Cantor Groups, Haar Measure and Lebesgue Measure on [0, 1]

Michael Mislove Tulane University

Domains XI Paris Tuesday, 9 September 2014 Joint work with Will Brian Work Supported by US NSF & US AFOSR

Lebesgue Measure and Unit Interval

- ▶ $[0,1] \subseteq \mathbb{R}$ inherits Lebesgue measure: $\lambda([a,b]) = b a$.
- Translation invariance: λ(A + x) = λ(A) for all (Borel) measurable A ⊆ ℝ and all x ∈ ℝ.

Lebesgue Measure and Unit Interval

- ▶ $[0,1] \subseteq \mathbb{R}$ inherits *Lebesgue measure*: $\lambda([a,b]) = b a$.
- Translation invariance: λ(A + x) = λ(A) for all (Borel) measurable A ⊆ ℝ and all x ∈ ℝ.
- ► Theorem (Haar, 1933) Every locally compact group G has a unique (up to scalar constant) left-translation invariant regular Borel measure µ_G called *Haar measure*.

If G is compact, then $\mu_G(G) = 1$.

Example: $\mathbb{T} \simeq \mathbb{R}/\mathbb{Z}$ with quotient measure from λ .

If G is finite, then μ_G is normalized counting measure.

The Cantor Set

 $\mathcal{C} = \bigcap_n \mathcal{C}_n \subseteq [0, 1]$ compact 0-dimensional, $\lambda(\mathcal{C}) = 0$.

Theorem: C is the unique compact Hausdorff 0-dimensional second countable perfect space.

Cantor Groups

Canonical Cantor group:
 C ≃ Z₂^N is a compact group in the product topology.

 $\mu_{\mathcal{C}}$ is the product measure $(\mu_{\mathbb{Z}_2}(\mathbb{Z}_2)=1)$

Cantor Groups

• Canonical Cantor group:

 $\mathcal{C}\simeq \mathbb{Z}_2{}^{\mathbb{N}}$ is a compact group in the product topology.

 $\mu_{\mathcal{C}}$ is the product measure $(\mu_{\mathbb{Z}_2}(\mathbb{Z}_2)=1)$

Theorem: (Schmidt) The Cantor map $\mathcal{C} \to [0, 1]$ sends Haar measure on $\mathcal{C} = \mathbb{Z}_2^{\mathbb{N}}$ to Lebesgue measure.

Goal: Generalize this to all group structures on C.

Cantor Groups

Canonical Cantor group:
 C ≃ Z₂^N is a compact group in the product topology.

 $\mu_{\mathcal{C}}$ is the product measure $(\mu_{\mathbb{Z}_2}(\mathbb{Z}_2)=1)$

Definition: A *Cantor group* is a compact 0-dimensional second countable perfect space endowed with a topological group structure.

- $G = \prod_{n>1} \mathbb{Z}_n$ is also a Cantor group. μ_G is the product measure $(\mu_{\mathbb{Z}_n}(\mathbb{Z}_n) = 1)$
- $\mathbb{Z}_{p^{\infty}} = \varprojlim_{n} \mathbb{Z}_{p^{n}} p$ -adic integers.
- $H = \prod_n S(n)$, where each S(n) is the symmetric group on n letters.

- ► Theorem: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.
- ► Proof:
 - G is a Stone space, so there is a basis O of clopen neighborhoods of e. If O ∈ O, then e · O = O ⇒ (∃U ∈ O) U · O ⊆ O U ⊆ O ⇒ U² ⊆ U · O ⊆ O. So Uⁿ ⊆ O. Assuming U = U⁻¹, the subgroup H = ⋃_n Uⁿ ⊆ O.
 Given H < G clopen, H = {xHx⁻¹ | x ∈ G} is compact. G × H → H by (x, K) ↦ xKx⁻¹ is continuous.

 $K = \{x \mid xHx^{-1} = H\}$ is clopen since H is, so G/K is finite.

Then $|G/K| = |\mathcal{H}|$ is finite, so $L = \bigcap_{x \in G} xHx^{-1} \subseteq H$ is clopen and normal.

- ► **Theorem:** If *G* is a compact 0-dimensional group, then *G* has a neighborhood basis at the identity of clopen normal subgroups.
- **Corollary:** If G is a Cantor group, then $G \simeq \varprojlim_n G_n$ with G_n finite for each n.

- Theorem: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.
- ► **Corollary:** If G is a Cantor group, then $G \simeq \varprojlim_n G_n$ with G_n finite for each n.
- ► Theorem: (Fedorchuk, 1991) If X ≃ lim_{i∈I} X_i is a strict projective limit of compact spaces, then Prob(X) ≃ lim_{i∈I} Prob(X_i).

- Theorem: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.
- ► **Corollary:** If G is a Cantor group, then $G \simeq \varprojlim_n G_n$ with G_n finite for each n.
- ► Theorem: (Fedorchuk, 1991) If X ~ lim_{i∈I} X_i is a strict projective limit of compact spaces, then Prob(X) ~ lim_{i∈I} Prob(X_i).
- Lemma: If φ: G → H is a surmorphism of compact groups, then Prob(φ)(μ_G) = μ_H.

- Theorem: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.
- **Corollary:** If G is a Cantor group, then $G \simeq \varprojlim_n G_n$ with G_n finite for each n.
- ► Theorem: (Fedorchuk, 1991) If X ≃ lim_{i∈I} X_i is a strict projective limit of compact spaces, then Prob(X) ≃ lim_{i∈I} Prob(X_i).
 In particular, if X = G, X_i = G_i are compact groups, then μ_G = lim_{i∈I} μ_{Gi}.

- Theorem: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.
- ► Corollary: If G is a Cantor group, then G ≃ kim G_n G_n with G_n finite for each n. Moreover, μ_G = lim_n μ_n, where μ_n is normalized counting measure on G_n.

It's all about Abelian Groups

▶ **Theorem:** If $G = \varprojlim_n G_n$ is a Cantor group, there is a sequence $(\mathbb{Z}_{k_i})_{i>0}$ of cyclic groups so that $H = \varprojlim_n (\bigoplus_{i \le n} \mathbb{Z}_{k_i})$ has the same Haar measure as G.

Proof: Let $G \simeq \varprojlim_n G_n$, $|G_n| < \infty$. Assume $|H_n| = |G_n|$ with H_n abelian.

If $\phi_n \colon G_{n+1} \to G_n$ is surjective, then $G_{n+1} / \ker \phi_n \simeq G_n$. So $|G_{n+1}| = |G_n| \times |\ker \phi_n|$.

Define $H_{n+1} = H_n \times \mathbb{Z}_{|\ker \phi_n|}$. Then $|H_{n+1}| = |G_{n+1}|$,

so $\mu_{H_n} = \mu_n = \mu_{G_n}$ for each *n*, and $H = \varprojlim_n H_n$ is abelian. Hence $\mu_H = \lim_n \mu_n = \mu_G$. **Combining Domain Theory and Group Theory** $C = \varprojlim_n H_n, \ H_n = \bigoplus_{i \le n} \mathbb{Z}_{k_i}$ Endow H_n with *lexicographic order* for each n; then $\pi_n \colon H_{n+1} \to H_n$ by $\pi_n(x_1, \ldots, x_{n+1}) = (x_1, \ldots, x_n)$ & $\iota_n \colon H_n \hookrightarrow H_{n+1}$ by $\iota_n(x_1, \ldots, x_n) = (x_1, \ldots, x_n, 0)$ form embedding-projection pair. **Combining Domain Theory and Group Theory** $C = \lim_{n \to \infty} H_n, H_n = \bigoplus_{i \le n} \mathbb{Z}_{k_i}$ Endow H_n with *lexicographic order* for each n; then $\pi_n \colon H_{n+1} \to H_n$ by $\pi_n(x_1, \ldots, x_{n+1}) = (x_1, \ldots, x_n)$ & $\iota_n \colon H_n \hookrightarrow H_{n+1}$ by $\iota_n(x_1, \ldots, x_n) = (x_1, \ldots, x_n, 0)$ form embedding-projection pair.

- $C \simeq \text{bilim}(H_n, \pi_n, \iota_n)$ is bialgebraic chain:
- $\ensuremath{\mathcal{C}}$ totally ordered, has all sups and infs

•
$$\mathcal{K}(\mathcal{C}) = \bigcup_n \{ (x_1, \ldots, x_n, 0, \ldots) \mid (x_1, \ldots, x_n) \in H_n \}$$

• $\mathcal{K}(\mathcal{C}^{op}) = \{ \sup (\downarrow k \setminus \{k\}) \mid k \in \mathcal{K}(\mathcal{C}) \}$

Combining Domain Theory and Group Theory $C = \lim_{n \to \infty} H_n, H_n = \bigoplus_{i \le n} \mathbb{Z}_{k_i}$ Endow H_n with *lexicographic order* for each n; then $\pi_n \colon H_{n+1} \to H_n$ by $\pi_n(x_1, \ldots, x_{n+1}) = (x_1, \ldots, x_n)$ & $\iota_n \colon H_n \hookrightarrow H_{n+1}$ by $\iota_n(x_1, \ldots, x_n) = (x_1, \ldots, x_n, 0)$ form embedding-projection pair. $C \simeq \text{bilim} (H_n, \pi_n, \iota_n)$ is bialgebraic chain:

 $\varphi \colon K(\mathcal{C}) \to [0,1]$ by $\varphi(x_1, \ldots, x_n, 0, 0, \ldots) = \sum_{i \leq n} \frac{x_i}{k_1 \cdots k_i}$ strictly monotone

induces $\widehat{\varphi} \colon \mathcal{C} \to [0,1]$ monotone, Lawson continuous.

Direct calculation shows:

 $\mu_{\mathcal{C}}(\widehat{\varphi}^{-1}(a,b)) = \lambda((a,b)) \text{ for } a \leq b \in [0,1]; \text{ i.e., } Prob(\widehat{\varphi})(\mu_{\mathcal{C}}) = \lambda.$

Alternative Proof

1. Cantor Tree: $\mathcal{CT} \simeq \Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}, \quad \Sigma = \{0,1\}$

$$s \leq t \iff (\exists u) su = t$$
. Then $\operatorname{Max} \mathcal{CT} \simeq \mathcal{C}$.

Alternative Proof

1. Cantor Tree: $CT \simeq \Sigma^{\infty} = \Sigma^* \cup \Sigma^{\omega}$, $\Sigma = \{0, 1\}$

 $s \leq t \iff (\exists u) su = t$. Then $\operatorname{Max} \mathcal{CT} \simeq \mathcal{C}$.

2. Interval domain: $Int([0,1]) = (\{[a,b] \mid 0 \le a \le b \le 1\}, \supseteq)$ $\widehat{\phi} : \mathcal{C} \to [0,1]$ extends to $\Phi : \mathcal{CT} \to Int([0,1])$ Scott continuous.

Then $Prob(\Phi): Prob(\mathcal{CT}) \to Prob(Int([0,1]))$, so $\lambda = Prob(\Phi)(\mu_{\mathcal{C}}) = \lim Prob(\Phi)(\mu_n)$, where $Prob(\Phi)(\mu_n) = \sum_{1 \le i \le 2^n} \frac{1}{2^n} \cdot \delta_{[\frac{i-1}{2^n}, \frac{i}{2^n}]}$

Theorem: (Skorohod) If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : [0,1] \to X$ satisfying $Prob(\xi_{\nu})(\lambda) = \nu$; i.e., $\nu(A) = \lambda(\xi_{\nu}^{-1}(A))$.

Corollary: If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : \mathcal{C} \to X$ satisfying $Prob(\xi_{\nu})(\mu_{\mathcal{C}}) = \nu$.

Theorem: (Skorohod) If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : [0,1] \to X$ satisfying $Prob(\xi_{\nu})(\lambda) = \nu$; i.e., $\nu(A) = \lambda(\xi_{\nu}^{-1}(A))$.

Corollary: If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : C \to X$ satisfying $Prob(\xi_{\nu})(\mu_{C}) = \nu$.

Proof using Domain Theory:

 $1^{\circ}: X \hookrightarrow \overline{X} \subseteq [0,1]^{\mathbb{N}} \& X \text{ is dense } G_{\delta} \text{ in } \overline{X}; \operatorname{Prob}(X) \hookrightarrow \operatorname{Prob}(\overline{X}).$

Theorem: (Skorohod) If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : [0,1] \to X$ satisfying $Prob(\xi_{\nu})(\lambda) = \nu$; i.e., $\nu(A) = \lambda(\xi_{\nu}^{-1}(A))$.

Corollary: If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : C \to X$ satisfying $Prob(\xi_{\nu})(\mu_{C}) = \nu$.

Proof using Domain Theory:

1°: $X \hookrightarrow \overline{X} \subseteq [0,1]^{\mathbb{N}} \& X$ is dense G_{δ} in \overline{X} ; $Prob(X) \hookrightarrow Prob(\overline{X})$. 2°: \overline{X} is a continuous image of \mathcal{C} : $\exists \psi \colon \mathcal{C} \to \overline{X}$.

Theorem: (Skorohod) If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : [0, 1] \to X$ satisfying $Prob(\xi_{\nu})(\lambda) = \nu$; i.e., $\nu(A) = \lambda(\xi_{\nu}^{-1}(A))$.

Corollary: If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : C \to X$ satisfying $Prob(\xi_{\nu})(\mu_{C}) = \nu$.

Proof using Domain Theory:

1°: $X \hookrightarrow \overline{X} \subseteq [0,1]^{\mathbb{N}}$ & X is dense G_{δ} in \overline{X} ; $Prob(X) \hookrightarrow Prob(\overline{X})$. 2°: \overline{X} is a continuous image of \mathcal{C} : $\exists \psi \colon \mathcal{C} \to \overline{X}$. 3°: $Prob(\psi) \colon Prob(\mathcal{C}) \to Prob(\overline{X})$.

Theorem: (Skorohod) If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : [0,1] \to X$ satisfying $Prob(\xi_{\nu})(\lambda) = \nu$; i.e., $\nu(A) = \lambda(\xi_{\nu}^{-1}(A))$.

Corollary: If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : C \to X$ satisfying $Prob(\xi_{\nu})(\mu_{C}) = \nu$.

Proof using Domain Theory:

- $1^{\circ}: X \hookrightarrow \overline{X} \subseteq [0,1]^{\mathbb{N}} \& X \text{ is dense } G_{\delta} \text{ in } \overline{X}; \operatorname{Prob}(X) \hookrightarrow \operatorname{Prob}(\overline{X}).$
- $2^{\circ}: \overline{X}$ is a continuous image of $\mathcal{C}: \exists \psi : \mathcal{C} \longrightarrow \overline{X}$.
- $3^{\circ}: \operatorname{Prob}(\psi): \operatorname{Prob}(\mathcal{C}) \rightarrow \operatorname{Prob}(\overline{X}).$
- 4° : So it suffices to show every $\nu \in Prob(\mathcal{C})$ satisfies the Corollary.

Theorem: (Skorohod) If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : [0, 1] \to X$ satisfying $Prob(\xi_{\nu})(\lambda) = \nu$; i.e., $\nu(A) = \lambda(\xi_{\nu}^{-1}(A))$.

Corollary: If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : C \to X$ satisfying $Prob(\xi_{\nu})(\mu_{C}) = \nu$.

Proof using Domain Theory:

4° : So it suffices to show every $\nu \in Prob(\mathcal{C})$ satisfies the Corollary.

 $\nu \in Prob(\mathcal{C})$ qua valuation on $\Sigma(\mathcal{C})$ preserves all suprema, so

 $F_{\nu} \colon \mathcal{C} \to [0,1]$ by $F_{\nu}(x) = \nu(\downarrow x)$ preserves all infima – F_{ν} is the 'cdf' of ν .

Theorem: (Skorohod) If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : [0, 1] \to X$ satisfying $Prob(\xi_{\nu})(\lambda) = \nu$; i.e., $\nu(A) = \lambda(\xi_{\nu}^{-1}(A))$.

Corollary: If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : C \to X$ satisfying $Prob(\xi_{\nu})(\mu_{C}) = \nu$.

Proof using Domain Theory:

4° : So it suffices to show every $\nu \in \textit{Prob}(\mathcal{C})$ satisfies the Corollary.

 $\nu \in Prob(\mathcal{C})$ qua valuation on $\Sigma(\mathcal{C})$ preserves all suprema, so

 $F_{\nu} \colon \mathcal{C} \to [0,1]$ by $F_{\nu}(x) = \nu(\downarrow x)$ preserves all infima – F_{ν} is the 'cdf' of ν .

 F_{ν} has a lower adjoint $\chi_{\nu} : [0, 1] \to C$ preserving all suprema; $\chi_{\nu}(r) \leq x$ iff $r \leq F_{\nu}(x)$.

Theorem: (Skorohod) If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : [0,1] \to X$ satisfying $Prob(\xi_{\nu})(\lambda) = \nu$; i.e., $\nu(A) = \lambda(\xi_{\nu}^{-1}(A))$.

Corollary: If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : C \to X$ satisfying $Prob(\xi_{\nu})(\mu_{C}) = \nu$.

Proof using Domain Theory:

4° : So it suffices to show every $u \in {\it Prob}({\mathcal C})$ satisfies the Corollary.

 $\nu \in Prob(\mathcal{C})$ qua valuation on $\Sigma(\mathcal{C})$ preserves all suprema, so

 $F_{\nu} \colon \mathcal{C} \to [0,1]$ by $F_{\nu}(x) = \nu(\downarrow x)$ preserves all infima – F_{ν} is the 'cdf' of ν .

$$\begin{split} F_{\nu} \text{ has a lower adjoint } \chi_{\nu} \colon [0,1] \to \mathcal{C} \text{ preserving all suprema;} \\ \chi_{\nu}(r) \leq x \quad \text{iff} \quad r \leq F_{\nu}(x). \text{ So} \\ \lambda(\{r \mid \chi_{\nu}(r) \leq x\}) = \lambda(\{r \mid r \leq F_{\nu}(x)\}) = \lambda([0,F_{\nu}(x)]) = F_{\nu}(x). \\ \text{Now } \phi \colon \mathcal{C} \to [0,1] \text{ has an upper adjoint } \phi^* \colon [0,1] \to \mathcal{C}. \end{split}$$

Theorem: (Skorohod) If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : [0, 1] \to X$ satisfying $Prob(\xi_{\nu})(\lambda) = \nu$; i.e., $\nu(A) = \lambda(\xi_{\nu}^{-1}(A))$.

Corollary: If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : C \to X$ satisfying $Prob(\xi_{\nu})(\mu_{C}) = \nu$.

Proof using Domain Theory:

4° : So it suffices to show every $\nu \in Prob(\mathcal{C})$ satisfies the Corollary.

 $\nu \in Prob(\mathcal{C})$ qua valuation on $\Sigma(\mathcal{C})$ preserves all suprema, so

 $F_{\nu} \colon \mathcal{C} \to [0,1]$ by $F_{\nu}(x) = \nu(\downarrow x)$ preserves all infima – F_{ν} is the 'cdf' of ν .

 F_{ν} has a lower adjoint $\chi_{\nu} : [0,1] \to C$ preserving all suprema; $\chi_{\nu}(r) \leq x$ iff $r \leq F_{\nu}(x)$. So $\lambda(\{r \mid \chi_{\nu}(r) \leq x\}) = \lambda(\{r \mid r \leq F_{\nu}(x)\}) = \lambda([0, F_{\nu}(x)]) = F_{\nu}(x)$. Now $\phi: C \to [0, 1]$ has an upper adjoint $\phi^* : [0, 1] \to C$. Then $\xi_{\nu} = \phi \circ \chi_{\nu} : C \to C$ is lower adjoint to $\phi^* \circ F_{\nu} : C \to C$, so it preserves all sups and gives the desired result.

Theorem: (Skorohod) If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : [0,1] \to X$ satisfying $Prob(\xi_{\nu})(\lambda) = \nu$; i.e., $\nu(A) = \lambda(\xi_{\nu}^{-1}(A))$.

Corollary: If ν is a Borel probability measure on a Polish space X, then there is a measurable map $\xi_{\nu} : C \to X$ satisfying $Prob(\xi_{\nu})(\mu_{C}) = \nu$.

Proof using Domain Theory:

Then $\xi_{\nu} = \phi \circ \chi_{\nu} \colon \mathcal{C} \to \mathcal{C}$ is lower adjoint to $\phi^* \circ F_{\nu} \colon \mathcal{C} \to \mathcal{C}$, so it preserves all sups and gives the desired result.

Remark: Notice that, in the case of $\nu \in Prob(\mathcal{C})$, we have proved more than claimed, since ξ_{ν} preserves all suprema, and so it is Scott continuous, rather than being just measurable.