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Lebesgue Measure and Unit Interval

» [0,1] C R inherits Lebesgue measure: X\([a, b]) = b — a.

» Translation invariance: A\(A + x) = A(A) for all (Borel)
measurable A C R and all x € R.



Lebesgue Measure and Unit Interval
» [0,1] € R inherits Lebesgue measure: A([a, b]) = b — a.

» Translation invariance: A\(A + x) = A(A) for all (Borel)
measurable A C R and all x € R.

» Theorem (Haar, 1933) Every locally compact group G has a
unique (up to scalar constant) left-translation invariant
regular Borel measure ¢ called Haar measure.

If G is compact, then pg(G) = 1.
Example: T ~ R /7 with quotient measure from .

If G is finite, then pg is normalized counting measure.



The Cantor Set

C1

—_ - —_ - —_ - -

C =(),Cn C [0, 1] compact 0-dimensional, A(C) = 0.

Theorem: C is the unique compact Hausdorff 0-dimensional
second countable perfect space.
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Cantor Groups

» Canonical Cantor group:
C ~ 7o is a compact group in the product topology.

e is the product measure (uz,(Z2) = 1)

Theorem: (Schmidt) The Cantor map C — [0, 1] sends Haar
measure on C = Z, ™ to Lebesgue measure.

Goal: Generalize this to all group structures on C.



Cantor Groups

» Canonical Cantor group:
C ~ 7, is a compact group in the product topology.

e is the product measure (uz,(Z2) = 1)
Definition: A Cantor group is a compact 0-dimensional second

countable perfect space endowed with a topological group
structure.

» G =]],-1Zn is also a Cantor group.
we is the product measure (uz,(Zn) = 1)
> Lipoo = Ii(_ngpn — p-adic integers.

» H=T]], S(n), where each S(n) is the symmetric group on n
letters.



Two Theorems and a Corollary

» Theorem: If G is a compact 0-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

» Proof:

1. G is a Stone space, so there is a basis O of clopen
neighborhoods of e.

fOe€O, thene-0=0 = (UeO)U-0CO
UCO = UPCU-0C0.S U"CO.
Assuming U = U™!, the subgroup H =J, U" C O.
2. Given H < G clopen, H = {xHx™! | x € G} is compact.
G x H — H by (x,K) — xKx~1 is continuous.
K = {x | xHx~1 = H} is clopen since H is, so G/K is finite.

Then |G/K| = |H]| is finite, so L = (.o xHx™* C H is clopen
and normal.
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» Theorem: If G is a compact 0-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

» Corollary: If G is a Cantor group, then G ~ Imn Gp
with G, finite for each n.

» Theorem: (Fedorchuk, 1991) If X ~ im._, Xiis a
strict projective limit of compact spaces, then
Prob(X) ~ lim., Prob(X;).

» Lemma: If ¢: G — H is a surmorphism of compact groups,
then Prob(p)(ug) = pH-



Two Theorems and a Corollary

» Theorem: If G is a compact 0-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

» Corollary: If G is a Cantor group, then G ~ |im G,

. . —n
with G, finite for each n.

» Theorem: (Fedorchuk, 1991) If X ~ lim._, Xiis a
strict projective limit of compact spaces, then
Prob(X) =~ lim., Prob(X;).
In particular, if X = G, X; = G; are compact groups, then
pe = limigs pg,.



Two Theorems and a Corollary

» Theorem: If G is a compact 0-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

» Corollary: If G is a Cantor group, then G ~ an G,
with G, finite for each n.
Moreover, pg = limp, p,, where p, is normalized counting
measure on G,,.



It’s all about Abelian Groups

» Theorem: If G = LiLn,, G, is a Cantor group, there is a
sequence (Zy,)i>o of cyclic groups so that H = an(@ignzk,)
has the same Haar measure as G.

Proof: Let G ~lim G, |Gp| < o0.
Assume |H,| = |G,| with H, abelian.

If ¢n: Gpy1 — G is surjective, then Gpy1/ ker ¢, >~ G,. So
‘Gn+1| = ‘Gn| X ‘ker¢n‘-

Define Hn+1 = Hn X Z|ker¢n|- Then ‘Hn+1‘ = ‘Gn—&—l‘y
SO [tH, = fn = ltG, for each n, and H = Ii@n H, is abelian.

Hence puy = lim, up = pg.



Combining Domain Theory and Group Theory

C = I<i_rl1n Hn, Hp = @i<p Zy,

Endow H,, with lexicographic order for each n; then
Tn: Hpp1 — Hp by ma(x1, ..oy Xnt1) = (X1, .- .y %n) &
tn: Hn = Hpg1 by tn(x1, ... xn) = (x1,. .., Xn, 0) form

embedding-projection pair.



Combining Domain Theory and Group Theory
C=lim Hp Hy= ®i<nZy

Endow H,, with lexicographic order for each n; then
Tn: Hpp1 — Hp by ma(x1, ..oy Xnt1) = (X1, .- .y %n) &
tn: Hn = Hpg1 by tn(x1, ... xn) = (x1,. .., Xn, 0) form
embedding-projection pair.

C ~ bilim (H,, mn, tp) is bialgebraic chain:

e ( totally ordered, has all sups and infs

o K(C)=U,{(x1,...,xn,0,...) | (x1,...,%n) € Hp}
o K(CP)={sup({k\ {Kk})| k€ K(C)}



Combining Domain Theory and Group Theory

C = I<i_rl1n Hn, Hp = @i<p Zy,

Endow H,, with lexicographic order for each n; then
Tn: Hpp1 — Hp by ma(x1, ..oy Xnt1) = (X1, .- .y %n) &
tn: Hn = Hpg1 by tn(x1, ... xn) = (x1,. .., Xn, 0) form
embedding-projection pair.

C ~ bilim (H,, mn, tp) is bialgebraic chain:

¢: K(C) = [0,1] by (x5, %0, 0,0,...) =3 ") ﬁ strictly
monotone

induces @: C — [0, 1] monotone, Lawson continuous.
Direct calculation shows:
pe(@71(a, b)) = M(a, b)) for a < b € [0,1]; i.e., Prob(p)(uc) = .



Alternative Proof
1. Cantor Tree: CT ~¥>* =Y"uUx¥, ¥ ={0,1}
s<t <= (Ju)su=t. Then MaxCT ~C.



Alternative Proof
1. Cantor Tree: CT ~ ¥ =¥*Ux¥ ¥ ={0,1}
s<t <= (Ju)su=t. Then MaxCT ~C.

2. Interval domain: Int([0,1]) = ({[a,b] |0 < a < b < 1},D)

¢: C — [0,1] extends to ®: CT — Int([0,1]) Scott
continuous.

Then Prob(®): Prob(CT) — Prob(Int([0,1])), so
A = Prob(®)(uc) = lim Prob(®)(1n), where
)=

Prob(®)(kin) = > _1<j<on 71" ' 6["2‘—"17%]

N



Skorohod’s Theorem

Theorem: (Skorohod) If v is a Borel probability measure on a Polish
space X, then there is a measurable map &, : [0,1] — X satisfying
Prob(£,)(\) = v; i.e., v(A) = ME,1(A)).

Corollary: If v is a Borel probability measure on a Polish space X, then
there is a measurable map &, : C — X satisfying Prob(§,)(uc) = v.
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Skorohod’s Theorem

Theorem: (Skorohod) If v is a Borel probability measure on a Polish
space X, then there is a measurable map &, : [0,1] — X satisfying
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2°: X is a continuous image of C: J: C =+ X.

3° 1 Prob(1)): Prob(C) —+ Prob(X).

4° : So it suffices to show every v € Prob(C) satisfies the Corollary.
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Corollary: If v is a Borel probability measure on a Polish space X, then
there is a measurable map &, : C — X satisfying Prob(§,)(uc) = v.

Proof using Domain Theory:
4° : So it suffices to show every v € Prob(C) satisfies the Corollary.
v € Prob(C) qua valuation on X(C) preserves all suprema, so

F,:C —[0,1] by F,(x) = v({x) preserves all infima — F, is the ‘cdf’ of
V.

F. has a lower adjoint x, : [0,1] — C preserving all suprema;
xo(r) < x iff r<F,(x). So

A I xw(r) < x3) = M{r | r < F(x)}) = M0, Fu(x)]) = Fu(x).
Now ¢: C — [0, 1] has an upper adjoint ¢*: [0,1] — C.



Skorohod’s Theorem

Theorem: (Skorohod) If v is a Borel probability measure on a Polish
space X, then there is a measurable map &, : [0,1] — X satisfying
Prob(&,)(\) = v; i.e., v(A) = M&,1(A)).

Corollary: If v is a Borel probability measure on a Polish space X, then
there is a measurable map &, : C — X satisfying Prob(&,)(uc) = v.

Proof using Domain Theory:
4° : So it suffices to show every v € Prob(C) satisfies the Corollary.
v € Prob(C) qua valuation on X(C) preserves all suprema, so

F,:C —[0,1] by F,(x) = v(}x) preserves all infima — F, is the ‘cdf” of
v.

F. has a lower adjoint x, : [0,1] — C preserving all suprema;
xo(r) <x iff r<F,(x). So

A I xw(r) < x3) = AM{r | r < F(x)}) = N[0, Fu (x)]) = Fu(x).
Now ¢: C — [0,1] has an upper adjoint ¢*: [0,1] — C.

Then &, = ¢ o x,: C — C is lower adjoint to ¢* o F,: C — C, so it
preserves all sups and gives the desired result. O



Skorohod’s Theorem

Theorem: (Skorohod) If v is a Borel probability measure on a Polish
space X, then there is a measurable map &, : [0,1] — X satisfying
Prob(£,)(\) = v; i.e., v(A) = ME,1(A)).

Corollary: If v is a Borel probability measure on a Polish space X, then
there is a measurable map &, : C — X satisfying Prob(¢,)(uc) = v.

Proof using Domain Theory:

Then &, = ¢ o x,: C — C is lower adjoint to ¢* o F,: C — C, so it
preserves all sups and gives the desired result. O
Remark: Notice that, in the case of v € Prob(C), we have proved
more than claimed, since &, preserves all suprema, and so it is
Scott continuous, rather than being just measurable.
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