Cantor Groups, Haar Measure and Lebesgue Measure on $[0, 1]$

Michael Mislove
Tulane University

Domains XI
Paris
Tuesday, 9 September 2014
Joint work with Will Brian
Work Supported by US NSF & US AFOSR
Lebesgue Measure and Unit Interval

- $[0, 1] \subseteq \mathbb{R}$ inherits *Lebesgue measure*: $\lambda([a, b]) = b - a$.
- *Translation invariance*: $\lambda(A + x) = \lambda(A)$ for all (Borel) measurable $A \subseteq \mathbb{R}$ and all $x \in \mathbb{R}$.
Lebesgue Measure and Unit Interval

- [0, 1] ⊆ R inherits Lebesgue measure: \(\lambda([a, b]) = b - a \).
- Translation invariance: \(\lambda(A + x) = \lambda(A) \) for all (Borel) measurable \(A \subseteq \mathbb{R} \) and all \(x \in \mathbb{R} \).
- Theorem (Haar, 1933) Every locally compact group \(G \) has a unique (up to scalar constant) left-translation invariant regular Borel measure \(\mu_G \) called Haar measure.

 If \(G \) is compact, then \(\mu_G(G) = 1 \).

 Example: \(\mathbb{T} \simeq \mathbb{R}/\mathbb{Z} \) with quotient measure from \(\lambda \).

 If \(G \) is finite, then \(\mu_G \) is normalized counting measure.
The Cantor Set

\[C_0 \supseteq C_1 \supseteq C_2 \supseteq \cdots \supseteq C_n = \bigcap_n C_n \subseteq [0, 1] \text{ compact } 0\text{-dimensional, } \lambda(C) = 0. \]

Theorem: \(C \) is the unique compact Hausdorff 0-dimensional second countable perfect space.
Cantor Groups

- **Canonical Cantor group:**
 \(\mathcal{C} \cong \mathbb{Z}_2^\mathbb{N} \) is a compact group in the product topology.

\(\mu_\mathcal{C} \) is the product measure \((\mu_{\mathbb{Z}_2}(\mathbb{Z}_2) = 1) \)
Cantor Groups

- **Canonical Cantor group:**
 \(\mathcal{C} \cong \mathbb{Z}_2^\mathbb{N} \) is a compact group in the product topology.

 \(\mu_\mathcal{C} \) is the product measure \((\mu_{\mathbb{Z}_2}(\mathbb{Z}_2) = 1)\)

Theorem: (Schmidt) The Cantor map \(\mathcal{C} \rightarrow [0, 1] \) sends Haar measure on \(\mathcal{C} = \mathbb{Z}_2^\mathbb{N} \) to Lebesgue measure.

Goal: Generalize this to all group structures on \(\mathcal{C} \).
Cantor Groups

- **Canonical Cantor group:**
 \(\mathcal{C} \simeq \mathbb{Z}_2^\mathbb{N} \) is a compact group in the product topology.
 \(\mu_\mathcal{C} \) is the product measure \((\mu_{\mathbb{Z}_2}(\mathbb{Z}_2) = 1)\)

Definition: A Cantor group is a compact 0-dimensional second countable perfect space endowed with a topological group structure.

- \(G = \prod_{n>1} \mathbb{Z}_n \) is also a Cantor group.
 \(\mu_G \) is the product measure \((\mu_{\mathbb{Z}_n}(\mathbb{Z}_n) = 1)\)

- \(\mathbb{Z}_{p^\infty} = \lim_{\leftarrow} \mathbb{Z}_{p^n} – p\)-adic integers.

- \(H = \prod_n S(n) \), where each \(S(n) \) is the symmetric group on \(n \) letters.
Two Theorems and a Corollary

- **Theorem:** If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.

- **Proof:**
 1. G is a Stone space, so there is a basis \mathcal{O} of clopen neighborhoods of e.
 If $O \in \mathcal{O}$, then $e \cdot O = O \Rightarrow (\exists U \in \mathcal{O}) U \cdot O \subseteq O$
 $U \subseteq O \Rightarrow U^2 \subseteq U \cdot O \subseteq O$. So $U^n \subseteq O$.
 Assuming $U = U^{-1}$, the subgroup $H = \bigcup_n U^n \subseteq O$.
 2. Given $H < G$ clopen, $\mathcal{H} = \{xHx^{-1} | x \in G\}$ is compact.
 $G \times \mathcal{H} \to \mathcal{H}$ by $(x, K) \mapsto xKx^{-1}$ is continuous.
 $K = \{x | xHx^{-1} = H\}$ is clopen since H is, so G/K is finite.
 Then $|G/K| = |\mathcal{H}|$ is finite, so $L = \bigcap_{x \in G} xHx^{-1} \subseteq H$ is clopen and normal.
Two Theorems and a Corollary

- **Theorem:** If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.

- **Corollary:** If G is a Cantor group, then $G \simeq \lim_{\leftarrow n} G_n$ with G_n finite for each n.
Two Theorems and a Corollary

▶ **Theorem:** If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.

▶ **Corollary:** If G is a Cantor group, then $G \cong \lim_{\leftarrow n} G_n$ with G_n finite for each n.

▶ **Theorem:** (Fedorchuk, 1991) If $X \cong \lim_{\leftarrow i \in I} X_i$ is a strict projective limit of compact spaces, then $\text{Prob}(X) \cong \lim_{\leftarrow i \in I} \text{Prob}(X_i)$.
Two Theorems and a Corollary

- **Theorem:** If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.

- **Corollary:** If G is a Cantor group, then $G \simeq \lim_{n} G_n$ with G_n finite for each n.

- **Theorem:** (Fedorchuk, 1991) If $X \simeq \lim_{i \in I} X_i$ is a strict projective limit of compact spaces, then $\text{Prob}(X) \simeq \lim_{i \in I} \text{Prob}(X_i)$.

- **Lemma:** If $\varphi : G \to H$ is a surmorphism of compact groups, then $\text{Prob}(\varphi)(\mu_G) = \mu_H$.

Two Theorems and a Corollary

▶ **Theorem:** If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.

▶ **Corollary:** If G is a Cantor group, then $G \simeq \lim_{\leftarrow n} G_n$ with G_n finite for each n.

▶ **Theorem:** (Fedorchuk, 1991) If $X \simeq \lim_{\leftarrow i \in I} X_i$ is a strict projective limit of compact spaces, then $\text{Prob}(X) \simeq \lim_{\leftarrow i \in I} \text{Prob}(X_i)$.

In particular, if $X = G, X_i = G_i$ are compact groups, then $\mu_G = \lim_{i \in I} \mu_{G_i}$.
Two Theorems and a Corollary

- **Theorem**: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.

- **Corollary**: If G is a Cantor group, then $G \simeq \lim_{\leftarrow} G_n$ with G_n finite for each n. Moreover, $\mu_G = \lim_n \mu_n$, where μ_n is normalized counting measure on G_n.
It’s all about Abelian Groups

Theorem: If $G = \lim_{\leftarrow n} G_n$ is a Cantor group, there is a sequence $(\mathbb{Z}_{k_i})_{i>0}$ of cyclic groups so that $H = \lim_{\leftarrow n} (\bigoplus_{i \leq n} \mathbb{Z}_{k_i})$ has the same Haar measure as G.

Proof: Let $G \simeq \lim_{\leftarrow n} G_n, \ |G_n| < \infty$.

Assume $|H_n| = |G_n|$ with H_n abelian.

If $\phi_n : G_{n+1} \to G_n$ is surjective, then $G_{n+1}/\ker \phi_n \simeq G_n$. So $|G_{n+1}| = |G_n| \times |\ker \phi_n|$.

Define $H_{n+1} = H_n \times \mathbb{Z}_{|\ker \phi_n|}$. Then $|H_{n+1}| = |G_{n+1}|$, so $\mu_{H_n} = \mu_n = \mu_{G_n}$ for each n, and $H = \lim_{\leftarrow n} H_n$ is abelian.

Hence $\mu_H = \lim_n \mu_n = \mu_G$.
Combining Domain Theory and Group Theory

$C = \varprojlim_n H_n$, $H_n = \bigoplus_{i \leq n} \mathbb{Z}_{k_i}$

Endow H_n with lexicographic order for each n; then

$\pi_n : H_{n+1} \rightarrow H_n$ by $\pi_n(x_1, \ldots, x_{n+1}) = (x_1, \ldots, x_n)$ &

$\iota_n : H_n \hookrightarrow H_{n+1}$ by $\iota_n(x_1, \ldots, x_n) = (x_1, \ldots, x_n, 0)$ form embedding-projection pair.
Combining Domain Theory and Group Theory

\[C = \lim_{\leftarrow n} H_n, \quad H_n = \bigoplus_{i \leq n} \mathbb{Z}_{k_i} \]

Endow \(H_n \) with lexicographic order for each \(n \); then

\[\pi_n : H_{n+1} \rightarrow H_n \text{ by } \pi_n(x_1, \ldots, x_{n+1}) = (x_1, \ldots, x_n) \]

\[\iota_n : H_n \hookrightarrow H_{n+1} \text{ by } \iota_n(x_1, \ldots, x_n) = (x_1, \ldots, x_n, 0) \]

form embedding-projection pair.

\(C \cong \text{bilim} (H_n, \pi_n, \iota_n) \) is bialgebraic chain:

- \(C \) totally ordered, has all sups and infs
- \(K(C) = \bigcup_n \{ (x_1, \ldots, x_n, 0, \ldots) \mid (x_1, \ldots, x_n) \in H_n \} \)
- \(K(C^{op}) = \{ \sup (\downarrow k \setminus \{ k \}) \mid k \in K(C) \} \)
Combining Domain Theory and Group Theory

\[C = \lim \downarrow_n H_n, \ H_n = \bigoplus_{i \leq n} \mathbb{Z}_{k_i} \]

Endow \(H_n \) with \textit{lexicographic order} for each \(n \); then

\[\pi_n: H_{n+1} \to H_n \text{ by } \pi_n(x_1, \ldots, x_{n+1}) = (x_1, \ldots, x_n) \]

&

\[\iota_n: H_n \hookrightarrow H_{n+1} \text{ by } \iota_n(x_1, \ldots, x_n) = (x_1, \ldots, x_n, 0) \]

form embedding-projection pair.

\(C \cong \text{bilim} (H_n, \pi_n, \iota_n) \) is bialgebraic chain:

\[\varphi: K(C) \to [0, 1] \text{ by } \varphi(x_1, \ldots, x_n, 0, 0, \ldots) = \sum_{i \leq n} \frac{x_i}{k_1 \cdots k_i} \text{ strictly monotone} \]

induces \(\hat{\varphi}: C \to [0, 1] \) monotone, Lawson continuous.

Direct calculation shows:

\[\mu_C(\hat{\varphi}^{-1}(a, b)) = \lambda((a, b)) \text{ for } a \leq b \in [0, 1]; \text{ i.e., } \text{Prob}(\hat{\varphi})(\mu_C) = \lambda. \]
Alternative Proof

1. Cantor Tree: \(\mathcal{CT} \simeq \Sigma^\infty = \Sigma^* \cup \Sigma^\omega, \quad \Sigma = \{0, 1\} \)

 \(s \leq t \iff (\exists u) su = t. \) Then \(\text{Max} \mathcal{CT} \simeq \mathcal{C}. \)
Alternative Proof

1. **Cantor Tree**: $\mathcal{C}T \simeq \Sigma^\infty = \Sigma^* \cup \Sigma^\omega$, $\Sigma = \{0, 1\}$

\[s \leq t \iff (\exists u) su = t. \] Then $\text{Max } \mathcal{C}T \simeq \mathcal{C}$.

2. **Interval domain**: $\text{Int}([0, 1]) = (\{[a, b] \mid 0 \leq a \leq b \leq 1\}, \subseteq)$

\[\hat{\phi} : \mathcal{C} \rightarrow [0, 1] \] extends to $\Phi : \mathcal{C}T \rightarrow \text{Int}([0, 1])$ Scott continuous.

Then $\text{Prob}(\Phi) : \text{Prob}(\mathcal{C}T) \rightarrow \text{Prob}(\text{Int}([0, 1]))$, so

\[\lambda = \text{Prob}(\Phi)(\mu_{\mathcal{C}}) = \lim \text{Prob}(\Phi)(\mu_n), \] where

\[\text{Prob}(\Phi)(\mu_n) = \sum_{1 \leq i \leq 2^n} \frac{1}{2^n} \cdot \delta_{\left[\frac{i-1}{2^n}, \frac{i}{2^n}\right]} \]
Skorohod’s Theorem

Theorem: (Skorohod) If \(\nu \) is a Borel probability measure on a Polish space \(X \), then there is a measurable map \(\xi_\nu : [0, 1] \rightarrow X \) satisfying
\[
\text{Prob}(\xi_\nu)(\lambda) = \nu; \text{ i.e., } \nu(A) = \lambda(\xi_\nu^{-1}(A)).
\]

Corollary: If \(\nu \) is a Borel probability measure on a Polish space \(X \), then there is a measurable map \(\xi_\nu : C \rightarrow X \) satisfying \(\text{Prob}(\xi_\nu)(\mu_C) = \nu \).
Skorohod’s Theorem

Theorem: (Skorohod) If \(\nu \) is a Borel probability measure on a Polish space \(X \), then there is a measurable map \(\xi : [0, 1] \to X \) satisfying \(\text{Prob}(\xi)(\lambda) = \nu \); i.e., \(\nu(A) = \lambda(\xi^{-1}(A)) \).

Corollary: If \(\nu \) is a Borel probability measure on a Polish space \(X \), then there is a measurable map \(\xi : C \to X \) satisfying \(\text{Prob}(\xi)(\mu_C) = \nu \).

Proof using Domain Theory:

1° : \(X \hookrightarrow \overline{X} \subseteq [0, 1]^\mathbb{N} \) & \(X \) is dense \(G_\delta \) in \(\overline{X} \); \(\text{Prob}(X) \hookrightarrow \text{Prob}(\overline{X}) \).
Skorohod’s Theorem

Theorem: (Skorohod) If \(\nu \) is a Borel probability measure on a Polish space \(X \), then there is a measurable map \(\xi_\nu : [0, 1] \to X \) satisfying \(\text{Prob}(\xi_\nu)(\lambda) = \nu \); i.e., \(\nu(A) = \lambda(\xi_\nu^{-1}(A)) \).

Corollary: If \(\nu \) is a Borel probability measure on a Polish space \(X \), then there is a measurable map \(\xi_\nu : \mathcal{C} \to X \) satisfying \(\text{Prob}(\xi_\nu)(\mu_\mathcal{C}) = \nu \).

Proof using Domain Theory:
1°: \(X \hookrightarrow \overline{X} \subseteq [0, 1]^\mathbb{N} \) & \(X \) is dense \(G_\delta \) in \(\overline{X} \); \(\text{Prob}(X) \hookrightarrow \text{Prob}(\overline{X}) \).
2°: \(\overline{X} \) is a continuous image of \(\mathcal{C} \): \(\exists \psi : \mathcal{C} \to \overline{X} \).
Skorohod’s Theorem

Theorem: (Skorohod) If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_\nu : [0, 1] \to X$ satisfying $\text{Prob}(\xi_\nu)(\lambda) = \nu$; i.e., $\nu(A) = \lambda(\xi_\nu^{-1}(A))$.

Corollary: If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_\nu : C \to X$ satisfying $\text{Prob}(\xi_\nu)(\mu_C) = \nu$.

Proof using Domain Theory:

1°: $X \hookrightarrow \overline{X} \subseteq [0, 1]^N$ & X is dense G_δ in \overline{X}; $\text{Prob}(X) \hookrightarrow \text{Prob}(\overline{X})$.

2°: \overline{X} is a continuous image of C: $\exists \psi : C \to \overline{X}$.

3°: $\text{Prob}(\psi) : \text{Prob}(C) \rightarrow \text{Prob}(\overline{X})$.
Skorohod’s Theorem

Theorem: (Skorohod) If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_\nu : [0, 1] \to X$ satisfying $\text{Prob}(\xi_\nu)(\lambda) = \nu$; i.e., $\nu(A) = \lambda(\xi_\nu^{-1}(A))$.

Corollary: If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_\nu : C \to X$ satisfying $\text{Prob}(\xi_\nu)(\mu_C) = \nu$.

Proof using Domain Theory:

1°: $X \hookrightarrow \overline{X} \subseteq [0, 1]^\mathbb{N}$ & X is dense G_δ in \overline{X}; $\text{Prob}(X) \hookrightarrow \text{Prob}(\overline{X})$.

2°: \overline{X} is a continuous image of C: $\exists \psi : C \to \overline{X}$.

3°: $\text{Prob}(\psi) : \text{Prob}(C) \twoheadrightarrow \text{Prob}(\overline{X})$.

4°: So it suffices to show every $\nu \in \text{Prob}(C)$ satisfies the Corollary.
Skorohod’s Theorem

Theorem: (Skorohod) If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_\nu: [0, 1] \to X$ satisfying $\text{Prob}(\xi_\nu)(\lambda) = \nu$; i.e., $\nu(A) = \lambda(\xi_\nu^{-1}(A))$.

Corollary: If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_\nu: C \to X$ satisfying $\text{Prob}(\xi_\nu)(\mu_C) = \nu$.

Proof using Domain Theory:

4°: So it suffices to show every $\nu \in \text{Prob}(C)$ satisfies the Corollary.

$\nu \in \text{Prob}(C)$ qua valuation on $\Sigma(C)$ preserves all suprema, so $F_\nu: C \to [0, 1]$ by $F_\nu(x) = \nu(\downarrow x)$ preserves all infima -- F_ν is the ‘cdf’ of ν.
Skorohod’s Theorem

Theorem: (Skorohod) If \(\nu \) is a Borel probability measure on a Polish space \(X \), then there is a measurable map \(\xi_\nu : [0, 1] \to X \) satisfying
\[
\text{Prob}(\xi_\nu)(\lambda) = \nu; \text{ i.e., } \nu(A) = \lambda(\xi_\nu^{-1}(A)).
\]

Corollary: If \(\nu \) is a Borel probability measure on a Polish space \(X \), then there is a measurable map \(\xi_\nu : C \to X \) satisfying \(\text{Prob}(\xi_\nu)(\mu_C) = \nu \).

Proof using Domain Theory:

4°: So it suffices to show every \(\nu \in \text{Prob}(C) \) satisfies the Corollary.

\(\nu \in \text{Prob}(C) \) qua valuation on \(\Sigma(C) \) preserves all suprema, so
\(F_\nu : C \to [0, 1] \) by \(F_\nu(x) = \nu(\downarrow x) \) preserves all infima – \(F_\nu \) is the ‘cdf’ of \(\nu \).

\(F_\nu \) has a lower adjoint \(\chi_\nu : [0, 1] \to C \) preserving all suprema;
\(\chi_\nu(r) \leq x \text{ iff } r \leq F_\nu(x) \).
Skorohod’s Theorem

Theorem: (Skorohod) If \(\nu \) is a Borel probability measure on a Polish space \(X \), then there is a measurable map \(\xi_\nu : [0, 1] \to X \) satisfying \(\text{Prob}(\xi_\nu)(\lambda) = \nu \); i.e., \(\nu(A) = \lambda(\xi_\nu^{-1}(A)) \).

Corollary: If \(\nu \) is a Borel probability measure on a Polish space \(X \), then there is a measurable map \(\xi_\nu : C \to X \) satisfying \(\text{Prob}(\xi_\nu)(\mu_C) = \nu \).

Proof using Domain Theory:

4°: So it suffices to show every \(\nu \in \text{Prob}(C) \) satisfies the Corollary.

\(\nu \in \text{Prob}(C) \) qua valuation on \(\Sigma(C) \) preserves all suprema, so \(F_\nu : C \to [0, 1] \) by \(F_\nu(x) = \nu(\downarrow x) \) preserves all infima – \(F_\nu \) is the ‘cdf’ of \(\nu \).

\(F_\nu \) has a lower adjoint \(\chi_\nu : [0, 1] \to C \) preserving all suprema;

\(\chi_\nu(r) \leq x \) iff \(r \leq F_\nu(x) \). So

\(\lambda(\{ r \mid \chi_\nu(r) \leq x \}) = \lambda(\{ r \mid r \leq F_\nu(x) \}) = \lambda([0, F_\nu(x)]) = F_\nu(x) \).

Now \(\phi : C \to [0, 1] \) has an upper adjoint \(\phi^* : [0, 1] \to C \).
Skorohod’s Theorem

Theorem: (Skorohod) If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_\nu : [0, 1] \to X$ satisfying $\text{Prob}(\xi_\nu)(\lambda) = \nu$; i.e., $\nu(A) = \lambda(\xi_\nu^{-1}(A))$.

Corollary: If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_\nu : C \to X$ satisfying $\text{Prob}(\xi_\nu)(\mu_C) = \nu$.

Proof using Domain Theory:

4°: So it suffices to show every $\nu \in \text{Prob}(C)$ satisfies the Corollary.

$\nu \in \text{Prob}(C)$ qua valuation on $\Sigma(C)$ preserves all suprema, so $F_\nu : C \to [0, 1]$ by $F_\nu(x) = \nu(\downarrow x)$ preserves all infima — F_ν is the ‘cdf’ of ν.

F_ν has a lower adjoint $\chi_\nu : [0, 1] \to C$ preserving all suprema; $\chi_\nu(r) \leq x$ iff $r \leq F_\nu(x)$. So

$$\lambda(\{r \mid \chi_\nu(r) \leq x\}) = \lambda(\{r \mid r \leq F_\nu(x)\}) = \lambda([0, F_\nu(x)]) = F_\nu(x).$$

Now $\phi : C \to [0, 1]$ has an upper adjoint $\phi^* : [0, 1] \to C$.

Then $\xi_\nu = \phi \circ \chi_\nu : C \to C$ is lower adjoint to $\phi^* \circ F_\nu : C \to C$, so it preserves all sups and gives the desired result. \qed
Skorohod’s Theorem

Theorem: (Skorohod) If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_\nu : [0, 1] \to X$ satisfying $\text{Prob}(\xi_\nu)(\lambda) = \nu$; i.e., $\nu(A) = \lambda(\xi_\nu^{-1}(A))$.

Corollary: If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_\nu : C \to X$ satisfying $\text{Prob}(\xi_\nu)(\mu_C) = \nu$.

Proof using Domain Theory:

Then $\xi_\nu = \phi \circ \chi_\nu : C \to C$ is lower adjoint to $\phi^* \circ F_\nu : C \to C$, so it preserves all sups and gives the desired result. \(\square\)

Remark: Notice that, in the case of $\nu \in \text{Prob}(C)$, we have proved more than claimed, since ξ_ν preserves all suprema, and so it is Scott continuous, rather than being just measurable.