

δA
��

r // S

δ
��

(A∗)A
rA
// SA

ι(∗) = s0 and r(w) =

{
s0 if w = ε

δ(r(u), a) if w = ua.

rA : (A∗)A → SA by rA(f ) = r ◦ f .

Note: rA ◦ δA = δ ◦ r , as is easily checked.

An automaton is reachable if every state is reachable.

So, M is reachable iff r is a surjection.



Observability

2

S

f

;;

δ
��

o // 2A
∗

ε?

OO

β
��

SA

oA
// (2A

∗
)A

2 = {0, 1}, f (s) = 1 iff s ∈ F ,

o(s) = {w | (∃s ′ ∈ S) s
w−→s ′},

ε?(L) =

{
1 if ε ∈ L,

0 otherwise.

β(L)(a) = {w | aw ∈ L}.



Observability

2

S

f

;;

δ
��

o // 2A
∗

ε?

OO

β
��

SA

oA
// (2A

∗
)A

2 = {0, 1}, f (s) = 1 iff s ∈ F ,

o(s) = {w | (∃s ′ ∈ S) s
w−→s ′},

ε?(L) =

{
1 if ε ∈ L,

0 otherwise.

β(L)(a) = {w | aw ∈ L}.

An automaton is observable if distinct states generate distinct
languages.

So, M is observable iff o is an injection.



Reachability and Observability

1

ε
��

ι

##

2

A∗

δA
��

r // S

δ
��

f

;;

o // 2A
∗

ε?

OO

β
��

(A∗)A
rA
// SA

oA
// (2A

∗
)A

Determinization is crucial for the following:

Theorem: A deterministic automaton M accepting L is reachable
iff rev(M) is observable accepting rev(L).

Corollary: M is minimal iff M is reachable and observable, iff r is
a surjection and o is an injection.



What does all this have to do with Critical Infrastructure
Protection?

I Cyberinfrastructure relies on computational components for
proper functioning:

Military, financial, transportation, utilities, information....
All require secure command and control mechanisms.

I Show how to use formal methods to analyze and prove
security protocols are correct.

I Utilize process calculi (some probabilistic) and their models
(usually domain-theoretic)

I Reasoning is intricate and proofs are arcane and involved
I Often aided by automated tools

I We’ll discuss two examples:

1. Another paper from the meeting, this time from CSF
2. Example of banking using security automata of Schneider,

modeled using CSP-OZ by Basin, Olderog and Sevinc



From CSF
At the Computer Security Foundations Symposium, Benjamin
Pierce gave a talk about his new DARPA project, Crash/SAFE.
Here’s a rundown of SAFE:

I Clean-slate design of entire system stack:
I Hardware
I System software
I Programming languages

I Support for critical security primitives at all levels (from
hardware up)

I Memory safety (avoid security breaches, e.g., buffer overflows,
dangling pointers, etc.)

I Strong dynamic typing
I Information flow control (IFC) and access control

I Verification of key mechanisms deeply integrated into design
process



From CSF

New hardware: Effective use of resources on security; remove
compiler from TCB (partially); make security
mechanisms available for writing low-level systems
code

OS Level: “Zero-kernel OS”; no overprivileged component

Application level: Breeze – mostly functional, security-oriented PL;
dynamic type- and security checks; every value
annotated with an IFC label; labels public

A crucial aspect of the project is the use of formal methods to
prove code correct using the Coq proof assistant.



Hardware Design

Noninterference: A machine with observation (Ω, | · |,∼) satisfies
termination-insensitive noninterference if for any observer o ∈ Ω
and any pair of indistinguishable initial data ι1 ∼o ι2 and pair of

executions Init(ι1)
t1→∗ and Init(ι2)

t2→∗, |t1|o ∼o |t2|o .



Secure Banking System

I Bank has Users who have Accounts and who can Check
Balances and Transfer Funds between accounts

I Specifications:
I Users and Accounts specified by the sets:

[UserId ,AccID, PIN, TN], Val : PZ, Sum : PN
I Support operations:

I login
I logout
I Check balance
I Request transfer
I Execute transfer
I Abort



Secure Banking System

I Bank has Users who have Accounts and who can Check
Balances and Transfer Funds between accounts

I Specifications:
I Users and Accounts specified by the sets:

[UserId ,AccID, PIN, TN], Val : PZ, Sum : PN
I Support operations:

I login
I logout
I Check balance
I Request transfer
I Execute transfer
I Abort

I Approach (work of Basin, Olderog & Sevinc):
I Define components as security automata
I Translate components into CSP (communications) +

OZ (data).
I Prove security using CSP models.



Security Automata

I A = (Q,S , I , δ) where:
Q – countable set of states
S ⊆ Q – start states
I – countable set of input symbols
δ : Q × I −→ 2Q transition function

I First devised by F. Schneider; variant of Büchi automata.



Security Automata

I A = (Q,S , I , δ) where:
Q – countable set of states
S ⊆ Q – start states
I – countable set of input symbols
δ : Q × I −→ 2Q transition function

I Analysis proceeds by

1) Writing processes as security automata

2) Translating security automata into a specification
language

3) Proving correctness using a denotational model for
specification language.



Security Automata

I A = (Q,S , I , δ) where:
Q – countable set of states
S ⊆ Q – start states
I – countable set of input symbols
δ : Q × I −→ 2Q transition function

I Specification language:
I Combination of CSP and Z:

CSP – process calculus based on communication events
Z – based on set theory and predicate logic

– used for data, state spaces and state transformations

I Write specifications in CSP-OZ and prove they are correct
Translate everything into CSP
For finite data can use FDR tool to prove correctness



CSP Basics
CSP is a process calculus in which processes are specified by the
following BNF:

P ::= STOP | SKIP | a→ P | P u Q

| P2Q | P ‖AQ | P \ A | X

where a ∈ Act, the set of (communication) actions, A ⊆ Act, and
X is a process variable.



CSP Basics
CSP is a process calculus in which processes are specified by the
following BNF:

P ::= STOP | SKIP | a→ P | P u Q

| P2Q | P ‖AQ | P \ A | X

where a ∈ Act, the set of (communication) actions, A ⊆ Act, and
X is a process variable.

Some examples:

I (a→ P) u (b → P) vs (a→ P)2(b → P):

tr(a→ P) = {ε, a} ∪ {a.t | t ∈ tr(P)}
tr((a→ P) u (b → P)) = {ε, a, b} ∪ {a.t | t ∈ tr(P)}

∪{b.t | t ∈ tr(P)}
= tr((a→ P)2(b → P))

I P vT Q iff tr(P) ⊇ tr(Q).



CSP Basics
CSP is a process calculus in which processes are specified by the
following BNF:

P ::= STOP | SKIP | a→ P | P u Q

| P2Q | P ‖AQ | P \ A | X

where a ∈ Act, the set of (communication) actions, A ⊆ Act, and
X is a process variable.

Some examples:

I Need stronger semantics – Failures:

(a→ P) u (b → P) can refuse a and b on the first step, but
(a→ P)2(b → P) cannot.

Fail(P) = {(t,A) | t ∈ tr(P) & P can refuse a ∈ A after t}
I P vF Q iff Fail(P) ⊇ Fail(Q).



CSP Basics
CSP is a process calculus in which processes are specified by the
following BNF:

P ::= STOP | SKIP | a→ P | P u Q

| P2Q | P ‖AQ | P \ A | X

where a ∈ Act, the set of (communication) actions, A ⊆ Act, and
X is a process variable.

I Processes can also name channels:

c .t?→ P(t) : process that listens on channel c and when
receiving an input, then acts like P(t).

c .t!→ P : process that sends output t on channel c and
then acts like P.



Insecure Bank

I The Bank
B ::= (login→ (Bal 2TranReq 2 logout)) ‖C ExecTran

C = {ExecTran}
login ::= 2u∈uid clogin.u?→ SKIP

Bal ::= 2a∈AcctId cBal .a?→ cBal .sa!→ SKIP

TranReq ::= cTranReq.a1?.a2?.s?→ cExecTran.a1!.a2!.s!→ SKIP

ExecTran ::= cExecTran.a1?.a2?.s →
(sa1 := a1 − s)→ (sa2 := a2 + s)→ SKIP

logout ::= clogout .bye?→ STOP



Insecure Bank

I The Bank
B ::= (login→ (Bal 2TranReq 2 logout)) ‖C ExecTran

C = {ExecTran}
login ::= 2u∈uid clogin.u?→ SKIP

Bal ::= 2a∈AcctId cBal .a?→ cBal .sa!→ SKIP

TranReq ::= cTranReq.a1?.a2?.s?→ cExecTran.a1!.a2!.s!→ SKIP

ExecTran ::= cExecTran.a1?.a2?.s →
(sa1 := a1 − s)→ (sa2 := a2 + s)→ SKIP

logout ::= clogout .bye?→ STOP

I A User U ::= (login→ (Bal u TranReq u logout))

login ::= clogin.u!→ SKIP

Bal ::= cBal .a!→ cBal .s?→ SKIP

TranReq ::= cTranReq.a1!.a2!.s!→ SKIP

logout ::= clogout .bye!→ STOP



Insecure Bank
InSecBank ::= U ‖A B, A = {login,Bal ,TranReq, logout}

I The Bank
B ::= (login→ (Bal 2TranReq 2 logout)) ‖C ExecTran

I A User U ::= (login→ (Bal u TranReq u logout))

Securing the Bank

Add a secure SecComp and run in parallel with InSecBank:

SecBank ::= InSecBank ‖B SecComp

B = {login,Bal ,TranReq,Abort, logout,ChkPin,ChkTranReq}

SecComp:

I login ::= clogin.u?.p?→ ChkPin

I ChkPin ::= cChkPin.u?.p?→
((u, p) ∈ Valid → SKIP)2 ((u, p) 6∈ Valid → Abort)

I ChkAcctId ::= cChkAcctId .u?.a?→ · · ·
I ChkTranReq ::= cTranReq.a?.n?→ · · ·



Properties of Secure Bank

SecBank ::= InSecBank ‖B SecComp

B = {login,Bal ,TranReq,Abort, logout,ChkPin,ChkTranReq}

(*) No ExecTran takes place before a successful ChkTranReq

can be shown using:

P0 ::= ChkTranReq.T → P1

2 (2a∈Da→ P0)

P1 ::= ExecTran.a1?.a2?.s?→ P0

2 (2a∈Da→ P0)

D = {login,Bal ,TranReq,Abort, logout,ChkPin,ChkTranReq}



Modeling Probability

I Standard model in domains is Probabilistic Power Domain

Prob(D) – Probability measures with
µ ≤ ν iff µ(U) ≤ ν(U) (∀U open)

I Not well understood

Structure is hard to analyze
Adds complications of probabilistic order to order on D
d 7→ δd : D ↪→ Prob(D) order-embedding

I Doesn’t “play well with other monads”.

Alternative: Random Variable model:

I Restricts order on probability to domain of random variable

I Separates orders, simplifies construction

I Standard approach in probability theory



Continuous Random Variables

I f : (X , µ)→ (Y ,Ω) random variable
I (X , µ) probability space,
I (Y ,Ω) measure space
I f is measurable: f −1(A) measurable (∀A ∈ Ω)
I Continuous if X and Y topological spaces, f continuous

and X , Y endowed with Borel σ-algebras.



Continuous Random Variables

I f : (X , µ)→ (Y ,Ω) random variable

I Assume X , Y domains endowed with Scott topology:

U Scott open iff U = ↑U = {d ∈ D | (∃u ∈ U) u ≤ d} and
supC ∈ U ⇒ U ∩ C 6= ∅, ∀ chains C

BCD – Bounded complete domains & Scott continuous maps
(D,≤) has sups of chains & all non-empty sets have
greatest lower bounds



Continuous Random Variables

I f : (X , µ)→ (Y ,Ω) random variable

I Assume X , Y domains endowed with Scott topology:

CRV (X ,Y ) = {(µ, f ) | µ ∈ Prob(X ), f : suppµ→ Y }
suppµ =

⋂
{C ⊆ X | µ(C ) = 1 & C closed}.



Continuous Random Variables

I f : (X , µ)→ (Y ,Ω) random variable

I Assume X , Y domains endowed with Scott topology:

CRV (X ,Y ) = {(µ, f ) | µ ∈ Prob(X ), f : suppµ→ Y }
I C - Cantor tree

Goubault-Larrecq & Varacca, LICS 2011:
BCD closed under

ΘRV(C,P) = {(µ, f ) ∈ CRV (C,P) | µ thin}
(µ, f ) ≤ (ν, g) iff πsuppµ(ν) = µ & f ◦ πsuppµ ≤ g

I Goal: Understand ΘRV(C,P) construction for P ∈ BCD



Motivating the Order - Automata

I A (generative) probabilistic automaton A has a finite set S of
states, a start state s0 ∈ S , a finite set of actions, Act, and a
transition relation −→ ⊆ S × Prob(Act × S).

I Here’s a simple example with one action, flip:

εstart

0

1

1
2

1
2

1
2

1
2

1
2

1
2

Unfolding the automaton:

ε

1

10

1
2

1
2

0

10

1
2

1
2

1
2

1
2

...
...

...
...

Taking place on C



Motivating the Order - Trace Distributions

I Typically, such automata are modeled by their trace
distributions µi ∈ Prob(C):
µ0 = δε

µ1 = 1
2δ0 + 1

2δ1

µ2 = 1
4δ00 + 1

4δ01 + 1
4δ10 + 1

4δ11
...

I Stripping away the probabilities, we have the following sets
Xi ⊆ C on which the µi are concentrated:

µ0 concentrated on X0 = {ε}
µ1 concentrated on X1 = {0, 1}
µ2 concentrated on X2 = {00, 01, 10, 11}

...
µ∞ concentrated on X∞ = 2ω



Motivating the Order - Trace Distributions

I Stripping away the probabilities, we have the following sets
Xi ⊆ C on which the µi are concentrated:

µ0 concentrated on X0 = {ε}
µ1 concentrated on X1 = {0, 1}
µ2 concentrated on X2 = {00, 01, 10, 11}

...
µ∞ concentrated on X∞ = 2ω

I Notice that the Xns are antichains, and

X0 vC X1 vC X2 vC · · · vC X∞, where

X vC Y ⇔ X ⊆ ↓Y & Y ⊆ ↑X
⇔ πX (Y ) = X



The Underlying Structure - Domains and Trees

I 2 = {0, 1}
2∞ = 2∗ ∪ 2ω is a domain under the prefix order.
2∗ – the finite words

2∞ is coherent
Compact in the Lawson topology

Open sets: U = ↑k \ ↑F , k ∈ 2∗,F ⊆ 2∗ finite



The Underlying Structure - Domains and Trees

I 2 = {0, 1}
2∞ = 2∗ ∪ 2ω is a domain under the prefix order.

I AC (2∞) = ({X | Lawson-compact antichain},vC )

X vC Y ⇔ X ⊆ ↓Y & Y ⊆ ↑X
⇔ πX (Y ) = X

Subdomain of PC (2∞).
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The Underlying Structure - Domains and Trees

I 2 = {0, 1}
2∞ = 2∗ ∪ 2ω is a domain under the prefix order.

I AC (2∞) = ({X | Lawson-compact antichain},vC )

I Theorem: AC (2∞) is a bounded complete domain: all
nonempty subsets have infima.
Moreover, given {Xn}n∈N ⊆ AC (2∞) directed and
X ∈ AC (2∞), TAE:

(i) X = supn Xn

(ii) X = limn Xn in the Vietoris topology on Γ(2∞).

I In particular, any X ∈ AC (2∞) satisfies

X = supn πn(X ) = limn πn(X ), where

πn : 2∞ → 2≤n is the canonical retraction.



Thin Probability Measures

I µ ∈ Prob(2∞) is thin if suppΛ µ ∈ AC (2∞).

Note: suppΛ µ is in the Lawson topology.

I Define µ ≤ ν iff πsuppΛ µ(ν) = µ

Agrees with usual domain order (qua valuations)
/ functional analysis order via cones.

ΘProb(2∞) = ({µ ∈ Prob(2∞) | µ thin},≤).



Thin Probability Measures

I µ ∈ Prob(2∞) is thin if suppΛ µ ∈ AC (2∞).

I Proposition: (ΘProb(2∞),≤) is a bounded complete
domain: all nonempty subsets have infima.

(∅ 6=M⊆ ΘProb(2∞) ⇒ ∀ν ∈M,

infM = πM(ν), M = infµ∈M suppΛ µ)



Thin Probability Measures

I µ ∈ Prob(2∞) is thin if suppΛ µ ∈ AC (2∞).

I Proposition: (ΘProb(2∞),≤) is a bounded complete
domain: all nonempty subsets have infima.

Moreover, given {µn}n∈N ⊆ ΘProb(2∞) chain and
µ ∈ ΘProb(2∞), TAE:

(i) µ = supn µn

(ii) µ = limn µn in the weak ∗-topology on ΘProb(2∞).

I In particular, any µ ∈ ΘProb(2∞) satisfies

µ = supn πn(µ) = limn πn(µ), where

πn : C = 2∞ → 2≤n ≡ Cn is the canonical retraction.



Adding Function Spaces

I Cn ≡ πn(C) =⇒ Cn
ιn
↪→ C πn−→→ Cn

P ∈ BCD =⇒
f 7→ f ◦ πn : [Cn −→ P] ↪→ [C −→ P] &

g 7→ g ◦ ιn : [C −→ P] −→→ [Cn −→ P].
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P ∈ BCD =⇒
f 7→ f ◦ πn : [Cn −→ P] ↪→ [C −→ P] &

g 7→ g ◦ ιn : [C −→ P] −→→ [Cn −→ P].

I P ∈ BCD =⇒ [C −→ P] ∈ BCD:

[C −→ P] ' limn [Cn −→ P] ' limn P
Cn .
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[C −→ P] ' limn [Cn −→ P] ' limn P
Cn .

Defining the Model

I ΘProb(C)× [C −→ P] ∈ BCD if P ∈ BCD.



Adding Function Spaces

I P ∈ BCD =⇒ [C −→ P] ∈ BCD:

[C −→ P] ' limn [Cn −→ P] ' limn P
Cn .

Defining the Model

I ΘProb(C)× [C −→ P] ∈ BCD if P ∈ BCD.

I ΘRV(2∞,P) = {(µ, f ) | µ ∈ ΘProb(A∞), f : suppµ −→ P}
– retract of ΘProb(C)× [C −→ P] :

(µ, f ) 7→ (πY (µ), f ◦ πY ) is the projection

where Y = suppµ.



Possible Applications

I Allow modular construction to add probability to existing
models:

– Lynch, et al.’s Timed I/O Automata
– CSP models

I Part of program to bring information theory to computational
models

– Have results about entropy and channel capacity using
domain theory

– Could apply to programs as channels

I Potential application to quantum information



The End
Thank You!
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