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Probability is fundamental for computational models

Two approaches:

• Randomized computation over a predefined, parameterized
family of measurable sets

I Dana’s Stochastic Lambda Calculus
I Randomized algorithms

Versus

• Finding mechanisms to model probability within arbitrary
domains



Probability is fundamental for computational models

I Probability is fundamental security
I Basis for definition
I Participants in crypto-protocols make random choices
I Quantitative information flow uses entropy, capacity and

related statistics

Models used to analyze system security must support
reasoning about probability.

But probabilistic domain models are difficult...



The Probabilistic Power Domain and Its Problems

I The Probabilistic Power Domain
I SProb(D) – subprobability measures over D form a domain

I µ ≤ ν iff µ(O) ≤ ν(O) (∀O open)

I Extends order on underlying domain under
x 7→ δx : D → SProb(D)

I Forms monad on DCPO, on Dom and on CohDom

I Powerful model for reasoning about specification and
refinement

I Morgan, McIver, et al apply the probabilistic power domain to
the traditional CSP models.

I Doesn’t play well with other monads:
I No distributive law wrt nondeterminism monads

I No known invariant Cartesian closed category of domains

I Shortcomings led to search for alternative models



Traditional model of random choice

I Basic model is binary choice: p +r q, r ∈ [0, 1]
I Flips of a (fair?) coin...

I As computation evolves, choices generate trace distributions
I Idea taken from trace models of process calculi

I Start with probabilistic automaton S
flip−→ Prob({0, 1} × S),

I Begin in start state – δs0 , then evolve to
I rδ(0,s0s1) + (1− r)δ(1,s0s2)

...
I
∑2n

i=1 riδ(b0···bn−1,αi ),
∑

i ri = 1, αi ∈ S
...

I Natural model is Prob(({0, 1} × S)∞).

I Prob(({0, 1} × S)∞) is bounded complete, but for more
complicated domains D, Prob(D) poorly understood.

Random variables offer an alternative



Random variables

I Let (X ,Σ, µ) be a probability space with probability measure
µ.

A random variable on X is a measurable function
f : X → Y , where Y is a measure space.

I Take X and Y to be domains, f Scott continuous

I Idea: Choose X a “standard domain” satisfying Prob(X ) is a
“nice” domain.

Then: model of random variables on Y is Prob(X )× [X → Y ]

Stays in any Cartesian closed category containing Y .



An Example

In case of S
flip−→ Prob({0, 1} × S)

I D = S∞

I µn is the measure on {0, 1}n generated by flipping the coin
δ0 +r δ1 n times, and

I fn : {0, 1}n → S∞ by fn(b0 · · · bn−1) = αn, the chosen element
depending on the outcome of the n possible flips.

I δε = µ0 ≤ µ1 ≤ · · · ≤ µn ≤ µn+1 ≤ · · ·



Simple Random Variable Model

I Use Cantor Tree C ' {0, 1}∗ ∪ {0, 1}ω for standard domain.

I Simple Random Variable domain SRV (D):

{(µn, fn) | µn ∈ Prob(2n) and fn : 2n → D}
(µm, fm) ≤ (µn, fn) iff m ≤ n, π2m (µn) = µm and fm ◦ π2m ≤ fn

I Model first proposed by Goubault-Larrecq & Varacca



Random Variable model (cont’d)

I SRV (D) ≡
⊕

n Prob(2n)× [2n → D] is a monad:

SRV (D)
h†

((
D
2 R

η

cc

h
// SRV (E )

η(x) = (δε, constx )

I Problem: h† is not monotone!

I Originates from viewing successive coin flips as increasing in
the order...



Alternative model I

I Basic idea: Flatten model so concatenation doesn’t need to
be monotone in first component.

I Leads to model which looks like

1 flip⊕ 2 flips⊕ 3 flips⊕ · · · ⊕ n flips⊕ · · ·
I Begin with SProb(n) =

{∑
i<n riδi | 0 ≤ ri &

∑
i ri ≤ 1

}
I
∑

i riδi ≤
∑

i siδi iff ri ≤ si (∀i).

I
∑

i riδi ∧
∑

i siδi =
∑

i (ri ∧ si )δi

I ⊥= 0

I A directed ⇒ (supA)(i) = supµ∈A µ(i).



Alternative model I

I Flat random variable domain:

RV [(D) =
⊕

n

(
SProb(2n)× D2n)

I (µn,Xn) ≤ (νm,Xm) iff m = n, µn ≤ νn, and

Xn(i) ≤ Xm(i) (∀i).

I f : D → E ⇒ RV [(f ) : RV [(D)→ RV [(E )

by RV [(f )(µn,Xn) = (µn, f ◦ Xn).

I RV [(D) forms a monad on BCD.

I Problem: RV [(D) makes too many distinctions:

(13δ0 + 2
3δ1, (a, b)) 6= (23δ0 + 1

3δ1, (b, a)), etc.

I Solution requires some background work.



Free ordered semigroup

I P∗ =
⊕
n>0

Pn is free ordered semigroup over poset P:

I w ≤ w ′ iff |w | = |w ′| & wi ≤P w ′i (∀i ≤ |w |).

I ww ′ ∈ Pm+n if w ∈ Pm & w ′ ∈ Pn.

I Note (J.-E. Pin): Free ordered monoid is flat.

I Also works for P in BCD, FS, or RB.
I To obtain the free commutative semigroup, we take a

quotient:
I S(n) acts on Pn by permuting the components.
I Pn/S(n) is the set of n-bags over P.
I πn : Pn → Pn/S(n) is monotone.

I COS(P) =
⊕
n>0

Pn/S(n) – free commutative ordered

semigroup over P.



Free ordered domain

I Rudin’s Lemma implies this also works in domains.

I CDS(P) =
⊕
n>0

Pn/S(n) – free commutative domain

semigroup over domain P.

Apply this to RV [(D) to obtain flat “commutative” random
variable domain:

I CRV [(D) =
⊕

n

(
SProb(2n)× D2n)

/S(2n)

I Now (13δ0 + 2
3δ1, (a, b)) ≡ (23δ0 + 1

3δ1, (b, a)), etc.

I But: (13δ0 + 2
3δ1, (a, b)) 6≡ (13δ0 + 1

3δ1 + 1
3δ1, (a, b, b))

I Still a monad over RB and FS (but not over BCD).



Some Additional Comments

I Work was inspired by Varacca’s indexed valuations (2004) and
Goubault-Larrecq & Varacca’s work on the first model.

I Jean Goubault-Larrecq is working on a patch to the first
model.

I Refines the order

I Tyler Barker also working on a patch
I Redefines the Kleisli lift – somewhat akin to conditional

probability

I Remaining question: Can the second model be extended to
include recursion on the number of flips?
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