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Lebesgue Measure and Unit Interval

I [0, 1] ⊆ R inherits Lebesgue measure: λ([a, b]) = b − a.

I Translation invariance: λ(x + A) = λ(A) for all (Borel)
measurable A ⊆ R and all x ∈ R.



Lebesgue Measure and Unit Interval

I [0, 1] ⊆ R inherits Lebesgue measure: λ([a, b]) = b − a.

I Translation invariance: λ(x + A) = λ(A) for all (Borel)
measurable A ⊆ R and all x ∈ R.

I Theorem (Haar, 1933) Every locally compact group G has a
unique (up to scalar constant) left-translation invariant
regular Borel measure µG called Haar measure.

If G is compact, then µG (G ) = 1.

Example: T ' R/Z with quotient measure from λ.

If G is finite, then µG is normalized counting measure.



The Cantor Set

C0
C1
C2
C3
C4

C =
⋂

n Cn ⊆ [0, 1] compact 0-dimensional, λ(C) = 0.

Theorem: C is the unique compact Hausdorff 0-dimensional
second countable perfect space. Moreover,
C ' G for any second countable profinite group, G .

• e ∈ Uk open ⇒ (∃Hk < G open) Hk ⊆ Uk

• Hk < Uk open ⇒ (∃Nk / G )Hk < Nk ⊆ Uk .

• Thus G ' lim←−k
G/Hk .



Cantor Groups

Definition: A Cantor group is a compact, 0-dimensional second
countable perfect space endowed with a topological group
structure.

I Canonical Cantor group: C ' Z2
N is a compact group in the

product topology. µC is the product measure (µZ2(Z2) = 1)

Theorem: (Schmidt) The Cantor map C → [0, 1] sends Haar
measure on C = Z2

N to Lebesgue measure.

Goal: Generalize this to all Cantor groups C.



Cantor Groups

I G =
∏

n>1 Zn is also a Cantor group.

µG is the product measure (µZn(Zn) = 1)

I Zp∞ = lim←−n
Zpn – p-adic integers.

x 7→ x mod p : Zpn+1 → Zpn .

I H =
∏

n S(n) – S(n) symmetric group on n letters.



Some Harmonic Analysis

I Theorem: (Fedorchuk, 1991) If X ' lim←−i∈I Xi strict projective

limit of compact spaces, then Prob(X ) ' lim←−i∈I Prob(Xi ).



Some Harmonic Analysis

I Theorem: (Fedorchuk, 1991) If X ' lim←−i∈I Xi strict projective

limit of compact spaces, then Prob(X ) ' lim←−i∈I Prob(Xi ).

I Lemma: If ϕ : G →→ H is a surmorphism of compact groups,
then ϕµG = µH .

Proof: A ⊆ H measurable ⇒
ϕµG (hA) = µG (ϕ−1(hA)) = µG (ϕ−1(h)ϕ−1(A))

= µG ((g kerϕ) · ϕ−1(A)) (where ϕ(g) = h)

= µG (g · (kerϕ · ϕ−1(A) = µG (kerϕ · ϕ−1(A))

= µG (ϕ−1(A)) = ϕµG (A).



Some Harmonic Analysis

I Theorem: (Fedorchuk, 1991) If X ' lim←−i∈I Xi strict projective

limit of compact spaces, then Prob(X ) ' lim←−i∈I Prob(Xi ).

In particular, if X = G and Xi = Gi are compact groups,

then µG = limi∈I µGi
in Prob(

∏
i Gi ).



It’s all about Abelian Groups

I Theorem: If G = lim←−n
Gn is a Cantor group, there is a

sequence (Zki )i>0 of cyclic groups so that H = lim←−n
(⊕i≤nZki )

has the same Haar measure as G .

Proof: Let G ' lim←−n
Gn, |Gn| <∞.

Assume |Hn| = |Gn| with Hn abelian.

Define Hn+1 = Hn × Z|Gn+1|/|Gn|. Then |Hn+1| = |Gn+1|,
so µHn = µ|Gn| = µGn for each n, and H = lim←−n

Hn is abelian.

Hence µH = limn µn = µG .



Combining Domain Theory and Group Theory

C = lim←−n
Hn, Hn = ⊕i≤n Zki

Endow Hn with lexicographic order for each n; then

πn : Hn+1 → Hn by πn(x1, . . . , xn+1) = (xi , . . . , xn) &

ιn : Hn ↪→ Hn+1 by ιn(x1, . . . , xn) = (xi , . . . , xn, 0) form

embedding-projection pair: πn ◦ ιn = 1Hn and ιn ◦ πn ≤ 1Hn+1 .



Combining Domain Theory and Group Theory

C = lim←−n
Hn, Hn = ⊕i≤n Zki

Endow Hn with lexicographic order for each n; then

C ' bilim (Hn, πn, ιn) is bialgebraic total order:

• C totally ordered, has all sups and infs

• K (C) =
⋃

n{(x1, . . . , xn, 0, . . .) | (x1, . . . , xn) ∈ Hn}
• K (Cop) = {sup (↓k \ {k}) | k ∈ K (C)}
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induces ϕ̂ : C → [0, 1] monotone, Lawson continuous.



Combining Domain Theory and Group Theory

C = lim←−n
Hn, Hn = ⊕i≤n Zki

Endow Hn with lexicographic order for each n; then

C ' bilim (Hn, πn, ιn) is bialgebraic total order:

ϕ : K (C)→ [0, 1] by ϕ(x1, . . . , xn) =
∑

i≤n
xi

k1···ki strictly monotone

induces ϕ̂ : C → [0, 1] monotone, Lawson continuous.

µC = limn µn implies for 0 ≤ m ≤ p ≤ k1 · · · kn:

µC(ϕ̂−1[ m
k1···kn ,

p
k1···kn ]) = p−m

k1···kn = λ([ m
k1···kn ,

p
k1···kn ])

Then inner regularity implies ϕ̂ µC = λ.



Combining Domain Theory and Group Theory

C = lim←−n
Hn, Hn = ⊕i≤n Zki

Endow Hn with lexicographic order for each n; then

C ' bilim (Hn, πn, ιn) is bialgebraic total order:

ϕ : K (C)→ [0, 1] by ϕ(x1, . . . , xn) =
∑

i≤n
xi

k1···ki strictly monotone

induces ϕ̂ : C → [0, 1] monotone, Lawson continuous.

Further, C′ = lim←−n
G ′n with G ′n finite, then

ϕ̂−1 ◦ ϕ̂′ : C′ \ K (C′)→ C \ K (C) is a Borel isomorphism.



Lagniappe: Non-measurable Subgroups
In 1985 S. Saeki and K. Stromberg published the following question:
Does every infinite compact group have a subgroup which is not Haar
measurable?

Some known results:

• Every infinite compact abelian group has a non-measurable subgroup
(Comfort, Raczkowski, and Trigos-Arrieta 2006)

• With the possible exception of metric profinite groups, every infinite
compact group has a non-measurable subgroup (Hernández, Hofmann
and Morris 2014)

• A result of Hernández, Hofmann and Morris implies the remaining
case is G profinite & strongly complete group (every finite index
subgroup is open).

Proposition (Brian & M.) Let G be an infinite compact group.

1. It is consistent with ZFC that G has a non-measurable subgroup.

2. If G is an abelian Cantor group, then G has a nonmeasurable
subgroup. (New proof)



Lagniappe: Non-measurable Subgroups
Proposition (Brian & M.) Let G be an infinite compact group.

1. It is consistent with ZFC that G has a non-measurable subgroup.

2. If G is an abelian Cantor group, then G has a nonmeasurable
subgroup. (New proof)

Ad 1: By Hernández, et al., we can assume G is metric and profinite, so
G is a Cantor group. Our results show Haar measure on G ' C is the
same as for an abelian group structure, for which φ̂ : C → [0, 1] takes
Haar measure to Lebesgue measure.

Fact: There is a model of ZFC that admits a subset X ⊆ [0, 1] with
|X | < 2ℵ0 that is not Lebesgue measurable (cf. Kechris).

Then Y = φ̂−1(X ) ⊆ C is not Haar-measurable.

H = 〈Y 〉 is a subgroup of G with |H| = |X | · ℵ0 < 2ℵ0 . Then:

H is not measure 0 since then Y would be measurable,

while µG (H) > 0 implies H is open, which implies |H| = 2ℵ0 .

Thus H is not Haar measurable.



Lagniappe: Non-measurable Subgroups
Proposition (Brian & M.) Let G be an infinite compact group.

1. It is consistent with ZFC that G has a non-measurable subgroup.

2. If G is an abelian Cantor group, then G has a nonmeasurable
subgroup. (New proof)

Ad 2: We first prove something stronger:

1.) If G is an infinite abelian group and p ∈ G \ {e}, then there is a
maximal subgroup M < G \ {p} satisfying p ∈ 〈x ,M〉 for all x ∈ G \M.

2.) As discrete group, G/M abelian ⇒ ∃φ : G/M → R/Z with φ(p) 6= e.

ker φ < G/M,M maximal wrt not containing p + M =⇒ ker φ = M.

Thus G/M ' K < R/Z.

(∀x ∈ G ) p ∈ 〈x ,M〉 =⇒ pM ∈ 〈xM〉 =⇒ pM = (xM)nx (∃nx ∈ Z).

g ∈ R/Z =⇒ g has countably many roots, so G/M is countable.

Starting with Q < C dense and proper, then choosing Q < M implies M

is proper, dense and has countable index. 2
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