
Electronic Notes in Theoretical Computer Science

Mathematical Foundations of Programming Semantics
Twenty-ninth Annual Conference

Tulane University
New Orleans, LA USA
June 23 - 25, 2013

Guest Editors:

Dexter Kozen and Michael Mislove

Contents

Preface . iv

Dedication . vi

Abstracts of Invited Talks . vii

Jan Rutten, Adolfo Ballester-Bolinches, and Enric Cosme-
Llópez (Invited Talk)
Varieties and Covarieties of Languages . 1

Mart́ın Abadi, Jérémy Planul and Gordon Plotkin
Layout Randomization and Nondeterminism . 22

Danel Ahman and Sam Staton
Normalization by Evaluation and Algebraic Effects 43

Pierre Clairambault and Glynn Winskel
On Concurrent Games with Payoff . 61

Roy L. Crole and Frank Nebel
Nominal Lambda Calculus: An Internal Language for FM-Cartesian
Closed Categories . 85

Mart́ın Escardó
Continuity of Gödel’s System T definable Functionals via Effectful
Forcing . 115

Zoltán Ésik
A Connection Between Concurrency and Language Theory 137

Uli Fahrenberg and Axel Legay
History-Preserving Bisimilarity for Higher-Dimensional via Open
Maps . 154

Eric Goubault, Tobias Heindel and Samuel Mimram
A Geometric View of Partial Order Reduction . 167

Ichiro Hasuo, Kenta Cho, Toshiki Kataoka and Bart Jacobs
Coinductive Predicates and Final Sequences in a Fibration 181

ii

Reinhold Heckmann and Klaus Keimel
Quasicontinuous Domains and the Smyth Powerdomain 217

Bart Jacobs
On Block Structures in Quantum Computation 237

Stefan Milius, Marcello M. Bonsangue, Robert S.R. Myers
and Jurriaan Rot
Rational Operational Models . 259

Samuel Mimram and Cinzia Di Giusto
A Categorical Theory of Patches . 275

Maciej Piróg and Jeremy Gibbons
Monads for behaviour . 289

Uday S. Reddy
Automata-Theoretic Semantics of Idealized Algol with Passive Ex-
pressions . 302

David Sprunger
Linearization of Automatic Arrays and Weave Specifications 324

Mike Stay and Jamie Vicary
Bicategorical Semantics for Nondeterministic Computation 345

Kei Terayama and Hideki Tsuiki
A Stream Calculus of Bottomed Sequences for Real Number Compu-
tation . 360

Glynn Winskel
Distributed Probabilistic Strategies . 379

Chunlai Zhou
Approximating Bisimilarity for Markov Processes 393

iii

Preface

This volume collects papers presented at the 29th Annual Conference on Mathe-

matical Foundations of Programming Semantics (MFPS XXIX), held on the campus

of Tulane University, New Orleans, USA, from Sunday, June 23 through Tuesday,

June 25, 2013. MFPS was co-located with the 2013 Conference on Logic in Com-

puter Science as well as the 2013 Computer Security Foundations Symposium.

The MFPS conferences are devoted to those areas of mathematics, logic, and

computer science that are related to models of computation, in general, and to the

semantics of programming languages, in particular. The series particularly stresses

providing a forum where researchers in mathematics and computer science can meet

and exchange ideas about problems of common interest. As the series also strives

to maintain breadth in its scope, the conference strongly encourages participation

by researchers in neighboring areas.

The Organizing Committee for MFPS consists of Andrej Bauer (Ljubljana),

Stephen Brookes (CMU), Achim Jung (Birmingham), Catherine Meadows (NRL),

Michael Mislove (Tulane), Joël Ouaknine (Oxford) and Prakash Panangaden

(McGill). The local arrangements for MFPS XXIX were overseen by Michael Mis-

love.

The MFPS XXIX Program Committee members are:

Dexter Kozen (Cornell), Chair

Andrej Bauer (Ljubljana) Daniel Leivant (Indiana)

Nick Bezhanishvili (Utrecht) Catherine Meadows (NRL)

Lars Birkedal (Aarhus) Paul-André Melliès (CNRS & Paris 7)

Marcello Bonsangue (Leiden) Michael Mislove (Tulane)

Stephen Brookes (CMU) Carroll Morgan (New South Wales)

Venanzio Capretta (Nottingham) Paulo Oliva (Queen Mary London)

Luca Cardelli, (Microsoft Research) Luke Ong (Oxford)

Volker Diekert (Stuttgart) Joël Ouaknine (Oxford)

Dan Ghica (Birmingham) Prakash Panangaden (McGill)

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

Jane Hillston (Edinburgh) Andrea Schalk (Manchester)

Radha Jagadeesan (DePaul) Phil Scott (Ottawa)

Patricia Johann (Strathclyde) Ana Sokola (Salzburg)

Achim Jung (Birmingham) James Worrell (Oxford)

The Program Committee selected 20 papers for presentation at the meeting. Regret-

tably a number of papers could not be accepted for lack of space in the conference

program. The following people gave invited plenary talks at the meeting:

David Basin (ETH)

Jan Rutten (CWI)

Dana Scott (CMU)

In addition, there were two special sessions:

(i) A Special Session on Coalgebras, organized by Jan Rutten (CWI) and Alexan-

dra Silva (Radboud). The session led off with Jan Rutten’s plenary lecture.

and included talks by Bart Jacobs (Radboud), Larry Moss (Indiana) and Lutz

Schröder (Erlangen-Nürnburg). This session also comprised a LICS Tutorial

Session.

(ii) A Special Session honoring Dana Scott on his 80th birthday, on The Future

of Programming Language Theory. The session included talks by Andy Pitts

(Cambridge), Steve Awodey (CMU), Robert Harper (CMU) and Andrej Bauer

(Ljubljana), and concluded with Dana’s plenary address. This was a joint

MFPS-LICS session.

The program also included a Memorial Session for John Reynolds, to whom this

volume is dedicated. The session included Uday Reddy’s paper that was submitted

to the conference, as well as short talks by Stephen Brookes (CMU), Benjamin

Pierce (UPenn) and Gordon Plotkin (Edinburgh), and was chaired by Dana Scott

(CMU).

It remains for us to thank all authors and speakers, the organizers of special

sessions, the program committee, and the external referees for their contribution to

the success of the conference.

We also would like to thank the US Office of Naval Research for its continued

support of the MFPS series. Finally, we would like to thank the staff who helped

with the preparations and execution of the conferences – Geralyn Caradona, Pam

Philastre and Cammy Watts, Mathematics, and Debbie Ramil, Computer Science.

Dexter Kozen

Michael Mislove

v

Dedication

John C. Reynolds, June 1, 1935 – April 28, 2013

We dedicate these Proceedings of the Twenty-ninth Conference on the Mathematical

Foundations of Programming Semantics to the memory of John C. Reynolds.

John was strong supporter of this series, and of the community it represents. His

colleagues will miss his careful scholarship, his generous mentoring and his inspiring

leadership.

The Organizers

vi

Abstracts of Invited Talks

Joint MFPS–LICS Session on Coalgebras

Automata and the algebra-coalgebra duality: on varieties and covarieties, on tran-

sition monoids and their dual, by Jan Rutten (CWI)

Abstract: Because of the isomorphism

(X ×A) −→ X ' X −→ (A −→ X)

the transition structure of a deterministic automaton with state set X and with

inputs from an alphabet A can be viewed both as an algebra [7] and as a coalgebra

[14,15].

This algebra-coalgebra duality goes back to Arbib and Manes [2], who formu-

lated it as a duality between reachability and observability, and is ultimately based

on Kalman’s [9] duality in systems theory between controllability and observabil-

ity. Recently [4,5], it was used to give a new proof of Brzozowski’s minimization

algorithm for deterministic automata.

In this talk, we will discuss deterministic automata as an elementary and typical

example for the combined use of algebraic and coalgebraic methods in computer

science.

The algebra-coalgebra duality of automata will, more specifically, serve as a

common perspective for the study [16] of both varieties and covarieties, which are

classes of automata and languages defined by equations and coequations, respec-

tively. Along the way, we will establish a first connection with Eilenberg’s definition

[7] of varieties of languages, which is based on the classical, algebraic notion of va-

rieties of (transition) monoids.

This is joint work with Adolfo Ballester-Bolinches and Enric Cosme-Llópez (Uni-

versity of Valencia).

In addition to Jan Rutten’s plenary talk, the session includes the following talks:

Coalgebra and Quantum Computing, by Bart Jacobs (Radboud)

Abstract: Since a few years connections are established between the areas of

coalgebra and quantum computing. This tutorial style talk will explore these con-

nections, with focus on the probabilistic structures that are used in both areas:

Kleisli categories of distribution/Giry monads and (commutative) C*-algebras.

Fractal Sets as Final Coalgebras Obtained by Completing an Initial Algebra, by Larry

Moss (Indiana)

Abstract: We are concerned with presentations of fractal sets in terms of final

coalgebras. The first result on this topic was a theorem due to Peter Freyd: the

unit interval [0, 1] is the final coalgebra of a certain functor on the category of

bipointed sets. Leinster (2011) offers a sweeping generalization of this result. He

vii

is able to represent many self-similar spaces using (a) categorical bimodules, (b)

non-degeneracy conditions on functors of various sorts; (c) a construction of final

coalgebras for the types of functors of interest using a notion of resolution. His

seminal paper also characterizes fractal sets as topological spaces.

Our major contribution is to suggest that in many cases of interest, point (c)

above on resolutions is not needed in the construction of final coalgebras. Instead,

one may obtain a number of spaces of interest as the Cauchy completion of an initial

algebra, and this initial algebra is the set of points in a colimit of an omega-sequence

of finite metric spaces. This generalizes the characterization in Hutchinson (1981)

of fractal attractors as closures of the orbits of the critical points. In addition to

simplifying the overall machinery, our work presents a metric space which is ”com-

putationally related” to the overall fractal. For example, when applied to Freyd’s

construction, the initial algebra is the metric space of dyadic rational numbers in

[0, 1]. Moreover, we have some results on the metric space aspects of this subject,

a point raised in the 2010 MFPS paper of Hasuo, Jacobs, and Niqui.

This is joint work with Jayampathy Ratnayake and Robert Rose.

Coalgebraic Announcements, by Lutz Schröder (Erlangen–Nürnberg)

Abstract: The basic version of epistemic logic [8] has operators Ki read ‘agent

i knows that’. As such, it is intended to deal with static snapshots of knowledge

— it allows reasoning over a fixed state of knowledge of the individual agents but

not over the evolution of that knowledge. Reasoning about the latter is the concern

of dynamic epistemic logic, which includes operators that affect the knowledge of

agents, typically increasing it. Maybe the most basic example of this type are public

announcements [17] that make certain facts known to all agents involved, and in

fact make them common knowledge in the sense that the agents know about each

others knowledge of the announced fact, and know about everyone knowing that

everybody knows etc.

Formally, public announcement logic (PAL) [13] is interpreted over Kripke mod-

els. The announcement formula 〈φ〉ψ states that the announced formula φ is true

in the current state, and that in the restricted model in which only states satisfying

φ are retained, ψ is true in the current state (which is retained by assumption). On

the surface, this interpretation looks like a global transformation of the model, and

this is also one of the perspectives discussed in previous coalgebraic work on the

subject [3]. However, this view is not in keeping with the philosophy of coalgebraic

logic at large, which is to take a local approach where possible, and as far as we

know does not support generic algorithms. A different but evidently equivalent

approach to the semantics of 〈φ〉 is to change the underlying model (everywhere

but) locally, that is, to modify only the set of successors at each state, limiting it

to those successors that satisfy φ, and leave the set of states as such intact. Since

this operation makes all states not satisfying φ unreachable, it clearly validates the

same formulas as the original semantics.

In [6] we have taken this observation as the starting point for lifting the notion of

announcement or, more neutrally, (model) update to the level of generality defined

by coalgebraic logic. Coalgebraic logic serves as a generic framework for logics

viii

with modal operators that covers a range of semantic features beyond the standard

relational world. Typical examples include logics for probabilistic and weighted

systems, neighbourhood structures, preferential structures (which appear in the

semantics of conditional logics [10]), and game-oriented structures (which define

the semantics of coalition logic [12] and alternating-time temporal logic [1]). Recall

that coalgebraic logic parametrizes the semantics over the choice of a set functor

T , whose coalgebras define the models under consideration, and interpretations

of the modal operators ♥ as predicate liftings for T , i.e. natural transformations

[[♥]] : Q→ Q ◦ T op where Q denotes contravariant powerset.

We treat updates coalgebraically as modifications of the coalgebra map accu-

mulated in the course of formula evaluation. The simplest setting here is one where

we update the coalgebra map directly by means of natural transformations of the

type

T → (Q� T)

where (Q� T)X := (TX)QX . Here, the second argument QX in this curried type

represents the knowledge being announced, inducing a map from TX to TX which

we can postcompose with the coalgebra map. The most well-behaved ones among

these updates are those that satisfy a natural adjointness condition; this condition

enables a translation of the language with updates into the modal base language.

In the presence of a master modality, this translation can be modified into a poly-

nomial satisfiability-preserving translation in the spirit of [11] so that complexity

bounds can be inherited from the base language. We have then considered more

general operations that transform predicates rather than the coalgebra structure

itself. These exhibit a more complex behaviour; in particular, while it can be shown

that it is always possible to translate the update language into a modal base lan-

guage, this may require extending the modal signature so that one needs to harness

the arising closure process manually.

In the talk we will give an introduction to coalgebraic logic in general and then

discuss example applications of the above principle. These include announcements

in settings involving uncertainty and in weak epistemic logics equipped with a neigh-

bourhood semantics in the style of [18], various type of lossy or fallible announce-

ments, and games with changing rules.

This is joint work with Facundo Carreiro and Daniel Gorin.

Joint MFPS–LICS Session on the Future of Program-
ming Language Theory

Stochastic Lambda-Calculi, by Dana S. Scott (CMU and UC Berkeley)

Abstract: Many authors have suggested ways of adding random elements and

probability assessments to versions of Church’s Lambda-Calculus. The speaker

realized recently that the so-called Graph Model based on enumeration operators

acting on the powerset of the integers could easily be expanded by the adjunction

of random variables. Indeed, using any countably based continuous lattice L, the

cartesian power LN can be very quickly be made into a lambda-calculus model, and

random variables can always be naturally adjoined. The talk will explore possible

ix

applications to probabilistic reasoning, randomized algorithms, and fuzzy logic.

In addition to Dana Scott’s plenary address, the session includes the following

talks:

Symmetric Scott, by Andy Pitts (Cambridge)

Abstract: Dana Scott has shown us that an effective way to make progress in pro-

gramming language theory is mathematization: formalize a programming concept

sufficiently for it to become a piece of mathematics. Then sometimes an existing

mathematical theory can usefully be applied and sometimes a new one has to be

invented.

This talk is about the mathematization of a ubiquitous feature of programming

languages – constructs involving binding and localising names. Nominal sets pro-

vide a mathematical theory of structures involving names, based on some existing,

but subtle ideas to do with symmetry and support. What is emerging is a computa-

tion theory for structures that are infinite, but finite modulo symmetry. It involves

”symmetry-aware” versions of several topics to which Dana has contributed: set

theory, automata theory, domain theory. I will concentrate in particular on compu-

tation at higher types and a symmetry-aware version of Scott domains.

Constructing Higher Inductive Types in Homotopy Type Theory, by Steve Awodey

(CMU)

Abstract: One of the most interesting new developments in HoTT is the use

of “higher inductive types” to provide direct, logical descriptions of some impor-

tant mathematical spaces and constructions: spheres, cell complexes, truncations,

quotients. In type theory, one has the so-called “impredicative encodings” of con-

ventional inductive types such the natural numbers, albeit generally with only weak

recursion principles. Using the basic idea of intensional identity types as path spaces,

we show how to strengthen these familiar recursion principles for conventional in-

ductive types, and then how to extend them to some higher inductive types. In

particular, we give an impredicative encoding of the unit circle S1. A realizability

model based on modest groupoids is given, in order to establish the consistency of

impredicative HoTT.

Unifying Programming Language Semantics with Algorithm Analysis, by Robert

Harper (CMU)

Abstract: The theory of programming languages and the theory of algorithms

are highly developed area of computer science with notable influence on the prac-

tical problems of software development. The theory of languages emphasizes the

structural aspects of programming, principally the central problem of composition

of programs from components. The theory of algorithms emphasizes the complex-

ity aspects, principally the analysis of the asymptotic time efficiency of a program.

Compared with the depth of their separate development, relatively little has been

done to integrate these two theories of programming.

x

One reason for this separation is that algorithmic theory is based on low-level

models of computation, such as the Turing machine or the RAM, that provide a

clear notion of time complexity measured as the number of steps executed by the

machine to complete a computation. But such low-level models provide no support

for composition of programs from components, and no notion of abstraction with

which to express high-level program structure. Conversely, programming language

theory is based on high-level models, principally the λ-calculus, that directly address

problems of compositionality, but neglect the analysis of complexity.

This talk is concerned with the integration of programming language seman-

tics with algorithm analysis through the use of a cost semantics, which provides

an abstract definition of programming languages at a level suitable for addressing

compositionality while also admitting the asymptotic analysis of their complexity.

A prime example of the effective use of cost semantics is the treatment of parallel

computation, which is entirely a matter of efficiency that can be achieved only at a

high-level of abstraction. Another example is the use of cost semantics to analyze

the I/O complexity of a program, a measure of the cost of transferring data from

secondary to primary storage, a very significant factor for real-world performance.

[This talk represents joint work with Guy Blelloch of Carnegie Mellon Univer-

sity.]

References

[1] Alur, R., T. A. Henzinger and O. Kupferman, Alternating-time temporal logic, J. ACM 49 (2002),
pp. 672–713.

[2] M.A. Arbib and E.G. Manes, Adjoint machines, state-behaviour machines, and duality, Journal of Pure
and Applied Algebra, 6:313–344, 1975.

[3] Baltag, A., A coalgebraic semantics for epistemic programs, in: Coalgebraic Methods in Computer
Science, ENTCS 82 (2003), pp. 17–38.

[4] F. Bonchi, M. Bonsangue, J. Rutten, and A. Silva, Brzozowski’s algorithm (co)algebraically. In Logic
and Program Semantics, volume 7230 of LNCS, pages 12–23, 2012.

[5] F. Bonchi, M. Bonsangue, H. Hansen, P. Panangaden, J. Rutten, and A. Silva, Algebra-coalgebra
duality in Brzozowski’s minimization algorithm. Submitted.

[6] Carreiro, F., D. Goŕın and L. Schröder, Coalgebraic announcement logics, in: Proc. 40th International
Colloquium on Automata, Languages and Programming, ICALP 2013, LNCS 7966 (2013), p. 101112,
to appear.

[7] S.Eilenberg. Automata, languages and machines (Volumes A and B). Pure and applied mathematics.
Academic Press, 1974 and 1976.

[8] Hintikka, J., “Knowledge and belief,” Cornell University Press, 1962.

[9] R. Kalman. On the general theory of control systems, IRE Transactions on Automatic Control, 4(3):110–
110, 1959.

[10] Lewis, D., “Counterfactuals,” Harvard University Press, 1973.

[11] Lutz, C., Complexity and succinctness of public announcement logic, in: Joint Conference on
Autonomous Agents and Multi-Agent Systems, 2006, pp. 137–143.

[12] Pauly, M., A modal logic for coalitional power in games, J. Logic Comput. 12 (2002), pp. 149–166.

[13] Plaza, J. A., Logics of public communications, in: International Symposium on Methodologies for
Intelligent Systems, 1989, pp. 201–216.

[14] J.J.M.M. Rutten, Automata and coinduction (an exercise in coalgebra), Proceedings of CONCUR’98.
Volume 1466 of LNCS, pages 194–218, 1998.

xi

[15] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theoretical Computer Science, 249(1):3–80,
2000.

[16] J.Rutten, A. Ballester-Bolinches, E. Cosme-Llópez, Varieties and covarieties of languages (extended
abstract), These Proceedings.

[17] van Ditmarsch, H., W. van der Hoek and B. Kooi, “Dynamic epistemic logics,” Springer, 2007.

[18] Vardi, M., On the complexity of epistemic reasoning, in: Logic in Computer Science, LICS 89, IEEE,
1989, pp. 243–251.

xii

MFPS 2013

Varieties and Covarieties of Languages
(Preliminary Version)

Jan Ruttena,1 Adolfo Ballester-Bolinchesb,2

Enric Cosme-Llópezb,3

a CWI and Radboud University
Amsterdam, The Netherlands

b Departament d’Àlgebra
Universitat de València

València, Spain

Abstract

Because of the isomorphism (X × A) → X ∼= X → (A → X), the transition structure of a deterministic
automaton with state set X and with inputs from an alphabet A can be viewed both as an algebra and
as a coalgebra. This algebra-coalgebra duality goes back to Arbib and Manes, who formulated it as a
duality between reachability and observability, and is ultimately based on Kalman’s duality in systems
theory between controllability and observability. Recently, it was used to give a new proof of Brzozowski’s
minimization algorithm for deterministic automata. Here we will use the algebra-coalgebra duality of
automata as a common perspective for the study of both varieties and covarieties, which are classes of
automata and languages defined by equations and coequations, respectively. We make a first connection
with Eilenberg’s definition of varieties of languages, which is based on the classical, algebraic notion of
varieties of (transition) monoids.

Keywords: Automata, variety, covariety, equation, coequation, algebra, coalgebra.

1 Introduction

Because of the isomorphism

(X ×A)→ X ∼= X → (A→ X)

the transition structure of a deterministic automaton with state set X and with

inputs from an alphabet A can be viewed both as an algebra [11] and as a coalgebra

[19,20]. As a consequence, both the algebraic notion of variety and the coalgebraic

notion of covariety apply. In this paper, we present a preliminary version of what is

1 Email: janr@cwi.nl
2 Email: Adolfo.Ballester@uv.es
3 Email: enric.cosme@uv.es

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:janr@cwi.nl
mailto:Adolfo.Ballester@uv.es
mailto:enric.cosme@uv.es

Rutten, Ballester-Bolinches, Cosme-Llópez

to become a systematic study of varieties and covarieties of automata and of formal

languages.

We will define a variety of automata (viewed as algebras) in the usual way, as

a class defined by equations [12]. A covariety of automata (viewed as coalgebras)

will be a class defined by coequations [20]. Varieties and covarieties of automata

will then be used to define varieties and covarieties of languages. Our notion of a

variety of languages is different from the classical definition by Eilenberg [12,18],

and we will make some initial observations on how the two notions are related.

The setting of our investigations will be the following picture:

1

��

x

��

2

A∗ rx
//X

c
00

oc
// 2A

∗

OO (1)

(This diagram will be explained in more detail in Section 3.) In the middle, we

have the state set X of a given automaton. On the left, A∗ is the set of all words

over A, and on the right, 2A
∗

is the set of all languages over A. For every choice

of a point (initial state) x ∈ X, the function rx sends any word w to the state xw
reached from x on input w. And for every choice of a colouring (set of final states)

c : X → 2, the function oc sends any state to the language it accepts.

Both the pointed automata A∗ (with the empty word as point) and X with point

x, are algebras. And both the coloured automata 2A
∗

(with colouring as explained

later) and X with colouring c, are coalgebras. The unique existence of the function

(in fact, a homomorphism of algebras) rx is induced by the initiality of A∗. And

the unique existence of the function (a homomorphism of coalgebras) oc is induced

by the finality of 2A
∗
.

(Sets of) equations will live in the left – algebraic – part of our diagram; in short,

they correspond to quotients of A∗. And (sets of) coequations live in the right –

coalgebraic – part of our diagram; they will correspond to subautomata of 2A
∗
. As

a consequence, diagram (1) allows us to define both varieties and covarieties, and

to study their properties from a common perspective.

The algebra-coalgebra duality of diagram (1) is a modern rendering of the dual-

ity between reachability and observability of automata [2,1], which ultimately goes

back to Kalman’s duality between controllability and observability in system theory

[14,15]. (See also [7,9] for further categorical generalisations.)

Recently [6,3], this algebra-coalgebra duality of automata was used to give

a new proof and various generalisations of Brzozowski’s minimization algorithm

[8]. The present work goes in a different direction, focusing on (co)equations and

(co)varieties. Notably, we will further refine diagram (1) as follows:

1

�� ��

x

$$

2

A∗ r //

rx

77free(X,α) //X //

c
//

oc

66cofree(X,α)

00

o // 2A
∗

OO

2

Rutten, Ballester-Bolinches, Cosme-Llópez

(For details, see Section 5.) The new diagram includes, for every automaton X

with transition function α : X → XA, the (pointed) automaton free(X,α), which

represents the largest set of equations satisfied by (X,α). And, dually, we will

construct a (coloured) automaton cofree(X,α), which represents the smallest set of

coequations satisfied by (X,α).

We already mentioned above that our definition of a variety of languages is

different from Eilenberg’s, which is derived from the (classical, algebraic) notion of

variety of monoids. A first step towards an understanding of the relation between

the classical and the present notion of variety consists of the – elementary but to

us somewhat surprising – observation that free(X,α) is isomorphic to the so-called

transition monoid of X (which is called the syntactic monoid in case X is minimal)

[18]. This observation furthermore implies that the coloured automaton cofree(X,α)

can be viewed as a dual version of the transition monoid.

Much remains to be further understood. We already mentioned the connec-

tion with Eilenberg’s variety theorem. Furthermore, we would also like to relate

the present algebra-coalgebra perspective to recent developments on varieties of

languages, notably [13] and [4,5]. Finally, it should be possible to generalise the

present setting, along the lines of [6,3], from deterministic automata to other struc-

tures such as Mealy machines, weighted automata etc.

2 Preliminaries

Let A be a finite alphabet, in all our examples fixed to {a, b}. We write A∗ for the

set of all finite sequences (words) over A. We denote the empty word by ε and the

concatenation of two words v and w by vw.

For sets X and Z we define XZ = {g | g : Z → X}. For sets X,Y, Z and

functions f : X → Y we define fZ : XZ → Y Z by fZ(g) = f ◦ g.

We define the image and the kernel of a function f : X → Y by

im(f) = {y ∈ Y | ∃x ∈ X, f(x) = y }

ker(f) = {(x1, x2) ∈ X ×X | f(x1) = f(x2) }

A language L over A is a subset L ⊆ A∗ and we denote the set of all languages

over A by

2A
∗

= {L | L ⊆ A∗ }

(ignoring here and sometimes below the difference between subsets and character-

istic functions). For a language L ⊆ A∗ and a ∈ A we define the a-derivative of L

by

La = {v ∈ A∗ | av ∈ L}

and we define, more generally,

Lw = {v ∈ A∗ | wv ∈ L}

3

Rutten, Ballester-Bolinches, Cosme-Llópez

We define the initial value L(0) of L by

L(0) =

 1 if ε ∈ L

0 if ε 6∈ L

For a functor F : Set→ Set, an F -algebra is a pair (S, α) consisting of a set S

and a function α : F (S)→ S. An F -coalgebra is a pair (S, α) with α : S → F (S).

We will be using the following functors:

F (S) =SA

G(S) =S ×A
(2× F)(S) = 2× SA

(1 +G)(S) = 1 + (S ×A)

Automata

An automaton is a pair (X,α) consisting of a (possibly infinite) set X of states and

a transition function

α : X → XA

In pictures, we use the following notation:

x a // y ⇔ α(x)(a) = y

We will also write xa = α(x)(a) and, more generally,

xε = x xwa = α(xw)(a)

We observe that automata are F -coalgebras. Because there is, for any A and X, an

isomorphism

(̃) : (X → XA)→ ((X ×A)→ X) α̃(x, a) = α(x)(a)

automata are also G-algebras [17].

An automaton can be decorated by means of a colouring function

c : X → 2

using a basic set of colours 2 = {0, 1}. We call a state x accepting (or final) if

c(x) = 1, and non-accepting if c(x) = 0. We call a triple (X, c, α) a coloured

automaton. In pictures, we use a double circle to indicate that a state is accepting.

For instance, in the following automaton

x

a
''

b 88 y

b

gg aff

the state x is accepting and the state y is not.

4

Rutten, Ballester-Bolinches, Cosme-Llópez

By pairing the functions c and α, we see that coloured automata are (2 × F)-

coalgebras:

〈c, α〉 : X → 2×XA

An automaton can also have an initial state x ∈ X, here represented by a

function

x : 1→ X

where 1 = {0}. We call a triple (X,x, α) a pointed automaton. By pairing the

functions x and α̃, we see that pointed automata are (1 +G)-algebras:

[x, α̃] : (1 + (X ×A))→ X

We call a 4-tuple (X,x, c, α) a pointed and coloured automaton. We could depict

it by either of the two following diagrams

1 x

��

2

X

c
00

α
��

XA

1 x

��

2

X

c
00

X ×A

α̃

OO

We will be using the diagram on the left, which is just a matter of personal prefer-

ence.

We observe further that pointed and coloured automata are simply called au-

tomata in most of the literature on automata theory. A pointed and coloured

automaton (X,x, c, α) is neither an algebra nor a coalgebra – because of c and x,

respectively – which can be a cause of fascination and confusion alike.

Homomorphisms, subautomata, bisimulations

A function h : X → Y is a homomorphism between automata (X,α) and (Y, β) if

it makes the following diagram commute:

X

α
��

h
// Y

β
��

XA

hA
// Y A

A homomorphism of pointed automata (X,x, α) and (Y, y, β) and of coloured au-

tomata (X, c, α) and (Y, d, β) moreover respects initial values and colours, respec-

tively:

1

x

��

y

��
X

h
// Y

2

X
h
//

c
00

Y

d

OO

If in the diagrams above X ⊆ Y , and (i) h is subset inclusion

h : X ⊆ Y

5

Rutten, Ballester-Bolinches, Cosme-Llópez

(and, moreover (ii) x = y or (iii) c = d), then we call X a (i) subautomaton of Y

(respectively (ii) pointed and (iii) coloured subautomaton).

For an automaton (X,α) and x ∈ X, the subautomaton generated by x, denoted

by

〈x〉 ⊆ X
consists of the smallest subset of X that contains x and is closed under transitions.

We call a relation R ⊆ X×Y a bisimulation of automata if for all (x, y) ∈ X×Y ,

(x, y) ∈ R ⇒ ∀a ∈ A, (xa, ya) ∈ R

(where xa = σ(x)(a) and ya = τ(y)(a)). For pointed automata (X,x, α) and

(Y, y, β), R is a pointed bisimulation if, moreover, (x, y) ∈ R. And for coloured

automata (X,x, α) and (Y, y, β), R is a coloured bisimulation if, moreover, for all

(x, y) ∈ X × Y ,

(x, y) ∈ R ⇒ c(x) = d(y)

A bisimulation E ⊆ X × X is called a bisimulation on X. If E is an equiv-

alence relation then we call it a bisimulation equivalence. The quotient map of a

bisimulation equivalence on X is a homomorphism of automata:

X

α

��

q //X/E

[α]
��

XA

qA
// (X/E)A

with the obvious definitions of X/E, q and [α]. If the equivalence E is a pointed

bisimulation on (X,x, α) or a coloured bisimulation on (X, c, α), then we moreover

have, respectively,

1

x

��

[x]

��
X

h
//X/E

2

X
h
//

c
00

X/E

[c]

OO

with, again, the obvious definitions of [x] and [c].

For a homomorphism h : X → Y , ker(h) is a bisimulation equivalence on X and

im(h) is a subautomaton of Y . Any homomorphism h factors through quotient and

inclusion homomorphisms as follows:

X

α

��

q
//

h

))X/ker(h)

[α]
��

i
// Y

β

��
XA qA //

hA

55(X/ker(h))A iA // Y A

Note that X/ker(h) ∼= im(h). Because q is surjective and i is injective, the pair (q, i)

is called an epi-mono factorisation of h.

6

Rutten, Ballester-Bolinches, Cosme-Llópez

Congruence relations

A right congruence is an equivalence relation E ⊆ A∗×A∗ such that, for all (v, w) ∈
A∗ ×A∗,

(v, w) ∈ E ⇒ ∀u ∈ A∗, (vu, wu) ∈ E

A left congruence is an equivalence relation E ⊆ A∗×A∗ such that, for all (v, w) ∈
A∗ ×A∗,

(v, w) ∈ E ⇒ ∀u ∈ A∗, (uv, uw) ∈ E

We call E a congruence if it is both a right and a left congruence. Note that E is

a right congruence iff it is a bisimulation equivalence on (A∗, σ).

Products and coproducts of automata

Automata (are both G-algebras and F -coalgebras and hence) have both products

and coproducts, as follows.

• The product of two automata (X,α) and (Y, β) is given by (X×Y, γ) where X×Y
is the Cartesian product and where

γ : (X × Y)→ (X × Y)A γ((x, y))(a) = (α(x)(a), β(y)(a))

• The coproduct (or: sum) of two automata (X,α) and (Y, β) is given by (X+Y, γ)

where X + Y is the disjoint union and where

γ : (X + Y)→ (X + Y)A γ(z)(a) =

 α(z)(a) if z ∈ X

β(z)(a) if z ∈ Y

Pointed automata (are (1 + G)-algebras and hence) have products, as fol-

lows. The product of two pointed automata (X,x, α) and (Y, y, β) is given by

(X × Y, (x, y), γ) with (X × Y, γ) as above and with initial state

(x, y) : 1→ X × Y

Coloured automata (are (2× F)-coalgebras and hence) have coproducts, as fol-

lows. The coproduct of two coloured automata (X, c, α) and (Y, d, β) is given by

(X + Y, [c, d], γ) with (X + Y, γ) as above and with colouring function

[c, d] : (X + Y)→ 2 [c, d](z) =

 c(z) if z ∈ X

d(z) if z ∈ Y

All of the above binary (co)products can be easily generalised to (co)products

of arbitrary families of automata.

7

Rutten, Ballester-Bolinches, Cosme-Llópez

3 Setting the scene

The set A∗ forms a pointed automaton (A∗, ε, σ) with initial state ε and transition

function σ defined by

σ : A∗ → (A∗)A σ(w)(a) = wa

It is initial in the following sense: for any given automaton (X,α), every choice of

initial state x : 1→ X induces a unique function rx : A∗ → X, given by rx(w) = xw,

that makes the following diagram commute:

1

ε

��

x

��
A∗

σ

��

rx
//X

α

��
(A∗)A

(rx)A
//XA

This property makes (A∗, ε, σ) an initial (1+G)-algebra. Equivalently, the automa-

ton (A∗, σ) is a G-algebra that is free on the set 1. The function rx maps a word w

to the state xw reached from the initial state x on input w and is therefore called

the reachability map for (X,x, α).

The set 2A
∗

of languages forms a coloured automaton (2A
∗
, ε?, τ) with colouring

function ε? defined by

ε? : 2A
∗ → 2 ε?(L) = L(0)

and transition function τ defined by

τ : 2A
∗ → (2A

∗
)A τ(L)(a) = La

It is final in the following sense: for any given automaton (X,α), every choice of

colouring function c : X → 2 induces a unique function oc : X → 2A
∗
, given by

oc(x) = {w | c(xw) = 1 }, that makes the following diagram commute:

2

X

c
00

α

��

oc
// 2A

∗

τ

��

ε?

OO

XA

(oc)A
// (2A

∗
)A

This property makes (2A
∗
, ε?, τ) a final (2×F)-coalgebra. Equivalently, the automa-

ton (2A
∗
, τ) is an F -coalgebra that is cofree on the set 2. The function oc maps a

state x to the language oc(x) accepted by x. Since the language oc(x) can be viewed

as the observable behaviour of x, the function oc is called the observability map.

8

Rutten, Ballester-Bolinches, Cosme-Llópez

The scene

Summarizing, we have set the following scene for our investigations:

1

ε

��

x

��

2

A∗

σ

��

rx
//X

c
00

α

��

oc
// 2A

∗

τ

��

ε?

OO

(A∗)A
(rx)A

//XA

(oc)A
// (2A

∗
)A

(2)

If the reachability map rx is surjective then we call (X,x, α) reachable. If the

observability map oc is injective then we call (X, c, α) observable. And if rx is

surjective and oc is injective then we call (X,x, c, α) (reachable and observable, or:)

minimal.

For a given language L ∈ 2A
∗
, there is the following variation of the picture

above:

1

ε

��

L

��
A∗ h //

L 11

2A
∗

ε?
��
2

where the lower L is in fact the characteristic function of L ⊆ A∗, and where the

homomorphism h satisfies h = rL = oL and h(w) = Lw. As a consequence, we have

h(v) = h(w) iff

∀u ∈ A∗, vu ∈ L⇔ wu ∈ L
which we recognise as the celebrated Myhill-Nerode equivalence. A minimal au-

tomaton accepting L is now obtained by the epi-mono factorisation of h:

1

ε

��

x

��

L

$$
A∗

q //

L 00

A∗/ker(h)

c

..

i // 2A
∗

ε?

��
2

where x = q◦ε and c = ε?◦i. This minimal automaton is unique up-to isomorphism

because epi-mono factorisations are. And because A∗/ker(h) ∼= im(h), it is equal to

〈L〉 ⊆ 2A
∗

that is, the subautomaton of (2A
∗
, ε?) generated by L.

In conclusion of this section, we observe that 〈L〉 is finite iff the language L

is rational. This fact is a version [8,10] of Kleene’s correspondence between finite

automata and rational languages [16].

9

Rutten, Ballester-Bolinches, Cosme-Llópez

4 Equations and coequations

We will be referring to the situation of (2).

Definition 4.1 [equations] A set of equations is a bisimulation equivalence relation

E ⊆ A∗ × A∗ on the automaton (A∗, σ). We define (X,x, α) |= E – and say: the

pointed automaton (X,x, α) satisfies E – by

(X,x, α) |= E ⇔ ∀(v, w) ∈ E, xv = xw

Because

∀(v, w) ∈ E, xv = xw ⇔ E ⊆ ker(rx)

we have, equivalently, that (X,x, α) |= E iff the reachability map rx factors through

A∗/E:

1

ε

��

[ε]

��

x

$$
A∗

q //

rx

77A∗/E h //X

where the homomorphisms (of pointed automata) q and h are given by

q(w) = [w] h([w]) = rx(w)

We define (X,α) |= E – and say: the automaton (X,α) satisfies E – by

(X,α) |= E⇔∀x : 1→ X, (X,x, α) |= E

⇔∀x ∈ X, ∀(v, w) ∈ E, xv = xw

2

Note that we consider sets of equations E and that (v, w) ∈ E implies (vu,wu) ∈
E, for all v, w, u ∈ A∗, because E is – by definition – a bisimulation relation on

(A∗, σ). Still we shall sometimes consider also single equations (v, w) ∈ A∗ × A∗
and use the following shorthand:

(X,x, α) |= v = w ⇔ (X,x, α) |= Ev=w

where Ev=w is defined as the smallest bisimulation equivalence on A∗ containing

(v, w). We shall use also variations such as

(X,x, α) |= {v = w, t = u} ⇔ (X,x, α) |= v = w ∧ (X,x, α) |= t = u

Definition 4.2 [coequations]

A set of coequations is a subautomaton D ⊆ 2A
∗

of the automaton (2A
∗
, τ). We

define (X, c, α) |= D – and say: the coloured automaton (X, c, α) satisfies D – by

(X, c, α) |= D ⇔ ∀x ∈ X, oc(x) ∈ D

Because

∀x ∈ X, oc(x) ∈ D ⇔ im(oc) ⊆ D

10

Rutten, Ballester-Bolinches, Cosme-Llópez

we have, equivalently, that (X, c, α) |= D iff the observability map oc factors through

D:

2

X

c
//

h //

oc

88D

ε?

00

i // 2A
∗

ε?

OO

where the homomorphisms (of coloured automata) h and i are given by

h(x) = oc(x) i(L) = L

We define (X,α) |= D – and say: the automaton (X,α) satisfies D – by

(X,α) |= D⇔∀c : X → 2, (X, c, α) |= D

⇔∀c : X → 2, ∀x ∈ X, oc(x) ∈ D
2

Example 4.3 We consider the automaton (Z, γ) defined by the following diagram:

(Z, γ) = x

a
''

b 88 y

b

gg aff

Here are some examples of equations:

(Z, x, γ) |= {b = ε, ab = ε, aa = a}
(Z, y, γ) |= {a = ε, ba = ε, bb = b}

Taking the intersection of the (bisimulation equivalences generated by) these sets,

we obtain that

(Z, γ) |= {aa = a, bb = b, ab = b, ba = a}
The above set of equations or, again more precisely, the bisimulation equivalence

relation on (A∗, σ) generated by it, is the largest set of equations satisfied by (Z, γ).

For examples of coequations, we consider the following 2 (out of all 4 possible)

coloured versions of (Z, γ):

(Z, c, γ) = x

a
''

b 88 y

b

gg aff (Z, d, γ) = x

a
''

b 88 y

b

gg aff

(Thus c(x) = 1, c(y) = 0, d(x) = 0 and d(y) = 1.) The observability mappings oc
and od map these automata to

im(oc) = (a∗b)∗
a

++

b

		
(a∗b)+

b

jj

a

im(od) = (b∗a)+

a
**

b

(b∗a)∗

b

kk

a

		

It follows that

(Z, c, γ) |= {(a∗b)∗, (a∗b)+} (Z, d, γ) |= {(b∗a)∗, (b∗a)+}

11

Rutten, Ballester-Bolinches, Cosme-Llópez

2

5 Free and cofree automata

Let (X,α) be an arbitrary automaton. We show how to construct an automaton

that corresponds to the largest set of equations satisfied by (X,α). And, dually, we

construct an automaton that corresponds to the smallest set of coequations satisfied

by (X,α). For notational convenience, we assume X to be finite but nothing will

depend on that assumption.

Definition 5.1 [free automaton, Eq(X,α)] Let X = {x1, . . . , xn} be the set of

states of a finite automaton (X,α). We define a pointed automaton free(X,α) in

two steps, as follows:

(i) First we take the product of the n pointed automata (X,xi, α) that we obtain

by letting the initial element xi range over X. This yields a pointed automaton

(ΠX, x̄, ᾱ) with

ΠX =
∏

x:1→X
Xx

∼= Xn

(where Xx = X), with x̄ = (x1, . . . , xn), and with ᾱ : ΠX → (ΠX)A defined

by

ᾱ(y1, . . . , yn)(a) = ((y1)a, . . . , (yn)a)

(ii) Next we define (free(X,α), x̄, ᾱ) by free(X,α) = im(rx̄), where rx̄ is the reach-

ability map for (ΠX, x̄, ᾱ):

1

ε

��

x̄

��

x̄

&&
A∗ r //

rx̄

66free(X,α) i //Xn

Furthermore, we define the following set of equations:

Eq(X,α) = ker(r)

where r is the reachability map for (free(X,α), x̄, ᾱ). 2

Note that

free(X,α) ∼= A∗/Eq(X,α)

Definition 5.2 [cofree automaton, coEq(X,α)] Let X = {x1, . . . , xn} be the set of

states of a finite automaton (X,α). We define a coloured automaton cofree(X,α)

in two steps, as follows:

(i) First we take the coproduct of the 2n pointed automata (X, c, α) that we obtain

by letting c range over the set X → 2 of all colouring functions. This yields a

coloured automaton (ΣX, ĉ, α̂) with

ΣX =
∑
c:X→2

Xc

12

Rutten, Ballester-Bolinches, Cosme-Llópez

(where Xc = X), and with ĉ and α̂ defined component-wise.

(ii) Next we define (cofree(X,α), [ĉ], [α̂]) by cofree(X,α) = ΣX/ker(oĉ), where oĉ
is the observability map for (ΣX, ĉ, α̂):

2

ΣX

ĉ
//

q //

oĉ

55cofree(X,α)

[ĉ]

//

o // 2A
∗

ε?

OO

and where [ĉ] and [α̂] are the extensions of ĉ and α̂ to equivalence classes.

Furthermore, we define

coEq(X,α) = im(o)

where o is the observability map for (cofree(X,α), [ĉ], [α]). 2

Note that

cofree(X,α) ∼= coEq(X,α)

Theorem 5.3 The set Eq(X,α) is the largest set of equations satisfied by (X,α).

The set coEq(X,α) is the smallest set of coequations satisfied by (X,α). 2

Example 5.4 [Example 4.3 continued] We consider our previous example

(Z, γ) = x

a
''

b 88 y

b

gg aff

The product of (Z, x, γ) and (Z, y, γ) is:

(ΠZ, (x, y), γ̄) =

(y, y)

a

		

b

��
(x, y)

a //

b //

(y, x)

aoo

boo(x, x)

b

UU

a

CC

Taking im(r(x,y)) yields the part that is reachable from (x, y):

(free(Z, γ), (x, y), γ̄) =

(y, y)

a

		

b

��
(x, y)

a //

b // (x, x)

b

UU

a

CC

13

Rutten, Ballester-Bolinches, Cosme-Llópez

The set Eq(Z, γ) is defined as ker(r(x,y)), and consists of (the smallest bisimulation

equivalence on (A∗, σ) generated by)

Eq(Z, γ) = {aa = a, bb = b, ab = b, ba = a}

This is the largest set of equations satisfied by (Z, γ).

Next we turn to coequations. The coproduct of all 4 coloured versions of (Z, γ)

is

(ΣZ, ĉ, γ̂) = x1

a
((

b
55

y1

b

hh a
ii x2

a
((

b
55

y2

b

hh a
ii

x3

a
((

b
55

y3

b

hh a
ii x4

a
((

b
55

y4

b

hh a
ii

The observability map oĉ : ΣZ → 2A
∗

is given by

oĉ(x1) oĉ(y1) oĉ(x2) oĉ(y2) oĉ(x3) oĉ(y3) oĉ(x4) oĉ(y4)

∅ ∅ (a∗b)∗ (a∗b)+ (b∗a)+ (b∗a)∗ A∗ A∗

Computing the quotient ΣZ/ker(oĉ) yields:

(cofree(Z, γ), [ĉ], [γ̂]) = {x1, y1}

a,b

		

{x4, y4}

a,b

		

{x2}
a

))

b

		
{y2}

b

ii

a

		

{x3}
a

))

b

		
{y3}

b

ii

a

		

The image of this automaton under the reachability map o : cofree(Z, γ)→ 2A
∗

is

coEq(Z, γ) = ∅

a,b

��

A∗

a,b

��

(a∗b)∗
a **

b

		
(a∗b)+

b

jj

a

(b∗a)+

a **
b

(b∗a)∗

b

jj

a

		

(3)

This is the smallest set of coequations satisfied by (Z, γ). 2

Summarizing the present section, we have obtained, for every automaton (X,α),

14

Rutten, Ballester-Bolinches, Cosme-Llópez

the following refinement of (2):

1

ε

��

x̄

��

x

''

2

A∗

σ

��

r
// free(X,α)

ᾱ
��

//X

c
//

α

��

// cofree(X,α)

[ĉ]

//

[α̂]

��

o
// 2A

∗

τ

��

ε?

OO

(A∗)A // free(X,α)A //XA // cofree(X,α)A // (2A
∗
)A

where x ranges over the elements of X and c ranges over all possible colourings of

X. The free and cofree automata represent the largest set of equations and the

smallest set of coequations satisfied by (X,α):

Eq(X,α) = ker(r) coEq(X,α) = im(o)

Note that the free and cofree automata are constructed for the automaton (X,α),

without point and without colouring. In conclusion, let us mention again that all

of the above easily generalises to infinite X.

6 Varieties and covarieties

We define varieties and covarieties by means of equations and coequations, first for

automata and next for languages.

Definition 6.1 [variety of automata] For every set E of equations we define the

variety VE by

VE = { (X,α) | (X,α) |= E }
2

Definition 6.2 [covariety of automata] For every set D of coequations we define

the covariety CD by

CD = { (X,α) | (X,α) |= D }
2

Every variety of automata defines a set of languages, which we will again call a

variety. Dually, every covariety of automata defines a set of languages , which we

will again call a covariety.

Definition 6.3 [variety and covariety of languages] Let VE be a variety of au-

tomata. We define the variety of languages L(VE) by

L(VE) = {L ∈ 2A
∗ | 〈L〉 ∈ VE }

(where 〈L〉 is the subautomaton of (2A
∗
, τ) generated by L). Dually, let CD be a

covariety of automata. We define the covariety of languages L(CD) by

L(CD) = {L ∈ 2A
∗ | 〈L〉 ∈ C }

2

15

Rutten, Ballester-Bolinches, Cosme-Llópez

Proposition 6.4 Every variety VE is closed under the formation of subautomata,

homomorphic images, and products. 2

Proposition 6.5 Every covariety CD is closed under the formation of subau-

tomata, homomorphic images, and coproducts. 2

Proposition 6.6 A covariety CD is generally not closed under products.

Proof. We give an example of a covariety that is not closed under products. We

recall from Example 5.4 the automaton

(Z, γ) = x

a
''

b 88 y

b

gg aff

We saw that (Z, γ) |= D, with D = coEq(Z, γ) as in (3). The product of (Z, γ)

with itself is

(Z2, γ̄) =

(y, y)

a

		

b

��
(x, y)

a //

b //

(y, x)

aoo

boo(x, x)

b

UU

a

CC

We define a colouring c : Z2 → 2 by

c((x, y)) c((y, y)) c((x, x)) c((y, x))

0 1 1 0

This colouring c induces the observability map oc : Z2 → 2A
∗
, given by

oc((x, y)) oc((y, y)) oc((x, x)) oc((y, x))

A+ A∗ A∗ A+

Because A+ 6∈ D, the automaton (Z2, γ̄) 6|= D. Thus CD is not closed under

products. 2

Corollary 6.7 Not every covariety CD is also a variety. 2

Here are some elementary properties of (co)equations and (covarieties).

Proposition 6.8 For every set of equations E ⊆ A∗ ×A∗,

L(VE) = {L ∈ 2A
∗ | ∀(v, w) ∈ Ẽ, Lv = Lw }

where Ẽ is the smallest congruence relation containing E. 2

Theorem 6.9 (on equations and varieties) Let E ⊆ A∗ ×A∗ be a set of equa-

tions. The following statements are equivalent:

16

Rutten, Ballester-Bolinches, Cosme-Llópez

0. E is a congruence

1. E = Eq(X,α) for some automaton (X,α)

2. (A∗/E, [σ]) |= E

3. Eq(A∗/E, [σ]) = E

(with σ as in (2)). Furthermore, any of the above implies:

4. L(VE) = {L ∈ 2A
∗ | ∀(v, w) ∈ E, Lv = Lw }.

2

Theorem 6.10 (on coequations and covarieties) Let D ⊆ 2A
∗

be a set of co-

equations. The following statements are equivalent:

1. D = coEq(X,α) for some automaton (X,α)

2. (D, τ) |= D

3. coEq(D, τ) = D

4. L(CD) = D

(with τ as in (2)). 2

Corollary 6.11 Every variety of languages L(VE) is also a covariety of lan-

guages. 2

Example 6.12 [Example 5.4 continued] Recall the automaton

(Z, γ) = x

a
''

b 88 y

b

gg aff

and recall

coEq(Z, γ) = ∅

a,b

��

A∗

a,b

��

(a∗b)∗
a **

b

		
(a∗b)+

b

jj

a

(b∗a)+

a **
b

(b∗a)∗

b

jj

a

		

The smallest covariety containing (Z, γ) is

CcoEq(Z,γ)

It contains the languages

L(CcoEq(Z,γ)) = { ∅, (a∗b)∗, (a∗b)+, (b∗a)∗, (b∗a)+, A∗ }

The smallest variety containing (Z, γ) is

VEq(Z,γ)

17

Rutten, Ballester-Bolinches, Cosme-Llópez

were we recall that Eq(Z, γ) is the smallest bisimulation equivalence (in fact, a

congruence) generated by the set

{aa = a, bb = b, ab = b, ba = a}

We have

L(VEq(Z,γ)) = {L ∈ 2A
∗ | (Laa = La) ∧ (Lbb = Lb) ∧ (Lab = Lb) ∧ (Lba = La) }

= { ∅, 1, (a∗b)∗, (a∗b)+, 1 + (a∗b)+, (b∗a)∗, (b∗a)+, 1 + (b∗a)+, A+, A∗ }
The latter set of languages can be, equivalently, determined using the fact that

VEq(Z,γ) =CcoEq((A∗,σ)/Eq(Z,γ))

=CcoEq(free(Z,γ))

To this end, we recall that

(free(Z, γ), (x, y), γ̄) =

(y, y)

a

		

b

��
(x, y)

a //

b // (x, x)

b

UU

a

CC

and compute coEq(free(Z, γ)) by means of the following table, which contains all

possible colourings c of free(Z, γ), together with the corresponding value of oc:

c c((x, y)) c((y, y)) c((x, x)) oc((x, y)) oc((y, y)) oc((x, x))

c1 0 0 0 ∅ ∅ ∅

c2 0 0 1 (a∗b)+ (a∗b)+ (a∗b)∗

c3 0 1 0 (b∗a)+ (b∗a)∗ (b∗a)+

c4 0 1 1 A+ A∗ A∗

c5 1 0 0 1 ∅ ∅

c6 1 0 1 1 + (a∗b)+ (a∗b)+ (a∗b)∗

c7 1 1 0 1 + (b∗a)+ (b∗a)∗ (b∗a)+

c8 1 1 1 A∗ A∗ A∗

In the end, this leads to the same set of languages. We conclude this example by

observing that

L(CcoEq(Z,γ)) ⊆ L(VEq(Z,γ))

as expected. 2

Example 6.13 Here we focus on a single given language, say: L = (a∗b)∗. A

18

Rutten, Ballester-Bolinches, Cosme-Llópez

minimal automaton for L is

(Z, x, c, γ) = x

a
''

b 88 y

b

gg aff

It follows from Example 6.12 that the smallest covariety of languages containing L

is

L(CcoEq(Z,γ)) = { ∅, (a∗b)∗, (a∗b)+, (b∗a)∗, (b∗a)+, A∗ }
and that the smallest variety containing L is

L(VEq(Z,γ)) = { ∅, 1, (a∗b)∗, (a∗b)+, 1+(a∗b)+, (b∗a)∗, (b∗a)+, 1+(b∗a)+, A+, A∗ }

2

Example 6.14 Here are some further examples of varieties and covarieties.

(i) The smallest congruence generated by { a = ε, b = ε } is E = A∗ × A∗. As a

consequence,

L(VE) = { ∅, A∗ }
The same for E = { b = ε, ab = ε, aa = a }.

(ii) If E is the smallest congruence generated by {aa = ε, b = ε }, then

L(VE) = { ∅, ((ab∗a) + b)∗, ((ab∗a) + b)∗ab∗, {a, b}∗ }

(iii) If E is the smallest congruence generated by {aa = ε, bb = ε }, then the variety

L(VE) is infinite and contains both rational and non-rational languages.

(iv) For D = 2A
∗
, the covariety CD contains all automata (X,α).

(v) For D = rat(2A
∗
),

CD = {(X,α) | (X,α) is finitely generated }

that is, all (X,α) such that 〈x〉 ⊆ X is finite, for all x ∈ X.

(vi) If D = { {a}, 1, ∅ } then CD = ∅.

7 Transition monoids

For every (rational) language, one can construct its so-called syntactic monoid (that

is, the transition monoid of its minimal automaton). Next every (classical, algebraic)

variety V of monoids determines a class of languages L by the requirement that its

syntactic monoid belongs to V . This is, in short, Eilenberg’s definition of a variety

of languages. In this section, we take a first step towards an understanding of the

relation between Eilenberg’s definition and the present one, by the observation that

free(X,α), for every automaton (X,α), is isomorphic to its transition monoid.

A monoid (M, ·, 1) consists of a set M , a binary operation of multiplication that

is associative, and a unit 1 with m · 1 = 1 · m = m. For every set, there is the

monoid

(XX , ·, 1X)

19

Rutten, Ballester-Bolinches, Cosme-Llópez

defined by

XX = {φ | φ : X → X } 1X(x) = x f · g = g ◦ f

Because of the isomorphism

X → XA ∼= A→ XX

we have for every automaton (X,α) and a ∈ A a function

ã : X → X ã(x) = α(x)(a) = xa

We use it to define for every automaton (X,α) a pointed automaton

(XX , 1X , α̃) α̃(φ)(a) = φ · ã

Next we define the transition monoid (cf. [18])

(trans(X,α), 1X , α̃)

by trans(X,α) = im(r1X), the image of the reachability map of (XX , 1X , α̃):

1

ε

��

1X

��

1X

&&
A∗ r //

r1X

55trans(X,α) i //XX

(where r(a1 · · · an) = ã1 · · · ãn, for a1 · · · an ∈ A∗).

Theorem 7.1 For an automaton (X,α),

(free(X,α), x̄, ᾱ) ∼= (trans(X,α), 1X , α̃)

Proof. Let X = {x1, . . . , xn}. For every ȳ ∈ free(X,α) we define

φȳ : X → X φȳ(xi) = yi

Then φ(ȳ) = φȳ defines an isomorphism of pointed automata. 2

This elementary observation should form the basis for a detailed comparison of

the present definition of variety of languages and Eilenberg’s definition.

References

[1] M.A. Arbib and E.G. Manes. Adjoint machines, state-behaviour machines, and duality. Journal of
Pure and Applied Algebra, 6:313–344, 1975.

[2] M.A. Arbib and H.P. Zeiger. On the relevance of abstract algebra to control theory. Automatica,
5:589–606, 1969.

20

Rutten, Ballester-Bolinches, Cosme-Llópez

[3] F. Bonchi, M. Bonsangue, H. Hansen, P. Panangaden, J. Rutten, and A. Silva. Algebra-coalgebra
duality in Brzozowski’s minimization algorithm. 2013. Submitted.

[4] A. Ballester-Bolinches, J.-E. Pin, and X. Soler-Escriva. Formations of finite monoids and formal
languages: Eilenberg’s variety theorem revisited. Forum Mathematicum, 2012.

[5] A. Ballester-Bolinches, J.-E. Pin, and X. Soler-Escriva. Languages associated with saturated formations
of groups. Forum Mathematicum, 2013.

[6] F. Bonchi, M. Bonsangue, J. Rutten, and A. Silva. Brzozowski’s algorithm (co)algebraically. In
R. Constable and A. Silva, editors, Logic and Program Semantics., volume 7230 of LNCS, pages 12–23,
2012.

[7] M. Bidoit, R. Hennicker, and A. Kurz. On the duality between observability and reachability. In Furio
Honsell and Marino Miculan, editors, FoSSaCS, volume 2030 of Lect. Notes in Comp. Sci., pages 72–87.
Springer, 2001.

[8] J.A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11(4):481–494, 1964.

[9] C. Cirstea. On specification logics for algebra-coalgebra structures: Reconciling reachability and
observability. In Proceedings FoSSaCS, pages 82–97, 2002.

[10] J.H. Conway. Regular algebra and finite machines. Chapman and Hall, 1971.

[11] S. Eilenberg. Automata, languages and machines (Vol. A). Pure and applied mathematics. Academic
Press, 1974.

[12] S. Eilenberg. Automata, languages and machines (Vol. B). Pure and applied mathematics. Academic
Press, 1976.

[13] M. Gehrke, S. Grigorieff, and J.-E. Pin. Duality and equational theory of regular languages. In
Proceedings ICALP, volume 5126 of LNCS, pages 246–257, 2008.

[14] R. Kalman. On the general theory of control systems. IRE Transactions on Automatic Control,
4(3):110–110, 1959.

[15] R. E. Kalman, P. L. Falb, and M. A. Arbib. Topics in Mathematical Systems Theory. McGraw Hill,
1969.

[16] S.C. Kleene. Representation of events in nerve nets and finite automata. In Shannon and McCarthy,
editors, Automata Studies, pages 3–41. Princeton Univ. Press, 1956.

[17] E.G. Manes and M.A. Arbib. Algebraic approaches to program semantics. Texts and monographs in
computer science. Springer-Verlag, 1986.

[18] J.-E. Pin. Syntactic semigroups. Handbook of language theory, Vol. I, pages 679–746, 1997.

[19] J.J.M.M. Rutten. Automata and coinduction (an exercise in coalgebra). In D. Sangiorgi and
R. de Simone, editors, Proceedings of CONCUR’98, volume 1466 of LNCS, pages 194–218, 1998.

[20] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249(1):3–80,
2000. Fundamental Study.

21

MFPS 2013

Layout Randomization and Nondeterminism

Mart́ın Abadi

Microsoft Research, Silicon Valley
and UC Santa Cruz

Jérémy Planul

Stanford University

Gordon Plotkin

LFCS, Informatics, University of Edinburgh
and Microsoft Research, Silicon Valley

Abstract

In security, layout randomization is a popular, effective attack mitigation technique. Recent work has aimed
to explain it rigorously, focusing on deterministic systems. In this paper, we study layout randomization
in the presence of nondeterministic choice. We develop a semantic approach based on denotational models
and simulation relations. This approach abstracts from language details, and helps manage the delicate
interaction between probabilities and nondeterminism.

Keywords: security, semantics, probabilities, nondeterminism, full abstraction.

1 Introduction

Randomization has important applications in security, ranging from probabilistic

cryptographic schemes [10] to the introduction of artificial diversity in low-level

software protection [8]. Developing rigorous models and analyses of the systems

that employ randomization can be challenging, not only because of the intrinsic

difficulty of reasoning about probabilities but also because these systems typically

exhibit many other interesting features. Some of these features, such as assumed

bounds on the capabilities and the computational complexity of attackers, stem

directly from security considerations. Others, such as nondeterminism, need not be

specifically related to security, but arise because of the generality of the ambient

computational models, which may for example include nondeterministic scheduling

for concurrent programs and for network protocols.

The form of randomization that we explore in this paper is layout randomization

in software systems (e.g., [6,18,7]). Layout randomization refers to a body of widely

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

Abadi Planul Plotkin

used techniques that place data and code randomly in memory. In practice, these

techniques effectively thwart many attacks that assume knowledge of the location

of data and code. Recent research by the authors and others aims to develop

rigorous models and proofs for layout randomization [19,3,13,2]. The research to

date has focused on deterministic, sequential programs. Here, we consider layout

randomization for programs that may make nondeterministic choices.

We phrase our study in terms of a high-level language in which variables are

abstract (symbolic) locations, and a low-level language in which they are mapped

to random natural-number addresses in memory. Both languages include a standard

construct for nondeterministic choice. We give models for the languages. For each

language, we also define a contextual implementation relation. Intuitively, a context

may represent an attacker, so contextual implementation relations may serve, in

particular, for expressing standard security properties. We characterize contextual

implementation relations in terms of semantic simulation relations (so-called logical

relations). Throughout, the low-level relations are probabilistic. Via the simulation

relations, we obtain a semantic correspondence between the high-level and low-level

worlds. Basically, simulation relations in one world induce simulation relations in

the other, and therefore contextual implementation in one world implies contextual

implementation in the other.

Thus, our approach emphasizes semantic constructions. In comparison with

prior syntactic work, arguments via models arguably lead to more satisfying secu-

rity arguments, independent of superficial details of particular languages (as layout

randomization is largely language-agnostic in practice). They also help reconcile

probabilities and nondeterminism, which have a rich but thorny interaction.

Some of the difficulties of this interaction have been noticed in the past. For in-

stance, in their development of a framework for the analysis of security protocols [15,

Section 2.7], Lincoln et al. observed:

our intention is to design a language of communicating processes so that an ad-

versary expressed by a set of processes is restricted to probabilistic polynomial

time. However, if we interpret parallel composition in the standard nondetermin-

istic fashion, then a pair of processes may nondeterministically “guess” any secret

information.

They concluded:

Therefore, although nondeterminism is a useful modeling assumption in study-

ing correctness of concurrent programs, it does not seem helpful for analyzing

cryptographic protocols.

Thus, they adopted a form of probabilistic scheduling, and excluded nondetermin-

ism. In further work, Mitchell et al. [17] refined the framework, in particular defin-

ing protocol executions by reference to any polynomial-time probabilistic scheduler

that operates uniformly over certain kinds of choices. The uniformity prevents col-

lusion between the scheduler and an attacker. Similarly, Canetti et al. [4] resolved

nondeterminism by task schedulers, which do not depend on dynamic information

generated during probabilistic executions; they thus generated sets of trace distri-

butions, one for each task schedule.

From a semantic perspective, a nondeterministic program denotes a function

23

Abadi Planul Plotkin

that produces a set of possible outcomes; equally, a probabilistic program repre-

sents a function that produces a distribution over outcomes. Rigorous versions of

these statements can be cast in terms of powerdomains and probabilistic powerdo-

mains [9]. In principle, a nondeterministic and probabilistic program may represent

either a function producing a set of distributions over outcomes or else one produc-

ing a distribution over sets of outcomes. However it seems that only the former

option, where nondeterministic choice is resolved before probabilistic choice, leads

to a satisfactory theory if, for example, one wishes to retain all the usual laws for

both forms of nondeterminism [16,21,11].

To illustrate these options, imagine a two-player game in which Player I chooses

a bit bI at random, Player II chooses a bit bII nondeterministically, and Player I

wins if and only if bI = bII. The system composed of the two players may be seen

as producing a set of distributions or a distribution on sets of outcomes.

• With the former view, we can say that, in each possible distribution, Player I

wins with probability 1/2.

• On the other hand, with the latter view, we can say only that, with probability

1, Player I may win and may lose.

The former view is preferable in a variety of security applications, in which we may

wish to say that no matter what an attacker does, or how nondeterministic choices

are resolved, some expected property holds with high probability.

However, in our work, it does not suffice to resolve nondeterministic choice

before probabilistic choice, as we explain in detail below, fundamentally because the

probabilistic choices that we treat need not be independent. Instead, we construct a

more sophisticated model that employs random variables, here maps from memory

layouts to outcomes. The memory layouts form the sample space of the random

variables, and, as usual, one works relative to a given distribution over the sample

space.

Beyond the study of layout randomization, it seems plausible that an approach

analogous to ours could be helpful elsewhere in security analysis. Our models may

also be of interest on general grounds, as a contribution to a long line of research on

programming-language semantics for languages with nondeterministic and proba-

bilistic choice. Specifically, the models support a treatment of dependent probabilis-

tic choice combined with nondeterminism, which as far as we know has not been

addressed in the literature. Finally, the treatment of contextual implementation

relations and simulation relations belongs in a long line of research on refinement.

Contents

In Section 2 we review some preliminary material on cpos.

In Section 3, we consider a high-level language, with abstract locations, stan-

dard imperative constructs, and nondeterminism, and describe its denotational and

operational semantics. We define a contextual implementation relation with respect

to contexts that represent attackers, which we call public contexts; for this purpose,

we distinguish public locations, which attackers can access directly, from private

locations. We also define a simulation relation, and prove that it coincides with the

24

Abadi Planul Plotkin

contextual implementation relation. The main appeal of the simulation relation, as

usual, is that it does not require reasoning about all possible contexts.

In Section 4, we similarly develop a lower-level language in which programs may

use natural-number memory addresses (rather than abstract locations). Again, we

define a denotational semantics, an operational semantics, a contextual implemen-

tation relation, and a simulation relation. These definitions are considerably more

delicate than those of the high-level language, in particular because they refer to

layouts, which map abstract locations to concrete natural-number addresses, and

which may be chosen randomly (so we often make probabilistic statements).

In Section 5, we relate the high-level and the low-level languages. We define

a simple compilation function that maps from the former to the latter. We then

establish that if two high-level commands are in the contextual implementation re-

lation, then their low-level counterparts are also in the contextual implementation

relation. The proof leverages simulation relations. In semantics parlance, this result

is a full-abstraction theorem; the use of public contexts that represent attackers,

however, is motivated by security considerations, and enable us to interpret this the-

orem as providing a formal security guarantee for the compilation function, modulo

a suitable random choice of memory layouts.

Finally, in Section 6 we conclude by discussing some related and further work.

2 Preliminaries on cpos

We take a cpo to be a partial order P closed under increasing ω-sups, and consider

sets to be cpos with the discrete ordering. We write P⊥ for the lift of P , viz. P

extended by the addition of a least element, ⊥. Products P ×Q and function spaces

P → Q (which we may also write as QP) are defined as usual, with the function

space consisting of all continuous functions (those monotonic functions preserving

the ω-lubs).

We use the lower, or Hoare, powerdomain H(P) of the nonempty, downwards,

and ω-sup-closed subsets of P , ordered by inclusion. The lower powerdomain is the

simplest of the three powerdomains, and models “may” or “angelic” nondetermin-

ism; the others (upper and convex) may also be worth investigating.

For any nonempty X ⊆ P , we write X ↓ for the downwards closure {y | ∃x ∈
X. y ≤ x} of X. We also write X∗ for the downwards and ω-sup closure of X (which

is typically the same as X ↓ in the instances that arise below).

Both H(−) and H(−⊥) are monads (those for lower nondeterminism, and lower

nondeterminism and nontermination, respectively). The unit of the former is x 7→
{x}↓ and any continuous map f : P → H(Q) has an extension f † : H(P)→ H(Q)

given by:

f †(X) = (
⋃
x∈X

f(x))∗

For the latter the unit is x 7→ {x} ↓ and the extension f † : H(P⊥) → H(Q⊥) of a

continuous map f : P → H(Q⊥) is given by:

f †(X) = {⊥} ∪ (
⋃

x∈X\{⊥}

f(x))∗

25

Abadi Planul Plotkin

3 The high-level language

In this section, we define our high-level language. In this language, locations are

symbolic names, and we use an abstract store to link those locations to their con-

tents, which are natural numbers.

For simplicity, the language lacks data structures and higher-order features.

Therefore, locations cannot contain arrays or functions (cf. [2]), except perhaps

through encodings. So the language does not provide a direct model of overflows

and code-injection attacks, for instance.

There are many other respects in which our languages and their semantics are

not maximally expressive, realistic, and complex. They are however convenient for

our study of nondeterminism and of the semantic approach to layout randomization.

3.1 Syntax and informal semantics

The syntax of the high-level language includes categories for natural-number ex-

pressions, boolean expressions, and commands:

e ::= k |!lloc | e+ e | e ∗ e

b ::= e ≤ e | ¬b | tt | ff | b ∨ b | b ∧ b

c ::= lloc := e | if b then c else c | skip | c; c | c+ c | while b do c

where k ranges over numerals, and l over a given finite set of store locations Loc.

Natural-number expressions are numerals, dereferencing of memory locations, sums,

or products. Boolean expressions are inequalities on natural-number expressions,

negations, booleans, disjunctions, or conjunctions. Commands are assignments at

a location, conditionals, skip, sequences, nondeterministic choices, or loops. Com-

mand contexts C[] are commands with holes; we write C[c] for the command

obtained by filling all the holes in C[] with c. We further use trivial extensions of

this language, in particular with additional boolean and arithmetic expressions.

We assume that the set of store locations Loc is the union of two disjoint sets

of locations PubLoc (public locations) and PriLoc (private locations). Let c be a

command or a command context. We say that c is public if it does not contain any

occurrence of lloc := v or !lloc for l ∈ PriLoc. As in previous work [3], we model

attackers by such public commands and command contexts; thus, attackers have

direct access to public locations but not, by default, to private locations.

The distinction between public and private locations is directly analogous to

that between external and internal state components in automata and other spec-

ification formalisms (e.g., [1]). It also resembles distinctions in information-flow

systems, which often categorize variables into levels (e.g., [20]), and typically aim

to prevent flows of information from “high” to “low” levels. We do not impose any

such information-flow constraint: we permit arbitrary patterns of use of public and

private locations. Nevertheless, we sometimes use h for a private location and l for

a public location, and also associate the symbols H and L with private and public

locations, respectively.

26

Abadi Planul Plotkin

[[lloc := e]](s) = η(s[l 7→ [[e]](s)]) [[skip]](s) = η(s)

[[if b then c else c′]](s) =

[[c]](s) [[b]](s) = tt

[[c′]](s) [[b]](s) = ff

[[c; c′]](s) = [[c′]]†([[c]](s))

[[c+ c′]](s) = [[c]](s) ∪ [[c′]](s)

[[while b do c]] = µ θ : S → H(S⊥). λs : S.

η(s) ([[b]](s) = ff)

θ†([[c]](s)) ([[b]](s) = tt)

Fig. 1. High-level denotational semantics

3.2 Denotational semantics

A store s is a function from a finite set Loc of store locations to natural numbers.

When Loc consists of h and l, for example, we write (h 7→ m, l 7→ n) for the store

that maps h to m and l to n. A public (private) store is a function from PubLoc

(PriLoc) to natural numbers. We write S for the set of stores, SL for the set of

public stores, and SH for the set of private stores. Note the natural functions:

SL
L←−− S H−−→ SH

We write sL for L(s) and s =L s
′ when sL = s′L, and similarly for H.

The denotational semantics

[[e]] : Store→ N [[b]] : Store→ B

of expressions are defined in the standard way with, in particular, [[!lloc]](s) = s(l).

The denotational semantics

[[c]] : S → H(S⊥)

of commands is given in Figure 1, where the semantics of the while loop is the

standard least-fixed point one.

Example 3.1 Consider the two commands:

c0 = (h := tt; l := ¬!l) + (h := ff) c1 = (h := tt; l := tt) + (h := ff; l := ff)

According to the semantics, [[c0]] maps any store where l is tt to {(h 7→ tt, l 7→
ff), (h 7→ ff, l 7→ tt)} ↓, and any store where l is ff to {(h 7→ tt, l 7→ tt), (h 7→ ff, l 7→
ff)}↓, while [[c1]] maps any store to {(h 7→ tt, l 7→ tt), (h 7→ ff, l 7→ ff)}↓. In sum, we

may write:

[[c0]](h 7→ , l 7→ tt) = {(h 7→ tt, l 7→ ff), (h 7→ ff, l 7→ tt)}↓

[[c0]](h 7→ , l 7→ ff) = {(h 7→ tt, l 7→ tt), (h 7→ ff, l 7→ ff)}↓

[[c1]](h 7→ , l 7→) = {(h 7→ tt, l 7→ tt), (h 7→ ff, l 7→ ff)}↓

Note that the semantics of the two commands are different. Nevertheless, below

we show that these two commands are in a sense equivalent (with respect to public

contexts). 2

27

Abadi Planul Plotkin

〈lloc := e, s〉 → s[l 7→ [[e]]s]
[[b]]s = tt

〈if b then c else c′, s〉 → 〈c, s〉

[[b]]s = ff

〈if b then c else c′, s〉 → 〈c′, s〉
〈skip, s〉 → s

〈c, s〉 → 〈c′, s′〉
〈c; c′′, s〉 → 〈c′; c′′, s′〉

〈c, s〉 → s′

〈c; c′′, s〉 → 〈c′′, s′〉
〈c+ c′, s〉 → 〈c, s〉 〈c+ c′, s〉 → 〈c′, s〉

[[b]]s = ff

〈while b do c, s〉 → s

[[b]]s = tt

〈while b do c, s〉 → 〈c; while b do c, s〉

Fig. 2. High-level operational semantics

3.3 Operational semantics

The high-level language has a straightforward small-step operational semantics. In

this semantics, a high-level state is a pair 〈c, s〉 of a command and a store or, in

case of termination, just a store s. The transition relation → is a binary relation

on such states. Figure 2 gives the rules for →.

Proposition 3.2 (Operational/denotational consistency) Let c be a com-

mand and s be a store. We have

[[c]](s) = {s′|〈c, s〉 →∗ s′} ∪ ⊥

3.4 Implementation relations and equivalences

3.4.1 Contextual pre-order

We introduce a contextual pre-order vL on commands. Intuitively, c vL c′ may

be interpreted as saying that c “refines” (or “implements”) c′, in the sense that

the publicly observable outcomes that c can produce are a subset of those that c′

permits, in every public context and from every initial store. Thus, let f = [[C[c]]]

and f ′ = [[C[c′]]] for an arbitrary public context C, and let s0 be a store; then for

every store s in f(s0) there is a store s′ in f ′(s0) that coincides with s on public

locations. Note that we both restrict attention to public contexts and compare s

and s′ only on public locations.

We define vL and some auxiliary relations as follows:

• For X ∈ H(S⊥), we set:

XL = {sL | s ∈ X} ∪ {⊥}

• For f, f ′ : S → H(S⊥), we write that f ≤L f ′ when, for every store s0, we have

f(s0)L ≤ f ′(s0)L.

• Let c and c′ be two commands. We write that c vL c′ when, for every public

command context C, we have [[C[c]]] ≤L [[C[c′]]].

28

Abadi Planul Plotkin

Straightforwardly, this contextual pre-order relation yields a notion of contextual

equivalence with respect to public contexts.

3.4.2 Simulation

In addition to a contextual pre-order, we introduce a simulation relation � whose

main advantage, as usual, is that it does not require reasoning about contexts.

As in much previous work, one might expect a simulation relation between two

commands c and c′ to be a relation on stores that respects the observable parts

of these stores, and such that if s0 is related to s1 and c can go from s0 to s′0
then there exists s′1 such that s′0 is related to s′1 and c′ can go from s1 to s′1.

In our setting, respecting the observable parts of stores means that related stores

give the same values to public locations (much like refinement mappings preserve

externally visible state components [1], and low-bisimulations require equivalence

on low-security variables [20]).

Although this idea could lead to a sound proof technique for the contextual

pre-order, it does not suffice for completeness. Indeed, forward simulations, of

the kind just described, are typically incomplete on their own for nondeterministic

systems. They can be complemented with techniques such as backward simulation,

or generalized (e.g., [1,14,5]).

Here we develop one such generalization. Specifically, we use relations on sets

of stores. We build them from relations over H(SH⊥) as a way of ensuring the

condition that public locations have the same values, mentioned above. We also

require other standard closure conditions. Our relations are similar to the ND

measures of Klarlund and Schneider [14]. Their work takes place in an automata-

theoretic setting; automata consist of states (which, intuitively, are private) and of

transitions between those states, labeled by events (which, intuitively, are public).

ND measures are mappings from states to sets of finite sets of states, so can be seen

as relations between states and finite sets of states. The finiteness requirement,

which we do not need, allows a fine-grained treatment of infinite execution paths

via König’s Lemma.

First, we extend relations R overH(SH⊥) to relations R+ overH(S⊥), as follows.

For any X ∈ H(S⊥) and s ∈ SL, we define Xs ∈ H(SH⊥) by:

Xs = {s′H | s′ ∈ X, s′L = s} ∪ {⊥}

and then we define R+ by:

XR+Y ≡def ∀s ∈ SL. (Xs 6= {⊥} ⇒ Ys 6= {⊥}) ∧XsRYs

If R is reflexive (respectively, is closed under increasing ω-sups; is right-closed under

≤ and closed under binary unions) the same holds for R+. Also, if XR+Y then

XL ≤ YL.

For any f, f ′ : S⊥ → H(S⊥) and relation R over H(SH⊥) we write that f �R f ′
when:

∀X,Y ∈ H(S⊥). XR+Y ⇒ f †(X)R+f ′†(Y)

Finally, we write that f � f ′ if f �R f ′ for some reflexive R closed under increasing

ω-sups, right-closed under ≤, and closed under binary unions.

29

Abadi Planul Plotkin

3.4.3 Contextual pre-order vs. simulation

The contextual pre-order coincides with the simulation relation:

Theorem 3.3 Let c and c′ be two commands of the high-level language. Then

c vL c′ if and only if [[c]] � [[c′]].

Example 3.4 We can verify that c0 and c1, introduced in Example 3.1, are equiv-

alent (with R the full relation). For instance, let S0 = {(h 7→ ff, l 7→ tt)} ↓ and

S1 = {(h 7→ tt, l 7→ tt)}↓. We have S0R
+S1, and:

[[c0]]†(S0) = {(h 7→ tt, l 7→ ff), (h 7→ ff, l 7→ tt)}↓

[[c1]]†(S1) = {(h 7→ tt, l 7→ tt), (h 7→ ff, l 7→ ff)}↓

We can then check that:

[[c0]]†(S0)R+[[c1]]†(S1)

2

Example 3.5 In this example, we study the two commands

c2 = ifh = 0 then l := 1 else (h := 0) + (h :=!h− 1)

c3 = ifh = 0 then l := 1 else (h := 0) + skip

which seem to share the same behavior on public variables, but that are inherently

different because of their behavior on private variables. According to the semantics,

we have:

[[c2]](h 7→ 0, l 7→) = {(h 7→ 0, l 7→ 1)}↓

[[c2]](h 7→ j + 1, l 7→ k) = {(h 7→ j, l 7→ k), (h 7→ 0, l 7→ k)}↓

[[c3]](h 7→ 0, l 7→) = {(h 7→ 0, l 7→ 1)}↓

[[c3]](h 7→ j + 1, l 7→ k) = {(h 7→ j + 1, l 7→ k), (h 7→ 0, l 7→ k)}↓

We can verify that c2 �R c3, with R defined as the smallest relation that satisfies

our conditions (reflexivity, etc.) and such that

{(h 7→ k)}R{(h 7→ k′)} for all k ≤ k′

For instance, suppose that S0 = {(h 7→ 5, l 7→ 0)} ↓ and that S1 = {(h 7→ 7, l 7→
0)}↓. We have S0R

+S1, and:

[[c2]]†(S0) = {(h 7→ 4, l 7→ 0), (h 7→ 0, l 7→ 0)}↓

[[c3]]†(S1) = {(h 7→ 7, l 7→ 0), (h 7→ 0, l 7→ 0)}↓

We can then check that:

[[c2]]†(S0)R+[[c3]]†(S1)

30

Abadi Planul Plotkin

On the other hand, there is no suitable relation R such that c3 �R c2. If there

were such a relation R, it would have to be reflexive, so {(h 7→ 1)} R {(h 7→ 1)}.
Suppose that S0 = {(h 7→ 1, l 7→ 0)} ↓ and that S1 = {(h 7→ 1, l 7→ 0)} ↓. We have

S0R
+S1, and:

[[c3]]†(S0) = {(h 7→ 1, l 7→ 0), (h 7→ 0, l 7→ 0)}↓

[[c2]]†(S1) = {(h 7→ 0, l 7→ 0)}↓

We need

{(h 7→ 1, l 7→ 0), (h 7→ 0, l 7→ 0)}↓ R+{(h 7→ 0, l 7→ 0)}↓
hence {(h 7→ 1)}R{(h 7→ 0)}. Let S2 = {(h 7→ 1, l 7→ 0)} ↓ and S3 = {(h 7→ 0, l 7→
0)}↓. We have S2R

+S3, and:

[[c3]]†(S2) = {(h 7→ 1, l 7→ 0), (h 7→ 0, l 7→ 0)}↓

[[c2]]†(S3) = {(h 7→ 0, l 7→ 1)}↓

Since the values of l do not match, we cannot have [[c3]]†(S2)R+[[c2]]†(S3), hence

c3 6�R c2.

As predicted by Theorem 3.3, we also have c3 6vL c2. Indeed, for C = ; and

s0 = (h 7→ 1, l 7→ 0), we have [[C[c3]]](s0) 6≤L [[C[c2]]](s0). 2

4 The low-level language

In this section, we define our low-level language. In this language, we use concrete

natural-number addresses for memory. We still use abstract location names, but

those are interpreted as natural numbers (according to a memory layout), and can

appear in arithmetic expressions.

4.1 Syntax and informal semantics

The syntax of the low-level language includes categories for natural-number expres-

sions, boolean expressions, and commands:

e ::= k | lnat |!e | e+ e | e ∗ e

b ::= e ≤ e | ¬b | tt | ff | b ∨ b | b ∧ b

c ::= e := e | if b then c else c | skip | c; c | c+ c | while b do c

where k ranges over numerals, and l over the finite set of store locations. Boolean

expressions are as in the high-level language. Natural-number expressions and com-

mands are also as in the high-level language, except for the inclusion of memory

locations among the natural-number expressions, and for the dereferencing con-

struct !e and assignment construct e := e′ where e is an arbitrary natural-number

expression (not necessarily a location).

31

Abadi Planul Plotkin

Importantly, memory addresses are natural numbers, and a memory is a partial

function from those addresses to contents. We assume that accessing an address

at which the memory is undefined constitutes an error that stops execution imme-

diately. In this respect, our language relies on the “fatal-error model” of Abadi

and Plotkin [3]. With more work, it may be viable to treat also the alternative

“recoverable-error model”, which permits attacks to continue after such accesses,

and therefore requires a bound on the number of such accesses.

4.2 Denotational semantics

4.2.1 Low-level memories, layouts, and errors

We assume given a natural number r > 0 that specifies the size of the memory. A

memory m is a partial function from {1, . . . , r} to natural numbers; we write Mem

for the set of memories. A memory layout w is an injection from Loc to {1, . . . , r}.
We consider only memory layouts that extend a given public memory layout wp (an

injection from PubLoc to {1, . . . , r}), fixed in the remaining of the paper. We let

W be the set of those layouts.

The security of layout randomization depends on the randomization itself. We

let d be a probability distribution on memory layouts (that extend wp). When ϕ

is a predicate on memory layouts, we write Pd(ϕ(w)) for the probability that ϕ(w)

holds with w sampled according to d.

Given a distribution d on layouts, we write δd for the minimum probability for

a memory address to have no antecedent location (much as in [3]):

δd = min
i∈{1,...,r}\ran(wp)

Pd(i 6∈ ran(w))

This probability also bounds 1 minus the maximum probability for an adversary

to guess a location. For common distributions (e.g., the uniform distribution), δd
approaches 1 as r grows, indicating that adversaries fail most of the time. We

assume d fixed below, and may omit it, writing δ for δd.

The denotational semantics of the low-level language uses the “error + nonter-

mination” monad Pξ⊥ =def (P + {ξ})⊥, which first adds an “error” element ξ to P

and then a least element. As the monad is strong, functions f :P1× . . .×Pn → Qξ⊥
extend to functions f on (P1)ξ⊥ . . . (Pn)ξ⊥; here f(x1, . . . , xn) is ξ or ⊥ if some xj ,

but no previous xi, is; we write f for f .

For any memory layout w and store s, we let w ·s be the memory defined on

ran(w) by:

w·s(i) = s(l) for w(l) = i

We extend the notation w · s to s ∈ Sξ⊥, so that w · ξ = ξ and w· ⊥=⊥. A store

projection is a function ζ :MemW
ξ⊥ of the form w 7→ w · s, for some s ∈ Sξ⊥.

4.2.2 What should the denotational semantics be?

We discuss a simple example in order to explain our choice of type of the low-level

denotational semantics. A straightforward semantics might have the type:

W ×Mem→ H(Memξ⊥)

32

Abadi Planul Plotkin

so that the meaning of a command would be a function from layouts and memories

to sets of memories (modulo the use of the “error + nontermination” monad). Using

our example we argue that this is unsatisfactory, and arrive at a more satisfactory

alternative.

Suppose that there is a unique private location l, and that memory has four

addresses, {1, 2, 3, 4}. We write si for the store (l 7→ i). The 4 possible layouts are

wi = (l 7→ i), for i = 1, . . . , 4. Assume that d is uniform. Consider the following

command:

c4 = (1:=1) + (2:=1) + (3:=1) + (4:=1)

which nondeterministically guesses an address and attempts to write 1 into it. In-

tuitively, this command should fail to overwrite l most of the time. However, in a

straightforward semantics of the above type we would have:

[[c4]](wj , wj ·s0) = {ξ, wj ·s1} ↓

and we cannot state any quantitative property of the command, only that it some-

times fails and that it sometimes terminates.

One can rewrite the type of this semantics as:

Mem→ H(Memξ⊥)W

and view that as a type of functions that yield anH(Memξ⊥)-valued random variable

with sample space W (the set of memory layouts) and distribution d. Thus, in this

semantics, the nondeterministic choice is made after the probabilistic one —the

wrong way around, as indicated in the Introduction.

It is therefore natural to reverse matters and look for a semantics of type:

Mem→ H(MemW
ξ⊥)

now yielding a set of Memξ⊥-valued random variables—so, making the nondeter-

ministic choice first. Desirable as this may be, there seems to be no good notion of

composition of such functions.

Fortunately, this last problem can be overcome by changing the argument type

to also be that of Memξ⊥-valued random variables:

MemW
ξ⊥ → H(MemW

ξ⊥)

It turns out that with this semantics we have:

[[c4]](ζi) = {ζ1
ξ , ζ

2
ξ , ζ

3
ξ , ζ

4
ξ } ↓

where ζi(w) = w ·si and ζiξ(w) = wi ·s1 if w = wi and = ξ otherwise. We can

then say that, for every nondeterministic choice, the probability of an error (or

nontermination, as we are using the lower powerdomain) is 0.75.

In a further variant in the definition of the semantics, one might replace Memξ⊥-

valued random variables by the corresponding probability distributions on Memξ⊥,

via the natural map Indd :MemW
ξ⊥ −→ V(Memξ⊥) induced by the distribution d on

33

Abadi Planul Plotkin

W. Such a semantics could have the form:

Mem→ HV(Memξ⊥)

mapping memories to probability distributions on memories, where HV is a pow-

erdomain for mixed nondeterministic and probabilistic choice as discussed above.

However, such an approach would imply (incorrectly) that a new layout is chosen

independently for each memory operation, rather than once and for all. In our

small example with the single private location l and four addresses, it would not

capture that (1 :=1); (2 :=1) will always fail. It would treat the two assignments in

(1 :=1); (2 :=1) as two separate guesses that may both succeed. Similarly, it would

treat the two assignments in (1 := 1); (1 := 2) as two separate guesses where the

second guess may fail to overwrite l even if the first one succeeds. With a layout

chosen once and for all, on the other hand, the behavior of the second assignment

is completely determined after the first assignment.

4.2.3 Denotational semantics

The denotational semantics

[[e]] : Mem×W → Nξ⊥ [[b]] : Mem×W → Bξ⊥

of expressions are defined in a standard way, with, in particular, [[lnat]]
w
m = w(l),

and also [[!e]]wm = m([[e]]wm), if [[e]]wm ∈ dom(m), and = ξ, otherwise, using an obvious

notation for functional application. Note that these semantics never have value ⊥.

As discussed above, the denotational semantics of commands has type:

[[c]] :MemW
ξ⊥ → H(MemW

ξ⊥)

The definition is given in Figure 3; it makes use of two auxiliary definitions. We

first define:

Ass :Memξ⊥ ×Nξ⊥ ×Nξ⊥ → Nξ⊥

by setting Ass(m,x, y) = m[x 7→ y] if x ∈ dom(m) and = ξ, otherwise, for m ∈
Mem, x, y ∈ N, and then using the function extension associated to the “error +

nontermination” monad. Second, we define

Cond(p, θ, θ′) :MemW
ξ⊥ → H(MemW

ξ⊥)

for any p :Mem×W → Bξ⊥ and θ, θ′ :MemW
ξ⊥ → H(MemW

ξ⊥), by:

Cond(p, θ, θ′)(ζ) = {ζ ′ | ζ ′|Wζ,tt
∈ θ(ζ)|Wζ,tt

, ζ ′|Wζ,ff
∈ θ′(ζ)|Wζ,ff

,

ζ ′(Wζ,ξ) ⊆ {ξ}, and ζ ′(Wζ,⊥) ⊆ {⊥}}

where Wζ,t =def {w | p(ζ(w), w) = t}, for t ∈ Bξ⊥, and we apply restriction

elementwise to sets of functions.

34

Abadi Planul Plotkin

[[c+ c′]](ζ) = [[c]](ζ) ∪ [[c′]](ζ) [[c; c′]] = [[c′]]†◦[[c]] [[skip]] = η

[[e := e′]](ζ) = η(λw :W.Ass(ζ(w), [[e]]wζ(w), [[e
′]]wζ(w)))

[[if b then c else c′]] = Cond([[b]], [[c]], [[c′]])

[[while b do c]] = µθ :MemW
ξ⊥ → H(MemW

ξ⊥).Cond([[b]], θ†◦[[c]], η)

Fig. 3. Low-level denotational semantics

Example 4.1 In this example, we demonstrate our low-level denotational seman-

tics. Consider the command:

c5 = l′nat := lnat; (!l′nat) := 1; l′nat := 0

This command stores the address of location l at location l′, then reads the contents

of location l′ (the address of l) and writes 1 at this address, and finally resets the

memory at location l′ to 0. Because of this manipulation of memory locations, this

command is not the direct translation of a high-level command.

Letting:

si,j = (l 7→ i, l′ 7→ j) ζi,j = w 7→ w·si,j ζ ′i = w 7→ w·(l 7→ i, l′ 7→ w(l))

we have:

[[l′nat := lnat]](ζi,j) = {ζ ′i}↓

Note that ζi,j is a store projection, but ζ ′i is not. We also have:

[[(!l′nat) := 1]](ζ ′i) = {ζ ′1}↓ [[l′nat := 0]](ζ ′1) = {ζ1,0}↓

In sum, we have:

[[c5]](ζi,j) = {ζ1,0}↓

2

Looking at the type of the semantics

[[c]] :MemW
ξ⊥ → H(MemW

ξ⊥)

one may be concerned that there is no apparent relation between the layouts used

in the input to [[c]] and those in its output. However, we note that the semantics

could be made parametric. For every W ′ ⊆ W , replace W by W ′ in the definition

of [[c]] to obtain:

[[c]]W ′ :MemW ′
ξ⊥ → H(MemW ′

ξ⊥)

There is then a naturality property, that the following diagram commutes for

35

Abadi Planul Plotkin

all W ′′ ⊆W ′ ⊆W :

MemW ′
ξ⊥

[[c]]W ′
- H(MemW ′

ξ⊥)

MemW ′′
ξ⊥

Memι
ξ⊥

?

[[c]]W ′′

- H(MemW ′′
ξ⊥)

H(Memι
ξ⊥)

?

where ι :W ′′ ⊆W ′ is the inclusion map. Taking W ′ = W and W ′′ a singleton yields

the expected relation between input and output: the value of a random variable in

the output at a layout depends only on the value of the input random variable at

that layout. The naturality property suggests re-working the low level denotational

semantics in the category of presheaves over sets of layouts, and this may prove

illuminating (see [12] for relevant background).

4.3 Operational semantics

As a counterpart to the denotational semantics, we give a deterministic operational

semantics using oracles to make choices. The oracles are elements of the set Ω of

infinite lists of tokens L (for “left”) and R (for “right”). A low-level state σ is:

• a triple 〈c,m, π〉 of a command c, a memory m, and an oracle π; or

• a pair 〈m,π〉 of a memory m and an oracle π; or

• the error element ξ.

Transitions are given relative to a layout, so we write:

w |= σ → σ′

The rules are given in Figure 4. This semantics is deterministic for each choice of

layout. We write w |= σ ⇒ σ′ for the transitive closure of the transition relation

(for a given layout).

Example 4.2 Consider the command c4 introduced in Section 4.2.2, with added

parentheses for disambiguation:

c4 = (1:=1) + ((2:=1) + ((3:=1) + ((4:=1))))

We have:

w1 |= 〈c4, w1 ·sk, Lπ〉 → 〈w1 ·s1, π〉 wj |= 〈c4, wj ·sk, Lπ〉 → ξ (j 6= 1)

w2 |= 〈c4, w2 ·sk, RLπ〉 ⇒ 〈w2 ·s1, π〉 wj |= 〈c4, wj ·sk, RLπ〉 ⇒ ξ (j 6= 2)

w3 |= 〈c4, w3 ·sk, RRLπ〉 ⇒ 〈w3 ·s1, π〉 wj |= 〈c4, wj ·sk, RRLπ〉 ⇒ ξ (j 6= 3)

w4 |= 〈c4, w4 ·sk, RRRπ〉 ⇒ 〈w4 ·s1, π〉 wj |= 〈c4, wj ·sk, RRRπ〉 ⇒ ξ (j 6= 4)

2

36

Abadi Planul Plotkin

[[e]]wm ∈ dom(m) and [[e′]]wm 6= ξ

w |= 〈e := e′,m, π〉 → 〈m[[[e]]wm 7→ [[e′]]wm], π〉
[[e]]wm 6∈ dom(m) or [[e′]]wm = ξ

w |= 〈e := e′,m, π〉 → ξ

[[b]]wm = tt

w |= 〈if b then c else c′,m, π〉 → 〈c,m, π〉

[[b]]wm = ff

w |= 〈if b then c else c′,m, π〉 → 〈c′,m, π〉
[[b]]wm = ξ

w |= 〈if b then c else c′,m, π〉 → ξ

w |= 〈skip,m, π〉 → 〈m,π〉
w |= 〈c,m, π〉 → 〈c′,m′, π′〉

w |= 〈c; c′′,m, π〉 → 〈c′; c′′,m′, π′〉

w |= 〈c,m, π〉 → 〈m′, π′〉
w |= 〈c; c′′,m, π〉 → 〈c′′,m′, π′〉

w |= 〈c,m, π〉 → ξ

w |= 〈c; c′′m,π〉 → ξ

w |= 〈c+ c′,m,Lπ〉 → 〈c,m, π〉 w |= 〈c+ c′,m,Rπ〉 → 〈c′,m, π〉

[[b]]wm = ff

w |= 〈while b do c,m, π〉 → 〈m,π〉

[[b]]wm = tt

w |= 〈while b do c,m, π〉 → 〈c; while b do c,m, π〉
[[b]]wm = ξ

w |= 〈while b do c,m, π〉 → ξ

Fig. 4. Low-level operational semantics

Using the operational semantics, we can define an evaluation function:

Eval : Com×W ×Mem× Ω→ Memξ⊥

by:

Eval(c, w,m, π) =


m′ (w |= 〈c,m, π〉 ⇒ 〈m′, π′〉)

ξ (w |= 〈c,m, π〉 ⇒ ξ)

⊥ (otherwise)

We then define

Evalran : Com×MemW
ξ⊥ → Ω→ MemW

ξ⊥

by:

Evalran(c, ζ)(π)(w) =

Eval(w, c, ζ(w), π) (ζ(w) ∈ Mem)

ζ(w) (otherwise)

Making use of the image functional ImX :XΩ → P(X), where ImX(f) = f(Ω), we

can state the consistency of the operational and denotational semantics:

Proposition 4.3 (Operational/denotational consistency) For c a command

37

Abadi Planul Plotkin

and ζ a function in MemW
ξ⊥, we have:

[[c]](ζ) = ImMemW
ξ⊥

(Evalran(c, ζ)) ↓

The evaluation function yields operational correlates of the other possible de-

notational semantics discussed in Section 4.2.2, similarly, using image or induced

distribution functionals. For example, for the first of those semantics, by currying

Eval and composing, one obtains:

Com×W ×Mem
curry(Eval)−−−−−−−→ MemΩ

ξ⊥
ImMemξ⊥−−−−−−→ P(Memξ⊥)

Using such operational correlates, one can verify operational versions of the asser-

tions made in Section 4.2.2 about the inadequacies of those semantics.

4.4 Implementation relations and equivalences

Much as in the high-level language, we define a contextual implementation relation

and a simulation relation for the low-level language. The low-level definitions refer

to layouts, and in some cases include conditions on induced probabilities.

4.4.1 Contextual pre-order

Again, the contextual pre-order c vL c′ may be interpreted as saying that c “refines”

(or “implements”) c′, in the sense that the publicly observable outcomes that c can

produce are a subset of those that c′ permits, in every public context. In comparison

with definition for the high-level language, however, c and c′ are not applied to an

arbitrary initial store but rather to a function from layouts to memories (extended

with “error + nontermination”), and they produce sets of such functions. We

restrict attention to argument functions induced by stores, in the sense that they

are store projections of the form w 7→ w ·s. Thus, let f = [[C[c]]] and f ′ = [[C[c′]]]

for an arbitrary public context C, and let s be a store; then (roughly) for every ζ

in f(w 7→ w·s) there exists ζ ′ in f ′(w 7→ w·s) such that, for any w, ζ(w) and ζ ′(w)

coincide on public locations.

The treatment of error and nontermination introduces a further complication.

Specifically, we allow that ζ produces an error or diverges with sufficient probabil-

ity (≥ δ), and that ζ ′ produces an error with sufficient probability (≥ δ), as an

alternative to coinciding on public locations.

Therefore, we define vL and some auxiliary notation and relations:

• Let m ∈ Mem be a memory. We write mL for the restriction of m to ran(wp),

extending the notation to Memξ⊥ as usual.

• Suppose ζ ∈ MemW
ξ⊥; we write ζL for the partial function defined by ζL(w) =

ζ(w)L.

• For X,Y ∈ H(MemW
ξ⊥), we write that X ≤L Y when, for every ζ ∈ X, there

exists ζ ′ ∈ Y such that:

· ζL ≤ ζ ′L, or

· P (ζ(w) ∈ {ξ,⊥}) ≥ δ and P (ζ ′(w) = ξ) ≥ δ.

38

Abadi Planul Plotkin

• For f, f ′ ∈ MemW
ξ⊥ → H(MemW

ξ⊥), we write f ≤L f ′ when, for all s ∈ S, we have:

f(w 7→ w·s) ≤L f ′(w 7→ w·s)

• Finally, we write c vL c′ when, for every public command context C, [[C[c]]] ≤L
[[C[c′]]].

4.4.2 Simulation

As in the high-level language, we introduce a simulation relation �. This rela-

tion works only on commands whose outcomes on inputs that are store projections

are themselves store projections; nevertheless, simulation remains a useful tool for

proofs.

We define $: Sξ⊥ → H(MemW
ξ⊥) by:

$(⊥) = {w 7→⊥}↓

$(s) = {w 7→ w·s}↓

$(ξ) = {ζ|P (ζ(w) = ξ) ≥ δ}↓

For every X ∈ H(MemW
ξ⊥), we say that X is a store projection set when there exists

Y ∈ H(Sξ⊥) such that

$(Y \ {ξ})↓⊆ X ⊆ $(Y)↓

and

ξ ∈ Y ⇒ ∃ζ ∈ X.P (ζ(w) = ξ) ≥ δ

In that case, we write χ(X) = Y for the unique such Y (we have s ∈ Y if, and only

if, w 7→ w · s ∈ X and ξ ∈ Y if, and only if, ∃ζ ∈ X,P (ζ(w) = ξ) ≥ δ).
Much as in the high-level language, when R is a relation over H(SH⊥), we have

that R+ is a relation over H(S⊥), and we extend it to a relation over H(Sξ⊥) as

follows. For any X,Y ∈ H(Sξ⊥):

XR+Y ≡def (ξ ∈ X ⇒ ξ ∈ Y) ∧ ((X \ ξ)R+(Y \ ξ))

Then we define a relation R× over H(MemW
ξ⊥) as follows: for any X,Y ∈

H(MemW
ξ⊥), XR×Y holds if, and only if, X and Y are store projection sets and

χ(X)R+χ(Y) holds. If R is closed under increasing ω-sups (respectively, is right-

closed under ≤ and closed under binary unions) the same holds for R× (with ≤
restricted to store projection sets). If R is reflexive, then R× is reflexive on store

projection sets. We also have:

Fact 4.4 For all X,Y ∈ H(MemW
ξ⊥), if XR×Y then X ≤L Y .

For any f, f ′ :MemW
ξ⊥ → H(MemW

ξ⊥) and relation R over H(SH⊥) we write that

f �R f ′ when:

∀X,Y ∈ H(MemW
ξ⊥). XR×Y ⇒ f †(X)R×f ′†(Y)

39

Abadi Planul Plotkin

Finally, we write that f � f ′ if f �R f ′ for some reflexive R closed under increasing

ω-sups, right-closed under ≤, and closed under binary unions.

4.4.3 Contextual pre-order vs. simulation

The contextual pre-order coincides with the simulation relation, but only for com-

mands whose semantics sends store projections to store projection sets. Formally,

we say that a given function f : MemW
ξ⊥ → H(MemW

ξ⊥) preserves store projections

if, for every s ∈ S, f(w 7→ w ·s) is a store projection set. The coincidence remains

quite useful despite this restriction, which in particular is not an impediment to our

overall goal of relating the low-level language to the high-level language.

Theorem 4.5 Let c and c′ be two commands of the low-level language such that

[[c]] and [[c′]] preserve store projections. Then c vL c′ if and only if [[c]] � [[c′]].

Example 4.6 Suppose that there is only one private location, and consider the

two commands:

c4 = (1:=1) + (2:=1) + (3:=1) + (4:=1) c6 = (1:=1); (2 :=1)

As seen above, we have [[c4]](ζi) = {ζ1
ξ , ζ

2
ξ , ζ

3
ξ , ζ

4
ξ } ↓. We also have [[c6]](ζi) = {w 7→

ξ}↓. Since P (ζiξ(w) = ξ) ≥ δ, we can verify that c4 and c6 are equivalent. (Thus, a

nondeterministic guess is no better than failure.) 2

5 High and low

In this section we investigate the relation between the high-level language and the

low-level language. Specifically, we define a simple translation from the high-level

language to the low-level language, then we study its properties.

We define the compilation of high-level commands c (expressions e, boolean ex-

pressions b) to low-level commands c↓ (expressions e↓ and boolean expressions b↓) by

setting: (!lloc)
↓ =!lnat, (lloc := e)↓ = lnat := e↓, and proceeding homomorphically

in all other cases (e.g., (e + e′)↓ = e↓ + e′↓). Crucially, this compilation function,

which is otherwise trivial, transforms high-level memory access to low-level memory

access.

Lemma 5.1 Let c be a high-level command. Then [[c↓]] preserves store projections.

Theorem 5.2 relates the simulation relations of the two languages. It states that

a high-level command c simulates another high-level command c, with respect to

all public contexts of the high-level language, if and only if the compilation of c

simulates the compilation of c′, with respect to all public contexts of the low-level

language.

Theorem 5.2 Let c and c′ be two high-level commands. Then [[c]] � [[c′]] if and

only if [[c↓]] � [[c′↓]].

Our main theorem, Theorem 5.3, follows from Theorem 5.2, the two previous

theorems, and the lemma. Theorem 5.3 is analogous to Theorem 5.2, but refers to

the contextual pre-orders: a high-level command c implements another high-level

40

Abadi Planul Plotkin

command c′, with respect to all public contexts of the high-level language, if and

only if the compilation of c implements the compilation of c′, with respect to all

public contexts of the low-level language.

Theorem 5.3 (Main theorem) Let c and c′ be two high-level commands. Then

c vL c′ if and only if c↓ vL c′↓.

Theorem 5.3 follows from Theorem 5.2, the two previous theorems, and the

lemma. The low-level statement is defined in terms of the probability δ that de-

pends on the distribution on memory layouts. When δ is close to 1, the statement

indicates that, from the point of view of a public context (that is, an attacker),

the compilation of c behaves like an implementation of the compilation of c′. This

implementation relation holds despite the fact that the public context may access

memory via natural-number addresses, and thereby (with some probability) read

or write private data of the commands. The public context may behave adaptively,

with memory access patterns chosen dynamically, for instance attempting to ex-

ploit correlations in the distribution of memory layouts. The public context may

also give “unexpected” values to memory addresses, as in practical attacks; the

theorem implies that such behavior is no worse at the low level than at the high

level.

For example, for the commands c0 and c1 of Example 3.1, the theorem enables

us to compare how their respective compilations behave, in an arbitrary public low-

level context. Assuming that δ is close to 1, the theorem basically implies that a

low-level attacker that may access memory via natural-number addresses cannot

distinguish those compilations. Fundamentally, this property holds simply because

the attacker can read or write the location h only with low probability.

6 Conclusion

A few recent papers investigate the formal properties of layout randomization, like

ours [19,3,13,2]. They do not consider nondeterministic choice, and tend to reason

operationally. However, the work of Jagadeesan et al. includes some semantic el-

ements that partly encouraged our research; specifically, that work employs trace

equivalence as a proof technique for contextual equivalence.

In this paper we develop a semantic approach to the study of layout random-

ization. Our work concerns nondeterministic languages, for which this approach

has proved valuable in reconciling probabilistic choice with nondeterministic choice.

However, the approach is potentially more general. In particular, the study of con-

currency with nondeterministic scheduling would be an attractive next step. Also,

extending our work to higher-order computation presents an interesting challenge.

References

[1] M. Abadi and L. Lamport. The existence of refinement mappings. TCS, 82(2):253–284, 1991.

[2] M. Abadi and J. Planul. On layout randomization for arrays and functions. In POST, volume 7796 of
LNCS, pages 167–185. Springer, 2013.

[3] M. Abadi and G. D. Plotkin. On protection by layout randomization. ACM Transactions on
Information and System Security, 15(2):8:1–8:29, 2012.

41

Abadi Planul Plotkin

[4] R. Canetti et al. Analyzing security protocols using time-bounded task-pioas. Discrete Event Dynamic
Systems, 18(1):111–159, 2008.

[5] W. P. de Roever and K. Engelhardt. Data Refinement: Model-oriented Proof Theories and their
Comparison, volume 46 of Cambridge Tracts in Theo. Comp. Sci. CUP, 1998.

[6] P. Druschel and L. L. Peterson. High-performance cross-domain data transfer. Technical Report TR
92-11, Department of Computer Science, The University of Arizona, 1992.

[7] Ú. Erlingsson. Low-level software security: Attacks and defenses. In FOSAD IV Tutorial Lectures,
volume 4677 of LNCS, pages 92–134. Springer, 2007.

[8] S. Forrest et al. Building diverse computer systems. In 6th Workshop on Hot Topics in Operating
Systems, pages 67–72, 1997.

[9] G. Gierz et al. Continuous lattices and domains, volume 93 of Encyclopaedia of mathematics and its
applications. CUP, 2003.

[10] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS, 28:270–299, 1984.

[11] J. Goubault-Larrecq. Prevision domains and convex powercones. In FoSSaCS, volume 4962 of LNCS,
pages 318–333. Springer, 2008.

[12] M. Jackson. A sheaf theoretic approach to measure theory. PhD thesis, U. Pitt., 2006.

[13] R. Jagadeesan et al. Local memory via layout randomization. In Proc. of the 24th CSFS, pages
161–174, 2011.

[14] N. Klarlund and F. B. Schneider. Proving nondeterministically specified safety properties using progress
measures. Information and Computation, 107(1):151–170, 1993.

[15] P. Lincoln et al. A probabilistic poly-time framework for protocol analysis. In Proceedings of the Fifth
ACM Conference on Computer and Communications Security, pages 112–121, 1998.

[16] M. W. Mislove. On combining probability and nondeterminism. ENTCS, 162:261–265, 2006.

[17] J. C. Mitchell et al. A probabilistic polynomial-time process calculus for the analysis of cryptographic
protocols. TCS, 353(1-3):118–164, 2006.

[18] PaX Project. The PaX project, 2004. http://pax.grsecurity.net/.

[19] R. Pucella and F. B. Schneider. Independence from obfuscation: A semantic framework for diversity.
Journal of Computer Security, 18(5):701–749, 2010.

[20] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In CSFW, pages
200–214, 2000.

[21] R. Tix et al. Semantic domains for combining probability and non-determinism. ENTCS, 222:3–99,
2009.

42

http://pax.grsecurity.net/

MFPS 2013

Normalization by Evaluation
and Algebraic Effects

Danel Ahman1

Laboratory for Foundations of Computer Science
University of Edinburgh

Sam Staton2

Computer Laboratory
University of Cambridge

Abstract

We examine the interplay between computational effects and higher types. We do this by presenting a
normalization by evaluation algorithm for a language with function types as well as computational effects.
We use algebraic theories to treat the computational effects in the normalization algorithm in a modular
way. Our algorithm is presented in terms of an interpretation in a category of presheaves equipped with
partial equivalence relations. The normalization algorithm and its correctness proofs are formalized in
dependent type theory (Agda).

Keywords: Algebraic effects, Type theory, Normalization by evaluation, Presheaves, Monads

1 Introduction

When studying computer programs it is often appropriate to consider them up-to

some equations. In this paper we consider an equational theory for impure func-

tional programs. By finding a class of normal forms for this equational theory, we

are able to understand and manipulate the notions under study directly. Moreover,

it has been proposed that normalization algorithms are of use in partial evaluation:

if a program fragment with free variables is normalized at compile-time then it will

typically run faster.

1 Email: d.ahman@ed.ac.uk
2 Email: sam.staton@cl.cam.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:d.ahman@ed.ac.uk
mailto:sam.staton@cl.cam.ac.uk

Ahman, Staton

To be more precise, we introduce a small program in an ML-like language.

(fn (g:(unit -> unit) -> unit)

=> g (if recv()=0 then fn x => send 0 ; h x else fn y => send 1))

(fn (f:unit -> unit) => f () ; f ()) (∗)

Here recv:unit->bit and send:bit->unit are network communication primitives,

as in Concurrent ML [39], and h:unit->unit is a free identifier of function type.

Notice that we cannot naively compile and run this program to find out what it

does, because it has a free identifier h, and because its execution will depend on

what is received from the network.

Before we normalize the program, we translate it to an intermediate language

which makes the evaluation order clear. We also remove the bit type from the

program, since it complicates the normalization process and is orthogonal to what

we are investigating. (We return to the issue of sum types in §6). We elimi-

nate the need for a bit type by using algebraic operations, following [36]: we re-

place (if recv()=0 then M else N) by inp[M,N], replace (send 0 ; M) by

out0[M] and (send 1 ; M) by out1[M]. Thus the program (∗) becomes(
fn g:((unit⇀ unit) ⇀ unit)⇒ inp[return fnx⇒ out0[hx], (†)

return fn y ⇒ out1[return 〈〉]] to f. g f
)(

fn f :(unit⇀ unit)⇒ f 〈〉 to y. f 〈〉
)

The intermediate language (§2) has a straightforward equational theory, includ-

ing β and η equality. The program (†) is not in normal form for these equations,

e.g. it has a β-redex. Our normalization algorithm yields the following program:

inp[out0[h 〈〉 tox. out0[h 〈〉 to y. return 〈〉]], out1[out1[return 〈〉]]] (‡)

So we discover what the program (∗) does: it inputs a bit from the network. If that

bit is 0 then it outputs 0, calls h, outputs 0, and calls h again. If the bit from the

network is 1 then it outputs 1 twice.

Notice how we are describing computational effects with an algebraic signature:

inp is a binary operation, and out0, out1 are unary operations. A crucial observation

is that the same normalization algorithm works if we begin with a different algebraic

signature of computational effects. Many other effects have been described in an

algebraic way, including non-determinism, probability, memory access [36,35,26] and

logic programming [41]. Our framework is a general one for all these examples.

1.1 The essence of normalization by evaluation

Syntax of
intermediate
language

Syntax of
normal
forms

Model: functors,
 monads and ᴘᴇʀs

Denotational
 semantics Reification

⊇We define our normalization algorithm in §3 using the

paradigm of normalization by evaluation (nbe). The

ideas of nbe were first discussed by Martin-Löf [25]

and later developed by Berger and Schwichtenberg [8].

There are two key ingredients: (1) a denotational se-

mantics of the programming language in an executable

44

Ahman, Staton

type theory (Agda 3) in which terms are automatically normalized; (2) a “reifica-

tion” function which takes inhabitants of the denotational semantics back to terms

of intermediate language in a sub-grammar of normal forms.

1.2 Components of denotational semantics

There are three important components to our denotational semantics for nbe:

1. Semantics in a functor category : We follow the general paradigm of

structuring denotational semantics by finding a category and interpreting types as

objects and programs as morphisms between objects. Following [14,3,9], we base

our denotational semantics on the category SetRen of functors from a category Ren
of contexts and renamings between them, to the category of sets. This category

behaves very much like the category of sets, but has extra features that allow us to

take care over interpreting terms with free identifiers. The key feature of SetRen is

that there is a distinguished object Ren(τ,−) for each type τ of the intermediate

language, and this object behaves like a special set of identifiers of type τ .

2. A residualizing monad : Our intermediate language is a variation on Moggi’s

monadic metalanguage, and we structure our denotational semantics using a monad.

Following Plotkin and Power [35], we build the monad from operations in the al-

gebraic signature describing the computational effects. However, for nbe we must

add more into our monad: following Filinski’s pioneering work [13] and subsequent

developments [21,5], we also incorporate the effects of applying an identifier of func-

tion type to an argument. For instance, in the normal form (‡) above, although

the result of the call to h is ignored, the function call may produce side effects,

depending on what h stands for. We thus keep the ‘residual’ function call, which

cannot be normalized any further.

3. Using PERs to account for equations on effect terms: In addition to

operations in algebraic signatures, many computational effects are described with

additional equations specifying their computational behaviour. Following [9,33], we

accommodate such effects in our nbe algorithm by considering presheaves whose

codomains are equipped with partial equivalence relations (pers). This is a partic-

ularly elegant approach because from the perspective of the nbe algorithm, we can

naively work with sets, and then refer to the pers when justifying the correctness

of the algorithm.

1.3 Contributions

Our main contribution is to build a normalization algorithm for our effectful func-

tional language out of this semantic analysis. The three components of our denota-

tional semantics (§1.2) have not been combined before. By combining (1) and (2) we

achieve a clean and modular mathematical account of Filinski’s ideas of residuation

in monads. By combining (2) and (3) we are able to analyze equations and normal-

ization at the level of effects (§5), separately from equations and normalization of

the functional aspects of the language.

3 Agda implementation of our nbe: https://github.com/danelahman/Normalization-By-Evaluation

45

Ahman, Staton

We also present a proof of correctness of the normalization algorithm. Our

proof uses logical relations, and further exploits the tight connection between the

residualizing monad and the syntax of normal forms.

Acknowledgments: We are especially grateful to James Chapman for suggestions

on the Agda formalization. We also thank Sam Lindley and Andy Pitts for useful

discussions. We also thank Pierre Clairambault who pointed us to Okada and Scott’s

undecidability result. The core of this work appeared in the first author’s MPhil

dissertation.

First author’s participation at the conference was supported by Estonian na-

tional scholarship program Kristjan Jaak, which is funded and managed by

Archimedes Foundation in collaboration with the Ministry of Education and Re-

search.

2 A programming language with algebraic effects

We introduce a syntax and equational theory for a higher-order programming lan-

guage which incorporates computational effects using algebraic theories, follow-

ing [35]. Our language is based on the call-by-value paradigm. The evaluation

order is totally explicit, so it is more of an intermediate language than a front-end.

The language is based on Moggi’s monadic metalanguage [29], following the analysis

by Levy, Power and Thielecke [20] (see also [17,19,28,38]).

2.1 Algebraic effects

We describe simple effects involved in computation using algebraic signatures [36].

For example, we can describe the effects involved in input/output of bits over a fixed

communication channel with a binary operation inp and unary operations out0, out1.

The algebraic expression inp[M,N] describes a computation that first reads a bit

from the channel and then proceeds as the computation M if it is 0, or as N if it

is 1. The expression out0[M] describes a computation that outputs a bit 0 to the

channel and then proceeds as M .

For another example, we can describe the effects of non-determinism with a

binary operation ⊕, with the understanding that M ⊕N describes a computation

that behaves either as M or as N .

Formally, an algebraic signature consists of a set Op of operations together with

an assignment of arities ar : Op→ N. For input/output, let Op
def
= {inp, out0, out1}

and ar(inp)
def
= 2, ar(out0)

def
= 1, ar(out1)

def
= 1. For non-determinism, let Op

def
= {⊕}

and ar(⊕)
def
= 2.

One would typically impose equations, such as idempotency, commutativity and

associativity of ⊕. We postpone a discussion on this until §5. In §6 we discuss more

general kinds of algebraic theories involving value parameters and variable binding.

46

Ahman, Staton

2.2 Extending algebraic effects to a call-by-value language with higher types

The algebraic analysis of effects involves a class of computations of unspecified type.

We now describe a typed language, for time being with product and function types:

σ, τ ∈ Ty ::= unit | σ ∗ τ | σ ⇀ τ .

We use a harpoon symbol for the function type σ ⇀ τ to emphasise that a function

may have side effects. (Moggi’s [29] notation for this is σ → T (τ). Conversely in

our language the thunking construction (unit⇀ (−)) is a monad.)

We have not included other types, such as sums or recursive types, because

our main aim in this paper is to present a clear underlying framework for nbe for

effectful languages with algebraic effects. We return to this in §6.

A typing context is a list of types annotated with variable names x, y, z. We

have no need to consider untyped terms, so we immediately provide a rule-based

definition of typed terms in context. Following [20], there are two typing judgements:

one for values Γ v̀ V : τ and one for producers Γ p̀ M : τ . The idea is that a value

is something that has no effects, whereas a producer may have side effects.

Γ, x : τ,Γ′ v̀ x : τ

Γ v̀ V1 : τ1 Γ v̀ V2 : τ2

Γ v̀ 〈V1, V2〉 : τ1 ∗ τ2

Γ, x : σ p̀ N : τ

Γ v̀ fnx:σ ⇒ N : σ ⇀ τ

Γ v̀ 〈〉 : unit

Γ v̀ V : τ1 ∗ τ2

Γ v̀ #i V : τi

Γ v̀ V : σ ⇀ τ Γ v̀ W : σ

Γ p̀ V W : τ

Γ v̀ V : τ

Γ p̀ returnV : τ

Γ p̀ M : σ Γ, x : σ p̀ N : τ

Γ p̀ M tox.N : τ

Γ p̀ M1 : τ . . . Γ p̀ Mn : τ

Γ p̀ opτ [M1, . . . ,Mn] : τ

There is an instance of the bottom-right rule for each n-ary operation op ∈ Op
and each type τ . For instance, with the input/output signature we have this syntax:

Γ p̀ M : τ Γ p̀ M : τ

Γ p̀ inp[M,N] : τ

Γ p̀ M : τ

Γ p̀ out0[M] : τ

Γ p̀ M : τ

Γ p̀ out1[M] : τ

2.3 Equational theory

The equational theory of this language is built from the βη-equations of the λ-cal-

culus, the laws of Kleisli composition (e.g. [20,29]), and algebraicity [38, §3.3]. We

47

Ahman, Staton

have elided the usual laws of reflexivity, symmetry, transitivity, and congruence.

Γ v̀ V1 : τ1 Γ v̀ V2 : τ2

Γ v̀ #i 〈V1, V2〉 ≡ Vi : τi

Γ v̀ V : τ1 ∗ τ2

Γ v̀ V ≡ 〈#1 V, #2 V 〉 : τ1 ∗ τ2

Γ v̀ V : unit

Γ v̀ V ≡ 〈〉 : unit

Γ, x : σ p̀ M : τ Γ v̀ V : σ

Γ p̀ (fnx:σ ⇒M)V ≡M [V/x] : τ

Γ v̀ V : σ ⇀ τ

Γ v̀ V ≡ fnx:σ ⇒ (V x) : σ ⇀ τ

Γ v̀ V : σ Γ, x : σ p̀ N : τ

Γ p̀ returnV tox.N ≡ N [V/x] : τ

Γ p̀ M : τ

Γ p̀ M ≡M tox. returnx : τ

Γ p̀ M : σ Γ, x : σ p̀ N : τ Γ, y : τ p̀ P : ρ

Γ p̀ (M tox.N) to y. P ≡M tox. (N to y. P) : ρ

Γ p̀ M1 : σ . . .Γ p̀ Mn : σ Γ, x : σ p̀ N : τ

Γ p̀ opσ[M1, . . . ,Mn] tox.N ≡ opτ [M1 tox.N, . . . ,Mn tox.N] : τ

2.4 Denotational semantics

We now recall the general programme of denotational semantics for the language

in §2.2–2.3 in a category with sufficient structure [29,20,35]. Given an algebraic

signature Op, a monad model is given by a category C with following data:

• a chosen cartesian closed structure, i.e. chosen finite products (including a termi-

nal object 1), and for all objects A and B an object [A ⇒ B] together with an

evaluation morphism ε : [A ⇒ B] × A → B such that for every f : C × A → B

there is a unique morphism λf : C → [A⇒ B] such that f = ε ◦ (λf × idA).

• a strong monad T on C, i.e. for each object A an object TA, and a morphism

η : A→ TA, and for all objects A and B a morphism str : A× TB → T (A×B),

and for each morphism f : A→ TB a morphism f∗ : TA→ TB (also called the

Kleisli extension of f), satisfying appropriate conditions (e.g. [29]).

• for each operation op ∈ Op with ar(op) = n, a natural transformation T-op :

T (−)n → T (−) between functors C→ C.

We interpret the intermediate language in a monad model by interpreting types

as objects and terms as morphisms. The interpretation of types as objects proceeds

as follows: JunitK def
= 1, Jτ1 ∗ τ2K

def
= Jτ1K × Jτ2K, Jσ ⇀ τK def

= [JσK ⇒ T JτK].
We interpret a context (x1 : τ1, . . . , xn : τn) as an object too, as the product of the

interpretations of its consituent types: J(x1 : τ1, . . . , xn : τn)K def
= Jτ1K × · · · × JτnK.

That is, a context is interpreted as the object of environments for that context.

Value typing judgments Γ v̀ V : τ are interpreted as morphisms JV Kv : JΓK→ JτK,
and producer typing judgments Γ p̀ M : τ as morphisms JMKp : JΓK −→ T JτK.

48

Ahman, Staton

These morphisms are defined by induction on the structure of derivations:

JxKv
def
= πx

J#1 V Kv
def
= π1 ◦ JV Kv

J#2 V Kv
def
= π2 ◦ JV Kv

J〈V,W 〉Kv
def
= 〈JV Kv, JW Kv〉

J〈〉Kv
def
= 〈〉

Jfnx:σ ⇒ NKv
def
= λJNKp

JV W Kp
def
= ε ◦ 〈JV Kv, JW Kv〉

JreturnV Kp
def
= η ◦ JV Kv

JM tox.NKp
def
= JNK∗p ◦ str ◦ 〈id, JMKp〉

Jopτ [M1, . . . ,Mn]Kp
def
= T-op ◦ 〈JM1Kp, . . . , JMnKp〉

Proposition 2.1 (Soundness) In any monad model:

If Γ v̀ V ≡W : τ then JV Kv = JW Kv. If Γ p̀ M ≡ N : τ then JMKp = JNKp.

For a simple example of a monad model, let C be the category Set of sets

and functions between them. We can associate to any set A the least set T (A)

containing A and closed under the operations in Op. This yields a strong monad.

The Eilenberg-Moore algebras for this monad can be understood as sets A that are

equipped with a function An → A for each n-ary operation op ∈ Op. Unfortunately

this set-theoretic model is not good enough for nbe, informally because it does not

support reification at higher types. We build a model suitable for nbe in §3.2.

3 Normalization by evaluation

The general programme of nbe proceeds in three steps, following Section 1.1: iden-

tifying normal forms (§3.1), building a model that supports a denotational semantics

(§3.2), and defining a reification from the model to the normal forms (§3.3).

3.1 Normal forms

The normal forms for our language are based on the η-long β-normal forms of simply

typed lambda calculus. We mutually define judgements of normal values (`nv), normal

producers (`np), atomic values (`av) and atomic producers (`ap).

Γ, x : τ,Γ′ `av x : τ

Γ `nv V1 : τ1 Γ `nv V2 : τ2

Γ `nv 〈V1, V2〉 : τ1 ∗ τ2

Γ, x : σ `np N : τ

Γ `nv fnx:σ ⇒ N : σ ⇀ τ

Γ `nv 〈〉 : unit

Γ `av V : τ1 ∗ τ2

Γ `av #i V : τi

Γ `av V : σ ⇀ τ Γ `nv W : σ

Γ `ap V W : τ

Γ `nv V : τ

Γ `np returnV : τ

Γ `ap M : σ Γ, x : σ `np N : τ

Γ `np M tox.N : τ

Γ `np M1 : τ . . . Γ `np Mn : τ

Γ `np opτ [M1, . . . ,Mn] : τ

The atomic judgements are an auxiliary notion that we use to define normal

judgements. Informally, atomic judgements are built from destructors (projections,

function application) and normal judgements are built from constructors (pairing,

abstraction). The only thing that can be done with an atomic producer is to force

its execution and substitute the result, using to. Atomic values can be substituted

for variables without denormalizing a term.

49

Ahman, Staton

3.2 A model of set theory with identifiers

Our nbe algorithm works over programs with free variables, that is, open programs.

To accommodate this we build a model of set theory in which there is a ‘set of

identifiers’ for each type. We do this categorically, using the presheaf construction,

following [3,9,14]. (Nominal sets [32] are also related from a semantic perspective.)

A category of contexts and renamings: Let Ren be the category whose objects

are contexts of our language: lists of types, informally annotated with variables. A

morphism (σ1, . . . , σm) −→ (τ1, . . . , τn) is given by a function f : m→ n such that

σi = τf(i) for 1 ≤ i ≤ m. Composition of morphisms is composition of functions.

A category of presheaves: We will consider the category SetRen of (covariant)

presheaves. The objects are functors Ren → Set, and the morphisms are natural

transformations. We understand a functor F : Ren → Set as assigning to each

context a set which may depend on the free variables in that context. The functorial

action on morphisms accounts for renamings of variables.

A helpful perspective is to think of this category as a model of intuitionistic set

theory (e.g. [23]). For any type τ there is a representable presheaf Ren(τ,−) which

may be thought of as a ‘set of identifiers’ labelled with the type τ . These identifiers

are pure: they cannot be manipulated or compared.

The category SetRen has products, sums and function spaces (e.g. [23, §III.6]).

• products: for presheaves F1, . . . , Fn we let (F1×· · ·×Fn)(Γ) = F1(Γ)×· · ·×Fn(Γ).

• coproducts: let (F1 + · · ·+ Fn)(Γ) = F1(Γ)] · · ·] Fn(Γ).

• cartesian closure: for F, G ∈ SetRen, let [F ⇒ G](Γ) = SetRen(Ren(Γ,−)× F,G).

Syntactic presheaves: For any type τ we have six presheaves Ren → Set built

from the syntactic constructions in §2.2 and §3.1: presheaves of values (VTermsτ),

producers (PTermsτ), normal values (NVTermsτ), atomic values (AVTermsτ), normal

producers (NPTermsτ) and atomic producers (APTermsτ). For example,

VTermsτ (Γ)
def
= {V |Γ v̀ V : τ}. Presheaf actions are given by variable renaming.

A residualizing monad : The crux of our semantic analysis is our residualizing

monad T on the presheaf category SetRen. We begin with an abstract description

of it, and follow with a concrete inductive definition.

We briefly define a residualizing algebra to be a presheaf F : Ren→ Set together

with a natural transformation Fn → F for each n-ary operation in the signature

Op, and also a natural transformation APTermsτ × ([Ren(τ,−)⇒ F])→ F for each

type τ . The algebraic structure from the signature interprets the effects in the

signature, and the additional structure describes sequencing of effects with atomic

producers. Recall that atomic producers are function calls involving free identifiers;

their effects are undetermined. With suitably defined algebra homomorphisms, we

arrive at a category which is monadic over SetRen. That is, the category of residu-

alizing algebras is the category of Eilenberg-Moore algebras for a strong monad T

on the category SetRen. (This follows from the ‘crude monadicity theorem’.)

The monad T has the following concrete inductive description. Let F : Ren →
Set be a presheaf. We define a new presheaf TF : Ren→ Set so that the sets TF (Γ)

50

Ahman, Staton

are the least satisfying the following rules:

d ∈ F (Γ)

(T-return d) ∈ TF (Γ)

Γ `ap M : σ d ∈ TF (Γ, x:σ)

(M T-tox. d) ∈ TF (Γ)

d1 ∈ TF (Γ) . . . dn ∈ TF (Γ)

T-op(d1, . . . , dn) ∈ TF (Γ)

The functorial action uses the action of F and the renaming of atomic produc-

ers. Note the tight correspondence between the residualizing monad and normal

producers (§3.1): there is a natural isomorphism NPTermsτ ∼= T (NVTermsτ) (see

also [21]). Another way to understand this monad is as the coproduct of the free

monad generated by the algebraic signature Op and the free monad generated by

T-to and T-return, as described by Ghani, Uustalu, Adámek and others [1,15].

Proposition 3.1 The category SetRen together with the residualizing monad T forms

a monad model in the sense of §2.4.

3.3 Reification and reflection

Recall that a nbe algorithm has two components: denotational semantics into the

model, and reification back to normal forms.

We define reification as two families of natural transformations:
v↓τ∈Ty: JτK→ NVTermsτ and p↓τ∈Ty: T JτK → NPTermsτ . To account for the con-

travariance at function types, the reification functions must be defined mutually

with reflection functions, v↑τ∈Ty: AVTermsτ → JτK and p↑τ∈Ty: APTermsτ → T JτK.

• v↓τ : JτK→ NVTermsτ is defined by induction on the structure of types τ :

v↓unitΓ d
def
= 〈〉

v↓τ1∗τ2Γ d
def
= 〈v↓τ1Γ (π1 d), v↓τ2Γ (π2 d)〉

v↓σ⇀τ
Γ d

def
= fnx:σ ⇒ (p↓τΓ,x:σ (ε 〈d, (v↑σΓ,x:σ x)〉))

• p↓τ : T JτK→ NPTermsτ is defined by induction on the structure of T JτK:

p↓τΓ (T-return d)
def
= return (v↓τΓ d)

p↓τΓ (M T-tox. d)
def
= M tox. (p↓τΓ,x:σ d)

p↓τΓ (T-op(d1, . . . , dn))
def
= opτ [p↓τΓ d1, . . . ,

p↓τΓ dn]

(Notice, (p↓τ) is derived from the natural isomorphism NPTermsτ ∼= T (NVTermsτ).)

• v↑τ : AVTermsτ → JτK is defined by induction on types τ :

v↑unitΓ V
def
= 〈〉

v↑σ⇀τ
Γ V

def
= λd. p↑τΓ,x:σ (V (v↓σΓ,x:σ d))

v↑τ1∗τ2Γ V
def
= 〈v↑τ1Γ (π1 V), v↑τ2Γ (π2 V)〉

• p↑τ∈Ty: APTermsτ → T JτK is defined by p↑σΓ M
def
= M T-tox. (T-return (v↑σΓ,x:τ x)).

51

Ahman, Staton

Since variables are atomic values, the reflection morphisms allow us to map from

the object of identifiers Ren(τ,−) into the semantic domain JτK, via the composite

Ren(τ,−) −→ AVTermsτ
v↑τ−−→ JτK.

3.4 Summary of the normalization algorithm

We now combine the denotational semantics with reification to build a normalization

algorithm.

Any context Γ = (x1 : τ1 . . . xn : τn) has an environment id-envΓ (in the set JΓKΓ)

in which variables are interpreted as identifiers: let id-envΓ
def
= 〈v↑τ1Γ x1, . . . ,

v↑τnΓ xn〉.
The normal form of a value judgement Γ v̀ V : τ is found by reifying the in-

terpretation JV Kv : JΓK→ JτK in the environment id-envΓ. Similarly the normal

form of a producer judgement Γ p̀ M : τ is found by reifying the interpretation

JMKp : JΓK→ T JτK in the environment id-envΓ:

nf(V)
def
= v↓τΓ (JV KvΓ(id-envΓ)) nf(M)

def
= p↓τΓ (JMKpΓ(id-envΓ))

We establish correctness of this normalization algorithm in Theorem 4.1.

Our normalization algorithm is based on a purely semantic analysis. Another

common method for normalization is based on exhaustively rewriting syntactic pro-

gram terms to compute their normal forms. To perform rewriting, one considers

the equations Γ v̀ V ≡ W : τ and Γ p̀ M ≡ N : τ as rewrite rules. Lindley

and Stark [22] have studied normalization for Moggi’s monadic metalanguage in

this setting. They developed a >>-lifting based proof method by building on the

strong normalization results for simply-typed lambda calculus based on reducibility

candidates (see also [11]).

3.5 A note on implementation

The algorithm in this section reduces normalization for the programming language

to evaluation in set theory. For this to be an effective procedure, we need to under-

stand the ‘category of sets’ in a constructive way. We do this using Agda [30], an

implementation of Martin-Löf’s type theory [24]. The structure of our implemen-

tation and its correctness proofs closely follow the presentation in this paper.

4 Correctness of the algorithm

We now show that the normalization algorithm we defined in §3 is correct. Our

proof has been formalized in Agda. Similarly to [14], the proof of correctness is

divided into three main theorems.

Theorem 4.1

(i) Normalization respects equivalence.

If Γ v̀ V ≡W : τ then nf(V) = nf(W). If Γ p̀ M ≡ N : τ then nf(M) = nf(N).

(ii) Normalization preserves normal forms.

If Γ `nv V : τ then nf(V) = V . If Γ `np M : τ then nf(M) = M .

52

Ahman, Staton

(iii) Terms are equivalent to their normal forms.

If Γ v̀ V : τ then Γ v̀ V ≡ nf(V) : τ . If Γ p̀ M : τ then Γ p̀ M ≡ nf(M) : τ .

Item (i) follows immediately from soundness of semantics (Prop. 2.1 and 3.1).

Item (ii) is proved by induction on the derivations of normal values/producers. In

the remainder of this section we outline a proof of item (iii) using logical relations.

4.1 Relating values and producers with their denotations

We begin by defining Kripke logical relations between values/producers and their de-

notations: v�
τ
Γ ⊆ JτK(Γ)× VTermsτ (Γ) and p�

τ
Γ
⊆ (T JτK)(Γ)× PTermsτ (Γ).

We define them by induction: v�
τ on the structure of τ , p�

τ on the structure of T .

d v�
unit
Γ V

def⇐⇒ true

d v�
τ1∗τ2
Γ V

def⇐⇒ (π1 d v�
τ1
Γ #1 V) ∧ (π2 d v�

τ2
Γ #2 V)

d v�
σ⇀τ
Γ V

def⇐⇒ ∀f ∈ Ren(Γ,Γ′).∀d′, V ′.
d′ v�

σ
Γ V ′ =⇒ ε (Jσ ⇀ τKf d, d′) p�

τ
Γ′ ((V [f])V ′)

(T-return d) p�
τ
Γ
M

def⇐⇒ ∃V. Γ p̀ M ≡ returnV : τ ∧ d v�
τ
Γ V

(N T-tox. d) p�
τ
Γ
M

def⇐⇒ ∃P. Γ p̀ M ≡ N tox. P : τ ∧ d p�
τ
Γ,x : σ

P

(T-op(d1 . . . dn)) p�
τ
Γ
M

def⇐⇒ ∃M1 . . .Mn ∈ PTermsτ (Γ).

Γ p̀ M ≡ opτ [M1, . . . ,Mn] : τ ∧ d1 p�
τ
Γ
M1 ∧ . . . ∧ dn p�

τ
Γ
Mn

Proposition 4.2 The logical relations are invariant under equivalence: If d v�
τ
Γ V

and Γ v̀ V ≡W : τ then d v�
τ
Γ W . If d p�

τ
Γ
M and Γ p̀ M ≡ N : τ then d p�

τ
Γ
N .

Proposition 4.3 The logical relations are subobjects in SetRen. For f ∈ Ren(Γ,Γ′):

If d v�
τ
Γ V then JτKf (d) v�

τ
Γ′ V [f]. If d p�

τ
Γ
M then (T JτK)f (d) p�

τ
Γ′ M [f].

Proposition 4.4 The logical relations interact well with reification and reflection.

(i) If d v�
τ
Γ V then Γ v̀ (v↓τΓ d) ≡ V : τ . If d p�

τ
Γ
M then Γ p̀ (p↓τΓ d) ≡M : τ .

(ii) If Γ `av V : τ then (v↑τΓ V) v�
τ
Γ V . If Γ `ap M : τ then (p↑τΓ M) p�

τ
Γ
M .

We extend logical relations to environments and simultaneous substitutions. For

any context Γ = (x1 : τ1, . . . , xn : τn), we let SubΓ
def
= VTermsτ1 × · · · × VTermsτn . An

element of SubΓ determines the substitution of a term for each variable in Γ. Given

a judgement Γ v̀ V : τ , let V [−] : SubΓ → VTermsτ be defined by substitution.

Similarly, given a producer Γ p̀ M : τ , we define M [−] : SubΓ → PTermsτ by substi-

tution. We now define v�
Γ⊆ JΓK×SubΓ as e v�

Γ
Γ′ ρ

def⇐⇒ ∀(x : τ) ∈ Γ. (e x) v�
τ
Γ′ (ρ x).

Proposition 4.5 (Fundamental lemma of logical relations) If Γ v̀ V : τ and

e v�
Γ
Γ′ ρ then (JV Kv e) v�

τ
Γ′ V [ρ]. If Γ p̀ M : τ and e v�

Γ
Γ′ ρ then (JMKp e) p�

τ
Γ′

M [ρ].

53

Ahman, Staton

4.2 Proof of Theorem 4.1(iii)

We use the logical relations to show that terms are equivalent to their normal forms.

Suppose Γ v̀ V : τ . We will show that Γ v̀ V ≡ nf(V) : τ . (Recall that nf(V)
def
=

v↓τΓ (JV KvΓ(id-envΓ)).) Using Prop. 4.4(ii), we deduce that identity environments

and substitutions are related by v�
Γ
Γ′ . By Prop. 4.5, (JV Kv id-env) v�

τ
Γ V . From

Prop. 4.4(i) we conclude Γ v̀ V ≡ nf(V) : τ , as required. The case for producers is

similar.

5 Equations and effects

The normalization process described in the previous sections is with respect to the

equations in §2.3. We now discuss how to accommodate equations between effect

terms.

5.1 Equations on effects

For a first example, the signature for non-determinism (⊕) is usually considered

together with the semilattice equations x⊕ x = x , x⊕ y = y ⊕ x , x⊕ (y ⊕ z) =

(x⊕ y)⊕ z. To capture this in our language, we extend the equality for producers

(Γ p̀ M ≡ N : τ , §2.3) by including these three equations at each type τ :

Γ p̀ M : τ

Γ p̀ M⊕M ≡M : τ

Γ p̀ M : τ Γ p̀ N : τ

Γ p̀ M⊕N ≡ N⊕M : τ

Γ p̀ M : τ Γ p̀ N : τ Γ p̀ P : τ

Γ p̀ M⊕(N⊕P) ≡ (M⊕N)⊕P : τ

We also define equivalence relations on normal forms in a similar way:

Γ `np M : τ

Γ `np M⊕M ≡M : τ

Γ `np M : τ Γ p̀ N : τ

Γ `np M⊕N ≡ N⊕M : τ

Γ `np M : τ Γ `np N : τ Γ `np P : τ

Γ `np M⊕(N⊕P) ≡ (M⊕N)⊕P : τ

Our nbe algorithm (§3) respects these equations:

Theorem 5.1

(i) If Γ x̀ V ≡W : τ then Γ `nx nf(V) ≡ nf(W) : τ , for x ∈ {v, p}.
(ii) If Γ `nx V : τ then nf(V) = V , for x ∈ {v, p}.
(iii) If Γ x̀ V : τ then Γ x̀ V ≡ nf(V) : τ , for x ∈ {v, p}.

Although we do not have to change the nbe algorithm to respect the equiva-

lence relations, we have to refine the residualizing model to establish correctness

(Theorem 5.1). From a semantic perspective, we change the notion of residual-

izing algebra (§3.2), requiring that a residualizing algebra satisfies the semilattice

equations. This gives us a different residualizing monad, which is a quotient of the

monad in §3.2, so that we have an isomorphism (NPTermsτ/≡) ∼= T (NVTermsτ).

From the perspective of implementation, however, the types of Agda are in-

tensional and they do not permit quotients by equivalence relations. To remedy

this we revisit the semantic framework. We understand a ‘set’ as an Agda type

equipped with a partial equivalence relation ≈ (per: symmetric, transitive rela-

tion), following Cubric, Dybjer, Scott [9] and Pitts [33, §C.1]. For example, the

54

Ahman, Staton

type of functions [X ⇒ Y] is equipped with the following per: f ≈X→Y g iff

∀x, x′ : X. x ≈X x′ =⇒ f(x) ≈Y g(x′). We are led to redo category theory in

this setting, so that a ‘hom-set’ is actually a type equipped with a per. For more

details, see [9] or our Agda implementation.

There is nothing specific about semilattices in our analysis. In general, we

accommodate equations on effects using the per on the residualizing monad. Also

importantly, the pers are not visible in the constructions of the normalization

algorithm. They only play a role in the formalization of the correctness argument

(Theorem 5.1).

We mention in passing an alternative way to arrive at a suitable model to ac-

commodate equations on effect terms: the setoid construction [7]. A setoid is a

type equipped with an equivalence relation (that is also reflexive: ∀x. x≈x). The

setoid model has a different cartesian closed structure: the setoid of functions be-

tween given setoids X and Y is {f : X → Y | x ≈X x′ =⇒ f(x) ≈Y f(x′)}. (This

is roughly the same as the domain of the per.) In a proof-relevant system like

Agda, a setoid-based implementation of the normalization algorithm would be lit-

tered with proof witnesses for all inhabitants of function types. Although the setoid

model is well behaved in many ways, the per construction is better for our purposes

because it yields an algorithm that is not complicated by proof obligations.

5.2 Normalization of effects

In the previous section we only identified normal forms up-to the equations on

effect terms. In specific situations we can do better. For example, consider the sig-

nature for a one-bit memory cell: Op
def
= {lookup, update0, update1}, ar(lookup)

def
= 2,

ar(update0)
def
= 1, ar(update1)

def
= 1, with the following equations [26,35]:

x = lookup[update0[x], update1[x]] updatei[updatej [x]] = updatej [x]

update0[lookup[x, y]] = update0[x] update1[lookup[x, y]] = update1[y]
(1)

The idea is that lookup[M,N] is the program that reads the memory, continuing

as M or N depending on the result, and updatei[M] writes i to the memory before

continuing as M .

Rather than equipping the normal producers with a per generated by these

equations, we can instead represent effect terms directly in normal form, following

Melliès [26]. We use an auxiliary judgement (`n
′

p).

Γ `n
′

p M : τ Γ `n
′

p N : τ

Γ `np lookup[M,N] : τ

Γ `n
′

p M : τ Γ `n
′

p N : τ

Γ `np lookup[update1[M], N] : τ

Γ `n
′

p M : τ Γ `n
′

p N : τ

Γ `np lookup[M, update0[N]] : τ

Γ `n
′

p M : τ Γ `n
′

p N : τ

Γ `np lookup[update1[M], update0[N]] : τ

Γ `nv V : τ

Γ `n
′

p returnV : τ

Γ `ap M : σ Γ, x:σ `np N : τ

Γ `n
′

p M tox.N : τ

Recall that the residualizing monad is a coproduct of two monads. In the present

case we can understand it as a coproduct of the residualizing monad for no ef-

fects (§3.2), and the one-bit-state monad [{0, 1} ⇒ ((−)× {0, 1})]. Concretely, this

coproduct of monads is the following least fixed point (following the definition in

55

Ahman, Staton

[16]):

TF = µG.
[
{0, 1} ⇒

(
{0, 1} ×

(
F +

∑
τ (APTermsτ × [Ren(τ,−)⇒ G])

))]
In this monad the quotient by the equations (1) is made in the type, and a per is

not needed. Categorically speaking, this monad is isomorphic to the monad with a

nontrivial per. Concretely, however, this tailored monad provides a nbe algorithm

that not only normalizes higher types, but also partially evaluates the imperative

commands as much as possible. For illustration, consider the program (†) in the

introduction, but with inp/out replaced by lookup/update. Rather than the normal

form (‡), our algorithm also normalizes the effects, minimizing the number of writes:

lookup[h 〈〉 tox. lookup[h 〈〉 to y. lookup[return 〈〉, return 〈〉],
update0[h 〈〉 to y. lookup[return 〈〉, return 〈〉]]],

return 〈〉].

6 Remarks on extensions to the language

In this paper we have considered a restricted language with just enough features to

demonstrate our contributions. While language features such as recursion and sum

types are very important, they can be dealt with by using standard techniques from

the literature. We briefly summarize the main ideas.

Recursion : Our nbe algorithm is guaranteed to terminate, because it is writ-

ten in Agda. Nonetheless, realistic programming languages have the potential for

non-termination. This leads us to the long-established connections between partial

evaluation and nbe [10,12]. Roughly speaking, in a language with recursion, each

sub-expression should be annotated with its ‘binding time’, to explain which parts

of the program should be normalized at compile time (since they are somehow as-

sumed to terminate) and which should not be touched until run time. Dybjer and

Filinski [12,13] outline how to accommodate this in a monadic metalanguage.

Sum types: Most practical programming languages have sum types. For instance,

we might have a type bit of bits with two constants (0, 1) and following typing rule

with equations:

Γ v̀ V : bit Γ p̀ M : τ Γ p̀ N : τ

Γ p̀ if V then M else N : τ

if i then M0 else M1 ≡Mi (i = 0, 1)

M ≡ if a then M [0/a] else M [1/a]
(2)

The semantic analysis based on presheaf categories has been extended to explain

nbe with sum types for pure languages without computational effects [2,6]. Filin-

ski [13] and Lindley [21] have discussed nbe for effectful languages with sums from

a more pragmatic perspective. The languages they consider type case expressions

as computations rather than as values, which allows them to use the residualizing

monad to treat pattern-matching on atomic values.

Base types and local effects: Our residualizing monad is a monad on a presheaf

56

Ahman, Staton

category. Various authors use monads on presheaf categories to describe local ef-

fects and name generation, including local store [27,35,37], π-calculus [40], and logic

programming [41]. The second author has recently developed a syntactic framework

for these analyses, based on a generalized kind of algebraic theory [28,42], which can

be accommodated in our semantic analysis (see also [27,37]). This framework allows

us to move closer to the original source program in our introduction, as follows.

We can add to our grammar for types two abstract base types: a type chan of

channels and a type bit of communication data. We can then modify our algebraic

signature for input/output effects so that the operations take parameters from chan,

specifying which channel to use for communication, and the input operation incor-

porates variable binding. This kind of signature is ‘algebraic’ in that it determines a

monad on a presheaf category [41]. For input/output, we have this concrete syntax.

Γ v̀ V : chan Γ, a : bit p̀ M : τ

Γ p̀ inp[V, a.M] : τ

Γ v̀ V : chan Γ v̀ W : bit Γ p̀ M : τ

Γ p̀ out[V,W,M] : τ

To allow manipulation of the data we add constants 0, 1 of type bit and also an

operation if then else to our algebraic signature. In this way the typing rule in (2)

arises from the algebraic signature of effects, not as an extra language construction.

The equations for if then else (2) can be understood as part of the algebraic theory

of the effects [42, §VC]. This suggests a new route to dealing with sum types in nbe,

purely by using algebraic effects. We are currently experimenting with different

implementations of the residualizing monad for this theory. We hope to recover a

standard nbe algorithm for booleans [4] by implementing the monad carefully.

Handlers of algebraic effects: While algebraic effects give a general way for

constructing impure computations, recent developments suggest that it is profitable

to desconstruct computational effects. These ‘effect handlers’ generalize the idea of

exception handlers to all algebraic effects. (See e.g. [34,38,18].)

To keep things simple, we consider the signature with one unary effect, op. We

can add effect handlers for op to our language with the following term formation

rule.

Γ p̀ M : σ Γ, x : τ v̀ Hop : τ Γ, x : σ v̀ Hreturn : τ

Γ v̀ handleM with {op(x)⇒ Hop | return (x)⇒ Hreturn} : τ

For an intuition, let op(M) be a computation that first ‘beeps’ and then continues

as M . The expression handleM with {op(x)⇒ Hop | return (x)⇒ Hreturn} then

captures each of the beeps in M and replaces them with Hop. For instance, the

expression

(handleM with {op(x)⇒ λ〈〉. op(op(x〈〉)) | return (x)⇒ λ〈〉. x}) 〈〉

replaces each ‘beep’ in M with two beeps.

Mathematically, handler expressions reify the idea that the type (〈〉⇀ τ) is the

free algebra on τ generated by the unary operation op. This intuition suggests the

following equations: firstly, that the handlers are homomorphisms between unary

57

Ahman, Staton

algebras:

Γ v̀ handle (returnV) with {op(x)⇒ Hop | return (x)⇒ Hreturn}

≡ Hreturn[V/x] : τ

Γ v̀ handle (op(M)) with {op(x)⇒ Hop | return (x)⇒ Hreturn}

≡ Hop[(handleM withH)/x] : τ

and secondly, that the handlers provide unique mediating morphisms:

Γ, x : unit⇀ σ v̀ V [(λ〈〉. op[x〈〉])/x] ≡ Hop[(λ〈〉. V)/y] : τ

Γ, x : unit⇀ σ v̀

V ≡ handle (x 〈〉) with {op(y)⇒ Hop | return (z)⇒ V [(λ〈〉. return z)/x]} : τ

However, we conjecture that this equational theory is undecidable. This con-

jecture is based on the observation that computations of type unit are essentially

natural numbers (thinking of return 〈〉 as zero and op(M) as the successor of M).

Thus our system is close to Gödel’s System T, in which equality is undecidable

(assuming ‘uniqueness of recursors’: see [31]).

7 Summary

We have investigated normalization by evaluation for a language with higher types

and computational effects. The effects are specified by an algebraic signature, so

our algorithm works for any notion of computation that can be expressed this way.

A key contribution of our work is our clear and modular semantic analysis of

normalization by evaluation. At the heart of our analysis is the residualizing monad.

• It is a monad on a presheaf category. Following Altenkirch, Cubric, Fiore and

others [3,9,14], we use a presheaf category as an alternative to classical set theory

because we need to normalize open terms. The presheaf category provides us with

well-behaved ‘sets of free identifiers’, while supporting the standard approach to

denotational semantics using cartesian closed categories.

• The monad is built in a principled and modular way, using the operations and

equations in the algebraic theory that describes the computational effects, follow-

ing the ideas of Plotkin, Power and others [35,26].

• In addition to algebraic operations, the monad also incorporates additional alge-

braic structure describing residualizing function calls, following Filinski [13].

Our normalization algorithm is implemented in the dependently typed language

Agda, and also proved correct in Agda. To run our algorithm, we can naively think

of sets as Agda types, but in the correctness proof we more properly understand

sets as Agda types equipped with pers, following [9].

References

[1] Adámek, J., S. Milius, N. Bowler and P. B. Levy, Coproducts of monads on set, in: Proc. LICS (2012).

58

Ahman, Staton

[2] Altenkirch, T., P. Dybjer, M. Hofmann and P. Scott, Normalization by evaluation for typed lambda
calculus with coproducts, in: LICS’01, Washington, DC, USA, 2001, pp. 303–310.

[3] Altenkirch, T., M. Hofmann and T. Streicher, Categorical reconstruction of a reduction free
normalization proof, in: CTCS’95, 1995, pp. 182–199.

[4] Altenkirch, T. and T. Uustalu, Normalization by evaluation for λ→,2, in: Proc. FLOPS’04, 2004.

[5] Atkey, R., A type checker that knows its monad from its elbow (2011), http://bentnib.org/posts/
2011-12-14-type-checker.html.

[6] Balat, V., R. Di Cosmo and M. Fiore, Extensional normalisation and type-directed partial evaluation
for typed lambda calculus with sums, in: POPL’04 (2004), pp. 64–76.

[7] Barthe, G., V. Capretta and O. Pons, Setoids in type theory, J. Funct. Program. 13 (2003), pp. 261–293.

[8] Berger, U. and H. Schwichtenberg, An inverse of the evaluation functional for typed λ–calculus, in:
Proc. LICS’91, 1991, pp. 203–211.

[9] Cubric, D., P. Dybjer and P. J. Scott, Normalization and the Yoneda embedding, Math. Struct. Comput.
Sci. 8 (1998), pp. 153–192.

[10] Danvy, O., Type-directed partial evaluation, in: Proc. Partial Evaluation, 1998, pp. 367–411.

[11] Doczkal, C. and J. Schwinghammer, Formalizing a strong normalization proof for Moggi’s
computational metalanguage: a case study in Isabelle/Hol-nominal, in: Proc. LFMTP’09 (2009), pp.
57–63.

[12] Dybjer, P. and A. Filinski, Normalization and partial evaluation, in: Proc. APPSEM 2000 (2002).

[13] Filinski, A., Normalization by evaluation for the computational lambda-calculus, in: Proc. TLCA’01.

[14] Fiore, M., Semantic analysis of normalisation by evaluation for typed lambda calculus, in:
Proc. PPDP’02, 2002, pp. 26–37.

[15] Ghani, N. and T. Uustalu, Coproducts of ideal monads, ITA 38 (2004), pp. 321–342.

[16] Hyland, M., G. Plotkin and J. Power, Combining effects: sum and tensor, Theor. Comput. Sci. 357
(2006), pp. 70–99.

[17] Johann, P., A. Simpson and J. Voigtländer, A generic operational metatheory for algebraic effects, in:
Proc. LICS 2010, 2010.

[18] Kammar, O., S. Lindley and N. Oury, Handlers in action (2013).

[19] Kammar, O. and G. D. Plotkin, Algebraic foundations for effect-dependent optimisations, in:
Proc. POPL 2012, 2013, pp. 349–360.

[20] Levy, P. B., J. Power and H. Thielecke, Modelling environments in call-by-value programming languages,
Information and Computation 185 (2003), pp. 182–210.

[21] Lindley, S., Accumulating bindings, in: O. Danvy, editor, Informal proceedings of the 2009 Workshop
on Normalization by Evaluation, 2009, pp. 49–56.

[22] Lindley, S. and I. Stark, Reducibility and >>-lifting for computation types, in: Proc. TLCA’05 (2005),
pp. 262–277.

[23] Mac Lane, S. and I. Moerdijk, “Sheaves in geometry and logic: A First Introduction to Topos Theory,”
Springer-Verlag, 1992.

[24] Martin-Löf, P., An intuitionistic theory of types, predicative part, in: Logic Colloquium 1973.

[25] Martin-Löf, P., About models for intuitionistic type theories and the notion of definitional equality, in:
S. Kanger, editor, 3rd Scandinavian Logic Symp., North-Holland, 1975 pp. 81–109.

[26] Melliès, P.-A., Segal condition meets computational effects, in: Proc. LICS 2010, 2010, pp. 150–159.

[27] Melliès, P.-A., Local stores in string diagrams (2011), http://tinyurl.com/mellies-itu-2011.

[28] Møgelberg, R. E. and S. Staton, Linearly-used state in models of call-by-value, in: Proc. CALCO’11.

[29] Moggi, E., Notions of computation and monads, Information and Computation 93 (1991), pp. 55–92.

[30] Norell, U., “Towards a Practical Programming Language Based on Dependent Type Theory,” Ph.D.
thesis, Chalmers University of Technology (2007).

59

http://bentnib.org/posts/2011-12-14-type-checker.html
http://bentnib.org/posts/2011-12-14-type-checker.html
http://tinyurl.com/mellies-itu-2011

Ahman, Staton

[31] Okada, M. and P. Scott, A note on rewriting theory for uniqueness of iteration, Theory and Applications
of Categories 6 (1999), pp. 47–64.

[32] Pitts, A. M., Alpha-structural recursion and induction, J. ACM 53 (2006), pp. 459–506.

[33] Pitts, A. M., Structural recursion with locally scoped names, J. Funct. Program. 21 (2011), pp. 235–286.

[34] Plotkin, G. and M. Pretnar, Handlers of algebraic effects, in: Proc. ESOP 2009 (2009), pp. 80–94.

[35] Plotkin, G. D. and J. Power, Notions of computation determine monads, in: Proc. FOSSACS’02 (2002).

[36] Plotkin, G. D. and J. Power, Algebraic operations and generic effects, Applied Categorical Structures
11 (2003), pp. 69–94.

[37] Power, J., Indexed Lawvere theories for local state, in: Models, Logics and Higher-Dimensional
Categories, AMS, 2011 pp. 268–282.

[38] Pretnar, M., “The logic and handling of algebraic effects,” Ph.D. thesis, University of Edinburgh (2010).

[39] Reppy, J. H., Concurrent ML, in: Encyclopedia of Parallel Computing, 2011 pp. 371–377.

[40] Stark, I., Free-algebra models for the pi-calculus, Theor. Comput. Sci. 390 (2008), pp. 248–270.

[41] Staton, S., An algebraic presentation of predicate logic, in: Proc. FOSSACS 2013, 2013, pp. 401–417.

[42] Staton, S., Instances of computational effects, in: Proc. LICS 2013, to appear, 2013, draft at
http://www.cl.cam.ac.uk/~ss368/instances13.pdf.

60

http://www.cl.cam.ac.uk/~ss368/instances13.pdf

MFPS 2013

On Concurrent Games with Payoff

Pierre Clairambault1 and Glynn Winskel2

University of Cambridge

Abstract

The paper considers an extension of concurrent games with a payoff, i.e. a numerical value resulting from
the interaction of two players. We extend a recent determinacy result on concurrent games [5] to a value
theorem, i.e. a value that both players can get arbitrarily close to, whatever the behaviour of their opponent.
This value is not reached in general, i.e. there is not always an optimal strategy for one of the players (there is
for finite games). However when they exist, we show that optimal strategies are closed under composition,
which opens up the possibility of computing optimal strategies for complex games compositionally from
optimal strategies for their component games.

1 Introduction

Games are a well-established tool in mathematics, economics, logic, and of course

computer science: in the latter, two-player games in particular are very widely used

to model situations where an agent (e.g. a program) interacts with its environment

(e.g. the user, the operating system). For instance, researchers in game semantics

[9] have managed to build very precise (fully abstract [1,8]) models of higher-order

programming languages with various computational effects. Another particularly

rich line of work has been the application of game-theoretic tools for algorithmic and

verification purposes: one expresses a desirable property of a system as a game, and

reduces the satisfaction of this property to the existence of a “good” strategy for this

game. Here, the meaning of “good” can be either qualitative (positions are winning

or losing, with each player wanting to reach a winning position) or quantitative

(positions have a given payoff, with both players trying to maximize their payoff).

For these purposes, one generally wants the games considered to be determined :

qualitatively, this means that one of the players necessarily has a winning strategy,

and quantitatively that the game has a well-defined value that well-chosen strategies

can reach or get arbitrarily close to. For this reason, the classes of games considered

for these purposes generally enjoy determinacy : the most well-known such result

is Martin’s famous theorem [12] stating that for sequential, tree-like games whose

1 Email: Pierre.Clairambault@cl.cam.ac.uk
2 Email: Glynn.Winskel@cl.cam.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

Clairambault and Winskel

winning positions form a Borel set, one of the players must have a winning strategy.

It is well-known that Martin’s theorem generalizes to the quantitative setting if the

game is zero-sum, i.e. in each position the payoffs of the two players sum to zero.

In the last decade, there has been a growing interest in extensions of these games

with concurrency. One very successful definition of (turn-based) concurrent games

has been proposed by Henzinger, de Alfaro et. al. [3,4,7]: their games are based on

Blackwell games [13], where at any point, the next state is decided by a function

of parallel choices of both players. In these games, the pure strategy determinacy

result of sequential games is weakened into a mixed strategy determinacy, where

strategies are allowed to make probabilistic choices.

However in semantics, models of concurrent processes generally allow a more

liberal, non turn-based form of concurrency. Starting with the work of Petri, many

have come to advocate a view of concurrency based on partial orders, specifying

the causal dependency between events – see [16] for an early summary of Petri’s

work and its relation with domain theory. Following this approach, several notions

of concurrent games have been proposed as a basis for denotational semantics: in

terms of closure operators [2] or asynchronous transition systems [15]. Recently,

Winskel and Rideau introduced a more general setting for concurrent games [17]. It

is based on the notion of event structure [18], a partial order of causal dependency

on events with a consistency relation expressing nondeterministic choice. In the

present paper, it is this framework that we will refer to by concurrent games. We

showed in [5] that in this setting qualitative determinacy is satisfied for well-founded

games meeting a structural condition called race-freedom expressing that moves of

one player do not directly interfere with moves of the other. Here, we consider an

extension of concurrent games with zero-sum payoff, and show a generalization of

the qualitative determinacy result of [5] to a quantitative one. As the reader will

see this is not a trivial exercise and requires a much finer analysis than for the

qualitative case.

Note that we obtain pure strategy determinacy – our strategies do not make

probabilistic choices, although they can act non-deterministically. There is an ap-

parent contradiction with the line of work based on Blackwell games mentioned

above, since they only have mixed strategy determinacy. This is due to a crucial

difference between the two settings: in our games, no fairness assumption is made

and strategies can legitimately choose not to play, possibly resulting in a deadlock

if both strategies choose to do so. We argue that this is a desirable property, since

very often in computer science we have to deal with systems that might not termi-

nate. However from the game theory perspective, this implies that Blackwell games

are not instances of our zero-sum concurrent games. (They do fit into our general

framework, since fairness can be expressed by non zero-sum payoff by setting both

players to be losing at incomplete positions.)

We also investigate quantitative features with respect to the compositional struc-

ture of concurrent games. In sequential games, strategies can be composed using

a form of parallel composition and a hiding operation to make internal play in-

visible. This fact (first remarked on by Conway and emphasised by Joyal [10] in

his analysis of Conway’s work [6]) is seldom used in economics and algorithmics.

However, it is at the very heart of game semantics, the compositional analysis of

62

Clairambault and Winskel

programs and programming languages in terms of games and strategies. Our con-

current games are compositional; in fact, the main result of [17] was to define and

characterise strategies for which composition behaves well (i.e. is associative, and

has identities). Not only is compositionality a prerequisite for building denotational

models of programming languages (as they organize naturally as categories, see e.g.

[11]), but it is also a very successful general approach for proving properties of com-

plex programs. Adapting the earlier work on concurrent strategies, we show here

that optimal strategies are stable under composition, thus building a bicategory of

optimal strategies. This is a significant step towards a compositional analysis of

optimal strategies: instead of modeling complex behaviours as payoff functions and

then computing values and optimal strategies, construct complex optimal strategies

by composition from elementary ones. Extensions with payoff should also prove

useful for purely semantic purposes: pay-off is a powerful notion that allows us to

express familiar winning strategies – as strategies of positive value – as well as more

arcane game-theoretic notions, such as well-bracketing [14].

Outline.

In Section 2, we recall the framework of concurrent games originally presented

in [17]. In Section 3, we show how to enrich these concurrent games with payoff and

introduce the notion of value of games and strategies. In Section 4, we prove the

main result of our paper, the value theorem. Finally in Section 5, we investigate the

compositional aspects of payoff games; in particular we show that optimal strategies

are stable under composition and form a bicategory.

2 Preliminaries

2.1 Event structures

An event structure comprises (E,≤,Con), consisting of a set E, of events which are

partially ordered by ≤, the causal dependency relation, and a nonempty consistency

relation Con consisting of finite subsets of E, which satisfy

{e′ | e′ ≤ e} is finite for all e ∈ E,
{e} ∈ Con for all e ∈ E,
Y ⊆ X ∈ Con⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con

The configurations, C∞(E), of an event structure E consist of those subsets x ⊆ E
which are

Consistent: ∀X ⊆ x. X is finite⇒ X ∈ Con , and

Down-closed: ∀e, e′. e′ ≤ e ∈ x⇒ e′ ∈ x.

Often we shall be concerned with just the finite configurations of an event structure.

We write C(E) for the finite configurations of an event structure E.

Two events which are both consistent and incomparable w.r.t. causal depen-

dency in an event structure are regarded as concurrent. In games the relation of

immediate dependency e _ e′, meaning e and e′ are distinct with e ≤ e′ and

63

Clairambault and Winskel

no event in between, will play an important role. For X ⊆ E we write [X] for

{e ∈ E | ∃e′ ∈ X. e ≤ e′}, the down-closure of X; note if X ∈ Con, then [X] ∈ Con

is a configuration and in particular each event e is associated with a prime config-

uration [e].

Notation 1 Let E be an event structure. We use x−⊂y to mean y covers x in

C∞(E), i.e. x ⊂ y in C∞(E) with nothing in between, and x
e
−−⊂ y to mean

x∪{e} = y for x, y ∈ C∞(E) and event e /∈ x. We use x
e
−−⊂ , expressing that event

e is enabled at configuration x, when x
e
−−⊂ y for some y.

Definition 2.1 Let E and E′ be event structures. A (partial) map of event struc-

tures f : E → E′ is a partial function on events f : E ⇀ E′ such that for all x ∈C(E)

its direct image fx ∈ C(E′) and ∀e1, e2 ∈ x, f(e1) = f(e2) (with both defined) ⇒
e1 = e2 .

Maps of event structures compose as partial functions, with identity maps given

by identity functions. We will say the map is total if the function f is total.

Definition 2.2 [Process operations]

• Products. The category of event structures with partial maps has products

A×B with projections Π1 to A and Π2 to B. The effect is to introduce arbitrary

synchronisations between events of A and events of B in the manner of process

algebra.

• Restriction. The restriction of an event structure E to a subset of events R,

written E � R, is the event structure with events E′ = {e ∈ E | [e] ⊆ R} and

causal dependency and consistency induced by E.

Using these two operations, we can obtain a notion of synchronized compo-

sition. Synchronized compositions play a central role in process algebra, in such

seminal work as Milner’s CCS and Hoare’s CSP. Synchronized compositions of event

structures A and B are obtained as restrictions A×B �R. We obtain pullbacks as

a special case. Let f : A → C and g : B → C be maps of event structures. Defin-

ing P to be A×B � {p ∈ A×B | fΠ1(p) = gΠ2(p) with both defined}, we obtain a

pullback square
P

Π1

zz
Π2

$$
A

f $$

B

gzz
C

in the category of event structures. When f and g are total the same construction

gives the pullback in the category of event structures with total maps.

Definition 2.3 [Projection] Let (E,≤,Con) be an event structure. Let V ⊆ E be

a subset of ‘visible’ events. Define the projection of E on V , to be E↓V =def (V,≤V
,ConV), where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V .

64

Clairambault and Winskel

2.2 Concurrent strategies

2.2.1 Event structures with polarity

Both a game and a strategy in a game are to be represented using event structures

with polarity, which comprise (E, pol) where E is an event structure with a polarity

function pol : E → {+,−} ascribing a polarity + (Player) or − (Opponent) to its

events. The events correspond to (occurrences of) moves. Maps of event structures

with polarity are maps of event structures which preserve polarities.

Definition 2.4 [Basic operations]

• Dual. The dual, E⊥, of an event structure with polarity E comprises the same

underlying event structure E but with a reversal of polarities.

• Simple parallel composition. Let A and B be event structures with polarity.

The operation A‖B simply juxtaposes disjoint copies of A and B, maintaining

their causal dependency and specifying a finite subset of events as consistent if it

restricts to consistent subsets of A and B. Polarities are unchanged.

All the constructions previously introduced for event structures generalize di-

rectly in the presence of polarities.

2.2.2 Pre-strategies

Let A be an event structure with polarity, thought of as a game; its events stand for

the possible occurrences of moves of Player and Opponent and its causal dependency

and consistency relations stand for the constraints imposed by the game. A pre-

strategy represents a nondeterministic play of the game—all its moves are moves

allowed by the game and obey the constraints of the game; the concept will later

be refined to that of strategy. A pre-strategy in A is defined to be a total map

σ : S → A from an event structure with polarity S. Two pre-strategies σ : S → A

and τ : T → A in A will be essentially the same when they are isomorphic, i.e. there

is an isomorphism θ : S ∼= T such that σ = τθ; then we write σ ∼= τ .

Let A and B be event structures with polarity. Following Joyal [10], a pre-

strategy from A to B is a pre-strategy in A⊥‖B, so a total map σ : S → A⊥‖B.

We write σ : A + //B to express that σ is a pre-strategy from A to B. Note that a

pre-strategy σ in a game A, e.g. σ : S → A, coincides with a pre-strategy from the

empty game ∅ to the game A, i.e. σ : ∅ + //A.

2.2.3 Composing pre-strategies

We present the composition of pre-strategies via pullbacks. Given two pre-strategies

σ : S → A⊥‖B and τ : T → B⊥‖C, ignoring polarities we can consider the maps on

the underlying event structures, viz. σ : S → A‖B and τ : T → B‖C. Viewed this

way we can form the pullback in the category of event structures as shown below

A ‖ T idA‖τ**
P

Π2 66

Π1
((

A ‖ B ‖ C //A ‖ C

S ‖ C σ‖idC

44

65

Clairambault and Winskel

where the map A‖B‖C → A‖C is undefined on B and acts as identity on A and

C. The partial map from P to A‖C given by the diagram above (either way round

the pullback square) factors as the composition of the partial map P → P ↓ V ,

where V is the set of events of P at which the map P → A‖C is defined, and

a total map P ↓ V → A‖C. The resulting total map gives us the composition

τ�σ : P ↓ V → A⊥‖C once we reinstate polarities.

Identities w.r.t. composition are given by copy-cat strategies. Let A be an event

structure with polarity. The copy-cat strategy from A to A is an instance of a

pre-strategy, so a total map γA : CCA → A⊥‖A. It describes a concurrent strategy

based on the idea that Player moves, of positive polarity, always copy previous

corresponding moves of Opponent, of negative polarity. For c ∈ A⊥‖A we use c to

mean the corresponding copy of c, of opposite polarity, in the alternative component.

Define CCA to comprise the event structure with polarity A⊥‖A together with the

extra causal dependencies generated by c ≤CCA
c for all events c with polA⊥‖A(c) =

+. The copy-cat pre-strategy γA : A + //A is defined to be the map γA : CCA → A⊥‖A
where γA acts as the identity function on the common set of events.

Interaction In this paper, we will be particularly interested in the results of the

interaction between a strategy σ : S → B and a counter-strategy τ : T → B⊥

in order to determine the resulting payoff. Unlike the composition τ�σ where the

interaction of σ and τ are hidden, it is the status of the configurations in C∞(B)

their full interaction induces which decides the resulting payoff. Ignoring polarities,

we have total maps of event structures σ : S → B and τ : T → B. Form their

pullback,

P
Π1

zz
Π2

$$
S

σ $$

T

τzz
B ,

to obtain the event structure P resulting from the interaction of σ and τ . Because

σ or τ may be nondeterministic there could be several maximal configurations in

C∞(P). Define the set of results of the interaction of σ and τ to be

〈σ, τ〉 =def {σΠ1z | z is maximal in C∞(P)} .

2.2.4 Strategies

The main result of [17] is that two conditions on pre-strategies, receptivity and

innocence, are necessary and sufficient for copy-cat to behave as identity w.r.t. the

composition of pre-strategies. Receptivity ensures an openness to all possible moves

of Opponent. Innocence restricts the behaviour of Player; Player may only introduce

new relations of immediate causality of the form 	_ ⊕ beyond those imposed by

the game.

Definition 2.5 • Receptivity. A pre-strategy σ is receptive iff

σx
a
−−⊂ & polA(a) = − ⇒ ∃!s ∈ S. x

s
−−⊂ & σ(s) = a .

• Innocence. A pre-strategy σ is innocent when it is both

+-innocent: if s _ s′ & pol(s) = + then σ(s) _ σ(s′), and

66

Clairambault and Winskel

−-innocent: if s _ s′ & pol(s′) = − then σ(s) _ σ(s′).

A strategy is a receptive and innocent pre-strategy.

Theorem 2.6 (from [17]) Let σ : A + //B be pre-strategy. Copy-cat behaves as

identity w.r.t. composition, i.e. σ ◦ γA ∼= σ and γB ◦ σ ∼= σ, iff σ is receptive and

innocent. Copy-cat pre-strategies γA : A + //A are receptive and innocent.

Theorem 2.6 motivated the definition of a strategy as a pre-strategy which is

receptive and innocent. In fact, we obtain a bicategory, Games, in which the

objects are event structures with polarity—the games, the arrows from A to B are

strategies σ : A + //B and the 2-cells are maps of spans. The vertical composition of

2-cells is the usual composition of maps of spans. Horizontal composition is given

by the composition of strategies � (which extends to a functor on 2-cells via the

universality of pullback).

3 Concurrent games with payoff

We begin the core of the paper, the treatment of payoff in concurrent games. R
denotes R ∪ {−∞,+∞}, the reals extended with a minimum and maximum.

Definition 3.1 A concurrent game with payoff is a triple (A, κ+
A, κ

−
A), where

A is a concurrent game and κ+
A, κ

−
A : C∞(A)→ R are payoff functions.

In all of this paper, we will only consider zero-sum concurrent games, i.e. for

all z ∈ C∞(A), κ−A(z) = −κ+
A(z). It follows that our games with payoff will be

described by a concurrent game and its payoff function κA = κ+
A : C∞(A)→ R. We

extend the usual constructions on concurrent games to games with payoff.

Definition 3.2 [Constructions]

• Dual. If A is a concurrent game with payoff, then the payoff function on A⊥ is

defined by κA⊥(x) = −κA(x), for x ∈ C∞(A⊥).

• Parallel composition. If A,B are concurrent games with payoff, then the payoff

function on A ‖ B is defined by κA‖B(x) = κA(x1) + κA(x2), where x1 ∈ C∞(A)

is the projection of x on A and x2 ∈ C∞(B) is the projection of x on B.

We now turn to the definitions leading to the value of a game. Since games

and strategies are nondeterministic, these definitions come in two variants: the

optimistic describing the outcome of a game if all the nondeterministic choices are

in favour of Player, and the pessimistic describing the dual case, when all of those

choices are in favour of Opponent. One of the main result of the paper will be

that for race-free well-founded games (to be defined below), the two corresponding

notions of value coincide.

Definition 3.3 We define the optimistic (↑) and pessimistic (↓) results of an

interaction, and values of a strategy and of a game, as follows. Here, σ is a strategy

on A and τ is a counter-strategy (a strategy on A⊥), and the notation σ : A signifies

67

Clairambault and Winskel

a strategy σ : S → A.

r↑(σ, τ) = supx∈〈σ,τ〉 κA(x) r↓(σ, τ) = infx∈〈σ,τ〉 κA(x)

v↑(σ) = infτ :A⊥ r↑(σ, τ) v↓(σ) = infτ :A⊥ r↓(σ, τ)

v↑(A) = supσ:A v
↑(σ) v↓(A) = supσ:A v

↓(σ)

We say that a game A has a value if v↑(A) = v↓(A) = −v↓(A⊥) = −v↑(A⊥):

the optimistic and pessimistic values coincide, and commute with (−)⊥. The com-

mutation with (−)⊥ is a form of minimax property, since the order of quantification

on strategies is reversed in v(A) and −v(A⊥), whereas the coincidence of the opti-

mistic and pessimistic value deals with nondeterminism. Note that not all games

have a value:

Example 3.4 Take the game A = 	 ⊕ with two events of opposite polarities

conflicting with each other, along with κ(∅) = 0, κ({⊕}) = 1 and κ({	}) = −2.

Then it is easy to prove that v↑(A) = 1, v↓(A) = −2, v↑(A⊥) = 2 and v↓(A⊥) = −1.

The example above suggests a simple relationship between v↓(A) and v↑(A⊥) but

this is not always the case. For example, consider the infinite game A comprising

the event structure with polarity

	 ⊕1
� ,,2⊕2

� ,,2⊕3
� ,,2· · · � ,,2⊕n

� ,,2· · ·

where κ(∅) = 0, κ({⊕1, . . . ,⊕n}) = n, κ({⊕1, . . . ,⊕n}∪ {	}) = −n, κ({⊕1, . . .}) =

−∞ and κ({⊕1, . . .} ∪ {	}) = +∞. Then one can check that the optimistic and

pessimistic values coincide, in fact this is always the case when games do not have

conflict. A direct analysis of the available strategies for Player and Opponent shows

that v(A) = 0, whereas v(A⊥) = +∞.

The first example features a race, where both players compete for the same

resource, whereas the second example is not well-founded : the game allows infinite

configurations. These brings us to the two following notions, that will be crucial to

get the value theorem.

Definition 3.5 A game A is race-free if for all x ∈ C(A) such that x
a
−−⊂ and

x
a′

−−⊂ with pol(a) = − and pol(a′) = +, we have x ∪ {a, a′} ∈ C(A).

A game A is well-founded if every configuration in C∞(A) is finite.

Definition 3.6 Let A be a concurrent game with payoff, and x ∈ C∞(A). Let A/x

be the residual of A after x, comprising

• events, {a ∈ A \ x | x ∪ [a]A ∈ C∞(A)},
• consistency relation, X ∈ ConA/x ⇔ X ⊆f A/x & x ∪ [X]A ∈ C∞(A),

• causal dependency, the restriction of that on A.

Define κA/x : C∞(A/x) → R by taking κA/x(y) = κA(x ∪ y). Finally, define

(A, κA)/x = (A/x, κA/x). When x is a singleton {a}, we shall generally write

A/a instead of A/{a}. Finally, we will often write v↑(x) (resp. v↓(x)) for v↑(A/x)

(resp. v↓(A/x)).

68

Clairambault and Winskel

4 The value theorem

In this section, we prove the value theorem on concurrent games. The proof proceeds

in two steps. First, we exhibit key constructions on strategies and the study the

results of their interactions. This analysis will allow us to characterize the values of

all positions of the game. Exploiting well-foundedness of the game, we will deduce

the sought-for value theorem.

4.1 Constructions on strategies

In “glueing” strategies together it is helpful to assume that all the initial negative

moves of the strategies are exactly the same, and indeed coincide with the initial

negative moves of the game:

Lemma 4.1 Let σ : S → A be a strategy, then there exists a strategy σ′ : S′ → A

with σ′ ∼= σ, for which

∀s′ ∈ S′. polS′ [s′]S′ = {−} ⇒ σ′(s′) = s′ . (†)

Henceforth we will assume all strategies satisfy the property (†). In particular,

its adoption facilitates the definition of a ‘sum’ of strategies in a game.

Proposition 4.2 Let σi : Si → A, for i ∈ I, be strategies (assumed to satisfy (†)).

W.l.og. we may assume that whenever indices i, j ∈ I are distinct then so are

those events of Si and Sj which causally depend on a positive event (otherwise we

could tag such events by their respective indices). Define S to be the event structure

with events
⋃
i∈I Si, causal dependency s ≤S e′ iff s ≤Si e

′, for some i ∈ I, and

consistency X ∈ ConS iff X ∈ ConSi, for some i ∈ I. Defining []i∈I σi(s) = σi(s) if

s ∈ Si yields a strategy []i∈I σi : S → A.

The next construction takes a strategy σ on a game A/a, where a is a minimal

positive event of game A, and creates a strategy on A that starts by playing a, then

resumes as σ.

Proposition 4.3 Suppose A is a race-free game such that ∅
a
−−⊂ with pol(a) = +.

Then for any strategy σ : S → A/a, where w.l.o.g. a /∈ S, there is a strategy

playa(σ) : S′ → A: the event structure S′ comprises

• events, S ∪ {a},
• causal dependency, that on S extended by a ≤S′ s, for s ∈ S, whenever a ≤A σ(s),

• with consistency, X ∈ ConS′ iff X ∩ S ∈ ConS,

and playa(σ)(s) = σ(s), for s ∈ S, with playa(σ)(a) = a.

Given a strategy on σ on a residual game A/a, where a is an initial negative

event of A, we can create a strategy on A that awaits a, then resumes as σ.

Proposition 4.4 Suppose A is a game such that ∅
a
−−⊂ with pol(a) = −. Then for

any strategy σ : S → A/a, where w.l.o.g. a /∈ S, there is a strategy waita(σ) : S′ →
A: the event structure S′ comprises

• events, S ∪A−, where A− =def {a′ ∈ A | polA[a′]A ⊆ {−}},

69

Clairambault and Winskel

• causal dependency, that on S and A− extended by a ≤S′ s, for s ∈ S, whenever

a ≤A σ(s) or pol(s) = +,

• with consistency, X ∈ ConS′ iff X ∩ S ∈ ConS & waita(σ)X ∈ ConA,

where waita(σ)(s′) is defined to be σ(s′) if s′ ∈ S, otherwise s′.

We will make use later of the following extension of the notion of residual from

games to strategies:

Definition 4.5 Let σ : S → A be a strategy and x ∈ C∞(S). Define the function

σ/x : S/x→ A/σx to be the restriction of σ. In the case where x is a singleton {s},
we shall generally write σ/s instead of σ/{s}.

Proposition 4.6 For σ : S → A a strategy and x ∈ C∞(S), the function σ/s :

S/s→ A/σ(s) is a strategy.

Let A be a game with payoff κA and σ : S → A and τ : T → A⊥ be strategies.

The set of values resulting from their interaction is given by {κAx | x ∈ 〈σ, τ〉},
which we generally write as κ〈σ, τ〉 when the game is clear from the context. We

use 〈σ, τ〉+ =def {x ∈ 〈σ, τ〉 | + ∈ pol x} for the configurations in 〈σ, τ〉 containing

events of positive polarity. We will make crucial use of the following analysis of the

interactions between strategies.

Lemma 4.7 Let A be a well-founded race-free game with payoff. Let σ and σi, for

i ∈ I, be strategies in A, and τ a strategy in A⊥. Then,

κ〈σ, τ〉 = {−v | v ∈ κ〈τ, σ〉} κ〈playa(σ), τ〉 = κ〈σ, τ/a〉

κ〈[]i∈I σi, τ〉 ⊆
⋃
i∈I κ〈σi, τ〉 κ〈[]i∈I σi, τ〉+ =

⋃
i∈I κ〈σi, τ〉+

κ〈waita(σ), τ〉 ⊇
⋃
t:τ(t)=a κ〈σ, τ/t〉 κ〈waita(σ), τ〉+ =

⋃
t:τ(t)=a κ〈σ, τ/t〉+

¿From this follow two important corollaries. Firstly, if a is an initial positive

event of A we have κ〈playa(σ),waita(τ)〉 = κ〈σ, τ〉; two strategies, one playing a

move and the other waiting for the move, synchronise. This immediately follows

from the lemma above and the observation that waita(σ)/a = σ. Secondly, the fol-

lowing additional construction will be crucial. For (ei)i∈I the family of negative min-

imal events of A and strategies σi : Si → A/ei, we define casei∈Iσi =def []i∈I waiteiσi.

Roughly, this strategy waits for an input ei and then proceeds as σi; though the

full story is subtle as two distinct events ei and ej may be consistent with each

other and the strategies σi and σj overlap. ¿From the lemma follows that for all

τ : T → A⊥ such that T has a minimal +-event

κ〈casei∈Iσi, τ〉 ⊆
⋃

i∈I,t:τ(t)=ai

κ〈σi, τ/t〉 κ〈casei∈Iσi, τ〉+ =
⋃

i∈I,t:τ(t)=ai

κ〈σi, τ/t〉+

In Lemma 4.7 and the observation above, in all the cases where we have inclusions

instead of equalities this is by necessity. For instance with the case construction

above, a configuration in 〈σi, τ〉, by definition a maximal configuration of the pull-

back of σi and τ , although it reappears as a configuration of the pullback of casei∈Iσi
and τ , may no longer be maximal so fail to contribute to 〈casei∈Iσi, τ〉.

70

Clairambault and Winskel

4.2 Values of these constructions

Lemma 4.8 For any race-free well-founded game A, we have:

v↑(playa(σ)) ≤ v↑(σ) v↓(playa(σ)) ≤ v↓(σ)

v↑(σ) ≤ v↑(σ/a) v↓(σ) ≤ v↓(σ/a)

Proof. Direct consequence of Lemma 4.7. 2

Lemma 4.9 Suppose A is race-free and well-founded and σ : S → A is a strategy

with a minimal +-event. Let (fj)j∈J be the family of minimal +-events of A. Then,

v↓(σ) ≤ supj∈J v
↓({fj}) and v↑(σ) ≤ supj∈J v

↑({fj}).

Proof. The pessimistic case follows from Lemma 4.7. Optimistic case. Suppose

that the inequality is false, i.e. supj∈J v
↑({fj}) < v↑(σ). This implies that there is

α ∈ R such that supj∈J v
↑({fj}) < α and v↑(σ) > α. The first inequality implies

∀j ∈ J, ∀σ′ : A′/fj , ∃τ ′ : A⊥/fj , ∀z′ ∈ 〈σ′, τ ′〉, κ(z′) < α, which is easily shown to

imply

∀(σk)k∈K , ∃(τj)j∈σK , ∀k ∈ K, ∀z′ ∈ 〈σk, τσk〉, κ(z′)<α(1)

where K is the set of positive minimal events in S. Applying this property to the

family of strategies obtained by σk = σ/k, we get a family of counter-strategies

(τj)j∈σK . We extend this family to J by setting τj to be the empty strategy (closed

under receptivity) whenever ej 6∈ σK. Thus, we get a family (τj)j∈J . Similarly, the

second inequality implies that

∀τ : A⊥, ∃z ∈ 〈σ, τ〉, κ(z) > α .

Applied to τ = casej∈Jτj , we get z ∈ 〈σ, casej∈Jτj〉 such that κ(z) > α. By our

observation on the interaction with case, there is k0 ∈ K, and z′ ∈ 〈σ/k0, τσk0〉 such

that κ(z′) = κ(z) > α. However, applying (1) to k0 also shows that κ(z′) < α,

contradiction. Hence, the required inequality is true. 2

Lemma 4.10 Let A be a race-free well-founded game and (ei)i∈I the family of its

negative minimal events. Then,

min(κ(∅), infi∈I supσ:A/ei v
↓(σ)) ≤ v↓(A)

min(κ(∅), infi∈I supσ:A/ei v
↑(σ)) ≤ v↑(A)

Proof. For as long as possible, we do not distinguish the optimistic and pes-

simistic cases. If the inequality is false, then there is a real α ∈ R such that

min(κ(∅), infi∈I supσ:A/ei v(σ)) > α > v(A), which in turn implies:

κ(∅)>α(2)

∀i ∈ I, ∃σi : A/ei, ∀τ : A⊥/ei, r(σi, τ)>α(3)

∀σ : A, ∃τ : A⊥, r(σ, τ)<α(4)

In particular, (3) gives a family (σi)i∈I . Instantiating (4) to casei∈Iσi, we get

τ : T → A⊥ such that r(casei∈Iσi, τ) < α.

κ(∅)>α(5)

71

Clairambault and Winskel

∀i ∈ I, ∀t, τ(t) = ei ⇒ r(σi, τ/t)>α(6)

r(casei∈I , τ)<α(7)

Pessimistic case. Since r(casei∈Iσi, τ) < α, there must be y ∈ 〈casei∈Iσi, τ〉 such

that κ(y) < α. If T has no minimal +-event, then necessarily we have y = ∅,
therefore κA(y) = κA(∅) > α, contradiction. Therefore, T has a minimal +-event.

Then by our analysis of interactions for case, there is a minimal +-event t ∈ T and

τ(t) = ei0 and y′ ∈ 〈σi0 , τ/t〉 such that κ(y′) = κ(y) < α. But this is absurd by (6),

so we have found a contradiction.

Optimistic case. By (7) instantiated to the pessimistic case we have that for all

y ∈ 〈casei∈I , τ〉, κ(y) < α. Take one such y ∈ 〈casei∈I , τ〉 (〈casei∈I , τ〉 is non-empty

by Zorn’s lemma). As above, y cannot be empty as that would cause a contradiction,

and T must have a minimal +-event. Therefore, there is a minimal +-event t ∈ T
and τ(t) = ei0 and y′ ∈ 〈σi0 , τ/t〉 such that κ(y′) = κ(y) < α, contradicting (6). 2

4.3 Value theorem

Let A be a fixed well-founded and race-free game.

Lemma 4.11 Let x ∈ C(A). Let (ei)i∈I be the family of extensions of x of negative

polarity, and (fj)j∈J be the family of extensions of x of positive polarity. Then,

v↑(x) = max(min(κ(x), inf
i∈I

v↑(x ∪ {ei})), sup
j∈J

v↑(x ∪ {fj}))

v↓(x) = max(min(κ(x), inf
i∈I

v↓(x ∪ {ei})), sup
j∈J

v↓(x ∪ {fj}))

Where the value v(x) of a configuration x ∈ C(A) is defined as v(A/x).

Proof. The reasoning is the same in the optimistic and pessimistic cases, so we do

not distinguish them.

≤. Let σ : S → A/x be a strategy. If there is a minimal event s ∈ S with

pol(s) = +, then v(x) ≤ v(σ) ≤ supj∈J v(x∪{fj}) by Lemma 4.9. Otherwise, there

is no such minimal s ∈ S. Then v(σ) ≤ κ(x). Indeed, letting τ : T → A/x be

the empty strategy closed by receptivity, we have 〈σ, τ〉 = {∅} and r(σ, τ) = κ(x).

Similarly taking i0 ∈ I, by Lemma 4.8 we have v(σ) ≤ v(σ/ei0), and therefore

v(σ) ≤ infi∈I v(x ∪ {ei}).
≥. Let us prove that supj∈J v(x ∪ {fj}) ≤ v(x), taking j0 ∈ J and σ : A/(x ∪

{fj0}). Then by Lemma 4.8 we have v(playfj0
σ) ≤ v(σ) and v(σ) ≤ v(x). Finally,

by Lemma 4.10 we have as needed min(κ(x), infi∈I v(x ∪ {ei})) ≤ v(x). 2

Theorem 4.12 If A is well-founded and race-free then A has a value, i.e. we have:

v↑(A) = v↓(A) v(A) = −v(A⊥)

(Note that the second equality only makes sense because by the first, we can talk in

a non-ambiguous way of the value v(A) of a game A.)

Proof. Relatively direct consequence of Lemma 4.11. 2

We say that a strategy σ : S → A is optimal when its pessimistic value is equal

to the value of the game. Note that it also implies that the optimistic value is equal

to the value of the game, since for all σ : S → A we must have v↓(σ) ≤ v↑(σ) ≤ v(A).

72

Clairambault and Winskel

It also follows that for optimal strategies, the pessimistic and optimistic values

coincide. When σ is optimal, we will therefore sometimes just write v(σ) for its

value.

Example 4.13 Any well-founded race-free game has a value. However this value is

not necessarily reached: there are games without optimal strategies. Consider the

gameA with events {⊕i | i ∈ N}, pairwise inconsistent, with κ(∅) = 0 and κ({⊕i}) =

i. Its value is +∞ since each positive natural number can be reached, but no strategy

σ satisfies v↓(σ) = +∞ (though the strategy that plays a nondeterministic choice

of natural number satisfies v↑(σ) = +∞).

5 Compositionality of optimal strategies

Finally we study how payoff relates to the composition of strategies. We hope

that thinking compositionally about values and optimal strategies can be helpful

in computing values and optimal strategies for complex games from smaller ones.

There are two main kinds of composition of strategies. The first is the categorical

composition τ � σ of σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C. The second is parallel

composition σ ‖ τ : S ‖ T → A ‖ B.

We start this section with the observation that for any strategy σ : S → A

we have that v↓(σ) = inf{κ(σx) | x ∈ C(S) +-maximal}, since the definition of

pessimistic value quantifies at the same time over Opponent strategies and resulting

interactions. From this, we get:

Proposition 5.1 For strategies σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C, we have

v↓(τ � σ) ≥ v↓(τ) + v↓(σ). Likewise for σ : S → A and τ : T → B, we have

v↓(σ ‖ τ) = v↓(σ) + v↓(τ).

For categorical composition, v↓(τ �σ) ≤ v↓(τ) + v↓(σ) does not hold in general,

and neither do the two inequalities in the optimistic case. However, the situation is

different for optimal strategies. To establish this, we first note:

Proposition 5.2 For race-free, well-founded A and B, v(A ‖ B) = v(A) + v(B).

Proof. By the value theorem, it does not matter whether we work on the optimistic

or pessimistic cases. By simplicity, let us pick the pessimistic one. Firstly, we prove

that v(A ‖ B) ≥ v(A) + v(B). Indeed, let σ : S → A and τ : T → B be strategies.

Then, as needed we have v↓(σ ‖ τ) ≥ v↓(σ) + v↓(τ) by Proposition 5.1.

Moreover, this inequality also holds for A⊥ and B⊥, therefore v(A⊥ ‖ B⊥) ≥
v(A⊥) + v(B⊥), from which it follows that v(A ‖ B) ≤ v(A) + v(B) by the value

theorem and the definition of the dual of games with payoff. 2

Theorem 5.3 If σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C are optimal strategies, so

is τ � σ. Moreover copycat is optimal, therefore there is a bicategory of concurrent

games with payoff and optimal strategies.

Proof. Suppose σ and τ optimal. We reason as follows:

v↓(τ � σ) ≥ v↓(σ) + v↓(τ) = v(A⊥ ‖ B) + v(B⊥ ‖ C) = v(A⊥ ‖ C)

73

Clairambault and Winskel

This implies that v↓(τ � σ) = v(A⊥ ‖ C), since a strict inequality would contradict

the definition of v(A⊥ ‖ C).

Any +-maximal x ∈ C(A⊥ ‖ A) has the form y ∪ y, where y ∈ C(A). Moreover,

κA⊥‖A(x) = κA(y) − κA(y) = 0, therefore we have v↓(γA) = 0. However we also

have v(A⊥ ‖ A) = v(A)− v(A) = 0, therefore copycat is optimal. 2

We finish this section by remarking that from the theorem above it follows that

when σ and τ are optimal, we have v(τ � σ) = v(σ) + v(τ), since both sides are

forced by optimality to coincide with the value of the game.

6 Conclusion

We have proved a value theorem for race-free well-founded concurrent games. Note

that this theorem is not an equilibrium theorem since the value is not always reached.

However it is always reached in finite games. In fact our constructions on strategies

give an algorithm to compute the value and optimal strategies for finite games. In

future we plan to investigate the existence and computation of equilibria in the

non-zero-sum case. This will require the extension of our framework to deal with

probabilistic strategies, and should allow us to formulate a better connection with

the concurrent games of [3,7].

We proved that optimal strategies are stable under composition, forming a bi-

category. This compositional structure is worth investigating further. In other

work, we have developped an extension of concurrent games with symmetry, where

events can be duplicated and hence form the basis for a cartesian closed category of

concurrent strategies. We plan to investigate extensions of the present development

in the presence of symmetry, thus providing the basis for a concurrent program-

ming language based on the simply-typed λ-calculus and concurrent operations on

strategies, for which typable terms describe optimal strategies.

Acknowledgment

The authors gratefully acknowledge the support of the ERC Advanced Grant EC-

SYM.

References

[1] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for pcf. Inf. Comput.,
163(2):409–470, 2000.

[2] Samson Abramsky and Paul-André Melliès. Concurrent games and full completeness. In LICS, pages
431–442. IEEE Computer Society, 1999.

[3] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic. J. ACM,
49(5):672–713, 2002.

[4] Krishnendu Chatterjee and Thomas A. Henzinger. A survey of stochastic ω-regular games. J. Comput.
Syst. Sci., 78(2):394–413, 2012.

[5] Pierre Clairambault, Julian Gutierrez, and Glynn Winskel. The winning ways of concurrent games. In
LICS. IEEE Computer Society, 2012.

[6] John Conway. On Numbers and Games. Wellesley, MA: A K Peters, 2000.

74

Clairambault and Winskel

[7] Luca de Alfaro and Thomas A. Henzinger. Concurrent omega-regular games. In LICS, pages 141–154.
IEEE Computer Society, 2000.

[8] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for pcf: I, ii, and iii. Inf. Comput., 163(2):285–
408, 2000.

[9] Martin Hyland. Game semantics. In Semantics and logics of computation, Publications of the Newton
Institute. Cambridge University Press, 1997.

[10] Andre Joyal. Remarques sur la théorie des jeux à deux personnes. Gazette des sciences mathématiques
du Québec, 1(4), 1977.

[11] Joachim Lambek and Philip J. Scott. Introduction to higher order categorical logic. Cambridge
Univiversity Press, 1988.

[12] Donald A. Martin. Borel determinacy. The Annals of Mathematics, 102(2):363–371, 1975.

[13] Donald A. Martin. The determinacy of blackwell games. J. Symb. Log., 63(4):1565–1581, 1998.

[14] Paul-André Melliès. Asynchronous games 4: A fully complete model of propositional linear logic. In
LICS, pages 386–395. IEEE Computer Society, 2005.

[15] Paul-André Melliès and Samuel Mimram. Asynchronous games: Innocence without alternation. In
Lúıs Caires and Vasco Thudichum Vasconcelos, editors, CONCUR, volume 4703 of Lecture Notes in
Computer Science, pages 395–411. Springer, 2007.

[16] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event structures and domains. In
Semantics of Concurrent Computation, volume 70 of Lecture Notes in Computer Science. Springer,
1979.

[17] Silvain Rideau and Glynn Winskel. Concurrent strategies. In LICS, pages 409–418. IEEE Computer
Society, 2011.

[18] Glynn Winskel. Event structures. In Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg,
editors, Advances in Petri Nets, volume 255 of Lecture Notes in Computer Science, pages 325–392.
Springer, 1986.

A Preliminaries: stable families and composition

The detailed proofs often rely on stable families. Constructions such as product and

pullback are often done most conveniently in the category of stable families. There

is a full and faithful embedding of the category of event structures into the category

of stable families. It has a right adjoint which translates limits such as pullback

and product of stable families to the corresponding universal constructions in the

category of event structures. 3

Definition A.1 For σ : S → A and τ : T → A⊥ we will write [σ, τ] for the set

of interactions between σ and τ , i.e. maximal configurations of the stable family

C(T)� C(S). (It is the pullback of σ and τ in the category of stable families.)

B Constructions on strategies

Lemma B.1 Let σ : S → A be a strategy. Then σ ∼= σ′, a strategy σ′ : S′ → A for

which

∀s′ ∈ S′. polS′ [s′]S′ = {−} ⇒ σ′(s′) = s′ . (†)
Moreover,

S′− = A−

where for an event structure with polarity E we write E− =def {e ∈ E | pol [e] ⊆
{−}}.

3 A recent reference: Glynn Winskel. Event structures, stable families and games. Lecture notes, Comp
Science Dept, Aarhus University, Available from http://daimi.au.dk/~gwinskel, 2011.

75

http://daimi.au.dk/~gwinskel

Clairambault and Winskel

Proof. As a consequence of receptivity and negative innocence [LICS11], whenever

∅ ⊆− y in C(A) there is a unique x ∈ C(S) so that ∅ ⊆− x & σx = y . Consequently,

the map σ induces an order isomorphism w.r.t. inclusion between configurations

x ∈ C(S) where ∅ ⊆− x and y ∈ C(A) where ∅ ⊆− y. The order isomorphism

restricts to an order isomorphism between prime configurations. It follows that σ

is bijective between events s ∈ S− and events a ∈ A−. This bijection extends to a

bijective renaming of events of S to those of S′. 2

The lemma permits us to assume strategies satisfy (†) in the following results.

Proposition B.2 Let σi : Si → A, for i ∈ I, be strategies (assumed to satisfy (†)).

W.l.og. we may assume that whenever indices i, j ∈ I are distinct then so are

those events of Si and Sj which causally depend on a positive event (otherwise we

could tag such events by their respective indices). Define S to be the event structure

with events
⋃
i∈I Si, causal dependency s ≤S e′ iff s ≤Si e

′, for some i ∈ I, and

consistency X ∈ ConS iff X ∈ ConSi, for some i ∈ I. Defining []i∈I σi(s) = σi(s) if

s ∈ Si yields a strategy []i∈I σi : S → A.

Proof. Pre-strategy. Follows from the observation that for any x ∈ C(
⋃
i∈I Si)

there is i ∈ I such that x ∈ C(Si). Therefore preservation of configuration and local

injectivity directly follow from those properties for the σis.

Receptivity. Trivial, since (†) is preserved by union and implies receptivity.

Innocence. For any s1, s2 ∈
⋃
i∈I Si, if s1 _ s2 then there is i ∈ I such that

s1, s2 ∈ Si and s1 _ s2 in Si as well. Therefore if pol(s1) 6= − or pol(s2) 6= +

then by innocence of σi we have σi(s1) _ σi(s2) as well, therefore ([]i∈I σi)(s1) _
([]i∈I σi)(s2) and []i∈I σi is innocent. 2

Proposition B.3 Suppose A is a race-free game such that ∅
a
−−⊂ with pol(a) = +.

Then for any strategy σ : S → A/a, where w.l.o.g. a /∈ S, there is a strategy

playa(σ) : S′ → A: the event structure S′ comprises

• events, S ∪ {a},
• causal dependency, that on S extended by a ≤S′ s, for s ∈ S, whenever a ≤A σ(s),

• with consistency, X ∈ ConS′ iff X ∩ S ∈ ConS,

and playa(σ)(s) = σ(s), for s ∈ S, with playa(σ)(a) = a.

Proof. It is easy to check that S′ is an event structure and that playa(σ) is a

total map of event structures which preserves polarity. Innocence is inherited from

σ. That it is receptive follows from the race-freedom of A: Let x ∈ C(S′) and

playa(σ)x
a′

−−⊂ where a′ ∈ A and pol(a′) = −. If a ∈ x then receptivity condition for

playa(σ) follows directly from that of σ. If a /∈ x then x ∈ C(S) and playa(σ)x = σx.

From the race-fredom of A we deduce that σx
a′

−−⊂ in A/a. Again the receptivity

condition for playa(σ) follows from that of σ. 2

Proposition B.4 Suppose A is a game such that ∅
a
−−⊂ with pol(a) = −. Then

for any strategy σ : S → A/a, where w.l.o.g. a /∈ S, there is a strategy waita(σ) :

S′ → A: the event structure S′ comprises

• events, S ∪A−, where A− =def {a′ ∈ A | polA[a′]A ⊆ {−}},

76

Clairambault and Winskel

• causal dependency, that on S and A− extended by a ≤S′ s, for s ∈ S, whenever

a ≤A σ(s) or pol(s) = +,

• with consistency, X ∈ ConS′ iff X ∩ S ∈ ConS & waita(σ)X ∈ ConA,

where waita(σ)(s′) is defined to be σ(s′) if s′ ∈ S, otherwise s′.

Proof. By innocence, the causal dependencies on S and A− agree where they

overlap. As a /∈ S, by assumption, we obtain a partial order ≤S′ from the definition

above. It is routine to check that S′ is an event structure.

Observe that if σ(s) ∈ A− then s ∈ S−, for all s ∈ S: otherwise there would be

a maximal positive event on which s causally depended, contradicting −-innocence

of σ.

In checking that waita(σ), clearly a total function, is a map of event structures it

is straightforward to show that the image of a configuration x ∈C(S′) is down-closed

in A. By definition waita(σ) preserves consistency, so waita(σ)x is also consistent

and in C(A). Suppose now s1, s2 ∈ x with waita(σ)(s1) = waita(σ)(s2). If both

s1, s2 ∈ S then σ(s1) = σ(s2) so s1 = s2 as σ is map of event structures. Otherwise,

either s1 /∈ S or s2 /∈ S. If both s1 /∈ S and s2 /∈ S, then s1 = s2, directly from

the definition of waita(σ). Otherwise, w.lo.g. suppose s1 ∈ S and s2 /∈ S. Then

σ(s1) = s2 and s2 ∈ A−. By the observation above, s1 ∈ S−. But σ is assumed

to satisfy (†), so σ(s1) = s1 = s2. The function waita(σ) is indeed a map of event

structures.

The map waita(σ) clearly preserves polarity. The construction preserves the in-

nocence inherited from σ. We show receptivity. Suppose x ∈C(S) and waita(σ)x
a′

−−⊂
in A where a′ has negative polarity. Consider first the case when a′ ∈ A−. Then

it can be checked that x ∪ {a′} ∈ C(S′). This yields x
a′

−−⊂ with waita(σ)(a′) = a′.

To show uniquesness, assume waita(σ)(s′) = a′. If s′ /∈ S we obtain waita(σ)(s′) =

s′ = a′. If on the other hand, s′ ∈ S we obtain waita(σ)(s′) = σ(s′) = a′ ∈ A−. By

the observation, s′ ∈ S− and σ(s′) = s′ as σ satisfies (†), and again s′ = a′.

In the case where a′ /∈ A− there must be a1 ≤A a′ with pol(a1) = +. Hence there

is s1 ∈ x, with pol(s1) = +, such that σ(s1) = a1. From the causal dependency of

S′ we must have a ∈ x. It follows that x \ {a} ∈ C(S) and σ(x \ {a})
a′

−−⊂ in A/a,

whereupon receptivity of σ ensures the required receptivity condition for waita(σ).2

Proposition B.5 For σ : S → A a strategy and x ∈ C∞(S), the function σ/s :

S/s→ A/σ(s) is a strategy.

Proof. A straightforward check. 2

Lemma B.6 For all σ : S → A and τ : T → A⊥, then

κ〈σ, τ〉 = {−v | v ∈ κ〈τ, σ〉}

Proof. Straightforward. 2

For all the forthcoming lemmas, the well-founded hypothesis is not strictly nec-

essary. However we keep it as it simplifies the proofs, and these lemmas will only

be applied on well-founded games in order to get the theorem.

Lemma B.7 If the game A is well-founded and race-free,

77

Clairambault and Winskel

κ〈 []
i∈I

σi, τ〉 ⊆
⋃
i∈I

κ〈σi, τ〉

κ〈 []
i∈I

σi, τ〉+ =
⋃
i∈I

κ〈σi, τ〉+

Proof. First, we prove that κ〈[]i∈I σi, τ〉 ⊆
⋃
i∈I κ〈σi, τ〉. Take y ∈ 〈[]i∈I σi, τ〉.

Necessarily, there is z ∈ [[]i∈I σi, τ] such that σΠ1z = y. By definition of []i∈I σi,

there is i ∈ I such that Π1z ∈ Si. It follows that z ∈ [σi, τ], therefore y ∈ 〈σi, τ〉 as

well.

Likewise if y ∈ 〈σi, τ〉 with a positive event, take its witness z ∈ [σi, τ]. Obviously

z ∈ C(T) � C(S′) (where []i∈I σi : S′ → A). Maximality follows from that of z in

C(T)�C(Si): indeed since y has a +-event this event is only consistent with events

in Si, hence any extension of z must be compatible with Si. 2

Lemma B.8 If A is race-free and well-founded, then,

κ〈playa(σ), τ〉 = κ〈σ, τ/a〉

Proof. First we prove that κ〈playa(σ), τ〉 ⊆ κ〈σ, τ/a〉. Take y ∈ 〈playa(σ), τ〉 and

its witness z ∈ [playa(σ), τ] such that y = playa(σ)z. The difficult part of the proof

consist in proving that a ∈ y, let us start with that. Suppose that a 6∈ y. Obviously

if y ∪ {a} ∈ ConA, we have a contradiction with the maximality of z. Otherwise if

a 6∈ y but y ∪ {a} 6∈ ConA, then consider a subconfiguration y′ ⊆ y that is minimal

such that y′ ∪ {a} 6∈ ConA, that is, all the subconfigurations of y′ are compatible

with a. Necessarily y′ is non-empty, otherwise it would be compatible with a, take

y′′−⊂y′, write e the event such that y′′ ∪ {e} = y′. If pol(e) = − then by race-

freedom of A we have y′ ∪ {a} ∈ ConA as well, contradiction, therefore pol(e) = +.

Consider the witnesses z′, z′′ ∈ [playa(σ), τ] corresponding to y′, y′′, and u′ = Π1z
′,

u′′ = Π1z
′′, with u′−⊂u′′ and u′ ∪ {s} = u′′, with playa(σ)(s) = e. Then take

u′′ ∩ S, it is still a configuration of S′ (with playa(σ) : S′ → A). Necessarily we

have (playa(σ)(u′′∩S))∪{a} ∈ C(A) since σ is a strategy on A/a, and we also have

u′′∩S ⊆− u′′ where (playa(σ)u′′)∪{a} 6∈ C(A), but this is forbidden by race-freedom

of A, contradiction.

Therefore, a ∈ y. Then we have (a, a) ∈ z. Set z′ = z \ {(a, a)}, it is straightfor-

ward to check that z′ ∈ [σ, τ/a] and σΠ1z
′ = y \ {a}, therefore κ(σΠ1z

′) = κ(y) by

definition of κ on A/a.

We now turn to the other inequality. Take y ∈ κ〈σ, τ/a〉 along with its witness

z ∈ [σ, τ/a]. Then it is straightforward to check that z′ = z∪{(a, a)} ∈ [playa(σ), τ]

and κ(playa(σ)z′) = κ(y) by definition of κ on A/a. 2

Lemma B.9 We have the following equalities between strategies:

playa(σ)/a= σ

waita(σ)/a= σ

Proof. Trivial. 2

78

Clairambault and Winskel

Lemma B.10 If A is well-founded and race-free, then,

κ〈playa(σ),waita(τ)〉 = κ〈σ, τ〉

Proof. Trivial using Lemmas B.8 and B.9. 2

Lemma B.11 If A is well-founded and race-free, then,

κ〈waita(σ), τ〉 ⊇
⋃

t:τ(t)=a

κ〈σ, τ/t〉

κ〈waita(σ), τ〉+ =
⋃

t:τ(t)=a

κ〈σ, τ/t〉+

Proof. We start with the left-to-right inclusion, take y ∈ 〈waita(σ), τ〉 (supposed

to have positive events) along with its witness z ∈ [waita(σ), τ]. Since y has positive

events it must contain a, as positive events in waita(σ) : S′ → A are set to depend

on a. Therefore there is some t ∈ T such that τ(t) = a and (a, t) ∈ z. Defining

z′ = z \ (a, t), it is straightforward to prove that z′ ∈ [σ, τ/t], and κ(σπ1z) = κ(y)

by definition of κ on A/a.

Reciprocally take t ∈ T such that τ(t) = a, and y ∈ 〈σ, τ/t〉 with its witness

z ∈ [σ, τ/t]. Then it is straightforward to prove that z′ = z ∪ (a, t) ∈ [waita(σ), τ],

and κ((waita(σ))π1z
′) = κ(y) by definition of κ on A/a. Take x ∈ C(T) +-maximal

and such that pol x ⊆ {+} with a 6∈ x, then define z = {(e, e) | e ∈ x}. Then it is

straightforward to check that z ∈ C(T)� C(S′), and z is maximal: indeed π2z = y

is +-maximal, and π1z is +-maximal as well by definition of waita(σ) since a 6∈ x.

It follows that z ∈ [waita(σ), τ] with as required κ(waita(σ))π1z = κτx. 2

Corollary B.12 Setting casei∈Iσi = []i∈I waitai(σi), and if τ : T → A⊥ is such that

T has a minimal +-event, then.

κ〈casei∈Iσi, τ〉 ⊆
⋃
i∈I

⋃
t:τ(t)=ai

κ〈σi, τ/t〉

κ〈casei∈Iσi, τ〉+ =
⋃
i∈I

⋃
t:τ(t)=ai

κ〈σi, τ/t〉+

If T has no +-minimal event, then κ〈casei∈Iσi, τ〉 = {κ(∅)}.

Proof. We apply the following reasoning, putting all the previous lemmas together:

κ〈casei∈Iσi, τ〉= κ〈 []
i∈I

waitai(σi), τ〉

⊆
⋃
i∈I

κ〈waitai(σi), τ〉

⊆
⋃
i∈I

(
⋃

t:τ(t)=ai

κ〈σi, τ/t〉

All these inclusions become equalities when restricted to configurations with a pos-

itive event. 2

79

Clairambault and Winskel

C Results of these constructions

Lemma C.1 For any well-founded race-free game A and a ∈ A with pol(a) = +

such that ∅
a
−−⊂ , for any strategy σ : S → A/a, we have:

v↑(playa(σ))≤ v↑(σ)

v↓(playa(σ))≤ v↓(σ)

Proof. First inequality:

v↑(playa(σ) ≤ v↑(σ)

Let τ : T → A⊥/a, and z ∈ 〈playaσ,waitaτ〉. By Lemma B.10, there is z′ ∈ 〈σ, τ〉
such that κ(z) = κ(z′).

Second inequality:

v↓(playaσ) ≤ v↓(σ)

Let τ : T → A⊥/a and z ∈ 〈σ, τ〉. Then by Lemma B.10 there is z′ ∈ 〈playaσ,waitaτ〉
such that κ(z) = κ(z′). 2

Lemma C.2 For any well-founded race-free game A, a ∈ A with pol(a) = − such

that x
a
−−⊂ , for all strategy σ : S → A/x, we have:

v↑(σ)≤ v↑(σ/a)

v↓(σ)≤ v↓(σ/a)

Proof. First inequality:

v↑(σ) ≤ v↑(σ/a)

Let τ : T → A⊥/(x∪{a}), and z ∈ 〈σ, playaτ〉. By Lemma B.8 there is z′ ∈ 〈σ/a, τ〉
such that κ(z) = κ(z′).

Second inequality:

v↓(σ) ≤ v↓(σ/a)

Let τ : T → A⊥/(x ∪ {a}), and z ∈ 〈σ/a, τ〉. Then by Lemma B.8 there is z′ ∈
〈σ, playaτ〉 such that κ(z) = κ(z′). 2

Lemma C.3 Suppose A is race-free, x ∈ C∞(A). Let (fj)j∈J be the family of

minimal +-events of A. Let σ : S → A be a strategy such that there is a minimal

+-event s ∈ S. Then,

v↓(σ)≤ sup
j∈J

v↓({fj})

v↑(σ)≤ sup
j∈J

v↑({fj})

Proof. Pessimistic case. Necessarily there must be j0 ∈ J such that σ(s) = fj0 .

Then, we are going to prove that

v↓(σ) ≤ v↓(σ/s)

80

Clairambault and Winskel

Indeed, take τ : A⊥/fj0 , and z ∈ 〈σ/s, τ〉. By Lemma B.11, there is z′ ∈ 〈σ,waitfj0 (τ)〉
such that κ(z) = κ(z′).

Optimistic case. Suppose that the inequality is false, i.e.

sup
j∈J

v↑({fj}) < v↑(σ)

This implies that there is α ∈ R such that supj∈J v
↑({fj}) < α and v↑(σ) > α. The

first inequality implies:

∀j ∈ J, ∀σ : A′/fj , ∃τ ′ : A⊥/fj , ∀z′ ∈ 〈σ′, τ ′〉, κ(z′) < α

which is easily shown to imply:

∀(σk)k∈K , ∃(τj)j∈σK , ∀k ∈ K, ∀z′ ∈ 〈σk, τσk〉, κ(z′)<α(C.1)

where K is the set of positive minimal events in S. Applying this property to the

family of strategies obtained by σk = σ/k, we get a family of counter-strategies

(τj)j∈σK . We extend this family to J by setting τj as the empty strategy (closed

under receptivity) whenever ej 6∈ σK. Thus, we get a family (τj)j∈J .

Likewise, the second inequality implies that:

∀τ : A⊥, ∃z ∈ 〈σ, τ〉, κ(z) > α

Let us apply it to τ = casej∈Jτj , we get z ∈ 〈σ, casej∈Jτj〉 such that κ(z) > α. By

Corollary B.12, there is k0 ∈ K, and z′ ∈ 〈σ/k0, τσk0〉 such that κ(z′) = κ(z) > α.

However, applying (1) to k0 also shows that κ(z′) < α, contradiction. Hence, the

required inequality is true. 2

Lemma C.4 Let A be a game, (ei)i∈I the family of its negative minimal events.

Then,

min(κ(∅), inf
i∈I

sup
σ:A/ei

v↓(σ))≤ v↓(A)

min(κ(∅), inf
i∈I

sup
σ:A/ei

v↑(σ))≤ v↑(A)

Proof. For as long as possible, we do not distinguish the optimistic and pessimistic

cases. Suppose that the inequality is false. It implies that there is α ∈ R such that

min(κ(∅), inf
i∈I

sup
σ:A/ei

v(σ))>α

v(A)<α

which imply the following three propositions:

κ(∅)>α(C.2)

∀i ∈ I, ∃σi : A/ei, ∀τ : A⊥/ei, r(σi, τ)>α(C.3)

∀σ : A, ∃τ : A⊥, r(σ, τ)<α(C.4)

In particular, (C.3) gives a family (σi)i∈I . Instanciating (C.4) with casei∈Iσi, we

get τ : T → A⊥ such that r(casei∈Iσi, τ) < α.

κ(∅)>α(C.5)

∀i ∈ I, ∀t, τ(t) = ei ⇒ r(σi, τ/t)>α(C.6)

r(casei∈I , τ)<α(C.7)

81

Clairambault and Winskel

Let us now distinguish the optimistic and pessimistic cases.

Pessimistic case. Since r(casei∈Iσi, τ) < α, there must be y ∈ 〈casei∈Iσi, τ〉
such that κ(y) < α. If T has no minimal +-event, then necessarily we have y = ∅,
therefore κA(y) = κA(∅) > α, contradiction. Therefore, T has a minimal +-event.

Then by Corollary B.12 there is a minimal +-event t ∈ T and τ(t) = ei0 and

y′ ∈ 〈σi0 , τ/t〉 such that κ(y′) = κ(y) < α. But this is absurd by (C.6), so we have

found a contradiction.

Optimistic case. By (C.7) instanciated in the pessimistic case we have that

for all y ∈ 〈casei∈I , τ〉, κ(y) < α. Take one such y ∈ 〈casei∈I , τ〉 (〈casei∈I , τ〉 is

non-empty by Zorn’s lemma). As above, y cannot be empty as that would cause a

contradiction, and T must have a minimal +-event. Therefore by Corollary B.12

there is a minimal +-event t ∈ T and τ(t) = ei0 and y′ ∈ 〈σi0 , τ/t〉 such that

κ(y′) = κ(y) < α, contradicting (C.6). 2

D Proof of the value theorem

Let A be a fixed well-founded and race-free game.

Lemma D.1 Let x ∈ C(A). Let (ei)i∈I be the family of extensions of x of negative

polarity, and (fj)j∈J be the family of extensions of x of positive polarity. Then,

v↑(x) = max(min(κ(x), inf
i∈I

v↑(x ∪ {ei})), sup
j∈J

v↑(x ∪ {fj}))

v↓(x) = max(min(κ(x), inf
i∈I

v↓(x ∪ {ei})), sup
j∈J

v↓(x ∪ {fj}))

Proof. The reasoning is the same in the optimistic and pessimistic cases, hence we

do not distinguish them. We prove the first unequality:

v(x) ≤ max(min(κ(x), inf
i∈I

v(x ∪ {ei})), sup
j∈J

v(x ∪ {fj}))

Let σ : S → A/x be a strategy. If there is a minimal event s ∈ S with pol(s) = +,

then v(x) ≤ v(σ) ≤ supj∈J v(x ∪ {fj}) by Lemma C.3. Otherwise, there is no such

minimal s ∈ S. Then v(σ) ≤ κ(x). Indeed, let τ : T → A/x be the empty strategy

closed by receptivity, we have 〈σ, τ〉 = {∅} and r(σ, τ) = κ(x). Likewise take i0 ∈ I,

by Lemma C.2 we have v(σ) ≤ v(σ/ei0), therefore v(σ) ≤ infi∈I v(x ∪ {ei}).
We now prove the other inequality:

max(min(κ(x), inf
i∈I

v(x ∪ {ei})), sup
j∈J

v(x ∪ {fj})) ≤ v(x)

Let us prove that supj∈J v(x ∪ {fj}) ≤ v(x), taking j0 ∈ J and σ : A/(x ∪ {fj0}).
Then by Lemma C.1 we have v(playfj0

σ) ≤ v(σ) and v(σ) ≤ v(x). Finally, we need

to prove that min(κ(x), infi∈I v(x ∪ {ei})) ≤ v(x), but this is Lemma C.4. 2

Theorem D.2 If A is well-founded and race-free, then the optimistic and pes-

simistic values coincide:

v↑(A) = v↓(A)

This justifies writing v(A) for the value of a game.

Proof. It is obvious from the lemma above that there cannot be a maximal x ∈C(A)

maximal such that v↑(A/x) 6= v↓(A/x). Since A is well-founded, that must be true

82

Clairambault and Winskel

for the empty configuration. 2

Theorem D.3 If A is well-founded and race-free, then we have:

v(A) = −v(A⊥)

Proof. Let x ∈ C(A) be maximal such that v(A/x) = −v(A⊥/x). Let (ei)i∈I be

the family of negative extensions of x and (fj)j∈J its family of positive extensions.

Then,

v(A/x) = max(min(κA(x), inf
i∈I

v(A/(x ∪ {ei}))), sup
j∈J

v(A/(x ∪ {fj})))

= max(min(−κA⊥(x), inf
i∈I
−v(A⊥/(x ∪ {ei}))), sup

j∈J
−v(A⊥/(x ∪ {fj})))

=−min(max(κA⊥(x), sup
i∈I

v(A⊥/(x ∪ {ei}))), inf
j∈J

v(A⊥/(x ∪ {fj})))

=−max(min(κA⊥(x), inf
j∈J

v(A⊥/(x ∪ {fj}))),

min(sup
i∈I

v(A⊥/(x ∪ {ei})), inf
j∈J

v(A⊥/(x ∪ {fj}))))

But for all i0 ∈ I, v(A⊥/(x∪ {ei0})) ≤ v(A⊥) by Lemma C.1 and for all j0 ∈ J , we

have v(A⊥) ≤ v(A⊥/(x∪{fj0})) by Lemma C.2, therefore supi∈I v(A⊥/(x∪{ei})) ≤
infj∈J v(A⊥/(x ∪ {fj})), and:

v(A/x) =−max(min(κA⊥(x), inf
j∈J

v(A⊥/(x ∪ {fj}))), inf
j∈J

v(A⊥/(x ∪ {fj})))

=−v(A⊥/x)

Contradiction. Therefore there is no such maximal x and the property is true for

the empty configuration, thus v(A) = −v(A⊥) since A is well-founded. 2

E Proofs on compositionality of optimal strategies

Proposition E.1 Let A be a game and σ : S → A a strategy. Then,

v↓(σ) = inf{κ(σx) | x ∈ C(S) +-maximal}

Proof. ≤. It suffices to show:

∀x ∈ C(S) +-maximal, ∃τ : T → A⊥, ∃y ∈ 〈σ, τ〉, κ(y) ≤ κ(σx)

Thus, let x ∈ C(S) be +-maximal. Set T = (σx)⊥ with τ : T → A⊥ acting as the

identity on events. τ is obviously innocent but not necessarily receptive, consider

its closure τ ′ : T ′ → A⊥ by receptivity. Then, define:

z = {(e, σe) | e ∈ x}

It is straightforward to check that z ∈ C(S) � C(T ′), and it is maximal since x is

+-maximal and by construction of τ ′. It follows that σΠ1z = σx ∈ 〈σ, τ ′〉.
≥. It suffices to show that for all τ : T → A⊥/x and y ∈ 〈σ, τ〉 there exists a +-

maximal x ∈C(S) such that κ(σx) ≤ κ(y). But for all such y there is z ∈C(S)�C(T)

maximal such that y = σΠ1z. Set x = Π1z, since z is maximal x must be +-

maximal, and κ(σx) = κ(y). 2

83

Clairambault and Winskel

Proposition E.2 For strategies σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C, we have

v↓(τ � σ) ≥ v↓(τ) + v↓(σ). Likewise for σ : S → A and τ : T → B, we have

v↓(σ ‖ τ) = v↓(σ) + v↓(τ).

Proof. Straightforward using Proposition E.1. 2

Proposition E.3 For any race-free, well-founded games A and B, we have v(A ‖
B) = v(A) + v(B).

Proof. By the value theorem, it does not matter whether we work on the optimistic

or pessimistic cases. By simplicity, let us pick the pessimistic one. Firstly, we prove

that v(A ‖ B) ≥ v(A) + v(B). Indeed, let σ : S → A and τ : T → B be strategies.

Then, as needed we have v↓(σ ‖ τ) ≥ v↓(σ) + v↓(τ) by Proposition E.2.

Moreover, this inequality also holds for A⊥ and B⊥, therefore v(A⊥ ‖ B⊥) ≥
v(A⊥) + v(B⊥), from which it follows that v(A ‖ B) ≤ v(A) + v(B) by the value

theorem and the definition of the dual of games with payoff. 2

Theorem E.4 If σ : S → A⊥ ‖ B and τ : T → B⊥ ‖ C are optimal strategies, so

is τ � σ. Moreover copycat is optimal, therefore there is a bicategory of concurrent

games with payoff and optimal strategies.

Proof. Suppose σ and τ optimal. We reason as follows:

v↓(τ � σ)≥ v↓(σ) + v↓(τ)

= v(A⊥ ‖ B) + v(B⊥ ‖ C)

= v(A⊥ ‖ C)

This implies that v↓(τ � σ) = v(A⊥ ‖ C), since a strict inequality would contradict

the definition of v(A⊥ ‖ C).

Copycat is optimal: take a +-maximal x ∈ C(A⊥ ‖ A). Necessarily, x has the

form y ∪ y, where y ∈ C(A). Moreover, κA⊥‖A(x) = κA(y) − κA(y) = 0, therefore

by Proposition E.1, we have v↓(γA) = 0. However we also have v(A⊥ ‖ A) =

v(A)− v(A) = 0, therefore copycat is optimal. 2

84

MFPS 2013

Nominal Lambda Calculus: An Internal
Language for FM-Cartesian Closed Categories

Roy L. Crole and Frank Nebel

Dept of Computer Science, University of Leicester, University Road, Leicester, LE1 7RH, U.K.

Abstract

Reasoning about atoms (names) is difficult. The last decade has seen the development of numerous novel
techniques. For equational reasoning, Clouston and Pitts introduced Nominal Equational Logic (NEL),
which provides judgements of equality and freshness of atoms. Just as Equational Logic (EL) can be
enriched with function types to yield the lambda-calculus (LC), we introduce NLC by enriching NEL with
(atom-dependent) function types and abstraction types. We establish meta-theoretic properties of NLC;
define NFM-cartesian closed categories, hence a categorical semantics for NLC; and prove soundness &
completeness by way of NLC-classifying categories. A corollary of these results is that NLC is an internal
language for NFM-cccs. A key feature of NLC is that it provides a novel way of encoding freshness assertions,
and a new vehicle for studying the interaction of freshness together with higher order types.

Keywords: category theory, dependent types, FM-sets, internal language, nominal logic, semantics, type
theory

1 Introduction

Categorical gluing is a fascinating topic. Crole has had a long-standing interest,

especially in the connections with logical relations. In [9] Crole developed categor-

ical logical relations and showed that the relational glued category simplifies the

Freyd scone [13], and applied the construction to prove that the (βη)λ-calculus is

conservative over algebraic theories (and more besides). The starting point for our

current work was to ask if there is a notion of nominal categorical logical relation

which could be used to prove conservative extension results—for the type theory we

considered Nominal Equational Logic (NEL).

(NEL) was introduced by Clouston and Pitts in [8] (closely related to Nominal

Algebra introduced by Gabbay and Mathijssen [16]). Space forces us to assume

familiarity with NEL, but here is a quick overview: NEL extends equational logic

EL [10,24] (where types denote ZF-sets). NEL variables are thought of as ele-

ments of FM-sets (roughly speaking, sets whose elements have a finite support of

atoms/(names) in the sense of Gabbay and Pitts [14] and for which one can make

1 Email: r.crole@mcs.le.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:r.crole@mcs.le.ac.uk

Crole & Nebel

assertions about the freshness of atoms). The motivation for NEL is to provide a

system for formal equational reasoning combined with reasoning about the fresh-

ness of atoms—the latter an important topic of study in Programming Semantics.

To this end one seeks a theory with a sound and complete semantics. The theory

must necessarily capture permutation actions, finite support, and freshness. As

such, one might expect to be able to make judgements a # M , asserting atom a is

fresh for M , as well as M = M ′. Further, we need to be able to assert hypotheses

a # x about variables x that may occur (freely) in M . Indeed in NEL one sees

a1 # x1 : s1, ..., an # xn : sn `# a # M : s capturing the intuition that if sets of

atoms ai are fresh for (the interpretation of) the xi, then a is fresh for M . One might

also work instead with judgements a1 # x1 : s1, ..., an # xn : sn `E M : s and then

codify a # M by way of an equation, since freshness can be defined equationally [6]

(under suitable conditions). This is the approach we take.

Clouston has shown in [5,7] that the category FMSet provides a sound and

complete semantics for NEL. Further he defines the notion of an FM-category,

axiomatising the underlying structure of FMSet , and shows that such categories

yield a sound semantics. He shows that a NEL theory has a classifying FM-category

in which there is a generic model [10,31]—hence his semantics is also complete.

Indeed, Clouston shows that there is a correspondence between NEL theories and

FM-categories establishing that NEL is an internal language for FM-categories.

Lambek [21] showed that theories in the λ-calculus correspond to cartesian closed

categories (a proof using functional completeness, with Scott, appears in [22]; see

also [10]).

A natural question to ask is whether there is a notion of nominal λ-calculus

(NLC) that corresponds to some form of “cartesian closed FM-category”. More-

over, if there is, we can test the robustness of both NEL, and the methodology of

categorical logical relations, by attempting to show that NLC is conservative over

NEL using gluing. To do this we need to develop NLC and a suitable categorical

correspondence, which we do in this paper.

Before we begin the task at hand, we justify our overall approach. At the

conceptual level, this paper concerns itself with the fascinating notion of corre-

spondences between category theory and type theory. This arises from Lawvere’s

seminal work [23]. There are two approaches that one could take in formulating

such correspondences. (i) is to demonstrate that models of a theory Th in a cate-

gory C (and maps between models), Mod(Th, C), correspond to structure preserving

functors (and natural transformations between functors), SPF (Cl(Th), C). (ii) is

to show the existence of a monad TTh for which Mod(Th, C) corresponds to the

(Eilenberg-Moore) algebras of TTh . Both approaches have their merits. For some

deep insights into the heart of the matter in the case of theories in equational logic

consult Hyland and Power’s overview [19]. An elegant approach via monads, pro-

viding a very general framework, is established in the work of Berger, Mèlliés and

Weber [2] and Mèlliés [26]. However, for computer science and (foundations of)

program semantics, where one may well be seeking a rigorously specified syntactic

type theory capable of being formalised, approach (i) seems to be the path to follow

(please see Section 7 for additional commentary). In particular, we want to estab-

lish that any such theory is indeed the internal language of a suitable category with

86

Crole & Nebel

structure, with the usual adjunction Cl a Th.

Remark 1.1 The category central to this work is FMSet [5,15]. The category of

nominal sets FMNom is relevant too: for a very clear introduction see [30]. While

the properties of FMSet are less well known than FMNom, both are toposes T .

As such each is equipped with a Higher Order Logic internal language ThT . Thus

one might ask whether one could automatically capture the notion of FM-ccc by

internalisation of cartesian closure (and freshness) in T ; and indeed “extract” NLC

from the HOL ThT , perhaps by extending ThT with additional axioms. It is not

clear to us that this can be done, or, if it can, whether it it can circumvent the detail

in this paper bearing in mind that our aim from the “computer science” perspective

is to produce a fully formalised type theory. See Section 7 for more discussion.

We build directly on [7], taking approach (i). We have tried to keep this paper

as self-contained as possible, but cannot include all of the definitions and lemmas

for lack of space. Some are included in an appendix. In Section 2 we specify the

types and terms of NLC without abstraction. We define permutation actions, cap-

ture avoiding substitution, and α-equivalence. We prove results about the terms

which we will use when proving soundness and completeness. In Section 3 we spec-

ify the NLC type system and define NLC equational theories, without abstraction.

We again prove key results for soundness and completeness. In Section 4 we in-

troduce FM-cartesian closed categories, showing they soundly model NLC without

abstraction. In Section 5 we add abstraction and concretion to NLC and show that

our semantics is sound and complete for NFM-cccs, which are FM-cccs with addi-

tional structure that models abstraction and concretion. In Section 6 we show that

NFM-cccs are syntax free presentations of NLC theories. In Section 7 we discuss

applications and further work. Please see the Results Road Map on page 102. Here

are the main contributions:

• Higher order functions that naturally extend NEL are partial in the sense that

their arguments must satisfy freshness conditions. We believe that this is the

first paper to posit a move to a “types dependent on atoms” type theory in order

to capture, in a novel type system, this partiality of higher order functions (see

page 88 for details). NLC allows us to examine the combination of the freshness

relation and higher types in a new light.

• Dependent types enable us to to specify name abstraction and concretion. The

operation of concretion is inherently partial, and indeed cannot be captured as

a NEL theory—see Clouston [4]. However NLC dependent types do provide a

mechanizm to capture this partiality.

• In [7] the type system for terms is separate from the system for freshness as-

sertions, (a two part type system). Moreover typing judgements predicated on

freshness assertions are not first class citizens (but simply reflexive equations).

We introduce rules (see page 102) for a single first class type system. This is not

only necessitated by the dependent types, but significantly simplifies and unifies

the judgements forms in [7].

• A clean formulation of a categorical semantics of NLC. The semantics is consid-

erably complicated by both type dependency on atoms, and the encapsulation

87

Crole & Nebel

of freshness judgements by equational axioms. Our single first class type system

simplifies our soundness proof from what it would otherwise have been.

• A simplification of Clouston’s meta-theory [7]. We show that all the key properties

of (syntactic) permutation actions we require can be defined cleanly on raw terms,

prior to type-checking. This material is mainly in Section 2 and the appendix.

• A detailed proof of an “approach (i)” category theory type theory correspon-

dence, yielding NLC theories as the internal language of FM-cccs, and hence

completeness. We pay very careful attention to details that are significant for

implementations (see for example the proof on page 107 of Lemma 3.3).

We will use the following notation: Let A be the set of atoms (names). We write

a or similar for typical finite subsets {a1, . . . , ak} of A. We write π or similar for any

permutation on A with finite domain. Perm denotes the set of such permutations

(equivalently those generated by transpositions (a b)). The composition of π and

π′, with π′ acting first, is denoted by π ◦ π′ or ππ′. If X = (X, ·) is an FM-set, and

x ∈ X, we write supp(x) for the support of x, and a # x to denote that each atom

in a is not in supp(x).

2 The Meta-Theory of NLC Terms without Abstraction

Remark 2.1 Until Section 5 we work with a subset of NLC. This will allow us

to fully motivate the use of a form of dependent typing in order to formulate our

extension of NEL with higher order functions. Abstraction and concretion is omitted

until later in the paper.

In NEL one works with a nominal set of types 2 . In NLC we work with a nominal

set of ground types, and generate the function types. NLC extends NEL terms with

function abstractions and applications. An abstraction takes the form λax : s.M

and we explain the intended semantic interpretation. In NEL we may have a # x :

s `E M : s ′. If we want to capture the “mapping” x 7→ M as an abstraction, we

could consider λ x : s.M . However, if we apply λ x : s.M to a term N : s we also

need to ensure that a # N . We might codify the set a in the abstraction λax : s.M .

So far so good. But what about types? In NEL, the FM-set semantics of a # x : s

is specified by requiring that [[x]] ∈ [[s]]#a
def
= {e ∈ [[s]] | a # e}. So one might

wonder if sa could be be a suitable type for the source of our abstraction, with a

compositional semantics [[sa]]
def
= [[s]]#a. We can then consider the type sa ⇒ s′ for

our abstraction, hoping that if our semantics is defined in a compositional way, it

will have all of the relevant equivariance and categorical properties to yield a sound

and complete semantics. This abstraction typing is deceptively simple: the type

and equation system that results is intuitive, but quite complex to manipulate since

function types now depend on atoms.

NLC-Signatures, Types, and Raw Terms. We start with an analogue of the

notion of a signature for λ-calculus. A NLC-signature Sg is specified by

2 In [7] “types” are called sorts. We use the word type since it better matches general usage in computer
science, and categorical type theory

88

Crole & Nebel

(i) GndSg , a nominal set of ground types. The set of types TypeSg is then

generated by the BNF grammar s ::= γ | sa ⇒ s where γ is any ground type.

Since each type s is a finite tree and GndSg is a nominal set, each s is finitely

supported with the permutation action

π · γ def
= π ·GndSg

γ π · (sa ⇒ s′)
def
= (π · s)π·a ⇒ (π · s′)

and hence TypeSg is a nominal set of types.

(ii) A nominal set of (higher order function) constant symbols FunSg .

(iii) An equivariant typing function FunSg → TypeSg , which assigns to each con-

stant symbol c a type; we refer to a typing c : s.

Fixing a set Var
def
= {V1,V2,V3, . . .} of (ordered) variables, the raw NLC-terms

are specified by M := πx | c | λax : s.M |M M where πx is a suspension [8,7] of

any variable x ∈ Var . We refer to the set of raw terms for signature Sg by TermSg .

Variables may be free or bound (where all occurrences of x in any “subterm”

λax : s.M are bound).

Permutation Actions for Raw Terms. Recall [8,16] the two standard permu-

tation actions on Perm, namely conjugation (which is finitely supported) and left

multiplication (which is not). Clouston & Pitts and Gabbay & Mathijssen define

two permutation actions, called meta-level π ·M and object-level π ∗M [8,7], which

are syntactic analogues of the actions on Perm. In categorical type theory one

always works with terms in context. As such, a term M with a free variable x

is always regarded as a “function” x 7→ M . The permutation action on functions

found in nominal and FM-sets is a (form of) conjugation action and the syntac-

tic analogue is π ·M . However it is useful to work also with a simple action in

which π acts on M simply by acting recursively over the structure of a term: eg

π ∗ (τx)(τ ′y) = (π ∗ τx)(π ∗ τ ′y) = (πτx)(πτ ′y).

We define such actions for NLC. To do so, consider the recursive definition of

mappings (π,M) 7→ π ∗M and (π,M) 7→ π ·M in Table 1. Note that in order

to define the object-level permutation we first define a basic form of substitution

M [π−1x/x], on raw terms M . We call this a suspension-substitution. Informally,

free occurrences of x in M are replaced by π−1x. Formally, the recursive definition

is the expected one, where on suspensions we define (π′y)[π−1x/x]
def
= π′y if x 6= y

and (π′x)[π−1x/x]
def
= (π′π−1)x.

To show in Proposition 2.2 that the mappings in Table 1 are permutation actions,

we need Lemma C.1 (see Appendix).

Proposition 2.2 (Permutation Action Definitions)

• The mapping (π,M) 7→ π ·M is a permutation action; we call it the meta-level

permutation action. It is finitely supported, so the set TermSg of raw NLC-

terms is a nominal set. The finite support of a raw term is specified recursively

where supp(πx)
def
= supp(π), supp(λax : s.M)

def
= a ∪ supp(s) ∪ supp(M) and

supp(M N)
def
= supp(M)∪ supp(M); and constants are finitely supported by defi-

nition.

89

Crole & Nebel

• π · π′x def
= (ππ′π−1)x

• π · c def
= π ·FunSg

c

• π · (λax : s.M)
def
= λπ·ax : π · s.(π ·M)

• π · (M N)
def
= (π ·M) (π ·N)

Meta-Level

• π ∗ π′x def
= (ππ′)x

• π ∗ c def
= π ·FunSg

c

•
π ∗ (λax : s.M)

def
=

λπ·ax : π · s.(π ∗ (M [π−1x/x]))

• π ∗ (MN)
def
= (π ∗M)(π ∗N)

Object-Level

Table 1
Permutation Actions for NLC

• The mapping (π,M) 7→ π ∗M is a permutation action; we call it the object-level

permutation action.

Capture Avoiding Substitution and α-Equivalence. We require simultaneous

capture-avoiding substitution of raw terms. This will be crucial for defining com-

position of morphisms in a classifying category–see Proposition 5.1. Since the high

level ideas of this paper can be read without recourse to such detail, we simply state

our notation here, and refer the reader to Section C for the details (our approach

simplifies Clouston’s [7]). Substituting N1, . . . , Nn for free occurrences of the dis-

tinct variables x1, . . . , xn in the raw term M yields another raw term, which we

denote by M{N1, . . . , Nn/x1, . . . , xn} or by M{Ni/xi}.
So far we have used structural equality on terms M = N . Since we wish to work

with capture avoiding substitution (to construct our classifying category) which

makes use of variable renaming, we have to replace = with α-equivalence ∼α. It

can easily be shown that ∼α is equivariant for the permutation actions, that is

M ∼α N implies π ·M ∼α π ·N and respectively for the object level permutation

action. From this a well-defined permutation action on α-equivalence classes of

terms is induced: π · [M]α
def
= [π ·M]α and π ∗ [M]α

def
= [π ∗M]α. Capture avoiding

substitution lifts to the set of α-equivalence classes of terms, TermSg
/
∼α .

Remark 2.3 We call [M]α an expression. Having taken great care in defining

expressions [M]α (a key component of our work; details in the Appendix page 105),

we adopt the usual convention of writing just M . However, all our proofs deal

correctly with the intricacies that arise from variable re-naming to avoid capture

(see for example [28] (page 169) and [25]).

The next propositions are crucial for our main theorems, the first (∗ associates

with {/}) by induction on M , the second (∗ distributes over {/}) by direct calcu-

lation being a corollary of Proposition 2.4 and Lemma C.3. For expressions [M]α,

distinct variables x1, . . . , xn, and expressions [N1]α, . . . , [Nn]α we have

Proposition 2.4 (π ∗ [M]α){[N ′i]α/xi} = π ∗ ([M]α{[N ′i]α/xi})

Proposition 2.5 π · (M{Ni/xi}) = (π ·M){(π ·Ni)/xi} (Written using the con-

vention for α-equivalence classes, generally adopted from now on.)

90

Crole & Nebel

3 NLC Typed Expressions and Equational Theories

We define NLC by specifying a type and equation system. The intuitions of NLC

and NEL are the same, but technicalities are quite different. In NEL, terms are

typed using environments Γ
def
= x1 : s1, . . . , xn : sn, just like ordinary equational

logic. The judgements either take the form Γ ` M : s (�), or ∇ `E M ≈ M ′ : s

where ∇ = a1 # x1 : s1, ..., an # xn : sn records assumptions about freshness and

types. NEL judgements ∇ `E M : s are simply sugar for reflexive equations. The

type system (�) is entirely separate from the freshness system (in two parts)! We

found this slightly confusing. Indeed, with NLC we cannot separate the type system

in this way, since the types of abstractions depend directly on freshness assertions.

Thus the environments used in the type system must encode freshness assertions

(and cannot be of the form Γ)! Our typing judgements ∇ `E M : s are first class

citizens (in a single system). They are not abbreviations for reflexive equations.

This is not merely dabbling with unnecessary cosmetic idolatry: it simplifies the

presentation of our categorical semantics and is a key contribution.

Recall the formal notion of a freshness environment [7] (included below). We

can then define expressions, and equations, in context and finally present the NLC

type and equation systems.

A freshness environment, or just environment, is a finite partial function

∇ : Var → Pfin(A) ⊗ TypeSg with finite domain. By definition it maps each

x ∈ dom(∇) to a pair (a, s) where a is a finite set of atoms s ∈ TypeSg and

a # s. The set of environments EnvSg is a nominal set under the permutation

action (π · ∇)(x) = (π · a, π · s). We often write an environment ∇ as a1 # x1 :

s1, ..., an # xn : sn. For ∇,∇′, we write ∇ ≤ ∇′ if dom(∇) ⊆ dom(∇′) and for all

x ∈ dom(∇) we have pr1(∇(x)) ⊆ pr1(∇′(x)) and pr2(∇(x)) = pr2(∇′(x)).

• We define an expression-in-context as a judgement of the form ∇ `E M : s

where ∇ is a freshness environment, M is an α-equivalence class of NLC-terms

(an expression) and s is a type.

• An equation-in-context is a judgement of the form ∇ `E M ≈ M ′ : s where

∇ `E M : s and ∇ `E M ′ : s.

A NLC-theory Th is a pair (Sg ,Ax), where Sg is a NLC-signature and Ax is a

collection of equations-in-context. We shall use Th to inductively define a subset

of expressions-in-context and equations-in-context. Any expression-in-context that

has a derivation is a typed expression; and any such equation-in-context is a

theorem. The set of typed expressions and theorems of a NLC-theory Th is the

least set of judgements containing the axioms of Th and closed under the rules in

Table A.1 in Appendix A. We indicate that any judgement J has a derivation in

theory Th by writing Th B J .

Remark 3.1 Justified by [6] we use the following abbreviation: for ∇ `M : s and

a ⊆ A (a # s), we write ∇#z def
= a1 ∪ z # x1 : s1, ..., an ∪ z # xn : sn and

∇ `E a # M : s
def
= ∇#z `E M ≈ (a z) ∗M : s.

In the transposition, a ∈ An is sugar for a tuple of the atoms in the set a and

91

Crole & Nebel

z ∈ An is any/some fresh tuple of the same size such that z # (∇, a,M). If

Th B ∇ `E a # M : s then we may legitimately call the judgement a theorem, but

we will usually call it a freshness assertion.

The role that the judgements ∇ `E a # M : s play leads to a crucial difference

between NEL and NLC. Consider the rule AP. Since F has type sa ⇒ s ′ then a

must be fresh for the argument A, formally encoded as ∇ `E a # A : s. Thus the

type system rules have equations-in-context as hypotheses, and the equation rules

have expressions-in-context as hypotheses. Thus theorems and typed expressions

are mutually inductively defined. Obviously this complicates our proofs, at least in

comparison to NEL, and leads to some subtleties which we explain in due course.

We have two more lemmas that are crucial for proving some important facts

about NLC. Lemma 3.2 is used in induction steps in which a binding variable in

an abstraction also occurs in the environment (of the abstraction): For an example

induction see the Appendix proof (page 107) of Lemma 3.3, and [28] (page 169) for a

detailed explanation of the problem. Lemma 3.3 is used in proving Proposition 3.4;

the proposition underpins our semantics and classifying category construction.

Lemma 3.2 (Variable Equivariance of Judgements) All typed expressions,

and all theorems (hence freshness assertions too), are equivariant under variable

swapping. More precisely, for any two distinct variables x, y, and where (x y) • −
denotes variable swapping (see page 105)

Th B ∇ `E M : s =⇒ Th B (x y) • ∇ `E (x y) •M : s

Th B ∇ `E M ≈M ′ : s =⇒ Th B (x y) • ∇ `E (x y) •M ≈ (x y) •M ′ : s

Lemma 3.3 Th B ∇, a # x : s `E M : s ′ if and only if Th B ∇, π ·a # x : π ·s `E
M{π−1x/x} : s ′ and similarly for equations.

In order to define our categorical semantics, we will require Proposition 3.4 and

Proposition 3.5. Some example proof details are in the Appendix.

Proposition 3.4 (∗ preserves Typed Expressions and “Equalities”)

Given a theory Th,

Th B ∇ `E M : s implies Th B ∇ `E π ∗M : π · s
Th B ∇ `E M ≈M ′ : s implies Th B ∇ `E π ∗M ≈ π ∗M ′ : π · s

Proposition 3.5 (Atom Equivariance of Judgements) Given a theory Th,

Th B ∇ `E M : s implies Th B π · ∇ `E π ·M : π · s
Th B ∇ `E M ≈M ′ : s implies Th B π · ∇ `E π ·M ≈ π ·M ′ : π · s

4 A Sound Categorical Semantics

FM-Cartesian Closed Categories. Underlying intuition for FM-cccs starts by con-

sidering internal categories I in FMNom. Such structures, while necessary for

modelling NLC, are not sufficiently rich: to give meaning to NLC terms we must

encode permutation actions as morphisms—an additional requirement on I. We

92

Crole & Nebel

follow the “type (i) approach”: axiomatising I externally and equipping with per-

mutation morphisms, yields a category with finitely supported internal permutation

actions. We then obtain good notions of products and exponentials by stipulating

coherence conditions between these structures and the internal permutation action;

these are cartesian closed perm-categories. The (additional, external) axiomatisa-

tion of freshness properties yields FM-cccs. Further details of FM-categories are

in [7].

A category C has an internal permutation action if for each π ∈ Perm and

C ∈ ob C there is a C-arrow πC : C → π · C such that ιC is the identity idC and

(π′ ◦ π)C = π′π·C ◦ πC , where π ·C is defined to be the codomain of πC . An internal

permutation action is finitely supported if every arrow f : C → D in C is finitely

supported with respect to the permutation action π · f def
= πD ◦ f ◦ (π−1)π·C . We

call a category with a finitely supported permutation action a perm-category. A

perm-category has equivariant products if it has finite products, and the inter-

nal permutation action preserves the projections (hence also preserves the product

objects). A perm-category with equivariant finite products has equivariant ex-

ponentials if it is cartesian closed and the internal permutation action preserves

the evaluation morphism π · evA,B = evπ·A,π·B (and hence exponential objects are

preserved). A perm-category with equivariant finite products has fresh inclusions

if for every finite set of atoms a ⊆ A and C-object C such that a # C we have a

C-arrow iaC : C#a → C for which the following properties hold:

(i) (Equivariance): π · iaC = iπ·aπ·C ;

(ii) (Sets of Atoms): i∅C = idC and iaC ◦ ia
′

C#a = ia∪a
′

C ;

(iii) (Products): iaC1×C2
= iaC1

× iaC2
;

(iv) (Internal permutation action): if supp(π) # C then πC#supp(π) is equal to the

identity idC#supp(π) ;

(v) (Epi When Fresh): If we have parallel C-arrows f, g : C → D such that

f ◦ iaC = g ◦ iaC and a # (f, g), then f = g;

(vi) (Freshness): Let f : C → D be such that a # D. Define †(f, a)
def
= (∃ b)(b #

(a, f) ∧ (a b)D ◦ f ◦ ibC = f ◦ ibC). If †(f, a) holds then there is a unique

f∗ : C → D#a, the image restriction of f , such that iaD ◦ f∗ = f .

A perm-category with equivariant finite products and fresh inclusions is an FM-

category and if it also has equivariant exponentials we call it an FM-ccc. The

category FMSet of FM-sets is an FM-ccc, with the (equivariant) exponential of

FM-sets X and Y being the FM-set X ⇒fs Y of finitely supported functions from

X to Y , and with iaX : X#a def
= {x ∈ X | a # x} ↪→ X as fresh inclusions. FM-cpos

are another example.

Remark 4.1 Each freshness property has a simple intuition. We give one example

for (Freshness). Let f : X → Y be finitely supported in FMSet , x ∈ X and a # Y .

By choosing b # a, f and b # x we have (f ◦ ibC)(x) = f(x) and the condition †(f, a)

amounts to (b # a, f) ∧ (a b) · f(x) = f(x). But since b # x we can also deduce

b # f(x), so we have (b # a, f(x)) ∧ (a b) · f(x) = f(x). Hence f(x) ∈ Y #a and so

f image restricts (with f∗ : x 7→ f(x)).

93

Crole & Nebel

[[∇, ai # xi : si ` πxi : π · si]] I
π[[si]] ◦ i

ai
[[si]]
◦ pr i : [[∇, ai # xi : si]] −→ [[si]]

#ai −→ [[si]] −→ π · [[si]]

[[∇ ` c : s]] I [[c]]◦! : [[∇]]→ 1→ [[s]]

[[∇, a# x : s `M : s′]] I m : [[∇]]× [[s]]a → [[s′]]

[[∇ ` λax : s.M : sa ⇒ s′]] I λ(m) : [[∇]]→ ([[s]]#a ⇒ [[s′]])

[[∇ ` F : sa ⇒ s′]] I f : [[∇]]→ ([[s]]#a ⇒ [[s′]]) [[∇ ` a# A : s]] I θ : [[∇]]→ [[s]]#a

[[∇ ` F A : s′]] I ev ◦ 〈f, θ〉 : [[∇]]→ ([[s]]#a ⇒ [[s′]])× [[s]]#a → [[s′]]

[[∇ `E M : s]] I m
†(m,a)

[[∇ `E a#M : s]] I m∗

Table 2
Semantics in an FM-ccc

A Sound Categorical Semantics. We wish to define a categorical semantics

which will interpret typed expressions Th B ∇ `E M : s as morphisms [[∇ `E M :

s]] : [[∇]] −→ [[s]] in an FM-ccc C. However we have seen that NLC is dependently

typed: in particular the type system and equation system are mutually inductively

defined. This means that we cannot give a simple recursive definition of a function

[[−]] over (well-typed) expressions [31,33]. However, we can give such a definition

of a partial semantic function, which is defined only when certain equations are

themselves satisfied by [[−]].

We also deal with a further complication. See rule AP which has hypothesis

∇ `E a # A : s. We wish to define, following Remark 4.1, the semantics of

∇ `E a # A : s as [[∇ `E a # A : s]]
def
= [[∇ `E A : s]]

∗
—but this morphism is

defined only if the condition †([[∇ `E A : s]], a) holds! Thus we also need to factor

this requirement into our semantics and soundness theorem.

We can now define the semantics. Let C be a FM-ccc and Sg a NLC-signature.

Then a Sg-structure M in C is specified by giving:

• An equivariant map [[−]] : GndSg −→ ob C. We extend to the map [[−]] :

TypeSg −→ ob C via structural recursion ([[sa ⇒ s ′]]
def
= [[s]]#a ⇒ [[s ′]]) and this is

easily seen to be equivariant too, since C has equivariant structure.

• An equivariant map [[−]] : FunSg −→ ob C where for each higher order function

constant c : s we have [[c]] : 1 −→ [[s]] (recall that C has finite products—hence an

equivariant terminal object).

Let ∇ = a1 # x1 : s1, ..., an # xn : sn ∈ EnvSg be a freshness environment. Then

we define the C-object [[∇]] by [[∇]]
def
= [[s1]]#a1 × ... × [[sn]]#an . We define a notion

of satisfaction for both expressions-in-context and equations-in-context. Let M be

a structure for a NLC-signature in an FM-ccc C and consider the binary relation

I in Table 3. Table 3 specifies a partial function J 7→ [[J]] from judgements to

morphisms [[J]] in C. Given ∇ `E M : s or ∇ `E a # M : s we say thatM satisfies

the judgement if the morphism [[∇ `E M : s]] : [[∇]] −→ [[s]] or [[∇ `E a # M : s]] :

[[∇]] −→ [[s]]#a in C is defined (that is, the partial function J 7→ [[J]] is defined). If so

we write [[∇ `E M : s]]⇓ or [[∇ `E a # M : s]]⇓. Generally, [[J]]⇓ def
= (∃j)([[J]] I j).

We may write [[J]] or even [[J]]⇓ for morphism j. Given ∇ `E M ≈ M ′ : s we say

that M satisfies it if both [[∇ `E M : s]]⇓ and [[∇ `E M ′ : s]]⇓ and they are equal

94

Crole & Nebel

morphisms in C. We say that M is a model of a NLC theory Th = (Sg ,Ax) if

M satisfies all of the equations-in-context in Ax . With this, we have our soundness

theorem:

Theorem 4.2 (Soundness) Let Th be a NLC theory and M a model of Th in

an FM-ccc. Then every typed expression Th B ∇ `E M : s, freshness assertion

Th B ∇ `E a # M : s and theorem Th B ∇ `E M ≈M ′ : s is satisfied by M.

We need the following intermediate results to prove the soundness theorem.

We adopt a direct approach to proving that our semantics is compositional with

respect to substitution, which reduces some overhead from the approach in [7].

Note that we appeal to Propositions 3.4 and Proposition 3.5 to ensure that the

NLC judgements mentioned below are properly defined. We shall write L � R to

mean that L⇓ ⇐⇒ R⇓ and that L = R. An example proof for part of Lemma 4.4

is in the Appendix.

Lemma 4.3 (Semantic Id, Inclusion, Int. Perm. Action, Projection)

Given a freshness environment ∇ = a1 # x1 : s1, ..., an # xn : sn then we have

(i) id[[∇]] � 〈[[∇ ` a1 # x1 : s1]], ..., [[∇ ` an # xn : sn]]〉
(ii) ia[[∇]] � 〈[[∇

#a ` a1 # x1 : s1]], ..., [[∇#a ` an # xn : sn]]〉
(iii) π[[∇]] � 〈[[∇ ` π · a1 # πx1 : π · s1]], ..., [[∇ ` π · an # πxn : π · sn]]〉
(iv) pr [[∇j]] : [[∇1]]× [[∇2]]→ [[∇j]] � 〈[[∇1 ∪∇2 ` ai # xi : si]]〉, where ∇1,∇2 ∈

EnvSg have disjoint domains but are such that ∇j = ∇ for j = 1 and 2.

Lemma 4.4 (Useful Semantic Factorisations “[[ξ]] = [[ξ]] ◦m”)

(i) The function [[−]] : EnvSg → EnvSg is equivariant.

(ii) [[π · ∇ `E π ·M : π · s]] � π · [[∇ `E M : s]]

(iii) [[∇ ` π ∗M : π · s]] � π[[s]] ◦ [[∇ `M : s]]

(iv)
[[∇, π · a # x : π · s `E M{π−1/x} : s′]] �

[[∇, a # x : s `E M : s′]] ◦ (id[[∇]] × π−1

[[π·s]]#π·a
)

(v) Given ∇ ≤ ∇′ there exists an arrow weak : [[∇′]] → [[∇]] such that for any

typed expression ∇ `E M : s, [[∇′ `E M : s]] � [[∇ `E M : s]] ◦ weak.

(vi) [[∇#a `E M : s]] � [[∇ `E M : s]] ◦ ia where a # ∇.

Proposition 4.5 (Compositional Semantics) Let ∇ def
= a1 # x1 : s1, ..., an #

xn : sn. Suppose, for theory Th, we have the typed expression ∇ `E M : s and

freshness assertions ∇′ `E ai # Ni : si for each i. Then we have ∇′ `E M{Ni/xi} :

s. Moreover, if [[∇ `E M : s]]⇓ and [[∇′ `E ai # Ni : si]]⇓ for each i then we

have [[∇′ `E M{Ni/xi} : s]]⇓ and further [[∇′ `E M{Ni/xi} : s]] = [[∇ `E M :

s]] ◦ 〈[[∇′ `E ai # Ni : si]]〉.

The proofs of Lemmas 4.3 and 4.4 require a combination of direct calculations

and inductions over the structure of terms. Note that the proof of Proposition 4.5 is

by induction over the structure of M and does not require a complicated statement

that is provable by mutual induction. The intuition is that, as one would expect,

the semantics of expressions is derivation independent. We are now in a position to

prove Theorem 4.2—see Appendix page 109.

95

Crole & Nebel

5 A Complete Categorical Semantics

In order to obtain a completeness result we need a way in which we can construct

a cartesian closed category out of NLC syntax. To do this we augment the types,

expressions and rules with a form of atom-abstraction. In doing so we arrive at the

final form of NLC (with abstraction) for which we have a categorical model that is

both sound and complete. Please note that we only give a summary of the details

in this preliminary paper.

We augment the type system with types of the form Na. s. We augment the

collection of terms with abstraction and concretion terms 〈a〉M and M @ a. The

permutation actions on the resulting expressions are defined in the expected way.

The type system and equation system appears on page 104. The equations spec-

ify forms of beta-rule and eta-rule, ensure that term forming operations are con-

gruences, and that the 〈a〉M abstraction operator on expressions is equated with

〈a′〉M ′ provided that the two expressions given by swapping out the a and a′ for a

fresh atom b are provable equal in the logic.

We also need a richer categorical structure to achieve completeness. For any

FM-category, there is a family of categories (C#a | a ∈ A) where ob C#a consists of

those C ∈ ob C for which a # C. Given such C,C ′ ∈ C#a, then f : C → C ′ ∈ mor C
is a morphism in C#a just in case a # f . The basic properties of fresh inclusions

ensure that each C#a is indeed a category, and moreover that there is a functor

(−)#a : C#a → C. We shall require this functor to have a right adjoint Na .(−)

and for there to be a family of morphisms concb : (Na .C)#b → (a b) · C. These

structures are required to satisfy commutativity properties which are needed in

order to soundly model the equations BAA and EAA (see Figure A.3). For example,

for every D ∈ ob C#a, X ∈ ob C, and a′, b # X, where ηa,D is the counit of the

adjunction, we have

D#a m
- (a a′) ·X

(a′ b)(a a′)·X- (a b) ·X

D

i

?

F ∗
- (Na .X)#b

concb

6

with F being the morphism

D
ηa,D- Na .D#a Na .m

- Na .(a a′) ·X
Na .(a a′)(a a′)·X- Na .X

Further

D
F

- Na .X

Na .D#a

ηa,D

?

Na .((a b)(a b)·X ◦ conca ◦ F ∗ ◦ iaD)
- Na .X

wwwwwwwwww
96

Crole & Nebel

[[∇#a `E M : (a a′) · s]] I m : [[∇]]#a → (a a′) · [[s]]

[[∇ `E 〈a′〉M : Na. s]] I Na .((a a′)(a a′)·[[s]] ◦m) ◦ ηa,[[∇]] : [[∇]]→ Na .[[∇]]#a → Na .[[s]]

[[∇ `E F : Na. s]] I f : [[∇]]→ Na .[[s]]
†(f ,b)

[[∇#a `E F @ b : (a b) · s]] I concb ◦ f∗ ◦ ia[[∇]]
: [[∇]]#a → [[∇]]→ (Na .[[s]])#b → (a b) · [[s]]

Table 3
Semantics in an FM-ccc

where

D#a iaD - D
F ∗
- (Na .X)#b concb- (a b) ·X

(a b)(a b)·X- X

Suppose that we also require the adjoints to commute. We call such FM-cccs with

this additional structure NFM-cccs; it is these categories that yield a sound and

complete semantics for NLC.

An example of such a category is FMSet . The action of the functor (−)#a

sends any FM-function f : X → Y ∈ FMSet#a to f#a : X#a → Y #a where

f#a(x ∈ X#a)
def
= f(x) ∈ Y #a is easily seen to be well-defined. The action of the

right adjoint Na .(−) is defined on f : X → Y by setting

Na .X
def
= {〈a′〉x | a′ # X ∧ x ∈ (a a′) ·X}

where 〈a′〉x is the abstraction operator of Gabbay and Pitts [14], and Na .f(z ∈
Na .X)

def
= ((a b) ·f)(z@ b) for some/any suitably fresh atom b. The verification that

we have an adjunction satisfying the stated properties is a rather length calculation

which we omit from this paper.

The Classifying Category and Categorical Completeness. The notion of classi-

fying category, topos, etc is a standard one in category theory [10,22]. To prove

completeness we now show that we can build an FM-ccc from the syntax of a

NLC theory (Proposition 5.1), together with a generic model [10] (Propositions 5.3

and 5.4). Sketch proofs are in the Appendix.

Proposition 5.1 (Classifying Category) For every NLC-theory Th we can de-

fine a classifying FM-ccc Cl(Th) which is built from the syntax of Th. An object is

a freshness environment ∇ def
= (a1 # x1 : s1, ..., an # xn : sn). If ∇′ def

= (a′1 # x′1 :

s′1, ..., a
′
m # x′m : s′m) then a morphism δ

def
= ([M1]≈, . . . , [Mm]≈) : ∇ → ∇′ is a list

of typed expressions such that for 1 ≤ i ≤ m we have Th B ∇ `E a′i # Mi : s′i, and

[Mi]≈ is the equivalence class of those T such that Th B ∇ `E Mi ≈ T : s′i.

Remark 5.2 We explain, with a simple example, how we are able to construct

exponentials in the classifier. Consider (a1 # x1 : s1) ⇒ (a′1 # x′1 : s′1). One

would imagine that, whatever the exponential is, it should somehow involve the

type s1
a1 ⇒ s′1

a′1 which is not legitimate in NLC. However, consider the following,

97

Crole & Nebel

recalling that in an NFM-ccc the adjoints commute

C#a1
1 ⇒ C ′1

#a′1 ∼= (Na′1 .C
#a1
1 ⇒ C ′1)#a′1 ∼= ((Na′1 .C1)#a1 ⇒ C ′1︸ ︷︷ ︸

”valid NLC type”

)
a′1

We mimic the above isomorphisms in the syntax of NLC in order to construct

exponentials, giving brief details in the appendix. The freshness assertion a′1 is

captured by an NLC freshness assertion.

Proposition 5.3 The generic Sg-structure G of Th = (Sg , Ax) in Cl(Th) is given

by defining [[γ]]G =def (∅ # x : s) where γ is any ground type from Sg. If c is a

constant with typing c : s then [[c]]G
def
= ([c]≈) : 1

def
= () −→ (∅ # x : s) is well

defined since Th B [] `E c : s Further, suppose that Th B ∇ `E M : s. Then

[[∇ `E M : s]]G I [M]≈ : ∇ → (∅# v : s)

Proposition 5.4 The generic structure G is a model of any Th = (Sg ,Ax).

Theorem 5.5 (Completeness) The categorical semantics of NLC-theories in

FM-cccs is complete: Let Th be a NLC-theory. If any equation-in-context for Th is

satisfied in all FM-ccc models of Th, then it is a theorem.

6 Category Theory/Type Theory Correspondence

Clouston [7] demonstrated a categorical type theory correspondence between NEL

and FM-categories; we have established a similar correspondence between NLC and

FM-cccs. Recall [10] that the correspondence result for standard λ-calculus and

cartesian closed categories is slightly more restricted than the one for EL and cate-

gories with finite products: Due to the covariant nature of exponentials, components

of homomorphisms of models must be restricted to isomorphisms.

Theorem 6.1 The category Cl(Th) is a classifying category for NLC-theories

in the sense that for every model M of Th in a NFM-ccc D there is a unique NFM-

ccc functor FM : Cl(Th) → D such that FM composes with the generic model to

yield M.

Now take a definition of homomorphism h :M→N of models of an NLC-theory

Th in an NFM-ccc C consisting of equivariant isomorphisms hγ : [[γ]]M
∼= [[γ]]M,

where hsa⇒s′ is given by (h#a
s)−1 ⇒ hs′ (and a # s ensures homomorphisms are well

defined). For a NLC-theory Th and a small NFM-ccc C, the category of models

Mod∼=(Th, C) consists of the Th models and homomorphisms. An NFM-ccc functor

F : C → D is an NFM-functor that preserves exponentials and commutes with the

adjunction. We can define FMccc∼=(C,D) as a category with NFM-ccc functors as

objects and finitely supported natural isomorphisms as morphisms.

Theorem 6.2 We have FMccc∼=(Cl(Th),D) 'Mod∼=(Th,D) for any NLC-theory

Th and NFM-ccc D. For any NFM-ccc C, we have Cl(Th(C)) ' C. For any NLC-

theory Th we have Th ' Th(Cl(Th)).

98

Crole & Nebel

7 Solutions, Open Questions, and Further Work

Exploiting Atom-Dependent Types. Clouston [4] observes that name-abstraction

and concretion in FMSet cannot be captured by a NEL theory. This is related to

the fact that concretion is a partial function, which can only be applied to arguments

that meet certain freshness conditions. In the total concretion theory in Section 8

of [4] (page 15; MFPS 2010), Clouston describes concretion functions of the form

cona : Name.s → s where Name.s is the name-abstraction type. Now cona x is

well-formed only if a # x. NEL does not support such partiality. But in NLC we

have exploited the new dependent type system to yield a solution. This provides us

with an alternative way to handle concretion, without relying on local scoping [29]

or bunched contexts [3]. We intend to fully develop this in an extended journal

article.

Internal and 2-Categorical Approaches Could this paper be simplified by consid-

ering internalisation in one of the FM-toposes? We cannot give a definitive answer:

a deep investigation must wait for future work, but here are a few observations.

Consider even the basic notion of perm-category. A perm-category is internal to

FMNom; but an internal FMNom-category is not a perm-category since the mor-

phism permutation πC is not directly captured by the internalisation. So it is not

clear to us that the notion of FM-ccc could be extracted by internalisation. Going

further, it is also not clear how the atom-set-partiality of our higher types can be

(usefully) captured. However, even if it can, this misses a central point of our pa-

per: a direct investigation into the interplay of higher order types and the freshness

relation via a domain specific formal type theory. Possibly if one sought a direct

route to “some kind of” completeness result an internal approach might work, but

we are trying to do more than that. What is true is that the “nominal” world still

needs to be better understood from a “2-categorical” viewpoint, and there are a

number of open questions.

Future Work. Recall our motivation for this work: to develop a formal frame-

work for nominal higher order functions, with a view to proving it a conservative

extension over NEL by nominal gluing. Nominal gluing remains work in progress,

but our preliminary results about the Yoneda Lemma and cartesian closure of nom-

inal functor categories appear in [12]. From such a gluing proof, we might be able

to extract a form of categorical normalisation result, taking the work in a more ap-

plied direction through the construction of some form of abstract machine for NLC

along with an implementation. Is there some form of nominal categorical abstract

machine?

From the Computer Science perspective, we have taken great care in specifying

NLC formally and care with proofs that involve quite subtle intricacies arising from

α-equivalence in the nominal setting, and the (variable) equivariance of judgements

and rules. We have attempted to avoid the traps (explained in [28]) that others have

fallen into. As such, it would be an interesting project to study a mechanisation of

NLC.

How much further can one take categorical correspondences for nominal log-

ics/type theories? We are considering product and coproduct types, and of course

one might study computational monad types, numbers, and more [20]. Going still

99

Crole & Nebel

further there is the general consideration of Martin Löf dependent type theory

[27,32], nominal and FM analogues, and corresponding categorical structures. We

are also investigating Henkin style models as have Gabbay and Mulligan [17]. Ch-

eney [3] has studied the properties of a type theory that mixes functions, and atoms

as first class citizens, along with a name abstraction operator. While discussing

others’ work, it is interesting to note that type dependency is a common feature of

studies involving computational type-and-effect systems. Examples are [34,1].

We have considered the possibility that the original NEL could be presented

using dependent types in place of freshness assertions. However, the resulting type

theory might be different. Such dependently typed theories, in which a # x : s

is wholly replaced by x : sa, could be more expressive than NEL theories. This

remains future work.

We thank Ranald Clouston for very detailed comments; John Power for being

helpful and generous with his time over a public holiday; and for other useful com-

ments and observations from Martin Hyland and Bill Lawvere. We must also thank

others who have provided useful thoughts that we hope have improved this paper.

Finally, and most importantly, we thank Andrew Pitts for extensive discussions

about an earlier version of this paper which contained an error and assisting with

its correction.

References

[1] Nick Benton, Andrew Kennedy, Lennart Beringer, and Martin Hofmann. Relational Semantics for
Effect-Based Program Transformations with Dynamic Allocation. In Proc. of the 9th ACM SIGPLAN
international conference on Principles and Practice of Declarative Programming, PPDP ’07, pages
87–96, New York, NY, USA, 2007. ACM.

[2] Clemens Berger, Paul-Andre Mellies, and Mark Weber. Monads with Arities and their Associated
Theories. Journal of Pure and Applied Algebra, 216(89):2029–2048, 2012.

[3] James Cheney. A Dependent Nominal Type Theory. Logical Methods in Computer Science, 8(1), 2012.

[4] Ranald Clouston. Binding in Nominal Equational Logic. Electr. Notes Theor. Comput. Sci., 265:259–
276, 2010.

[5] Ranald Clouston. Nominal Lawvere Theories. In WoLLIC’11, pages 67–83, 2011.

[6] Ranald Clouston. Nominal Logic with Equations Only. In Logical Frameworks, Metalanguages and
Theory of Programming, pages 44–57, 2011.

[7] Ranald Clouston. Nominal Lawvere Theories: A Category Theoretic Account of Equational Theories
with Names. Journal of Computer and System Sciences, 2013.

[8] Ranald Clouston and Andrew M. Pitts. Nominal Equational Logic. Electron. Notes Theor. Comput.
Sci., 172:223–257, 2007.

[9] R. L. Crole. On Fixpoint Objects and Gluing Constructions. Applied Categorical Structures, 4(2 &
3):251–281, 1996. This volume is a Special Edition for the European Colloquium on Category Theory,
Tours, France.

[10] Roy L. Crole. Categories for Types. Cambridge University Press, 1993.

[11] Roy L. Crole. α-Equivalence Equalities. Theoretical Computer Science, 433:1–19, May 2012.

[12] Roy L. Crole and Frank Nebel. The Yoneda Lemma and Cartesian Closure in the FM-World.
Submitted, 2013.

[13] P.J. Freyd and A. Scedrov. Categories, Allegories. Elsevier Science Publishers, 1990. Appears as
Volume 39 of the North-Holland Mathematical Library.

[14] Murdoch Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax with Variable Binding.
Formal Asp. Comput., 13(3-5):341–363, 2002.

100

Crole & Nebel

[15] Murdoch J. Gabbay. Foundations of Nominal Techniques: Logic and Semantics of Variables in Abstract
Syntax. Bulletin of Symbolic Logic, 17(2):161–229, 2011.

[16] Murdoch J. Gabbay and Aad Mathijssen. Nominal Universal Algebra: Equational Logic with Names
and Binding. Journal of Logic and Computation, 19(6):1455–1508, December 2009.

[17] Murdoch James Gabbay and Dominic P. Mulligan. Nominal Henkin Semantics: Simply-Typed Lambda-
Calculus Models in Nominal Sets. In LFMTP, pages 58–75, 2011.

[18] J.R. Hindley and J.P. Seldin. Introduction to Combinators and the Lambda Calculus, volume 1 of
London Mathematical Society Student Texts. Cambridge University Press, 1988.

[19] Martin Hyland and John Power. The Category Theoretic Understanding of Universal Algebra: Lawvere
Theories and Monads. Electr. Notes Theor. Comput. Sci., 172:437–458, 2007.

[20] Neelakantan R. Krishnaswami and Nick Benton. Adding Equations to System F Types. In ESOP,
pages 417–435, 2012.

[21] J. Lambek. From λ-calculus to cartesian closed categories. In J.P. Seldin and J.R. Hindley, editors, To
H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, 1980.

[22] J. Lambek and P.J. Scott. Introduction to Higher Order Categorical Logic. Cambridge University
Press, 1986.

[23] F.W. Lawvere. Functorial Semantics of Algebraic Theories. PhD thesis, Columbia University, 1963.
Summary appears in Proc. of the National Academy of Science, 50:869–873, 1963.

[24] E. Manes. Algebraic Theories, volume 26 of Graduate Texts in Mathematics. SV, 1976.

[25] James McKinna and Robert Pollack. Some Lambda Calculus and Type Theory Formalized. JAR,
1998.

[26] Paul-André Melliès. Segal Condition Meets Computational Effects. In LICS, pages 150–159, 2010.

[27] B. Nordström, K. Petersson, and J.M. Smith. Programming in Martin-Löf ’s Type Theory, volume 7
of Monographs on Computer Science. Oxford University Press, 1990.

[28] A. M. Pitts. Nominal Logic, A First Order Theory of Names and Binding. Information and
Computation, 186:165–193, 2003.

[29] A. M. Pitts. Structural Recursion with Locally Scoped Names. Journal of Functional Programming,
21(3):235–286, 2011.

[30] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science, volume 57 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2013.

[31] Andrew M. Pitts. Categorical Logic. In Handbook of Logic in Computer Science: Volume 5: Logic and
Algebraic Methods, pages 39–123, Oxford, UK, 2000. Oxford University Press.

[32] Thomas Streicher. Independence Results for Calculi of Dependent Types. In Category Theory and
Computer Science, pages 141–154, 1989.

[33] Thomas Streicher. Semantics of Type Theory: Correctness, Completeness, and Independence Results,
volume XII of Progress in Theoretical Computer Science. Basel: Birkhäuser Verlag, 1991.

[34] Jacob Thamsborg and Lars Birkedal. A Kripke Logical Relation for Effect-Based Program
Transformations. In Proc of the 16th ACM SIGPLAN international conference on functional
programming, ICFP ’11, pages 445–456, New York, NY, USA, 2011. ACM.

101

Crole & Nebel

A Inductive Definition of Type System and Equations

(SP) ∇, a # x : s `E πx : π · s

(C) ∇ `E c : s (c ∈ FunSg and c has Sg typing c : s)

(ABS)
∇, a # x : s `E M : s′

∇ `E λax : s.M : sa ⇒ s′

(AP)
∇ `E F : sa ⇒ s′ ∇ `E a # A : s

∇ `E F A : s′

(AE*) ∇#a `E M : s

∇ `E M : s
(a # (∇,M))

(WEAK*) ∇ `E M : s

∇′ `E M : s
(∇ ≤ ∇′)

(SUB*)
∇′ `E ai # Ni : si ∇ `E M : s′

∇′ `E M{N1, . . . , Nn/x1, . . . , xn} : s′

In rule (SUB*) ∇ def
= a1 # x1 : s1, ..., an # xn : sn and 1 ≤ i ≤ n

Table A.1
NLC Typing Rules for a Given Th

Note that the rules marked by an asterisk are provably admissible.

B A Results Road Map

The structured requirements list below shows the dependencies of results in the

paper. Any result depends on those that appear at deeper nestings. This SRL is

for guidance only!

• Categorical type theory correspondence Theorem 6.2 and classifying category

Theorem 6.1

· Completeness Theorem 5.5

Existence of generic categorical model Proposition 5.4.

Generic model (of Th in Cl(Th)) properties Proposition 5.3

Building a classifying category Cl(Th) Proposition 5.1

⇐ PROPOSITIONS

· Soundness Theorem 4.2

Semantics is compositional Proposition 4.5

102

Crole & Nebel

(REF) ∇ `E M : s

∇ `E M ≈M : s
(SYM) ∇ `E M ≈M ′ : s

∇ `E M ′ ≈M : s

(TRANS) ∇ `E M ≈M ′ : s ∇ `E M ′ ≈M ′′ : s
∇ `E M ≈M ′′ : s

(WEAK) ∇ `E M ≈M ′ : s
∇′ `E M ≈M ′ : s

(∇ ≤ ∇′)

(AE) ∇#a `E M ≈M ′ : s
∇ `E M ≈M ′ : s

(a # (∇,M,M ′))

(PERM)
∇ `E M : s

∇#ds(π,π′) `E π ∗M ≈ π′ ∗M : π · s
(ds(π, π′) # (∇,M))

(BF)
∇, a # x : s `E M : s′ ∇ `E a # N : s

∇ `E (λax : s.M) N ≈M{N/x} : s′

(EF) ∇ `E M : sa ⇒ s′

∇ `E λax : s. (M x) ≈M : sa ⇒ s′
(x /∈ fv(M))

(CL)
∇, a # x : s `E M ≈M ′ : s′

∇ `E λax : s.M ≈ λax : s.M ′ : sa ⇒ s′

(CA)
∇ `E a # Ai : s ∇ `E F1 ≈ F2 : sa ⇒ s′ ∇ `E A1 ≈ A2 : s

(i=1,2)
∇ `E F1 A1 ≈ F2 A2 : s′

(SUB)

∇′ `E ai # N ′i : si

∇′ `E ai # Ni : si ∇′ `E Ni ≈ N ′i : si ∇ `E M ≈M ′ : s′

∇′ `E M{N1, . . . , Nn/x1, . . . , xn} ≈M ′{N ′1, . . . , N ′n/x1, . . . , xn} : s′

ds(π, π′) is the disagreement set: {a ∈ A | π(a) 6= π(a)}

In rule (SUB) ∇ def
= a1 # x1 : s1, ..., an # xn : sn and 1 ≤ i ≤ n

Table A.2
NLC Equation Rules for a Given Th

Properties of semantics: factorisation results Lemma 4.4

Properties of semantics: denotations of syntactic id, i, π Lemma 4.3

Properties of FM-cccs Lemma D.1

⇐ PROPOSITIONS

• PROPOSITIONS:

103

Crole & Nebel

(AABS)
∇#a `E M : (a a′) · s
∇ `E 〈a′〉M : Na. s

(a # ∇,M, a′ # s)

(CONC)
∇ `E b # F : Na. s

∇#a `E F @ b : (a b) · s
(a # ∇, b # F)

(BAA)
∇#a `E M : (a a′) · s

∇#a `E 〈a′〉M @ b ≈ (a′ b) ·M : (a b) · s
(a # ∇,M, a′ # s)

(EAA)
∇ `E b # F : Na. s

∇#a `E 〈b〉 (F @ b) ≈ F : (a b) · s
(a # ∇, b # F)

(CAA)
∇#a `E M ≈M ′ : (a a′) · s
∇ `E 〈a′〉M ≈ 〈a′〉M ′ : Na. s

(a # ∇,M, a′ # s)

(BINDAA)
∇#a,z `E (z a′) ·M ≈ (z a′′) ·M ′ : (a a′) · s

∇ `E 〈a′〉M ≈ 〈a′′〉M ′ : Na. s
(a # ∇,M, a′, a′′ # s)

(CC)
∇ `E b # F : Na. s ∇ `E F ≈ F ′ : Na. s

∇#a `E F @ b ≈ F ′@ b : (a b) · s
(a # ∇, b # F, F ′)

Table A.3
NLC Augmented Typing and Equation Rules for a Given Th

· Typed expressions and theorems are equivariant Proposition 3.5 and the object

level permutation action preserves equalities Proposition 3.4

Permutation actions on freshness hypotheses iff suspension substitutions on

expressions Lemma 3.3

NLC is equvariant under variable swapping Lemma 3.2

Meta-level perm action distributes over substitution Proposition 2.5

Object-level perm action associates with substitution Proposition2.4

Capture avoiding substitution is well defined Lemma C.4

Object-level permutation action in terms of meta-level permutation action

Lemma C.3

Permutation actions are well defined Proposition 2.2

� Suspension substitution is ordinary substitution Lemma C.2

� Meta-level permutation action associates with

suspension substitutions Lemma C.1

Please note that in our main text, by making use of a blue colour we indicate

“signposts” giving “directions” through the paper.

We make occasional emphasis with a green colour.

104

Crole & Nebel

C Substitution and α-Equivalence

In this section of the Appendix we explain some of the details of substitution, α-

equivalence and the associated lemmas that underpin our results. Note that we

believe our approach, based on untyped terms, unifies and simplifies the results

in [7]. The lemmas are proved by induction; one example is in Section E.

Lemma C.1 (π ∗M)[π−1x/x] = π ∗ (M [π−1x/x]) for any raw M , where [π−1x/x]

indicates that x is replaced by π−1x.

Substituting N1, . . . , Nn for free occurrences of the distinct variables x1,

. . . , xn in the raw term M yields another raw term, which we denote by

M{N1, . . . , Nn/x1, . . . , xn} or by M{Ni/xi}. The “usual” recursive definition for

“ordinary” λ-terms (see, for example, [18]) carries over to NLC, and we omit the

formal definition. However, for the base cases on suspensions we define

(πy){N1, . . . , Nn/x1, . . . , xn} =def πy (∀i)(xi 6= y)

(πy){N1, . . . , Nn/x1, . . . , xn} =def π ∗Ni0 (∃i)(xi = y) with xi0 = y

Note the critical use of the object-level permutation action. Note also the crucial

connection—used in many proofs—between suspension-substitutions and simulta-

neous substitution, which is easily proved by induction:

Lemma C.2 For any term M we have M [π−1x/x] = M{π−1x/x}

The next lemma expresses the meta-level action in terms of the object-level

action. It is used to prove properties of both NLC and our categorical semantics.

Lemma C.3 (· in terms of ∗) For any term M and {x1, ..., xn} ⊆ Var with

fv(M) ⊆ {x1, ..., xn} we have π ·M = (π ∗M){π−1x1/x1, ..., π
−1xn/xn}.

We use two definitions of α-equivalence. One is founded on capture avoiding

substitution; the other on variable swapping. Each definition generates the same

relation ∼α⊂ TermSg × TermSg (see [11]).

The first definition [18] takes ∼α to be the smallest equivalence relation closed

under the congruence rules (for application and abstraction terms) and the axiom

λax : s.M ∼α λax′ : s.M{x′/x} where x′ 6∈ var(M). The second definition is given

in terms of variable swapping [11,14]. If x, y ∈ Var then we define (x y) •M to be

M in which any occurrence of x is swapped with y (and vice-versa). Then we can

define ∼α by the rules in Table C.1.

(x ∈ Var π ∈ Perm)πx ∼α πx
M1 ∼α M ′1 M2 ∼α M ′2

M1M2 ∼α M ′1M ′2

(z x) •M1 ∼α (z y) •M2
(z 6∈ var(M1) ∪ var(M2))

λax : s.M1 ∼α λay : s.M1

Table C.1
Alpha Equivalence by Variable Swapping

105

Crole & Nebel

It can easily be shown that ∼α is equivariant for the permutation actions, that

is M ∼α N implies π ·M ∼α π ·N and respectively for the object level permutation

action. From this a well-defined permutation action on α-equivalence classes of

terms is induced: π · [M]α
def
= [π ·M]α and π ∗ [M]α

def
= [π ∗M]α

Lemma C.4 Capture avoiding substitution lifts to the set of α-equivalence classes

of terms, TermSg
/
∼α , a nominal set under the meta-level permutation action on

α-equivalence classes, with supp([M]α) = supp(M).

D Basic Properties of FM-cccs

We will use the functor (−) ⇒ (+) : Cop × C → C, which is defined by (A,B) 7→
A⇒ B and (f, g) 7→ f ⇒ g

def
= λ(g ◦ ev ◦ (idA⇒B × f)). An auxiliary lemma is used

in establishing that our semantics is sound; the proof is routine category theory. Its

use is illustrated briefly on page 111.

Lemma D.1

(i) For any f : A×B → C we have π · λ(f) = λ(π · f)

(ii) πB ◦ evA,B = evπ·A,π·B ◦ (πA⇒B × πA).

(iii) π · (f ⇒ g) = π · f ⇒ π · g
(iv) πA⇒B = π−1

π·A ⇒ πB

(v) For any f : A×B → C we have πB⇒C ◦ λ(f) = λ(πC ◦ f ◦ (id× π−1
π·B))

(vi) For any f : A×B → C and g : A′ → A, λ(f) ◦ g = λ(f ◦ (g × idB))

E Example Proofs

We include full details of a small but illustrative number of proofs. The idea is to

give a flavour of the work that underpins our paper, and to provide evidence that

the underlying proofs have been checked thoroughly.

Proof of Proposition 2.2:

Proof. It is easy to see that the meta-level (conjugation) mapping is a finitely

supported permutation action, with specified support set. To show that the object-

level (left multiplication) mapping is a permutation action, induct on the size of M ,

appealing to Lemma C.1 in the abstraction case. 2

Proof of Lemma C.3:

Proof. Proof by induction on the structure of term M of

(∀π)(∀{x1, . . . , xn})(fv(M) ⊆ {x1 . . . xn}

=⇒ π ·M = (π ∗M){π−1x1/x1, ..., π
−1xn/xn}

We assume Lemma C.2 throughout.

106

Crole & Nebel

SUSP: When M is τxi the result follows immediately by the definition of sub-

stitution and the permutation actions.

CONST: Follows immediately.

LAM-ABS: Case M is λax : s.M ′ where fv(λax : s.M ′)
def
= fv(M ′) \ {x} ⊆

{x1 . . . xn}. We examine the case when x is not an xi; if x is an xi the details are

not too dissimilar. So for the induction step fv(M ′) ⊆ {x, x1 . . . , xn}.

π · (λax : s.M ′)

def
= λπ·ax : π · s.π ·M ′

= λπ·ax : π · s.(π ∗M ′){π−1x/x,π−1xi/xi} (induction)

= λπ·ax : π · s.((π ∗M ′){π−1x/x}){π−1xi/xi} (x 6= xi)

= λπ·ax : π · s.(π ∗ (M ′{π−1x/x})){π−1xi/xi} (Lemma C.1)

= (λπ·ax : π · s.π ∗ (M ′{π−1x/x})){π−1xi/xi} (x 6= xi so no capture)

def
= (π ∗ (λax : s.M ′)){π−1xi/xi}

APP: Case M is N N ′.

π · (N N ′)

def
= (π ·N) (π ·N ′))
= ((π ∗N){π−1xi/xi}) ((π ∗N ′){π−1xi/xi}) (induction)

def
= ((π ∗N) (π ∗N ′)){π−1xi/xi} (def subst)

= (π ∗ (N N ′)){π−1xi/xi}

2

Proof of Lemma 3.3:

Proof. Since permutations are isomorphisms we only need to prove one direction of
the implication. We have to prove, by (mutual) induction over the rules in Table A.1
and A.2,

(∀Th B ∇′ `E [M]α : s′) [

(∀ ∇, a, π, x, s) (∇′ ≡ ∇, a# x : s

=⇒ Th B ∇, π · a# x : π · s `E [M{π−1x/x}]α : s′))]

(∀Th B ∇′ `E [M]α ≈ [M ′]α : s′) [

(∀ ∇, a, π, x, s) (∇′ ≡ ∇, a# x : s

=⇒ Th B ∇, π · a# x : π · s `E [M{π−1x/x}]α ≈ [M ′{π−1x/x}]α : s′))]

In the remainder of this example proof we concentrate only on illustrating the care

we take over dealing with proofs involving capture avoiding re-naming.

Rule (ABS) : To save any confusion over variable names consider the locally

scoped instance of the rule

∇′, b # y : t `E [N]α : t′
ABS

∇′ `E [λb y : t.N]α : tb ⇒ t′

107

Crole & Nebel

in which the lambda bound y (indicated by the box) is now in local scope.

Consider the local instantiation of (∀ ∇, a, π, x, s) when x
def
= y (and the other

names remain the same). Thus we have ∇′ ≡ ∇, a # y : s. For Induction Property

Closure we have to prove that

∇, π · a # y : π · s `E [(λby : t.N){π−1y/y}]α = [λby : t.N]α : t′ (�)

We cannot immediately invert ABS since the binding y occurs in ∇′. Choosing

distinct y′ we have [λby : t.N]α = [λby′ : t. (y′ y) •N]α so we may now invert ABS to

get

∇, a # y : s, b # y′ : t `E [(y′ y) •N]α : t′

and hence by the variable equivariance of judgements, Lemma 3.2,

∇, a # y′ : s, b # y : t `E [N]α : t′

Therefore by induction with (∀ ∇, a, π, x, s) locally instantiated to ∇, b # y :

t, a, π, y′, s we have

∇, π · a # y′ : π · s, b # y : t `E [N{π−1y′/y′}]α = [N]α : t′

since y′ 6∈ var(N). Hence by Lemma 3.2 we obtain (�) from

∇, π · a # y : π · s, b # y′ : t `E [(y′ y) •N]α : t′

2

Proof of Proposition 3.4:

Proof. We prove by mutual induction over the rules in Figure A.1 and A.2 the

following statements:

(∀Th B ∇ `E [M]α : s) (Th B ∇ `E [π ∗M]α : π · s)

(∀Th B ∇ `E [M]α ≈ [M ′]α : s) (Th B ∇ `E [π ∗M]α ≈ [π ∗M ′]α : π · s)

We give full details of Induction Property Closure for a few of the rules:

ABS: Suppose that ∇ `E λax : s.M : sa ⇒ s′. We consider the case where x is

not present in the context. We can now directly deduce that ∇, a # x : s `E M : s′

holds. By induction we obtain ∇, a # x : s `E π ∗M : π · s′. We then apply

Lemma 3.3 to get ∇, π · a # x : π · s `E (π ∗ M){π−1x/x} : π · s. Using the

ABS-rule, we obtain ∇ `E λπ·ax : π · s. (π ∗M){π−1x/x} : (π · s)π·a ⇒ π · s′. Then

by applying Proposition 2.4 and Lemma C.2 we are done.

AP: Suppose that ∇ `E F A : s′. From this we can directly deduce ∇ `E F :

sa ⇒ s′ and ∇ `E a # A : s. We now have to show that ∇ `E π ∗ (F A) : π · s′
holds, that is ∇ `E (π ∗ F) (π ∗ A) : π · s′. By the AP-rule, this can be deduced by

demonstrating that ∇ `E π ∗F : π · sπ·a ⇒ π · s′ and ∇ `E π · a # π ∗A : π · s hold.

108

Crole & Nebel

The former follows immediately by induction on ∇ `E F : sa ⇒ s′. For the latter,

we have to demonstrate that

∇#z `E (π · a z) ∗ (π ∗A) ≈ π ∗A : π · s

which by Lemma 3.3 and a couple of applications of Proposition 2.4 holds just in

case

(π · ∇)#z `E (π · a z) ∗ (π ∗ (A{π−1xi/xi})) ≈ π ∗ (A{π−1xi/xi}) : π · s (�)

We show that (�) holds. Choose z # (π · a, π · ∇, π ∗ (A{π−1xi/xi})). From

Lemma C.3 we have π ∗ (A{π−1xi/xi}) = π · A and so π−1 · z # (a,∇, A). With

this, the definition of ∇ `E a # A : s yields the equation

∇#π−1·z `E (a (π−1 · z)) ∗A ≈ A : s

and by induction ∇#π−1·z `E π ∗ ((a (π−1 · z)) ∗ A) ≈ π ∗ A : π · s. Note that for

Perm we have the following general result: π ◦ (c d) = (π · c π · d) ◦ π. Using this

result and Proposition 2.2 that ∗ is a permutation action, we can deduce that

∇#π−1·z `E (π · a z) ∗ (π ∗A) ≈ π ∗A : π · s

holds. Applying Lemma 3.3, and then using Proposition 2.4 to associate brackets

to the right, we obtain (�) and the argument is complete.

BF: Suppose that ∇ `E (λax : s.M) N ≈ M{N/x} : s′. Considering the case

where x is not present in the context, we have ∇, a # x : s `E M : s′ and

∇ `E a # N : s. The typed expression ∇, a # x : s `E π ∗M : π · s′ is obtained by

induction. We then apply Lemma 3.3 to obtain

∇, π · a # x : π · s `E (π ∗M){π−1x/x} : π · s′.

Using the same reasoning as in the AP-case, we have ∇ `E π · a # π ∗N : π · s by
induction on ∇ `E a # N : s. We can now apply the BF-rule to obtain

∇ `E (λπ·ax : π · s. (π ∗M){π−1x/x}) (π ∗N) ≈ ((π ∗M){π−1x/x}){π ∗N/x} : π · s′

and since M{π−1x/x}{π ∗N/x} = M{N/x} we have

∇ `E (λπ·ax : π · s. (π ∗M){π−1x/x}) (π ∗N) ≈ (π ∗M){N/x} : π · s′

Using Proposition 2.4 and the definition of the permutation action we are done.

EF: Suppose x /∈ fv(M) and ∇ `E λax : s. (M x) ≈ M : sa ⇒ s′. From this we

can directly deduce that x /∈ fv(π ∗M) and ∇ `E M : sa ⇒ s′. It then follows

by induction that ∇ `E π ∗M : (π · s)π·a ⇒ π · s′ holds. We conclude by applying

the EF-rule along with a short calculation using the definition of the object-level

permutation action.

The details for the remaining rules are similar. 2

Proof of Theorem 4.2:

109

Crole & Nebel

Proof. This proof does proceed by a mutual induction establishing the satisfaction

of all judgement forms. Induction Property Closure for all the rules in Table A.1

and Table A.2 is similar to our example:

(AP): We need to show that [[∇ `E F A : s′]]⇓ (�). By induction we have

[[∇ `E F : sa ⇒ s′]] I f (1). Recalling that satisfaction of the freshness assertion

is the satisfaction of an equation

∇ `E a # A : s
def
= (∀ /∃ z # (∇, a, A)) (∇#z `E A ≈ (a z) ∗A : s)

we have [[∇#z `E A : s]] I θ and [[∇#z `E (a z) ∗ A : s]] I θ′ with θ = θ′. Hence

by Lemma 4.3 vi we have θ = α ◦ i where [[∇ `E A : s]] I α and by Lemma 4.3 iii

and 4.3 vi we have θ′ = (a z)[[s]] ◦α ◦ i. From the (Epi When Fresh) property of FM-

cccs we have α = (a z)[[s]] ◦ α, that is †(α, a). Hence [[∇ `E a # A : s]] I α∗ (2).

From (1) and (2) we have (�), with definition ev ◦ 〈f, α∗〉.
Property Closure for the rules in Table A.2 is trivial for (REF) (SYM) (TRANS).

(WEAK) uses Lemma 4.3 v. (AE) uses Lemma 4.3 vi and Lemma 4.3 ii. (PERM) uses

Lemma 4.3 iii and Lemma 4.3 vi. (BF) is quite similar to the details given for (AP).2

Proof of Lemma 4.4 part i and ii:

Proof.

(i) Following the definitions in our paper together with the properties of a perm-

category, we have

π · [[∇]] = π · ([[s1]]#a1 × ...× [[sn]]#an)

= (π · [[s1]]#a1 × ...× π · [[sn]]#an)

= ((π · [[s1]])#π·a1 × (π · [[sn]])#π·an)

= ([[π · s1]]#π·a1 × [[π · sn]]#π·an)

= [[[π · a1 # x1 : π · s1, ..., π · an # xn : π · sn]]]

= [[π · ∇]]

(ii) Proof by induction on the structure of M

(∀M) [(∀ ∇, π, s) (π · [[∇ `E M : s]] � [[π · ∇ `E π ·M : π · s]]))]

SUSP: It directly follows from the categorical semantics that

[[π · ∇, π · a # x : π · s `E π · π′x : π · π′ · s]]⇓

and [[∇, a # x : s `E π′x : π′ · s]]⇓
The equality follows by basic properties of FM-cccs.

CONST: It is immediate that [[∇ `E c : s]]⇓ and [[π · ∇ `E π · c : π · s]]⇓.

The equality follows from the fact that [[−]] : FunΣ → ob C is equivariant.

LAM-ABS: Suppose [[π · ∇ `E π · (λax : s.M) : π · (sa ⇒ s′)]]⇓ and it is

equal to fπ. By the definition of the meta-level permutation action and the

110

Crole & Nebel

inductively defined semantics we get

[[π · ∇ `E λπ·ax : π · s. π ·M : (π · s)π·a ⇒ π · s′]] I λ(mπ)

for some mπ where [[π ·∇, π ·a # x : π ·s `E π ·M : π ·s′]] I mπ. By induction

we deduce that [[∇, a # x : s `E M : s′]] I m such that π ·m = mπ. We then

apply the rule for semantics of abstraction to obtain [[∇ `E λax : s.M : sa ⇒
s′]] I λ(m), that is, [[∇ `E λax : s.M : sa ⇒ s′]]⇓. The definitional existence

proof in the converse direction follows by similar reasoning. We now need to

show that fπ = π · λ(m).

fπ
def
= λ(mπ)

= λ(π ·m) (induction)

= π · λ(m) (Lemma D.1 (i))

APP: Suppose [[π · ∇ `E π · (F A) : π · s′]]⇓ and it is equal to tπ. By the

definition of the meta-level permutation action and the rule for semantics of

applications

[[π · ∇ `E (π · F) (π ·A) : π · s′]] I ev ◦ 〈fπ, θπ〉

for

[[π · ∇ `E π · F : (π · s)π·a ⇒ π · s′]] I fπ

and

[[π · ∇ `E π · a # π ·A : π · s]] I θπ.

We have [[π ·∇ `E π ·a # π ·A : π ·s]] I απ
∗ by the rule for freshness assertion

semantics where [[π · ∇ `E π · A : π · s]] I απ such that †(π · a, απ). Given

that I is a partial function, we have that θπ = απ
∗. By induction we get

[[∇ `E F : sa ⇒ s′]] I f and [[∇ `E A : s]] I α such that fπ = π · f and

απ = π ·α. We now deduce from †(π ·a, απ) that †(a, α) holds: Let z # (a, α).

It follows immediately that π · z # (π ·a, π ·α) and hence from †(π ·a, π ·α) we

obtain equation (E.1). In the equations below, we write internal permutation

actions τC as τ− since the source-target data does not play a significant role

in our reasoning, and indeed is probably obfuscating:

(π · z π · a)− ◦ (π · α) ◦ i = (π · α) ◦ i (E.1)

(π · z π · a)− ◦ π− ◦ α ◦ π−1
− ◦ i = π− ◦ α ◦ π−1

− ◦ i (E.2)

π− ◦ (z a)− ◦ α ◦ π−1
− ◦ i = π− ◦ α ◦ π−1

− ◦ i (E.3)

(z a)− ◦ α ◦ i ◦ π−1
− = α ◦ i ◦ π−1

− (E.4)

(z a)− ◦ α ◦ i = α ◦ i (E.5)

By definition of the FM-ccc permutation action on morphisms we obtain

equation (E.2). The transposition notation (z a) is short for (z1 a1)◦. . .◦(zk ak).

111

Crole & Nebel

Since in Perm, π◦(c d) = (π(c)π(d))◦π holds generally for single transpositions

(c d), and since permutation actions satisfy (τ ′ ◦ τ)C = τ ′τ ·C ◦ πC we have

π− ◦ (z a)− = (π ◦ (z a))− = ((π · z π · a) ◦ π)− = (π · z π · a)− ◦ π−

This gives us equation (E.3). Any internal permutation action (τC : C →
τ · C | C ∈ ob C) is a natural transformation Id → τ · − and in particular so

is π−1
− . Since also π− is iso, equation (E.4) holds. Finally since π−1

− is iso we

obtain (E.5). Hence, †(a, α) holds.

We can now apply the rule for freshness assertion semantics to obtain [[∇ `E
a # A : s]] I α∗, followed by the rule for application semantics to get [[∇ `E
F A : s′]] I ev ◦ 〈f, α∗〉. Hence, we have [[∇ `E F A : s′]]⇓. The definitional

existence proof in the converse direction follows by similar reasoning.

We now show that tπ = π · (ev ◦ 〈f, α∗〉). Note that (π · α)∗ = π · α∗ (Φ)

holds: This follows immediately from the universal property of inclusion image

restriction and the definition of π · −. Hence

tπ
def
= ev ([[π·s]]#π·a,[[π·s′]]) ◦ 〈fπ, θπ〉
= ev ([[π·s]]#π·a,[[π·s′]]) ◦ 〈fπ, απ

∗〉 (θπ = απ
∗)

= ev (π·([[s]]#a),π·[[s′]]) ◦ 〈π · f, (π · α)∗〉 (induction)

= ev (π·([[s]]#a),π·[[s′]]) ◦ 〈π · f, π · α
∗〉 (Φ)

= ev (π·([[s]]#a),π·[[s′]]) ◦ (π · 〈f, α∗〉) (equivariant products)

= (π · ev ([[s]]#a,[[s′]])) ◦ (π · 〈f, α∗〉) (equivariant exponentials)

= π · (ev ([[s]]#a,[[s′]]) ◦ 〈f, α
∗〉) (equivariance of ◦)

2

Proof of Proposition 5.1:

Proof. Objects: ob Cl(Th) is the set of freshness environments. In our construc-

tion, which slightly modifies Clouston’s [7], we will make use of the following typical

objects

∇ def
= (a1 # x1 : s1, ..., an # xn : sn) ∇′ def

= (a′1 # x′1 : s′1, ..., a
′
m # x′m : s′m)

and ∇′′ def
= (a′′1 # x′′1 : s′′1, ..., a

′′
k # x′′k : s′′k)

Morphisms: Morphisms δ
def
= ([M1]≈, . . . , [Mm]≈) : ∇ → ∇′ are lists of typed

expressions such that for 1 ≤ i ≤ m we have Th B ∇ `E a′i # Mi : s′i, and [Mi]≈ is

the equivalence class of those T such that Th B ∇ `E Mi ≈ T : s′i.

Identity: For ∇ as above, the identity morphism is given by ([x1]≈, . . . , [xn]≈).

Composition: Let δ : ∇ → ∇′ be as above and let δ′
def
= ([N1]≈ . . . [Nk]≈) : ∇′ →

∇′′. Then

δ′ ◦ δ def
= ([N1{Mi/xi}]≈, . . . , [Nk{Mi/xi}]≈)

FM-Category Structure: Please see [7].

112

Crole & Nebel

Equivariant Exponentials: For objects ∇ and ∇′, the exponential is defined by

∇ ⇒ ∇′ def
= (a′1 # f1 : (Na′1. si)

ai ⇒ s′1, ..., a
′
m # fm : (Na′m. si)

ai ⇒ s′m)

where for each j = 1, ...,m, (Na′j. si)
ai ⇒ s′j

def
= (Na′j . s1)a1 ⇒ ((Na′j . s2)a2 ⇒

...((Na′j . sn)an ⇒ s′j)). The evaluation map ev : (∇ ⇒ ∇′) × ∇ → ∇′
is ([f1 ξi]≈, . . . , [fm ξi]≈) where fj ξi is shorthand for the NLC-application

(...((fj (〈a′〉 (a′ a′j)x1)) (〈a′〉 (a′ a′j)xi))...) (〈a′〉 (a′ a′j)xn). Finally, given δ
def
=

([M1]≈, . . . , [Mm]≈) : ∇′′ ×∇ → ∇′ the exponential mate λ(δ) : ∇′′ → (∇ ⇒ ∇′) is

given by

(λa1y1 : Na′1. s1. ...λ
anyn : Na′1. sn.M1{y1 @ a′1...yn @ a′1/x1...xn}, . . . ,

λa1y1 : Na′m. s1. ...λ
anyn : Na′m. s1.Mm{y1 @ a′m...yn @ a′m/x1...xn})

The verification that Cl(Th) is indeed a NFM-ccc is omitted. 2

Proof of Proposition 5.3:

Proof. We need to check that both structure maps (of Sg) are equivariant. This

is easy: for example π · [[c]]G
def
= π · ([c]≈)

def
= ([π · c]≈)

def
= [[π · c]]G

The rest of the proof is by induction on the structure of M .

SUSP: We have

[[∇ ` πxi : π · si]]G I π[[si]]G
◦ iai[[si]]G

◦ pri : ∇ → [[si]]
#ai
G → [[si]]G → π · [[si]]G

Expanding the definitions we get

∇
([xi]≈)

- (ai # xi : si)
([xi]≈)

- (∅# xi : si)
([πxi]≈)

- (∅# v : π · si)

with the composition being ([πxi]≈) as required.

APP: Suppose that Th B ∇ `E F A : s ′ (��). We wish to prove that [[∇ `E
F A : s ′]]G I ([F A]≈) on the inductive assumptions that

[[∇ `E F : sa ⇒ s′]]G I ([F]≈) : [[∇]]G → (∅# v : sa ⇒ s′)

[[∇ `E A : s]]G I ([A]≈) : [[∇]]G → (∅# v : s)

We claim that [[∇ `E a # A : s]]G I ([A]≈)∗ (�). To check †(a, ([A]≈)) consider,

for completely distinct z, the morphism 3

∇#z ([xi]≈)
- ∇

([A]≈)
- (∅# v : s)

([(a z)v]≈)
- (∅# v : s)

Now (�) holds provided that

(([(a z)v]≈) ◦ ([A]≈)) ◦ ([xi]≈)
def
= ([((a z)v){A/v}]≈) ◦ ([xi]≈) = ([A]≈) ◦ ([xi]≈)

3 In fact (a z) · s = s for technical reasons that we omit for lack of space, so the morphism does have the
given target object.

113

Crole & Nebel

that is ([(a z) ∗ A]≈) = ([A]≈). This states that ∇#z `E (a z) ∗ A ≈ A : s or

equivalently ∇ `E a # A : s which itself follows from rule AP inversion of (��). 2

Proof of Proposition 5.4:

Proof. It is easy to see that the meta-level (conjugation) mapping is a finitely

supported permutation action, with specified support set. To show that the object-

level (left multiplication) mapping is a permutation action, induct on the size of M ,

appealing to Lemma C.1 in the abstraction case. 2

Proof of Theorem 5.5:

Proof. If ∇ `E M ≈M ′ : s is satisfied by all models, then it is also satisfied by the

generic model G of Th in Cl(Th). From Proposition 5.4 we have ([M]≈) = ([M ′]≈).

Hence, Th B ∇ `E M ≈M ′ : s. 2

114

MFPS 2013

Continuity of Gödel’s System T Definable
Functionals via Effectful Forcing

Martín Escardó1

School of Computer Science
University of Birmingham

Birmingham, England

Abstract

It is well-known that the Gödel’s system T definable functions (N → N) → N are continuous, and that their
restrictions from the Baire type (N → N) to the Cantor type (N → 2) are uniformly continuous. We offer
a new, relatively short and self-contained proof. The main technical idea is a concrete notion of generic
element that doesn’t rely on forcing, Kripke semantics or sheaves, which seems to be related to generic
effects in programming. The proof uses standard techniques from programming language semantics, such
as dialogues, monads, and logical relations. We write this proof in intensional Martin-Löf type theory
(MLTT) from scratch, in Agda notation. Because MLTT has a computational interpretation and Agda can
be seen as a programming language, we can run our proof to compute moduli of (uniform) continuity of
T-definable functions.

Keywords: Gödel’s system T, continuity, uniform continuity, Baire space, Cantor space, intensional
Martin-Löf theory, Agda, dialogue, semantics, logical relation.

1 Introduction

This is a relatively short, and self-contained, proof of the well-known fact that any
function f : (N → N) → N that is definable in Gödel’s system T is continuous, and
that its restriction from the Baire type (N → N) to the Cantor type (N → 2) is
uniformly continuous [15,2]. We believe the proof is new, although it is related to
previous work discussed below. The main technical idea is a concrete notion of
generic element that doesn’t rely on forcing, Kripke semantics or sheaves, which
seems to be related to generic effects in programming [13]. Several well-known
ideas from logic, computation, constructive mathematics and programming-language
semantics naturally appear here, in a relatively simple, self-contained, and hopefully
appealing, development.

The idea is to represent a function f : (N → N) → N by a well-founded dialogue
tree, and extract continuity information about f from this tree. To calculate such
a tree from a system T term t: (Ì ⇒ Ì) ⇒ Ì denoting f , we work with an auxiliary

1 Email: m.escardo@cs.bham.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:m.escardo@cs.bham.ac.uk

Escardo

interpretation of system T, which gives a function f̃ : (Ñ → Ñ) → Ñ, where Ñ is the
set of dialogue trees. Applying f̃ to a certain generic sequence Ñ → Ñ, the desired
dialogue tree is obtained. We now explain this idea in more detail.

In the set-theoretical model of system T, the ground type Ì is interpreted as
the set N of natural numbers, and if the types σ and τ are interpreted as sets X
and Y , then the type σ ⇒ τ is interpreted as the set of all functions X → Y .
We consider an auxiliary model that replaces the interpretation of the ground type
by the set Ñ, but keeps the interpretation of ⇒ as the formation of the set of all
functions. In this model, the zero constant is interpreted by a suitable element 0̃

of Ñ, the successor constant is interpreted by a function Ñ → Ñ, and each iteration
combinator is interpreted by a function (X → X) → X → Ñ → X. An element of
the set Ñ is a well-founded dialogue tree that describes the computation of a natural
number relative to an unspecified oracle α : N → N. An internal node is labeled
by a natural number representing a query to the oracle, and has countably many
branches corresponding to the possible answers. Each leaf is labeled by a natural
number and represents a possible outcome of the computation. These dialogues
represent computations in the sense of Kleene [10].

If a particular oracle α : N → N is given, we get a natural number from any
d ∈ Ñ via a decodification function

decode : (N → N) → Ñ → N.

It turns out that there is a function

generic : Ñ → Ñ

that can be regarded as a generic sequence in the sense that, for any particular
sequence α : N → N,

Ñ
generic - Ñ

N

decode α
?

α
- N.

decode α
?

That is, the generic sequence codes any concrete sequence α, provided the sequence α
itself is used as the concrete oracle for decodification. The idea is that the application
of the function generic to a dialogue tree adds a new layer of choices at its leaves.

Next we show that for any given term t : (Ì ⇒ Ì) ⇒ Ì denoting a function
f : (N → N) → N in the standard interpretation and f̃ : (Ñ → Ñ) → Ñ in the dia-
logue interpretation, we have that

f α = decode α (f̃ generic).

This is proved by establishing a logical relation between the set-theoretic and di-
alogue models. Thus we can compute a dialogue tree of f by applying f̃ to the
generic sequence.

The set Ñ is constructed as B N for a suitable dialogue monad B. Then the
interpretation of the constant zero is η 0 where η is the unit of the monad, the
interpretation of the successor constant is given by functoriality as B succ, and the

116

Escardo

interpretation of the primitive recursion constant is given by the Kleisli extension
of its standard interpretation. The object part B X of the monad is inductively
defined by the constructors

η : X → B X,
B : (N → B X) → N → B X,

where η constructs leaves and B constructs a tree B F n given countably many trees
F and a label n. With X = N, we have B η : N → B N, and the generic sequence is
the Kleisli extension of B η. Thus, the generic sequence seems to be a sort of generic
effect in the sense of [13]. Notice that our interpretation is a call-by-name version
of Moggi’s semantics.

Using this, it follows that if a function f : (N → N) → N is the set-theoretical
interpretation of some system T term t : (Ì ⇒ Ì) ⇒ Ì, then it is continuous and its
restriction to N → 2 is uniformly continuous, where 2 is the set with elements 0 and
1. The reason is that a dialogue produces an answer after finitely many queries,
because it is well-founded, and that a dialogue tree for a function (N→ 2)→ N is
finite, because it is finitely branching. Recall that continuity means that, for any
sequence of integers α : N → N, there is m : N, called a modulus of continuity of f
at the point α, such that any sequence α′ that agrees with α at the first m positions
gives the same result, that is, f α = f α′. Uniform continuity means that there is
m : N, called a modulus of uniform continuity of f on N → 2, such that any two
binary sequences α and α′ that agree at the first m positions give the same result.

Our arguments are constructive, and we write the full proof from scratch in
intensional Martin-Löf type theory (MLTT), in Agda notation [4], without the use
of libraries. We don’t assume previous familiarity with Agda, but we do require
rudimentary knowledge of MLTT. The Agda source file for this program/proof [7] is
written in Knuth’s literate style, which automatically generates the LATEX file that
produces this article. Agda both checks proofs and can run them. Notice that MLTT
or Agda cannot prove or disprove that all functions (N → N) → N are continuous, as
they are compatible with both classical and constructive mathematics, like Bishop
mathematics [3]. The theorem here is that certain functions (N → N) → N are
continuous: those that can be defined in system T.
Related work. The idea of computing continuity information by applying a func-
tion to effectful arguments goes back to Longley [11], who passes exceptions to the
function. A similar approach is described in an example given by Bauer and Pret-
nar [1].

The idea of working with computation trees is of course very old, going back to
Brouwer [2] in intuitionistic mathematics, and to Kleene [10] in computability theory
in the form of dialogues, where the input is referred to as an oracle. Howard [9]
derives computation trees for system T, by operational methods, by successively
reducing a term so that each time an oracle given by a free variable of type Ì ⇒ Ì
is queried, countably many branches of the computation are created, corresponding
to the possible answers given by the oracle. Hancock and Setzer use variations of
dialogue trees to describe interactive computation in type theory [12] (see also [8]).

Our work is directly inspired by Coquand and Jaber’s work on forcing in type
theory [5,6]. Like Howard, they derive computation trees by operational methods.

117

Escardo

They extend dependent type theory with a constant for a generic element, and then
decorate judgements with subscripts that keep track of approximation information
about the generic element as the computations proceed (similarly to [15]). In this
way they extract continuity information. They prove the termination and sound-
ness of this modification of type theory using Tait’s computability method, which
here is manifested as a logical relation between our two models. They also pro-
vide a Haskell implementation for the system T case as an appendix, which uses a
monad that is the composition of the list monad (for nondeterminism) and of the
state monad. Their Haskell program implements a normalization procedure with
bookkeeping information, tracked by the monad, that produces computation trees.
Because they only account for uniform continuity in their Haskell implementation,
such trees are finite. They describe their work as a computational interpretation
of forcing and continuity as presented in Beeson [2]. The difference is that their
approach is syntactical whereas ours is semantical, and the reader may sense an
analogy with normalization by evaluation. Notice that these arguments only show
that the definable functions are continuous. To get a constructive model in which
all functions are continuous, they work with iterated forcing, which is related to our
recent work [16], but this is another story.
Organization. (2) Formal proof in Agda. (3) Informal, rigorous proof.
Acknowledgements. I benefitted from remarks on a previous version of this paper
by Thierry Coquand, Dan Ghica, Achim Jung, Chuangjie Xu, and the anonymous
referees.

2 Proof in Martin-Löf type theory in Agda notation

2.1 Agda preliminaries

The purpose of this subsection is two-fold: (1) To develop a tiny Agda library for
use in the following sections, and (2) to briefly explain Agda notation [4] for MLTT.
We assume rudimentary knowledge of (intensional) Martin-Löf type theory and the
BHK interpretation of the quantifiers as products Π and sums Σ. We don’t use any
feature of Agda that goes beyond standard MLTT. If we were trying to be purist,
we would use W-types rather than some of our inductive definitions using the Agda
keyword data. Notice that the coloured text in the electronic version of this paper
is the Agda code.

The universe of all types is denoted by Set, and types are called sets (this is
a universe à la Russell). Products Π are denoted by ∀ in Agda. Consider the
definition of the (interpretation of) the standard combinators:

Ķ : ∀{X Y : Set} → X → Y → X
Ķ x y = x
Ş : ∀{X Y Z : Set} → (X → Y → Z) → (X → Y) → X → Z
Ş f g x = f x (g x)

The curly braces around the set variables indicate that these are implicit parameters,
to be inferred by Agda whenever Ķ and Ş are used. If Agda fails to uniquely infer the
missing arguments, one has to write e.g. Ķ {X} {Y } x y rather than the abbreviated
form Ķ x y. The following should be self-explanatory:

118

Escardo

◦ : ∀{X Y Z : Set} → (Y → Z) → (X → Y) → (X → Z)
g ◦ f = ń x → g(f x)

data N : Set where
zero : N
succ : N → N

rec : ∀{X : Set} → (X → X) → X → N → X
rec f x zero = x
rec f x (succ n) = f(rec f x n)

Agda has a termination checker that verifies that recursions are well-founded, and
hence all functions are total. We also need types of binary digits, finite lists, and
finite binary trees:

data N2 : Set where
0 1 : N2

data List (X : Set) : Set where
[] : List X
:: : X → List X → List X

data Tree (X : Set) : Set where
empty : Tree X
branch : X → (N2 → Tree X) → Tree X

Sums are not built-in and hence need to be defined:

data Σ {X : Set} (Y : X → Set) : Set where
, : ∀(x : X)(y : Y x) → Σ {X} Y

The definition says that an element of Σ {X} Y is a pair (x,y) with x : X and
y : Y x. Notice that comma is not a reserved symbol: we define it as a binary
operator to construct dependent pairs. Because Y = ń(x : X) → Y x if one assumes
the η-law, and because the first argument is implicit, we can write Σ {X} Y as Σ Y
or Σ \(x : X) → Y x, where backslash is the same thing as lambda. We will use
backslash exclusively for sums.

π0 : ∀{X : Set} {Y : X → Set} → (Σ \(x : X) → Y x) → X
π0(x , y) = x
π1 : ∀{X : Set} {Y : X → Set} → ∀(t : Σ \(x : X) → Y x) → Y(π0 t)
π1(x , y) = y

The identity type Id X x y is written x ≡ y with X implicit, and is inductively
defined as “the least reflexive relation”:

data _≡_ {X : Set} : X → X → Set where
refl : ∀{x : X} → x ≡ x

sym : ∀{X : Set} → ∀{x y : X} → x ≡ y → y ≡ x
sym refl = refl
trans : ∀{X : Set} → ∀{x y z : X} → x ≡ y → y ≡ z → x ≡ z
trans refl refl = refl
cong : ∀{X Y : Set} → ∀(f : X → Y) → ∀{x0 x1 : X} → x0 ≡ x1 → f x0 ≡ f x1
cong f refl = refl
cong2 : ∀{X Y Z : Set} → ∀(f : X → Y → Z)

→ ∀{x0 x1 : X}{y0 y1 : Y} → x0 ≡ x1 → y0 ≡ y1 → f x0 y0 ≡ f x1 y1
cong2 f refl refl = refl

2.2 Dialogues and continuity

We consider the computation of functionals (X → Y) → Z with dialogue trees. We
work with the following inductively defined type of (well founded) dialogue trees

119

Escardo

indexed by three types X, Y and Z. These are Y -branching trees with X-labeled
internal nodes and Z-labeled leaves:

data D (X Y Z : Set) : Set where
η : Z → D X Y Z
B : (Y → D X Y Z) → X → D X Y Z

A leaf is written η z, and it gives the final answer z (η will be the unit of a monad).
A forest is a Y -indexed family F of trees. Given such a forest F and x : X, we
can build a new tree B F x whose root is labeled by x, which has a subtree F y

for each y : Y . We can imagine x : X as query, for which an oracle α gives some
intermediate answer y = α x : Y. After this answer y, we move to the subtree F y,
and the dialogue proceeds in this way, until a leaf with the final answer is reached:

dialogue : ∀{X Y Z : Set} → D X Y Z → (X → Y) → Z
dialogue (η z) α = z
dialogue (B F x) α = dialogue (F(α x)) α

We say that a function (X → Y) → Z is eloquent if it is computed by some dialogue:

eloquent : ∀{X Y Z : Set} → ((X → Y) → Z) → Set
eloquent f = Σ \d → ∀ α → dialogue d α ≡ f α

Here we are interested in the case X=Y=Z=N. Think of functions α : N → N as
sequences of natural numbers. The set of such sequences is called the Baire space:

Baire : Set
Baire = N → N

Functions Baire → N are coded by a particular kind of dialogue trees, namely B N
where B is defined as follows:

B : Set → Set
B = D N N

We work with a refined version of continuity, which gives more information than the
traditional notion introduced in Section 1, where the modulus of continuity is a finite
list of indices rather than an upper bound for the indices. The agreement relation
determined by a list of indices is inductively defined as follows, where α ≡[s] α′

says that the sequences α and α′ agree at the indices collected in the list s:

(i) α ≡[[]] α′,
(ii) α i ≡ α′ i → α ≡[s] α′ → α ≡[i :: s] α′.

We write this inductive definition as follows in Agda, where we give the name [] to
the proof of the first clause and the name :: to the proof of the second clause, that
is, using the same constructor names as for the inductively defined type of lists:

data _≡[_]_ {X : Set} : (N → X) → List N → (N → X) → Set where
[] : ∀{α α’ : N → X} → α ≡[[]] α’
:: : ∀{α α’ : N → X}{i : N}{s : List N} → α i ≡ α’ i → α ≡[s] α’ → α ≡[i :: s] α’

continuous : (Baire → N) → Set
continuous f = ∀(α : Baire) → Σ \(s : List N) → ∀(α’ : Baire) → α ≡[s] α’ → f α ≡ f α’

It is an easy exercise, left to the reader, to produce an Agda proof that this refined
notion of continuity implies the traditional notion of continuity, by taking the max-
imum value of the list s. Functions defined by dialogues are continuous, because a

120

Escardo

dialogue produces an answer after finitely many queries:

dialogue-continuity : ∀(d : B N) → continuous(dialogue d)
dialogue-continuity (η n) α = ([] , lemma)

where
lemma : ∀ α’ → α ≡[[]] α’ → n ≡ n
lemma α’ r = refl

dialogue-continuity (B F i) α = ((i :: s) , lemma)
where

IH : ∀(i : N) → continuous(dialogue(F(α i)))
IH i = dialogue-continuity (F(α i))
s : List N
s = π0(IH i α)
claim0 : ∀(α’ : Baire) → α ≡[s] α’ → dialogue(F(α i)) α ≡ dialogue(F(α i)) α’
claim0 = π1(IH i α)
claim1 : ∀(α’ : Baire) → α i ≡ α’ i → dialogue (F (α i)) α’ ≡ dialogue (F (α’ i)) α’
claim1 α’ r = cong (ń n → dialogue (F n) α’) r
lemma : ∀(α’ : Baire) → α ≡[i :: s] α’ → dialogue (F(α i)) α ≡ dialogue(F (α’ i)) α’
lemma α’ (r :: rs) = trans (claim0 α’ rs) (claim1 α’ r)

This formal proof is informally explained as follows. We show that

∀(d : B N) → continuous(dialogue d)

by induction on d. Expanding the definition, this amounts to, using Agda notation,

∀ d → ∀ α → Σ \s → ∀ α′ → α ≡[s] α′ → dialogue d α ≡ dialogue d α′.

For the base case d = η n, the definition of the function dialogue gives
dialogue d α = n, and so we must show that, for any α,

Σ \s → ∀ α′ → α ≡[s] α′ → n ≡ n.

We can take s = [] and then we are done, because n ≡ n by reflexivity. This is what
the first equation of the formal proof says. Thus notice that Agda, in accordance
with MLTT, silently expands definitions by reduction to normal form. For the
induction step d = B F i, expanding the definition of the dialogue function, what we
need to prove is that, for an arbitrary α,

Σ \s′ → ∀ α′ → α ≡[s′] α′ → dialogue (F(α i)) α ≡ dialogue (F α′ i) α′.

The induction hypothesis is ∀(i : N) → continuous(dialogue(F(α i))), which gives,
for any i and our arbitrary α,

Σ \s → ∀ α′ → α ≡[s] α′ → dialogue(F(α i)) α = dialogue(F(α i)) α′.

Using the two projections π0 and π1 we get s and a proof that

∀ α′ → α ≡[s] α′ → dialogue(F(α i)) α = dialogue(F(α i)) α′.

Hence we can take s′ = i :: s, and the desired conclusion holds substituting equals
for equals (with cong) using transitivity and the definition α i ≡ α′ i → α ≡[s] α′

→ α ≡[i :: s] α′. This amounts to the second equation of the proof, where in the
pattern of the proof of the lemma we have r : α i ≡ α′ i and rs : α ≡[s] α′.

We need the following technical lemma because it is not provable in intensional
MLTT that any two functions are equal if they are pointwise equal. The proof is
admitedly written in a rather laconic form. The point is that the notion of continuity
depends only on the values of the function, and the hypothesis says that the two
functions have the same values. Notice that the axiom of function extensionality

121

Escardo

(any two pointwise equal functions are equal) is not false but rather not provable or
disprovable, and is consistent [14].

continuity-extensional : ∀(f g : Baire → N) → (∀ α → f α ≡ g α) → continuous f → continuous g
continuity-extensional f g t c α = (π0(c α) , (ń α’ r → trans (sym (t α)) (trans (π1(c α) α’ r) (t α’))))
eloquent-is-continuous : ∀(f : Baire → N) → eloquent f → continuous f
eloquent-is-continuous f (d , e) = continuity-extensional (dialogue d) f e (dialogue-continuity d)

The development for uniform continuity is similar to the above, with the crucial
difference that a dialogue tree in C N is finite:

Cantor : Set
Cantor = N → N2

C : Set → Set
C = D N N2

We work with a refined version of uniform continuity (cf. Section 1), where the
modulus is a finite binary tree s of indices rather than an upper bound of the
indices. We could have worked with a list of indices, but the proofs are shorter
and more direct using trees. The agreement relation defined by a tree of indices is
inductively defined as follows, where α ≡[[s]] α′ says that α and α′ agree at the
positions collected in the tree s:

data _≡[[_]]_ {X : Set} : (N → X) → Tree N → (N → X) → Set where
empty : ∀{α α’ : N → X} → α ≡[[empty]] α’
branch :
∀{α α’ : N → X}{i : N}{s : N2 → Tree N}
→ α i ≡ α’ i → (∀(j : N2) → α ≡[[s j]] α’) → α ≡[[branch i s]] α’

Again we are using the same constructor names as for the type of trees.

uniformly-continuous : (Cantor → N) → Set
uniformly-continuous f = Σ \(s : Tree N) → ∀(α α’ : Cantor) → α ≡[[s]] α’ → f α ≡ f α’

dialogue-UC : ∀(d : C N) → uniformly-continuous(dialogue d)
dialogue-UC (η n) = (empty , ń α α’ n → refl)
dialogue-UC (B F i) = (branch i s , lemma)

where
IH : ∀(j : N2) → uniformly-continuous(dialogue(F j))
IH j = dialogue-UC (F j)
s : N2 → Tree N
s j = π0(IH j)
claim : ∀ j α α’ → α ≡[[s j]] α’ → dialogue (F j) α ≡ dialogue (F j) α’
claim j = π1(IH j)
lemma : ∀ α α’ → α ≡[[branch i s]] α’ → dialogue (F (α i)) α ≡ dialogue (F (α’ i)) α’
lemma α α’ (branch r l) = trans fact0 fact1

where
fact0 : dialogue (F (α i)) α ≡ dialogue (F (α’ i)) α
fact0 = cong (ń j → dialogue(F j) α) r
fact1 : dialogue (F (α’ i)) α ≡ dialogue (F (α’ i)) α’
fact1 = claim (α’ i) α α’ (l(α’ i))

UC-extensional : ∀(f g : Cantor → N) → (∀(α : Cantor) → f α ≡ g α)
→ uniformly-continuous f → uniformly-continuous g

UC-extensional f g t (u , c) = (u , (ń α α’ r → trans (sym (t α)) (trans (c α α’ r) (t α’))))

eloquent-is-UC : ∀(f : Cantor → N) → eloquent f → uniformly-continuous f
eloquent-is-UC f (d , e) = UC-extensional (dialogue d) f e (dialogue-UC d)

We finish this section by showing that the restriction of an eloquent function
f : Baire → N to the Cantor type is also eloquent. We first define a pruning function
from B N to C N that implements restriction:

embed-N2-N : N2 → N

122

Escardo

embed-N2-N 0 = zero
embed-N2-N 1 = succ zero

embed-C-B : Cantor → Baire
embed-C-B α = embed-N2-N ◦ α

C-restriction : (Baire → N) → (Cantor → N)
C-restriction f = f ◦ embed-C-B

prune : B N → C N
prune (η n) = η n
prune (B F i) = B (ń j → prune(F(embed-N2-N j))) i

prune-behaviour : ∀(d : B N)(α : Cantor) → dialogue (prune d) α ≡ C-restriction(dialogue d) α
prune-behaviour (η n) α = refl
prune-behaviour (B F n) α = prune-behaviour (F(embed-N2-N(α n))) α

eloquent-restriction : ∀(f : Baire → N) → eloquent f → eloquent(C-restriction f)
eloquent-restriction f (d , c) = (prune d , ń α → trans (prune-behaviour d α) (c (embed-C-B α)))

2.3 Gödel’s system T extended with an oracle

For simplicity, we work with system T in its original combinatory form. This is
no loss of generality, because both the combinatory and the lambda-calculus forms
define the same elements of the set-theoretical model, and here we are interested
in the continuity of the definable functionals. The system T type expressions and
terms are inductively defined as follows:

data type : Set where
Ì : type
⇒ : type → type → type

data T : (σ : type) → Set where
Zero : T Ì
Succ : T(Ì ⇒ Ì)
Rec : ∀{σ : type} → T((σ ⇒ σ) ⇒ σ ⇒ Ì ⇒ σ)
K : ∀{σ τ : type} → T(σ ⇒ τ ⇒ σ)
S : ∀{ρ σ τ : type} → T((ρ ⇒ σ ⇒ τ) ⇒ (ρ ⇒ σ) ⇒ ρ ⇒ τ)
· : ∀{σ τ : type} → T(σ ⇒ τ) → T σ → T τ

infixr 1 _⇒_
infixl 1 _·_

Notice that there are five constants (or combinators) and one binary constructor (ap-
plication). Notice also that one can build only well-typed terms. The set-theoretical
interpretation of type expressions and terms is given by

SetJ_K : type → Set
SetJ Ì K = N
SetJ σ ⇒ τ K = SetJ σ K → SetJ τ K

J_K : ∀{σ : type} → T σ → SetJ σ K
J Zero K = zero
J Succ K = succ
J Rec K = rec
J K K = Ķ
J S K = Ş
J t · u K = J t K J u K

An element of the set-theoretical model is called T-definable if there is a T-term
denoting it:

T-definable : ∀{σ : type} → SetJ σ K → Set

123

Escardo

T-definable x = Σ \t → J t K ≡ x

As discussed above, the main theorem, proved in the last subsection, is that every T-
definable function Baire → N is continuous. The system T type of such functionals
is (Ì ⇒ Ì) ⇒ Ì.

We also consider system T extended with a formal oracle Ω : Ì ⇒ Ì:

data TΩ : (σ : type) → Set where
Ω : TΩ(Ì ⇒ Ì)
Zero : TΩ Ì
Succ : TΩ(Ì ⇒ Ì)
Rec : ∀{σ : type} → TΩ((σ ⇒ σ) ⇒ σ ⇒ Ì ⇒ σ)
K : ∀{σ τ : type} → TΩ(σ ⇒ τ ⇒ σ)
S : ∀{ρ σ τ : type} → TΩ((ρ ⇒ σ ⇒ τ) ⇒ (ρ ⇒ σ) ⇒ ρ ⇒ τ)
· : ∀{σ τ : type} → TΩ(σ ⇒ τ) → TΩ σ → TΩ τ

In the standard set-theoretical interpretation, the oracle can be thought of as a free
variable ranging over elements of the interpretation Baire of the type expression
Ì ⇒ Ì:

J_K’ : ∀{σ : type} → TΩ σ → Baire → SetJ σ K
J Ω K’ α = α
J Zero K’ α = zero
J Succ K’ α = succ
J Rec K’ α = rec
J K K’ α = Ķ
J S K’ α = Ş
J t · u K’ α = J t K’ α (J u K’ α)

To regard TΩ as an extension of T we need to work with an embedding:

embed : ∀{σ : type} → T σ → TΩ σ
embed Zero = Zero
embed Succ = Succ
embed Rec = Rec
embed K = K
embed S = S
embed (t · u) = (embed t) · (embed u)

2.4 The dialogue interpretation of system T

We now consider an auxiliary interpretation of system T extended with an oracle in
order to show that the original T-definable functions Baire → N are continuous. In
the alternative semantics, types are interpreted as the underlying objects of certain
algebras of the dialogue monad. The ground type is interpreted as the free algebra
of the standard interpretation, and function types as function sets. For the sake of
brevity, we will include only the parts of the definition of the monad that we actually
need for our purposes.

kleisli-extension : ∀{X Y : Set} → (X → B Y) → B X → B Y
kleisli-extension f (η x) = f x
kleisli-extension f (B F i) = B (ń j → kleisli-extension f (F j)) i

B-functor : ∀{X Y : Set} → (X → Y) → B X → B Y
B-functor f = kleisli-extension(η ◦ f)

The following two lemmas are crucial. We first swap the two arguments of the
dialogue function to have the view that from an element of the Baire type we get a
B-algebra B X → X for any X:

124

Escardo

decode : ∀{X : Set} → Baire → B X → X
decode α d = dialogue d α

The decodification map is natural for any oracle α : Baire:

B X
B g- B Y

X

decode α
?

g
- Y.

decode α
?

decode-α-is-natural : ∀{X Y : Set}(g : X → Y)(d : B X)(α : Baire) → g(decode α d) ≡ decode α (B-functor g d)
decode-α-is-natural g (η x) α = refl
decode-α-is-natural g (B F i) α = decode-α-is-natural g (F(α i)) α

The following diagram commutes for any f : X → B Y :

B X
kleisli-extension f - B Y

X

decode α
?

f
- B Y

decode α
- Y.

decode α
?

decode-kleisli-extension : ∀{X Y : Set}(f : X → B Y)(d : B X)(α : Baire)
→ decode α (f(decode α d)) ≡ decode α (kleisli-extension f d)

decode-kleisli-extension f (η x) α = refl
decode-kleisli-extension f (B F i) α = decode-kleisli-extension f (F(α i)) α

System TΩ type expressions are interpreted as the underlying sets of certain algebras
of the dialogue monad. The base type is interpreted as the underlying set of the
free algebra of the standard interpretation, and function types are interpreted as
sets of functions, exploiting the fact that algebras are exponential ideals (if Y is the
underlying object of an algebra, then so is the set of all functions X → Y for any
X, with the pointwise structure).

B-SetJ_K : type → Set
B-SetJ Ì K = B(SetJ Ì K)
B-SetJ σ ⇒ τ K = B-SetJ σ K → B-SetJ τ K

According to the official definition of an algebra of a monad, to show that a set X
is the underlying object of an algebra one must provide a structure map B X → X.
Alternatively, which is more convenient for us, one can provide a generalized Kleisli
extension operator, defined as follows, where the base case is just Kleisli extension,
and the induction step is pointwise extension:

Kleisli-extension : ∀{X : Set} {σ : type} → (X → B-SetJ σ K) → B X → B-SetJ σ K
Kleisli-extension {X} {Ì} = kleisli-extension
Kleisli-extension {X} {σ ⇒ τ} = ń g d s → Kleisli-extension {X} {τ} (ń x → g x s) d

With this we can now define the dialogue interpretation of system TΩ. The generic
element of the Baire type under this interpretation will interpret the Baire oracle Ω:

generic : B N → B N

125

Escardo

generic = kleisli-extension(B η)

As discussed in Section 1, the crucial property of the generic element is this:

B N
generic- B N

N

decode α
?

α
- N.

decode α
?

generic-diagram : ∀(α : Baire)(d : B N) → α(decode α d) ≡ decode α (generic d)
generic-diagram α (η n) = refl
generic-diagram α (B F n) = generic-diagram α (F(α n))

The alternative interpretations of zero and successor are obvious:

zero’ : B N
zero’ = η zero
succ’ : B N → B N
succ’ = B-functor succ

And the interpretation of the primitive recursion combinator again uses Kleisli ex-
tension in an obvious way:

rec’ : ∀{σ : type} → (B-SetJ σ K → B-SetJ σ K) → B-SetJ σ K → B N → B-SetJ σ K
rec’ f x = Kleisli-extension(rec f x)

This gives the dialogue interpretation. Notice that the interpretations of K, S and
application are standard. This is because we interpret function types as sets of
functions:

BJ_K : ∀{σ : type} → TΩ σ → B-SetJ σ K
BJ Ω K = generic
BJ Zero K = zero’
BJ Succ K = succ’
BJ Rec K = rec’
BJ K K = Ķ
BJ S K = Ş
BJ t · u K = BJ t K (BJ u K)

This semantics gives the desired dialogue trees:

dialogue-tree : T((Ì ⇒ Ì) ⇒ Ì) → B N
dialogue-tree t = BJ (embed t) · Ω K

The remainder of the development is the formulation and proof of the correctness
of the dialogue-tree function. We conclude this section with the trivial proof that
the embedding of T into TΩ preserves the standard interpretation and furthermore
is independent of oracles:

preservation : ∀{σ : type} → ∀(t : T σ) → ∀(α : Baire) → J t K ≡ J embed t K’ α
preservation Zero α = refl
preservation Succ α = refl
preservation Rec α = refl
preservation K α = refl
preservation S α = refl
preservation (t · u) α = cong2 (ń f x → f x) (preservation t α) (preservation u α)

126

Escardo

2.5 Relating the two models

The main lemma is that for any term t : TΩ Ì,

J t K′ α ≡ decode α (BJ t K).

We use the following logical relation to prove this:

R : ∀{σ : type} → (Baire → SetJ σ K) → B-SetJ σ K → Set

R {Ì} n n’ =
∀(α : Baire) → n α ≡ decode α n’

R {σ ⇒ τ} f f ’ =
∀(x : Baire → SetJ σ K)(x’ : B-SetJ σ K) → R {σ} x x’ → R {τ} (ń α → f α (x α)) (f ’ x’)

We need a (fairly general) technical lemma, which is used for constants with an
interpretation using the Kleisli-extension operator. In our case, this is just the re-
cursion combinator. The proof is by induction on type expressions, crucially relying
on the lemma decode-kleisli-extension, but is routine otherwise:

R-kleisli-lemma : ∀(σ : type)(g : N → Baire → SetJ σ K)(g’ : N → B-SetJ σ K)
→ (∀(k : N) → R (g k) (g’ k))
→ ∀(n : Baire → N)(n’ : B N) → R n n’ → R (ń α → g (n α) α) (Kleisli-extension g’ n’)

R-kleisli-lemma Ì g g’ rg n n’ rn = ń α → trans (fact3 α) (fact0 α)
where

fact0 : ∀ α → decode α (g’ (decode α n’)) ≡ decode α (kleisli-extension g’ n’)
fact0 = decode-kleisli-extension g’ n’
fact1 : ∀ α → g (n α) α ≡ decode α (g’(n α))
fact1 α = rg (n α) α
fact2 : ∀ α → decode α (g’ (n α)) ≡ decode α (g’ (decode α n’))
fact2 α = cong (ń k → decode α (g’ k)) (rn α)
fact3 : ∀ α → g (n α) α ≡ decode α (g’ (decode α n’))
fact3 α = trans (fact1 α) (fact2 α)

R-kleisli-lemma (σ ⇒ τ) g g’ rg n n’ rn
= ń y y’ ry → R-kleisli-lemma τ (ń k α → g k α (y α)) (ń k → g’ k y’) (ń k → rg k y y’ ry) n n’ rn

The proof of the main lemma is by induction on terms, crucially relying on the
lemmas generic-diagram (for the term Ω), decode-is-natural (for the term Succ) and
R-kleisli-lemma (for the term Rec). The terms K and S are routine (but laborious
and difficult to get right in an informal calculation), and so is the induction step for
application:

main-lemma : ∀{σ : type}(t : TΩ σ) → R J t K’ (BJ t K)

main-lemma Ω = lemma
where

claim : ∀ α n n’ → n α ≡ dialogue n’ α → α(n α) ≡ α(decode α n’)
claim α n n’ s = cong α s
lemma : ∀(n : Baire → N)(n’ : B N) → (∀ α → n α ≡ decode α n’)
→ ∀ α → α(n α) ≡ decode α (generic n’)

lemma n n’ rn α = trans (claim α n n’ (rn α)) (generic-diagram α n’)

main-lemma Zero = ń α → refl
main-lemma Succ = lemma

where
claim : ∀ α n n’ → n α ≡ dialogue n’ α → succ(n α) ≡ succ(decode α n’)
claim α n n’ s = cong succ s
lemma : ∀(n : Baire → N)(n’ : B N) → (∀ α → n α ≡ decode α n’)
→ ∀ α → succ (n α) ≡ decode α (B-functor succ n’)

lemma n n’ rn α = trans (claim α n n’ (rn α)) (decode-α-is-natural succ n’ α)

main-lemma {(σ ⇒ .σ) ⇒ .σ ⇒ Ì ⇒ .σ} Rec = lemma

127

Escardo

where
lemma : ∀(f : Baire → SetJ σ K → SetJ σ K)(f ’ : B-SetJ σ K → B-SetJ σ K) → R {σ ⇒ σ} f f ’
→ ∀(x : Baire → SetJ σ K)(x’ : B-SetJ σ K)
→ R {σ} x x’ → ∀(n : Baire → N)(n’ : B N) → R {Ì} n n’
→ R {σ} (ń α → rec (f α) (x α) (n α)) (Kleisli-extension(rec f ’ x’) n’)

lemma f f ’ rf x x’ rx = R-kleisli-lemma σ g g’ rg
where

g : N → Baire → SetJ σ K
g k α = rec (f α) (x α) k
g’ : N → B-SetJ σ K
g’ k = rec f ’ x’ k
rg : ∀(k : N) → R (g k) (g’ k)
rg zero = rx
rg (succ k) = rf (g k) (g’ k) (rg k)

main-lemma K = ń x x’ rx y y’ ry → rx

main-lemma S = ń f f ’ rf g g’ rg x x’ rx → rf x x’ rx (ń α → g α (x α)) (g’ x’) (rg x x’ rx)

main-lemma (t · u) = main-lemma t J u K’ BJ u K (main-lemma u)

This gives the correctness of the dialogue-tree function defined above: the standard
interpretation of a term is computed by its dialogue tree.

dialogue-tree-correct : ∀(t : T((Ì ⇒ Ì) ⇒ Ì))(α : Baire) → J t K α ≡ decode α (dialogue-tree t)
dialogue-tree-correct t α = trans claim0 claim1

where
claim0 : J t K α ≡ J (embed t) · Ω K’ α
claim0 = cong (ń g → g α) (preservation t α)
claim1 : J (embed t) · Ω K’ α ≡ decode α (dialogue-tree t)
claim1 = main-lemma ((embed t) · Ω) α

The desired result follows directly from this:

eloquence-theorem : ∀(f : Baire → N) → T-definable f → eloquent f
eloquence-theorem f (t , r) = (dialogue-tree t , ń α → trans(sym(dialogue-tree-correct t α))(cong(ń g → g α) r))

corollary0 : ∀(f : Baire → N) → T-definable f → continuous f
corollary0 f d = eloquent-is-continuous f (eloquence-theorem f d)

corollary1 : ∀(f : Baire → N) → T-definable f → uniformly-continuous(C-restriction f)
corollary1 f d = eloquent-is-UC (C-restriction f) (eloquent-restriction f (eloquence-theorem f d))

This concludes the full, self-contained, MLTT proof in Agda notation, given from
scratch. Because MLTT proofs are programs, we can run the two corollaries to
compute moduli of (uniform) continuity of T-definable functions. Because MLTT
itself has an interpretation in ZF(C), in which types are sets in the sense of classical
mathematics, the results of this paper hold in classical mathematics too. Because
the LATEX source for this article [7] is simultaneously an Agda file that type-checks,
the readers don’t need to check the routine details of the proofs themselves, provided
they trust the minimal core of Agda used here, and can instead concentrate on the
interesting details of the constructions and proofs. One can envisage a future in
which it will be easier to write (constructive and non-constructive) formal proofs
than informal, rigorous proofs, letting our minds concentrate on the insights. This
is certainly a provocative statement. But, in fact, the proof presented here was
directly written in its formal form, without an informal draft other than a mental
picture starting from the idea of generic sequence as described in the introduction,
with some rudimentary help by Agda to perform the routine steps. Tactic-based
systems such as e.g. Coq provide much more help, which in some instances can be
considered as non-routine even if ultimately they are based on algorithms. But our

128

Escardo

principal motivation for writing this formal proof in an MLTT or realizability based
computer system such as NuPrl, Coq, Lego, Agda, Minlog etc. is that mentioned
above, that the proof is literally a program too, and hence can be used to compute
moduli of (uniform) continuity, without the need to write a separate algorithm based
on an informal, rigorous proof, as it is usually currently done, including by ourselves
in previous work.

Having said that, it is useful to have a self-contained informal rigorous proof,
which we include in the next section. Before that, we conclude this section by
running our formal constructive proof for the purposes of illustration.

2.6 Experiments

To illustrate the concrete sense in which the above formal proof is constructive,
we develop some experiments. These experiments are not meant to indicate the
usefulness of the theorem proved above. They merely make clear that the theorems
do have a concrete computational content.

First of all, given a term t : (Ì ⇒ Ì) ⇒ Ì, we can compute its modulus of (uni-
form) continuity.

mod-cont : T((Ì ⇒ Ì) ⇒ Ì) → Baire → List N
mod-cont t α = π0(corollary0 J t K (t , refl) α)
mod-cont-obs : ∀(t : T((Ì ⇒ Ì) ⇒ Ì))(α : Baire) → mod-cont t α ≡ π0(dialogue-continuity (dialogue-tree t) α)
mod-cont-obs t α = refl

infixl 0 _::_
infixl 1 _++_
++ : {X : Set} → List X → List X → List X
[] ++ u = u
(x :: t) ++ u = x :: t ++ u
flatten : {X : Set} → Tree X → List X
flatten empty = []
flatten (branch x t) = x :: flatten(t 0) ++ flatten(t 1)

mod-unif : T((Ì ⇒ Ì) ⇒ Ì) → List N
mod-unif t = flatten(π0 (corollary1 J t K (t , refl)))

The following Agda declaration allows us to write e.g. 3 rather than
succ(succ(succ zero)):

{-# BUILTIN NATURAL N #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC succ #-}

A difficulty we face is that it is not easy to write system T programs in the combi-
natory version of system T. Hence we start by developing some machinery.

I : ∀{σ : type} → T(σ ⇒ σ)
I {σ} = S · K · (K {σ} {σ})
I-behaviour : ∀{σ : type}{x : SetJ σ K} → J I K x ≡ x
I-behaviour = refl

number : N → T Ì
number zero = Zero
number (succ n) = Succ · (number n)

Here is our first example:

t0 : T((Ì ⇒ Ì) ⇒ Ì)
t0 = K · (number 17)

129

Escardo

t0-interpretation : J t0 K ≡ ń α → 17
t0-interpretation = refl
example0 example0’ : List N
example0 = mod-cont t0 (ń i → i)
example0’ = mod-unif t0

These examples both evaluate to []. To provide more sophisticated examples, we
work with an impoverished context G that allows us to consider just one free variable
v, which is represented by the I combinator:

v : ∀{G : type} → T(G ⇒ G)
v = I

Application for such a context amounts to the S combinator:

infixl 1 _•_
• : ∀{G σ τ : type} → T(G ⇒ σ ⇒ τ) → T(G ⇒ σ) → T(G ⇒ τ)
f • x = S · f · x

Number : ∀{G} → N → T(G ⇒ Ì)
Number n = K · (number n)

Here is an example:

t1 : T((Ì ⇒ Ì) ⇒ Ì)
t1 = v • (Number 17)
t1-interpretation : J t1 K ≡ ń α → α 17
t1-interpretation = refl
example1 : List N
example1 = mod-unif t1

This evaluates to 17 :: [].

t2 : T((Ì ⇒ Ì) ⇒ Ì)
t2 = Rec • t1 • t1
t2-interpretation : J t2 K ≡ ń α → rec α (α 17) (α 17)
t2-interpretation = refl
example2 example2’ : List N
example2 = mod-unif t2
example2’ = mod-cont t2 (ń i → i)

These examples evaluate to 17 :: 17 :: 17 :: 0 :: 1 :: [] and to a list whose members
are all 17.

Add : T(Ì ⇒ Ì ⇒ Ì)
Add = Rec · Succ
infixl 0 _+_
+ : ∀{G} → T(G ⇒ Ì) → T(G ⇒ Ì) → T(G ⇒ Ì)
x + y = K · Add • x • y

t3 : T((Ì ⇒ Ì) ⇒ Ì)
t3 = Rec • (v • Number 1) • (v • Number 2 + v • Number 3)
t3-interpretation : J t3 K ≡ ń α → rec α (α 1) (rec succ (α 2) (α 3))
t3-interpretation = refl
example3 example3’ : List N
example3 = mod-cont t3 succ
example3’ = mod-unif t3

These examples evaluate to 3 :: 2 :: 1 :: 2 :: 3 :: 4 :: 5 :: 6 :: 7 :: 8 :: [] and 3 :: 2 ::
1 :: 1 :: 0 :: 1 :: 2 :: 1 :: 0 :: 1 :: 1 :: 0 :: 0 :: 1 :: 1 :: 0 :: 1 :: [].

length : {X : Set} → List X → N
length [] = 0
length (x :: s) = succ(length s)
max : N → N → N
max 0 x = x

130

Escardo

max x 0 = x
max (succ x) (succ y) = succ(max x y)
Max : List N → N
Max [] = 0
Max (x :: s) = max x (Max s)

t4 : T((Ì ⇒ Ì) ⇒ Ì)
t4 = Rec • ((v • (v • Number 2)) + (v • Number 3)) • t3
t4-interpretation : J t4 K ≡ ń α → rec α (rec succ (α (α 2)) (α 3)) (rec α (α 1) (rec succ (α 2) (α 3)))
t4-interpretation = refl
example4 example4’ : N
example4 = length(mod-unif t4)
example4’ = Max(mod-unif t4)

These examples evaluate to 215 and 3.

t5 : T((Ì ⇒ Ì) ⇒ Ì)
t5 = Rec • (v • (v • t2 + t4)) • (v • Number 2)
t5-explicitly : t5 ≡ (S · (S · Rec · (S · I · (S · (S · (K · (Rec · Succ)) · (S · I · (S
· (S · Rec · (S · I · (K · (number 17)))) · (S · I · (K · (number 17))))))
· (S · (S · Rec · (S · (S · (K · (Rec · Succ)) · (S · I · (S · I · (K · (number 2)))))
· (S · I · (K · (number 3))))) · (S · (S · Rec · (S · I · (K · (number 1))))
· (S · (S · (K · (Rec · Succ)) · (S · I · (K · (number 2)))) · (S · I · (K
· (number 3))))))))) · (S · I · (K · (number 2))))

t5-explicitly = refl
t5-interpretation : J t5 K ≡ ń α → rec α (α(rec succ (α(rec α (α 17) (α 17)))

(rec α (rec succ (α (α 2)) (α 3))
(rec α (α 1) (rec succ (α 2) (α 3)))))) (α 2)

t5-interpretation = refl
example5 example5’ example5” : N
example5 = length(mod-unif t5)
example5’ = Max(mod-unif t5)
example5” = Max(mod-cont t5 succ)

These examples evaluate to 15551, 17 and 57. All evaluations reported above are
instantaneous, except this last set, which takes about a minute in a low-end net-
book. Using Church encoding of dialogue trees produces a dramatic performance
improvement [7], with an instantaneous answer in these examples, because Klesli
extension and the functor don’t need to walk through trees to be performed.

3 Informal, rigorous proof

We now provide a self-contained, informal, rigorous version of the formal proof given
above, in a foundationally neutral exposition.

We work with the combinatory version of (the term language of) Gödel’s sys-
tem T. We have a ground type ι and a right-associative type formation operation
− ⇒ −. Every term as a unique type. We have the constants

(i) Zero : ι.

(ii) Succ : ι⇒ ι.

(iii) Recσ : (σ ⇒ σ)⇒ σ ⇒ ι⇒ σ.

(iv) Kσ,τ : σ ⇒ τ ⇒ σ.

(v) Sρ,σ,τ : (ρ⇒ σ ⇒ τ)⇒ (ρ⇒ σ)⇒ ρ⇒ τ .

We omit the subscripts when they can be uniquely inferred from the context. If
t : σ ⇒ τ and u : τ are terms, then so is tu : τ , with the convention that this appli-
cation operation is left associative. Write Tσ for the set of terms of type σ.

131

Escardo

In the standard interpretation, we map a type expression σ to a set JσK and a
term t : σ to an element JtK ∈ JσK. These interpretations are defined by induction as
follows:

JιK = N, Jσ ⇒ τK = JτKJσK = (JσK→ JτK) (set of all functions JσK→ JτK),

JZeroK = 0, JSuccKn = n+ 1, JRecKfxn = fn(x),

JKKxy = x, JSKfgx = fx(gx), JtuK = JtK(JuK).

For any given three sets X,Y, Z, the set DXY Z of dialogue trees is inductively
defined as follows:

(i) A leaf labeled by an element z ∈ Z is a dialogue tree, written ηz.

(ii) If φ : Y → DXY Z is a Y -indexed family of dialogue trees and x ∈ X, then the
tree with root labeled by x and with one branch leading to the subtree φy for
each y ∈ Y is also a dialogue tree, written βφx.

Such trees are well founded, meaning that every path from the root to a leaf is finite.
The above notation gives functions

η : Z → DXY Z,

β : (Y → DXY Z)→ X → DXY Z.

Dialogue trees describe “computations” of functions f : Y X → Z. Leaves give an-
swers, and labels of internal nodes are queries to an “oracle” α ∈ Y X , the argument
of the function f . For any dialogue tree d ∈ DXY Z, we inductively define a function
fd : Y X → Z by

fηz(α) = z, fβφx(α) = fφ(αx)(α).

The functions Y X → Z that arise in this way are called eloquent. Notice that the
oracle α is queried finitely many times in this computation, because a dialogue tree
is well founded. Hence the function f = fd : Y X → Z satisfies

∀α ∈ Y X ∃finite S ⊆ X ∀α′ ∈ Y X , α =S α
′ =⇒ fα = fα′,

where α =S α
′ is a shorthand for ∀x ∈ S, αx = α′x. When X = Y = Z = N, this

amounts to continuity in the product topology of NN with N discrete, which gives
the Baire space.

For Y finite and X,Z arbitrary, the dialogue tree is finitely branching and hence
finite by well-foundedness (or directly by induction), and so the set of potential
queries to the oracle is finite, so that, for any f = fd : Y X → Z with Y finite,

∃finite S ⊆ X ∀α, α′ ∈ Y X , α =S α
′ =⇒ fα = fα′.

When Y = 2 = {0, 1} and X = Z = N, this amounts to (uniform) continuity in the
product topology of 2N with 2 discrete, which gives the Cantor space.

Clearly, any N-branching tree d ∈ DNNN can be pruned to a 2-branching tree
d′ ∈ DN2N so that fd′ : 2N → N is the restriction of fd : NN → N from sequences
to binary sequences. Hence if we show that every T-definable function NN → N is
eloquent, we conclude that every T-definable function NN → N is continuous and its

132

Escardo

restriction to 2N is uniformly continuous. For this purpose, we consider an auxiliary
model of system T.

Define BX = DNNX. We remark that although B is the object part of a monad,
as discussed in the introduction, it is not necessary to know this for the purposes of
this proof. The data given below do obey the required laws to get a monad, but the
details are left to the interested reader.

For any function f : X → BY , inductively define f] : BX → BY by

f](ηx) = fx,

f](βφi) = β(λj.f](φj))i.

This says that the tree f](d) is d with each leaf labeled by x replaced by the subtree
fx, with no changes to the internal nodes. Given f : X → Y , we define f : BX →
BY by

B f = (η ◦ f)].

Hence B f(d) replaces each label x of a leaf of d by the label f(x), and we have the
naturality condition

BX
B f
- BY

X

η
6

f
- Y.

η
6

For each α ∈ NN and any set X, define a map decodeα : BX → X by

decodeα(d) = fd(α).

Then, by definition, decodeα(ηx) = x, and hence the naturality of η gives that of
decodeα:

BX
B f

- BY

X

decodeα
?

f
- Y.

decodeα
?

(1)

It is also easy to see, by induction on dialogue trees, that

BX
f]

- BY

X

decodeα
?

f
- BY

decodeα
- Y.

decodeα
?

(2)

Now define

generic : BN→ BN
generic = (βη)].

133

Escardo

Because β : (N → BN) → N → BN and η : N → BN, the function generic is well
defined. Its crucial property is that

BN
generic

- BN

N

decodeα
?

α
- N.

decodeα
?

(3)

The proof that
decodeα(generic d) = α(decodeα d)

is straightforward by induction on d.
Now define the B-interpretation of types as follows:

BJιK = B(JιK) = BN, BJσ ⇒ τK = BJτKBJσK.

For any type σ and f : X → BJσK, define f] : BX → BJσK by induction on σ,
where the base case σ = ι is given by the above definition, and the induction step
σ = (ρ⇒ τ) is given pointwise as

f]dy = (λx.fxy)]d.

Notice that f : X → BJρK→ BJτK and f] : BX → BJρK→ BJτK.
Next extend system T with a new constant Ω: ι⇒ ι, a formal oracle, and define

the B-interpretation of terms as follows:

BJΩK = generic, BJZeroK = η0, BJSuccK = B(λn.n+ 1), BJRecKfx = (λn.fn(x))],

BJKKxy = x, BJSKfgx = fx(gx), BJtuK = BJtK(BJuK).

We also need to consider the standard interpretation of system T extended with
the oracle Ω. We treat the oracle as a free variable, as hence the value of this free
variable has to be provided to define the interpretation:

JΩKα = α, JZeroKα = 0, JSuccKαn = n+ 1, JRecKαfxn = fn(x),

JKKαxy = x, JSKαfgx = fx(gx), JtuKα = JtKα(JuKα).

We claim that for any term t : ι,

JtKα = decodeα(BJtK).

To prove this, we work with a logical relation Rσ between functions NN → JσK and
elements of BJσK by induction on σ. For any n : NN → N and n′ ∈ BN, we define

Rιnn
′ ⇐⇒ ∀α, nα = decodeα n

′,

and, for any f : NN → JσK→ JτK and f ′ : BJσK→ BJτK, we define

Rσ→τff
′ ⇐⇒ ∀x : NN → JσK, ∀x′ : BJσK, Rσxx′ → Rτ (λα, fα(xα))(f ′x′).

134

Escardo

We need a technical lemma for dealing with the dialogue interpretation of Rec:

Claim 3.1 For all g : N→ NN → BJσK and g′ : N→ BJσK, if

∀k ∈ N, Rσ(gk)(g′k),

then ∀n : NN → N, ∀n′ ∈ BN, Rιnn′ → Rσ(λα→ g(nα)α)(g′n′)].

The proof is straightforward by induction on types, using diagram 2.

Claim 3.2 Rσ JtK (BJtK) for every term t : σ.

The proof is by induction on terms, using diagram 3 for the term Ω, diagram 1 for
the term Succ, and Claim 3.1 for the term Rec. The terms K and S are immediate
but perhaps laborious, and the induction step, namely term application, is easy.
This gives, in particular:

Claim 3.3 For every term t : (ι⇒ ι)⇒ ι, we have JtKα = decodeα(BJtΩK).

It follows that every T-definable function f : NN → N is eloquent, with dialogue tree
given by BJtΩK, where t : (ι⇒ ι)⇒ ι is any term denoting f , and hence continuous,
with uniformly continuous restriction to 2N.

4 Discussion, questions and conjectures

It may not be apparent from the informal proof of Section 3 that the argument
is constructive, but Section 2 provides a constructive rendering in Martin-Löf type
theory. We emphasize that our proof doesn’t invoke the Fan Theorem [15,2] or any
constructively contentious axiom.

We have deliberately chosen system T in its combinatory form as the simplest
and most memorable non-trivial higher-type language to illustrate the essence of
the technique proposed here. It is clearly routine (as well as interesting and useful)
to apply the technique to a number of well-known extensions of the simply-typed
lambda-calculus. But, for instance, at the time of writing, dependent types seem
to require further thought, particularly in the presence of universes. Can one, e.g.
(generalize and) apply the technique developed here to show that all MLTT defin-
able functions (N → N) → N are continuous, and that their restrictions to (N → 2)
are uniformly continuous, in the main versions of (intensional) MLTT? More ambi-
tiously, does the technique apply to Homotopy Type Theory [14]?

As pointed out by one of the anonymous referees, the syntactical techniques
of [15] give more information: for any term t of type (ι⇒ ι)⇒ ι one can construct
a term m : (ι⇒ ι)⇒ ι such that m internalizes the modulus of continuity of t. We
adapted our technique to achieve this, as reported in [7], by working with Church
encodings of dialogue trees defined within system T, and turning our semantical
interpretation into a compositional translation of system T into itself. A corollary
is that the dialogue trees of T-definable functions (N → N) → N, being themselves
T-definable, have height smaller than ε0.

135

Escardo

References

[1] A. Bauer and M. Pretnar. Programming with algebraic effects and handlers. Submitted for publication,
2012.

[2] M.J. Beeson. Foundations of Constructive Mathematics. Springer, 1985.

[3] E. Bishop. Foundations of constructive analysis. McGraw-Hill Book Co., New York, 1967.

[4] A. Bove and P. Dybjer. Dependent types at work. Proceedings of Language Engineering and Rigorous
Software Development, LNCS, 5520:57–99, 2009.

[5] T. Coquand and G. Jaber. A note on forcing and type theory. Fundam. Inf., 100(1-4):43–52, January
2010.

[6] T. Coquand and G. Jaber. A computational interpretation of forcing in type theory. In Epistemology
versus Ontology, pages 203–213. Springer, 2012.

[7] M.H. Escardó. Continuity of Gödel’s system T definable functionals via effectful forcing. Agda proof
at http://www.cs.bham.ac.uk/~mhe/dialogue/, July 2012.

[8] P. Hancock, D. Pattinson, and N. Ghani. Representations of stream processors using nested fixed
points. In Logical Methods in Computer Science, page 2009.

[9] W. A. Howard. Ordinal analysis of terms of finite type. The Journal of Symbolic Logic, 45:493–504,
1980.

[10] S.C. Kleene. Recursive functionals and quantifiers of finite types I. Trans. Amer. Math. Soc, 91, 1959.

[11] J. Longley. When is a functional program not a functional program? In Proceedings of Fourth ACM
SIGPLAN International Conference on Functional Programming, pages 1–7. ACM Press, 1999.

[12] P.Hancock and A. Setzer. Interactive programs in dependent type theory. In CSL, pages 317–331,
2000.

[13] G. Plotkin and J. Power. Algebraic operations and generic effects. Applied Categorical Structures, 11,
2003.

[14] The Univalent Foundations Program. Homotopy type theory: Univalent foundations of mathematics.
Technical report, Institute for Advanced Study, 2013.

[15] A. S. Troelstra, editor. Metamathematical investigation of intuitionistic arithmetic and analysis.
Lecture Notes in Mathematics, Vol. 344. Springer-Verlag, Berlin, 1973.

[16] C. Xu and M.H. Escardó. A constructive model of uniform continuity. To appear in TLCA, 2013.

136

http://www.cs.bham.ac.uk/~mhe/dialogue/

MFPS 2013

A Connection Between Concurrency and
Language Theory

Zoltán Ésik1

Dept. of Computer Science
University of Szeged

Szeged, Hungary

Abstract

We show that three fixed point structures equipped with (sequential) composition, a sum operation, and
a fixed point operation share the same valid equations. These are the theories of (context-free) languages,
(regular) tree languages, and simulation equivalence classes of (regular) synchronization trees (or processes).
The results reveal a close relationship between classical language theory and process algebra.

Keywords: Fixed point operations, iteration theories, context-free languages, regular tree languages,
synchronization trees, simulation equivalence

1 Introduction

Iteration theories [7] capture the equational properties of fixed point operations

including the least fixed point operation over continuous or monotone functions

over cpo’s or complete lattices or in rational algebraic theories [31,38], the initial

fixed point operation over continuous functors over categories with directed colimits

[6], Elgot’s (pointed) iterative theories [15], theories of trees and synchronization

trees, and many other structures. Actually it was shown in [16,29] that an iteration

theory arises whenever there are enough least pre-fixed or initial fixed points around.

It was argued in [7,9] that all natural cartesian fixed point models lead to it-

eration theories. Moreover, it was proved in [35] that essentially every nontrivial

subclass of iteration theories obeying a natural condition satisfies exactly the equa-

tions of iteration theories.

But several models have an additional structure, such as an additive struc-

ture, which interacts with the cartesian operations and the fixed point opera-

tion in a nontrivial way. The relationship between the iteration theory structure

1 This publication is supported by the European Union and co-funded by the European Social Fund.
Project title: ‘Telemedicine-focused research activities on the field of mathematics, informatics and medical
sciences’. Project number: TMOP-4.2.2.A-11/1/KONV-2012-0073

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

Ésik

and the additional operations has been the subject of several papers, including

[1,8,12,19,11,17,20,21,27,28] and the recent [24]. In many cases, it was possible

to capture this relationship by a finite number of equational (or sometimes quasi-

equational) axioms. As a byproduct of these results, it was possible to give complete

sets of equational axioms for various bisimulation and trace based process behav-

iors, rational power series and regular languages, regular tree languages, and many

other models.

The theory of simulation equivalence classes of (regular) synchronization trees

over a set of action symbols, equipped with the cartesian operations, the least

fixed point operation and sum, has a finite equational axiomatization relatively to

iteration theories [19]. Incidentally, the very same equations hold for continuous

or monotone functions over complete lattices equipped with the least fixed point

operation and the pointwise binary supremum operation as sum, or more generally,

in all ‘(ω-)continuous idempotent grove theories’. In this paper, our main new

contribution is that two more well-known classes of structures relevant to computer

science are of this sort, the theories of (regular) tree languages and the theories of

(context-free) languages (Theorem 3.1). In our argument, we will make use of a

concrete characterization of the free ω-continuous idempotent grove theories, which

is a result of independent interest (cf. Theorem 4.3). The facts proved in the paper

reveal a close relationship between models of concurrency, automata and language

theory, and models of denotational semantics.

The results of this paper can be formulated in several different formalism in-

cluding ‘µ-terms’, ‘letrec expressions’, or cartesian categories. We have chosen the

simple language of Lawvere theories, i.e., cartesian categories generated by a single

object. The extension of the results to many-sorted theories is straightforward.

2 Theories

In any category, we write the composition f ·g of morphisms f : a→ b and g : b→ c

in diagrammatic order, and we let 1a denote the identity morphism a→ a. For an

integer n ≥ 0, we let [n] denote the set {1, . . . , n}. When n = 0, this set is empty.

A (Lawvere) theory [32,7] is a small category T whose objects are the nonnegative

integers such that each object n is the n-fold coproduct of object 1 with itself. The

hom-set of morphisms n→ p of a theory T is denoted T (n, p). We assume that every

theory comes with distinguished coproduct injections in : 1 → n, i ∈ [n], n ≥ 0.

Thus, for any sequence of morphisms f1, . . . , fn : 1→ p, there is a unique morphism

f : n → p with in · f = fi, for all i ∈ [n]. We denote this unique morphism f by

〈f1, . . . , fn〉 and call it the tupling of the fi. When n = 0, we also write 0p. Since 0

is initial object, 0p is the unique morphism 0→ p. It is clear that 1n = 〈1n, . . . , nn〉
for all n ≥ 0. We require that 11 = 11, so that 〈f〉 = f for all f : 1→ p. Since the

object n + m is the coproduct of objects n and m with respect to the coproduct

injections

κn,n+m = 〈1n+m, . . . , nn+m〉 : n→ n+m

λm,n+m = 〈(n+ 1)n+m, . . . , (n+m)n+m〉 : m→ n+m,

each theory is equipped with a pairing operation mapping a pair of morphisms (f, g)

138

Ésik

with f : n→ p and g : m→ p to 〈f, g〉 : n+m→ p:

n n+m
κ //n

p

f

��?
??

??
??

??
??

??
? n+m moo λ

n+m

p

〈f,g〉

��

m

p

g

����
��
��
��
��
��
��

The pairing operation is associative and satisfies 〈f, 0p〉 = f = 〈0p, f〉 for all f :

n→ p.

Also, we can define for f : n→ p and g : m→ q the morphism f ⊕ g : n+m→
p+ q as 〈f · κp,p+q, g · λq,p+q〉. Then f ⊕ g is the unique morphism n+m→ p+ q

with

κn,n+m · (f ⊕ g) = f · κp,p+q
λm,n+m · (f ⊕ g) = g · λq,p+q.

p p+ qκ
//

n

p

f

��

n n+m
κ // n+m

p+ q

f⊕g

��
p+ q qoo

λ

n+m

p+ q

n+m

p+ q

n+m moo λ
m

q

g

��

The ⊕ operation is associative, and 00 ⊕ f = f = f ⊕ 00 for all f : n→ p. Also,

(f ⊕ g) · 〈h, k〉= 〈f · h, g · k〉
for all f : n→ p, g : m→ q, h : p→ r and k : q → r.

Each theory T may be seen as a many-sorted algebra, whose set of sorts is the

set N× N of all ordered pairs of nonnegative integers, satisfying certain equational

axioms, see e.g. [7]. Morphisms of theories are functors preserving objects and dis-

tinguished morphisms. It follows that any theory morphism preserves the tupling,

(and pairing) operations. The kernels of theory morphisms are called theory con-

gruences. The quotient T/ ≡ of a theory T with respect to a theory congruence is

defined as usual. A subtheory of a theory T is a theory T ′ whose set of morphisms

is included in the morphisms of T such that the natural embedding of T ′ into T is

a theory morphism T ′ → T . See [7] for more details.

We end this section by providing some examples.

Let X = {x1, x2, . . .} denote a fixed countably infinite set of variables, and let

A be a set disjoint from X. For each p ≥ 0, let Xp = {x1, . . . , xp}. The theory

WA has as morphisms 1 → p all words in (A ∪ Xp)
∗. A morphism n → p is

an n-tuple of morphisms 1 → p. For morphisms u = (u1, . . . , un) : n → p and

v = (v1, . . . , vp) : p→ q, we define u · v = (u1 · v, . . . , un · v), where for each i ∈ [n],

ui ·v is the word obtained from ui by substituting a copy of vj for each occurrence of

the variable xj in vi, for all j ∈ [p]. Equipped with this composition operation and

the morphisms 1n = (x1, . . . , xn) : n→ n as identity morphisms, WA is a category.

In fact, WA is a theory with distinguished morphisms in = xi : 1 → n, i ∈ [n],

n ≥ 0.

Suppose now that Σ =
⊎
k≥0 Σk is a ranked set which is disjoint from X. We

may view Σ as a pure set and form the theory WΣ. Consider the subtheory TreeΣ

139

Ésik

of WΣ consisting of the Σ-trees (or Σ-terms). A morphism 1 → p in TreeΣ is a

well-formed word in (Σ ∪ Xp)
∗ which is either a variable in Xp or a word of the

form σt1 . . . tk for a letter σ ∈ Σk and trees t1, . . . , tk : 1 → p. A morphism n → p

is an n-tuple of morphisms n → p. It is well-known that the theory TreeΣ is the

free theory, freely generated by Σ. Indeed, each letter σ ∈ Σn may be identified

with a tree in TreeΣ(1, n) so that given any theory T and rank preserving function

ϕ : Σ→ T , there is a unique theory morphism ϕ] : TreeΣ → T extending ϕ.

Remark 2.1 If in the previous example Σ is empty, then we obtain the initial

theory Θ. A morphism n → p of this initial theory is a tupling of distinguished

morphisms and may be identified with a function [n] → [p], so that composition

corresponds to composition of functions. A base morphism of a theory T is a mor-

phism that arises as the image of a morphism in the initial theory with respect to

the unique theory morphism Θ → T . For example, the base morphisms n → p in

a theory WA are the morphisms of the form (x1ρ, . . . , xnρ), where ρ is a function

[n] → [p]. In any nontrivial theory, we may represent base morphisms n → p as

functions [n]→ [p].

3 Statement of the main result

By taking sets of morphisms of a theory T , we may sometimes define a new theory

P (T). (For a more general construction, the reader is referred to [10].) The mor-

phisms 1 → p in P (T) are all sets L ⊆ T (1, p). A morphism n → p is an n-tuple

(L1, . . . , Ln) of morphisms 1 → p, including the tuple 0n,p = (∅, . . . , ∅). To define

composition, suppose that L : 1 → p and K = (K1, . . . ,Kp) : p → q. Then we

define L ·K : 1→ q to be the set of all morphisms 1→ q in T of the form

f · 〈g1, . . . , gm〉

such that f : 1 → m in T and there is a base morphism ρ : m → p with f · ρ ∈ L
and gi ∈ Kiρ for all i ∈ [m]. When L = (L1, . . . , Ln) : n → p, we define L ·K as

the morphism (L1 ·K, . . . , Ln ·K) : n→ q. For each n ≥ 0, the identity morphism

1n is the morphism ({1n}, . . . , {nn}) : n → n, and the ith distinguished morphism

1→ n is {in}. When P (T) is a theory, we call it a power-set theory.

Suppose that P (T) is a power-set theory. We may also equip P (T) with a sum

operation, denoted + and defined by component-wise set union. We define

L+ L′ = (L1 ∪ L′1, . . . , Ln ∪ L′n) : n→ p,

for all L = (L1, . . . , Ln) : n → p and L′ = (L′1, . . . , L
′
n) : n → p in P (T). It is clear

that, equipped with the operation + and the constant 0n,p, each hom-set P (T)(n, p)

is a commutative, idempotent monoid. Moreover,

in · (L+ L′) = in · L+ in · L′ (1)

in · 0n,p = 01,p (2)

(L+ L′) ·K =L ·K + L′ ·K (3)

0n,p ·K = 0n,q, (4)

140

Ésik

for all L,L′ : n→ p andK : p→ q. (Here, we adapt the convention that composition

has higher precedence than sum.) Thus, P (T) is an idempotent grove theory, cf. [7]

or Section 4.

The above power-set construction is applicable to the theories WA and TreeΣ,

yielding the idempotent grove theories LangA of languages over A and TreeLangΣ

of tree languages over Σ. In LangA, composition is the usual operation of ‘language

substitution’. In TreeLangΣ, it corresponds to the ‘OI-substitution’ of [14].

Any power-set theory P (T) is naturally equipped with a partial order ⊆ defined

by component-wise set inclusion. It is clear that each hom-set P (T)(n, p) is a com-

plete lattice with least element 0n,p, moreover, the theory operations are monotone,

in fact continuous. (Composition preserves all suprema in its first argument, and

tupling preserves all suprema in each of its arguments.) Thus, we can define a dag-

ger operation † : T (P)(n, n + p) → T (P)(n, p) (n, p ≥ 0), L 7→ L†, by taking the

least solution of the fixed point equation X = L · 〈X,1p〉. In particular, the theo-

ries LangA and TreeLangΣ are also equipped with a dagger operation. The least

subtheory of LangA containing the finite languages which is closed under dagger is

the theory CFLA of context-free languages, and the least subtheory of TreeLangA
containing the finite tree languages which is closed under dagger is the theory RegΣ

of regular tree languages [17,21,30]. Both CFLA and RegΣ are idempotent grove

theories.

We define yet another class of theories equipped with both an additive structure

and a dagger operation, the theories of simulation equivalence classes of synchro-

nization trees. A hyper-tree consists of a countable set V of vertices and a countable

set E of edges, each edge e having a source v in V and an ordered sequence of target

vertices (v1, . . . , vn) ∈ V n, for some n ≥ 0. There is a distinguished vertex, the root

v0, such that each vertex v is the target vertex of a unique path from v0 to v. An

isomorphism between hyper-trees is determined by a bijection between the vertices

and a bijection between the edges that jointly preserve the root and the source and

target of the edges.

Synchronization trees over a set A of action symbols were defined in [37]. A

(slight) generalization of synchronization trees for ranked sets is given in [19]. Sup-

pose that Σ is a ranked set. A synchronization tree t = (Vt, Et, λt) : 1→ p over Σ is

a hyper-tree with vertex set Vt, hyper-edges Et, equipped with a labeling function

λt : Et → Σ∪{ex1, . . . , exp}, where the exi are referred to as the exit symbols. Each

hyper-edge e : v → (v1, . . . , vn) with source v and target (v1, . . . , vn) is labeled in

Σn, when n ≥ 1, or by an exit symbol or a symbol in Σ0, when n = 0. When t is

a synchronization tree and v is a vertex of t, then the vertices ‘accessible’ from v

(including v) span the subtree t|v. The edges of t|v are those edges of t having a

source accessible from v. An isomorphism between synchronization trees is an iso-

morphism of the underlying hyper-trees which preserves the labeling. We usually

identify isomorphic synchronization trees. A synchronization tree n → p over Σ is

an n-tuple (t1, . . . , tn) of synchronization trees 1 → p over Σ. A synchronization

tree t : 1 → p is finite if its set of edges is finite (and thus its vertex set is also fi-

nite), finitely branching if each vertex is the source of a finite number of edges, and

regular, if it has a finite number of subtrees (up to isomorphism) and only a finite

number of letters from Σ appear as edge labels. A synchronization tree t : n → p

141

Ésik

is finite (finitely branching, regular, resp.) if its components are all finite (finitely

branching, regular, resp.).

We may identify each letter σ ∈ Σn with the finite synchronization tree 1 → n

having and edge v0 → (v1, . . . , vn) labeled σ, where v0 is the root, and an edge

originating in vi labeled exi for each i ∈ [n]. In the same way, we may view each

exit symbol exi as a tree 1→ n for each i ∈ [n], n ≥ 0.

Synchronization trees over Σ form a theory STΣ. When t : 1 → p and t′ =

(t′1, . . . , t
′
p) : p → q, then t · t′ : 1 → q is constructed from t by replacing each edge

of t labeled exi for some i ∈ [p] by a copy of t′i. When t = (t1, . . . , tn) : n→ p, then

t · t′ = (t1 · t′, . . . , tn · t′) : n → q. For each i ∈ [n], the distinguished morphism in
is the tree having a single edge labeled exi. For synchronization trees t, t′ : 1 → p,

we also define t + t′ : 1 → p as the tree obtained from (disjoint copies of) t and t′

by merging the roots. When t = (t1, . . . , tn) : n → p and t′ = (t′1, . . . , t
′
n) : n → p,

then t + t′ = (t1 + t′1, . . . , tn + t′n) : n → p. We also define 01,p as the tree 1 → p

having no edge, and 0n,p = (01,p, . . . , 01,p) : n → p, for all n, p ≥ 0. Clearly, each

hom-set of STΣ is a commutative monoid and (1)–(4) hold, so that STΣ is a grove

theory [7]. We also define the grove theories FSTΣ of finite and RSTΣ of regular

synchronization trees over Σ.

Suppose that t and t′ are synchronization trees 1 → p over Σ. A simulation

[33,34] t → t′ is a relation R ⊆ Vt × Vt′ , relating the roots such that whenever

e : v → (v1, . . . , vn) is an edge of t and vRv′, then there is an equally labeled

edge v′ → (v′1, . . . , v
′
n) of t′ such that viRv

′
i for all i. Note that the domain of a

simulation R : t → t′ is Vt. It is well-known that simulations compose, so that if

t, t′, t′′ : 1→ p and R is a simulation t→ t′ and R′ is a simulation t′ → t′′, then the

relational composition of R and R′ is a simulation t → t′′. When t = (t1, . . . , tn)

and t′ = (t′1, . . . , t
′
n) are synchronization trees n → p, a simulation t → t′ is an

n-tuple (R1, . . . , Rn), where each Ri is a simulation ti → t′i. We say that t and t′

are simulation equivalent, denoted t ≡s t′, if there are simulations t→ t′ and t′ → t.

The relation ≡s is a grove theory congruence of STΣ, i.e., a theory congruence which

preserves the sum operation, giving rise to the grove theory SSTΣ = STΣ/ ≡s. We

will denote the simulation equivalence class of a tree t by [t]s, or sometimes just [t].

Moreover, when t = (t1, . . . , tn) : n→ p, we identify [t]s with ([t1]s, . . . , [tn]s).

We define the relation t vs t′ for synchronization trees t, t′ : n → p iff there is

a simulation t → t′. Also, we define [t]s vs [t′]s iff t vs t′, since the definition is

independent of the choice of the representatives of the equivalence classes. Since

simulations compose, the relation vs is a pre-order on synchronization trees and

a partial order on simulation equivalence classes. Each hom-set of SSTΣ has all

countable suprema. Indeed, when ti, i ∈ I, is a countable family of trees n → p,

then supi∈I [ti]s = [t]s for the tree t =
∑

i∈I ti : n → p obtained by taking the

disjoint union of the ti and identifying the roots. When I is empty, the sum is the

tree 0n,p. The theory operations are ω-continuous, so that we can define a dagger

operation. For each f = [t]s : n → n + p in SSTΣ, f † : n → p is the least solution

of the fixed-point equation x = f · 〈x,1p〉. The least subtheory of SSTΣ containing

the finite synchronization trees which is closed under dagger is the theory SRSTΣ

of simulation equivalence classes containing at least one regular tree. Further, we

denote by SFSTΣ the subtheory determined by those simulation equivalence classes

142

Ésik

containing at least one finite synchronization tree. Both SRSTΣ and SFSTΣ are

closed under the sum operation, and both of them are grove theories. Note that we

may identify SRSTΣ with RSTΣ/≡s and SFSTΣ with FSTΣ/≡s.
A term is a well-formed expression composed of morphism variables and con-

stants for the distinguished morphisms using the theory operations, sum, and dag-

ger. Each term has a source n and a target p, for some nonnegative integers n, p.

We are now ready to state our main result. We may view each set A as a ranked

set where each letter has rank 1.

Theorem 3.1 The following conditions are equivalent for terms t, t′ : n→ p.

(i) The identity t = t′ holds in all power-set theories P (T), where T is a theory.

(ii) The identity t = t′ holds in all theories LangA (or CFLA), where A is a set.

(iii) The identity t = t′ holds in all theories TreeLangΣ (or RegΣ), where Σ is a

ranked set.

(iv) The identity t = t′ holds in all theories SSTΣ (or SRSTΣ), where Σ is a ranked

set.

(v) The identity t = t′ holds in all theories SSTA (or SRSTA), where A is a set.

(In (ii) and (v), we could as well require that A is a two-element set.) The proof

of Theorem 3.1 will be completed in Section 5.

Since simulation equivalence is known to be decidable (in polynomial time for

finite process graphs, cf. [2,36]), it follows that it is decidable for terms t, t′ : n→ p

whether t = t′ holds in all theories CFLA. This fact is in contrast with the well-

known undecidability of the equivalence problem for context-free grammars. Intu-

itively, our positive result is due to the fact that we are interested in the equivalence

of terms under all possible interpretations of the morphism variables as context-free

languages. By restricting the interpretations to those mapping a fixed morphism

variable 1 → 2 to the language {x1x2} (or by adding to our operations a constant

for this language), we would run into undecidability.

Remark 3.2 Languages and tree languages satisfy

L · 〈L1 + L′1, . . . , Ln + L′n〉=
∑

Ki∈{Li,L′
i}

L · 〈K1, . . . ,Kn〉

L · 〈L1, . . . , 01,p, . . . , Ln〉= 01,p

for all L : 1 → n, and Li, L
′
i : 1 → p whenever each of the variables x1, . . . , xn

occurs exactly once in each word/tree of L. However, these equations do not hold

universally.

4 Free ω-continuous idempotent grove theories

Most proofs in this section are removed due to space limitations. They can be found

in the full version [23].

Recall from [7] that a grove theory is a theory T with a commutative additive

monoid structure (T (n, p),+, 0n,p) on each hom-set such that (1)–(4) hold. An

idempotent grove theory is a grove theory with an idempotent sum operation. A

morphism of (idempotent) grove theories is a theory morphism preserving + and

143

Ésik

the constants 0n,p. When T is an idempotent grove theory, we may define a partial

order ≤ on each hom-set T (n, p) by f ≤ g iff f + g = g. It is clear that 0n,p is the

least element of T (n, p) with respect to this partial order, and the tupling and sum

operations preserve the order. Composition necessarily preserves the order in the

first argument, but not necessarily in the second. When it does, we call T an ordered

idempotent grove theory. Moreover, when f, g : n→ p, then f ≤ g iff in · f ≤ in · g
for all i ∈ [n]. Thus, the partial order on morphisms n → p is determined by the

order on the morphisms 1→ p. Morphisms of idempotent grove theories necessarily

preserve the order.

We say that an idempotent grove theory is ω-continuous if the supremum supk fk
of each ω-chain (fk : n→ p)k exists and composition preserves the supremum of ω-

chains in both arguments. It follows that every ω-continuous idempotent grove the-

ory is ordered, and the supremum of every countable family of morphisms fi : n→ p,

i ∈ I exists. Moreover, composition preserves the supremum of all countable fam-

ilies in its first argument. A morphism of ω-continuous idempotent grove theories

preserves the supremum of ω-chains.

Examples of ω-continuous idempotent grove theories include the theories LangA,

TreeLangΣ and SSTΣ defined above. In LangA and TreeLangΣ, the relation ≤
is the component-wise set inclusion relation ⊆, whereas it is the relation vs in

SSTA. Each of these theories is equipped with a dagger operation. More generally,

we may define a dagger operation in any ω-continuous idempotent grove theory:

for a morphism f : n → n + p, f † : n → p is the least solution of the equation

x = f · 〈x,1p〉 in the variable x : n→ p. We have f † = supk f
(k), where f (0) = 0n,p

and f (k+1) = f · 〈f (k),1p〉, for all k ≥ 0. It is clear that every morphism of ω-

continuous idempotent grove theories preserves dagger.

An ideal in FSTΣ(n, p) is a nonempty set Q ⊆ FSTΣ which is downward closed

with respect to the relation vs. An ω-ideal is an ideal Q which is generated by

some ω-chain (tk)k of trees tk : n → p in FSTΣ with tk vs tk+1 for all k ≥ 0.

Note that we may identify any (ω)-ideal Q ⊆ FSTΣ(n, p) with an n-tuple of (ω)-

ideals (Q1, . . . , Qn), where Qi ⊆ FSTΣ(1, p) is the set of all ith components of the

members of Q, for each i ∈ [n]. We may recover Q from (Q1, . . . , Qn) as the set

{t : n→ p : in · t ∈ Qi for all i ∈ [n]}.
We may turn ω-ideals into an idempotent grove theory ωSFSTΣ. The set of

morphisms n → p in ωSFSTΣ is the collection of all ω-ideals Q ⊆ FSTΣ(n, p).

When Q : n → p and Q′ : p → q, then we define Q · Q′ : n → q to be the ideal

generated by the set of all trees f ·g with f : n→ p in Q and g : p→ q in Q′. When

Q and Q′ are generated by the ω-chains (fk)k and (gk)k, then Q ·Q′ is the ω-ideal

generated by (fk · gk)k. For each i ∈ [n], n ≥ 0, the distinguished morphism 1→ n

is the ideal generated by the tree exi. The sum Q + Q′ : n → p of Q : n → p and

Q′ : n → p is defined as the ideal generated by {f + g : f ∈ Q, g ∈ Q′}. It is easy

to see that this is again an ω-ideal. The morphism 0n,p : n→ p in ωSFSTΣ is the

ideal containing only the tree 0n,p.

There is a canonical embedding of SFSTΣ into ωSFSTΣ which maps the

simulation equivalence class of a finite tree t : n → p to the principal ω-ideal

{t′ : n → p : t′ vs t}. It is easy to see that this defines an (ordered) idempotent

grove theory morphism SFSTΣ → ωSFSTΣ.

144

Ésik

An ω-ideal in SFSTΣ(n, p) is defined in the same way as in FSTΣ(n, p) using

the partial order vs. We may identify any ω-ideal Q ⊆ SFSTΣ(n, p) with an ω-

ideal in Q′ ⊆ FSTΣ(n, p) which is the union of all simulation equivalence classes of

the trees in Q. Using this identification, ωSFSTΣ is just the completion of SFSTΣ

by ω-ideals as defined in [5] 2 It follows from the main result of [5] that ωSFSTΣ

is an ω-continuous idempotent grove theory, and we thus have:

Proposition 4.1 The theory ωSFSTΣ is the free ω-continuous idempotent grove

theory, freely generated by SFSTΣ. Given any ω-continuous idempotent grove the-

ory T and an ordered idempotent grove theory morphism ϕ : SFSTΣ → T , there is

a unique ω-idempotent grove theory morphism ϕ] : ωSFSTΣ → T extending ϕ.

Proposition 4.2 The theory SFSTΣ is the free ordered idempotent grove theory,

freely generated by Σ.

For a proof, see [23]. By Proposition 4.2 and Proposition 4.1, we immediately

have:

Theorem 4.3 For each ranked alphabet Σ, the theory ωSFSTΣ is the free ω-

continuous idempotent grove theory, freely generated by Σ.

Our next task is to relate ω-ideals of finite synchronization trees to possibly

infinite synchronization trees.

For each tree t : n→ p in STΣ, let K(t) denote the set of all finite trees t′ : n→ p

with t′ vs t.

Proposition 4.4 A set of finite trees Q ⊆ FSTΣ(n, p) is an ω-ideal iff Q = K(t)

for some (possibly infinite) tree t : n→ p in STΣ.

Proposition 4.5 Suppose that t, t′ : n → p in STΣ. If t vs t′ then K(t) ⊆ K(t′).

Moreover, if t and t′ are finitely branching, or simulation equivalent to some finitely

branching trees, and if K(t) ⊆ K(t′), then t vs t.

For proofs of the above facts, see [23].

Corollary 4.6 If t, t′ : n→ p in STΣ are simulation equivalent to finitely branching

trees, then t vs t′ iff K(t) ⊆ K(t′), and t ≡s t′ iff K(t) = K(t′).

Example 4.7 Let t be the infinitely branching tree t =
∑

n≥0 σ
n · 01,0 : 1→ 0, and

let t′ = σω : 1 → 0, a tree consisting of a single infinite branch with edges labeled

σ ∈ Σ1. Then K(t) = K(t′) but t ≡s t′ does not hold.

Since every regular synchronization tree is simulation equivalent to a finitely

branching regular tree, we have:

Corollary 4.8 Suppose that t, t′ : n → p in RSTΣ. Then t vs t′ iff K(t) ⊆ K(t′)

and t ≡s t′ iff K(t) = K(t′).

From Theorem 4.3 and Corollary 4.8, we obtain:

Corollary 4.9 Suppose that Σ is a ranked set, T is an ω-continuous idempotent

grove theory and ϕ : Σ → T is a rank preserving function. Then there is a unique

way to extend ϕ to an idempotent grove theory morphism ϕ] : SRSTΣ → T pre-

2 Actually [5] uses a different representation of ω-ideals.

145

Ésik

serving dagger.

Proof. Suppose that T is an ω-continuous idempotent grove theory and ϕ is a

rank preserving function Σ→ T . We may extend ϕ to a morphism ψ : ωSFSTΣ →
T of ω-continuous idempotent grove theories. We know that SRSTΣ embeds in

ωSFSTΣ by the function which maps a regular tree t : n→ p to K(t). It is a routine

matter to verify that the embedding preserves the theory operations, the additive

structure, and dagger. Thus, we may identify SRSTΣ with a subtheory of ωSFSTΣ.

The restriction of ψ to SRSTΣ is the required extension ϕ] : SRSTΣ → T . 2

Remark 4.10 Corollary 4.9 is also derivable from a stronger result in [19], where

it is shown (using the language of µ-terms) that simulation equivalence classes of

regular synchronization trees form the free theories in a class of iteration theories

with an additive structure satisfying certain axioms. Our aim here was to derive

this result from Theorem 4.3.

5 Proof of the main result

In this section our aim is to prove Theorem 3.1.

Recall that we may view each set A as a ranked set of letters of rank 1. We start

by showing that for each ranked set Σ there is some set A such that SSTΣ embeds

in SSTA and SRSTΣ embeds in SRSTA.

Proposition 5.1 For every ranked set Σ there exists a set A and an injective (idem-

potent) grove theory morphism SRSTΣ → SRSTA preserving dagger.

Proof. When Σ is a ranked set, define A = Σ ∪ {#}, where Σ = {σ : σ ∈ Σ}. Our

aim is to show that there is an injective dagger preserving grove theory morphism

SRSTΣ → SRSTA.

Consider the function ϕ which maps the simulation equivalence class of the tree

corresponding to a letter σ ∈ Σn, n ≥ 0, to the simulation equivalence class of the

synchronization tree

sσ = σ · (# · 1n + #2 · 2n + . . .+ #n · nn) : 1→ n

in STA. (Recall that σ has rank 1. The tree sσ has a single edge originating in

the root, which is labeled σ. The target of this edge is the source of n branches, a

branch of the form #i · in for each i ∈ [n].) When n = 0, the simulation equivalence

class of the tree σ is mapped to the equivalence class [σ ·01,0]s. By Corollary 4.9, this

function can be extended in a unique way to an idempotent grove theory morphism

ϕ : SRSTΣ → SRSTA preserving dagger.

It is not hard to see that ϕ takes the following concrete form. Suppose that

t : 1 → p in RSTΣ. Then [t]sϕ is the equivalence class of the (regular) tree

t′ : 1→ p in RSTA obtained from t by replacing each edge labeled σ ∈ Σ by a copy

of the tree sσ. Formally, the set of vertices of t′ consists of the vertices of t together

with a vertex [v, (v1, v2, . . . , vn)] and vertices (vi, j) with 1 < j < i ≤ n, for each

hyper-edge v → (v1, . . . , vn) of t. The edges of t′ are the exit edges of t labeled as

in t together with the following ones, where we suppose that e : v → (v1, . . . , vn) is

a hyper-edge of t labeled σ.

146

Ésik

(i) An edge v → [v, (v1, . . . , vn)] labeled σ.

(ii) An edge [v, (v1, . . . , vn)]→ (vi, 1) for each 1 < i ≤ n labeled #.

(iii) An edge (vi, j) → (vi, j + 1) and an edge (vi, i − 1) → vi labeled #, for all

1 < i ≤ n and 1 < j < i− 1.

(iv) An edge [v, (v1, . . . , vn)]→ v1 labeled #.

When t = (t1, . . . , tn) : n → p and each [ti]s is mapped to [t′i]s, then [t]sϕ =

([t′1]s, . . . , [t
′
n]s). Since each t : 1 → p can be recovered from t′ : 1 → p, [t]s is

uniquely determined by [t′]s, i.e., ϕ is injective. 2

Remark 5.2 The above proof can be extended to all synchronization trees to ob-

tain an injective ω-continuous idempotent grove theory morphism SSTΣ → SSTA.

Proposition 5.3 For each set A there exist a set B and an injective dagger pre-

serving (idempotent) grove theory morphism SRSTA → CFLB.

Proof. Let B = A ∪ {#, $} and consider an idempotent grove theory morphism

ϕ : SRSTA → CFLB preserving dagger defined by the assignment a 7→ a(#x1$)∗ =

{a, a#x1$, a(#x1$)2, . . .} : 1→ 1, so that the image of each letter a ∈ A is a regular

language. We claim that for any regular trees t, s : 1→ p in RSTA,

[t] vs [s]⇔ [t]ϕ ⊆ [s]ϕ.

The implication from left-to-right is immediate from Corollary 4.9. Suppose

now that t 6vs s. We want to prove that [t]ϕ 6⊆ [s]ϕ. We consider only the case

p = 0 since the argument is similar for p > 0. The n-round simulation game on the

pair (t, s) is played by two players, player I and II. In each round, player I selects

an edge originating in the vertex of t entered in the previous round, or in the root

in the first round, and player II must respond by selecting an equally labeled edge

originating in the vertex of s entered in the previous round, or in the root of s in

first round. Player I wins the play if player II cannot respond. Otherwise player

II wins. Since t 6vs s, it follows by regularity that there is some n ≥ 1 such that

player I wins the n-round simulation game on (t, s). We show by induction on n

that [t]ϕ 6⊆ [s]ϕ. When n = 1, player I can choose an edge originating in the root

of t whose label is not matched by the label of any edge originating in the root of

s. Since the label of this edge is a word in [t]ϕ but not the first letter of any word

in [s]ϕ, we have [t]ϕ 6⊆ [s]ϕ.

Suppose now that n > 1 and that we have established the claim for n− 1. Now

player I can select an edge originating in the root of t, labeled a ∈ A, with target

the root of a subtree t′ such that for each a-labeled edge from the root of s to the

root of some subtree s′, player I wins the (n − 1)-round game on (t′, s′). By the

induction hypothesis, this means that [t′]ϕ 6⊆ [s′]ϕ for all such subtrees s′.

Let s1, . . . , sk (k > 0)be up to isomorphism all those subtrees of s whose roots

are the targets of a-labeled edges originating in the root of s. We have [t′]ϕ 6⊆ [si]ϕ

for all i. Now [t]ϕ contains a(#[t′]ϕ$)k as a subset, and all the words in [s]ϕ starting

with a are in the set {a} ∪
⋃
i∈[k]

⋃
m≥1 a(#[si]ϕ$)m. For each i ∈ [k], let ui be a

word in [t′]ϕ which is not in [si]ϕ. Then the word a#u1$. . .#uk$ is in [t]ϕ but does

not belong to [s]ϕ, since it does not belong to any a(#[si]ϕ)k. Thus, [t]ϕ 6⊆ [s]ϕ.2

147

Ésik

Proposition 5.4 For each set A there exist a ranked set Σ and an injective dagger

preserving (idempotent) grove theory morphism SRSTA → RegΣ.

Proof. Let Σ0 = A ∪ {#, $}, Σ2 = {σ}, and let Σn be empty if n = 1 or n > 2.

For each a ∈ A, consider a regular tree language La : 1 → 1 in RegΣ whose

‘frontier’ is the context-free language described in the previous proof. (Such a

regular tree language exists, since context-free languages are exactly the frontier

languages of regular tree languages, see e.g. [30].) For example, let La = {t0 =

a, t1 = σaσ#σx1$, t2 = σaσ#σx1σ$σ#σx1$, . . .}. Then let ψ : SRSTA → RegΣ

be the unique dagger preserving morphism of idempotent grove theories determined

by the assignment a 7→ La for all a ∈ A, which exists by Corollary 4.9. The

morphism ϕ constructed in the proof of Proposition 5.3 factors through ψ by the

‘frontier map’. Since ϕ is injective, so is ψ. 2

We are now ready to prove Theorem 3.1. First note that since for each set A,

CFLA embeds in LangA, every identity that holds in all theories LangA holds

in the theories CFLA. Similar facts are true in (iii), (iv) and (v) for the theories

TreeLangΣ and RegΣ, SSTΣ and SRSTΣ, and SSTS and SRSTA. Clearly, every

identity that holds in the theories SSTΣ (SRSTΣ, resp.) also holds in the theories

SSTA (SRSTA, resp.). Since each theory TreeLangΣ embeds in a theory LangA,

and similarly, each theory RegΣ embeds in some theory CFLA, each condition of

(ii) implies the corresponding condition of (iii). By Corollary 4.9, if an identity holds

in all theories SRSTΣ then it holds in all ω-continuous idempotent grove theories

and thus in all theories appearing in Theorem 3.1. Also, if an identity holds in

all power-set theories, then it holds in the theories LangA. Thus, to complete the

proof it suffices to show that if an identity holds in all theories RegΣ, then it holds

in the theories SRSTA, and that this turn implies that the identity holds in all

theories SRSTΣ. But these facts follow from Proposition 5.4 and Proposition 5.3.

Remark 5.5 (Based on [19].) The above proof also establishes the fact that an

identity holds in all ω-continuous idempotent grove theories iff it holds in all theories

SRSTΣ (or the theories mentioned in Theorem 3.1).

When A is a poset with all countable suprema, the ω-continuous functions over

A form an ω-continuous idempotent grove theory ωContA. A morphism n → p in

this theory is an ω-continuous function Ap → An (note the reversal of the arrow),

and composition is function composition (in the reverse order). For each i ∈ [n],

n ≥ 0, the distinguished morphism in : 1→ n is the ith projection function An → A.

The constant 0n,p is the constant function mapping all elements of Ap to the least

element of An, and f+g is the pointwise supremum of f and g, for each f, g : n→ p

(i.e., ω-continuous functions f, g : Ap → An). Note that the order ≤ becomes the

pointwise partial order. Since ωContA is a continuous idempotent grove theory, it

comes with the least fixed point operation as dagger operation.

Every ω-continuous idempotent grove theory T may be embedded in a theory

ωContA. Given T , let A =
∏
p≥0 T (1, p), equipped with the pointwise partial order.

The embedding maps a morphism f : 1→ n to the ω-continuous function Ap → A

defined by

f((g1,p)p, . . . , (gn,p)p) = (f · 〈g1,p, . . . , gn,p〉)p.

148

Ésik

By this embedding, we conclude that an identity holds in all continuous idempotent

grove theories iff it holds in all theories of the sort ωContA, where A is an ω-

continuous poset (or in fact a complete lattice).

6 Axiomatization

By Theorem 3.1 and Remark 5.5, the very same equational calculus may be used

in formal calculations involving simulation equivalence classes of (regular) synchro-

nization trees, (context-free) languages, (regular) tree languages, (regular) synchro-

nization trees, power-set theories, ω-continuous idempotent grove theories, or ω-

continuous functions over ω-complete posets, equipped with the theory operations,

sum, and dagger. Axiomatic treatments were given in [19] using the formalism of

µ-terms. These results are transformed in [23] into the categorical language of this

paper.

Iteration theories were introduced in the late 1970’s by Bloom, Elgot and Wright,

and independently by Ésik, as a generalization of Elgot’s iterative theories [15]

and the rational and continuous theories [31,38] of the ADJ group. See [7] for

original references. Iteration theories are algebraic theories equipped with a dagger

operation satisfying certain equational axioms such as the fixed point identity

f · 〈f †,1p〉= f † (5)

or the parameter identity

(f · (1n⊕g))†= f † · g, (6)

where f : n → n + p and g : p → q. The equational axioms of iteration theo-

ries may conveniently be divided into two groups, the ‘Conway identities’ and the

‘commutative identities’, which are simplified to the ‘group identities’ in [18]. For

detailed accounts, we refer to [7,9,18]. A morphism of iteration theories is a theory

morphism preserving dagger.

A grove iteration theory [7,12] is an iteration theory which is a grove theory

satisfying

11
†= 01,0.

It is known that in a grove iteration theory,

(1n⊕0p)
†= 0n,p

holds for all n, p ≥ 0. Morphisms of grove iteration theories are both iteration

theory morphisms and grove theory morphisms.

It is possible to define a star operation ∗ : T (n, n + p) → T (n, n + p) (n, p ≥ 0)

in any grove iteration theory. When f : n→ n+ p, we define

f∗= (f · (1n⊕0n⊕1p) + (0n⊕1n⊕0p))
† : n→ n+ p.

Thus, in particular, 11
∗ = (12 + 22)† : 1 → 1. It can be seen, cf. [7], that in grove

iteration theories T , f∗ is a solution of the equation

x= f · 〈x, 0n⊕1p〉+ (1n⊕0p),

for all f : n → n + p in T . When p = 0, this equation becomes x = f · x + 1n.

In fact, properties of the dagger operation may be translated into corresponding

properties of the star operation and vice versa, see [7,22,26].

149

Ésik

A grove iteration theory is ω-idempotent if

11
∗= 11

holds. Any ω-idempotent grove iteration theory is an idempotent grove theory and

thus an idempotent grove iteration theory. Indeed, if T is ω-idempotent, then

11 + 11 = 11 · 11
∗ + 11 = 11

∗ = 11,

so that f + f = (11 + 11) · f = 11 · f = f , for all f : 1→ p. Thus, we can define a

partial order as above by f ≤ g iff f+g = g, for all f, g : n→ p. Call an idempotent

grove iteration theory ordered if the dagger operation is monotone:

f †≤ (f + g)†, (7)

or equivalently, if

f ≤ g : n→ n+ p⇒ f † ≤ g† : n→ p,

for all f, g : n → n + p. It follows that composition is also monotone, since in

iteration theories,

f · g= (1n⊕0p) · 〈0n⊕f⊕0q, 0n+p⊕g〉†,
for all f : n→ p and g : p→ q. (It can be seen that an idempotent grove theory is

ordered iff composition and the scalar dagger operation f 7→ f †, f : 1 → 1 + p are

monotone.) Morphisms of (ordered) ω-idempotent grove iteration theories are just

grove iteration theory morphisms.

The following results were proved in [19] using the formalism of µ-terms. See

also [23].

Theorem 6.1 For each ranked set Σ, SRSTΣ is the free ordered ω-idempotent

grove iteration theory, freely generated by Σ.

Corollary 6.2 An identity holds in all ordered ω-idempotent grove iteration theo-

ries iff it holds in all ω-continuous idempotent grove theories, or in the theories of

Theorem 3.1.

Note that Theorem 6.1 shows that the theories of simulation equivalence classes

of regular synchronization theories have a finite axiomatization relatively to iteration

theories. (Without the additive structure, they satisfy exactly the iteration theory

identities.)

Remark 6.3 By removing (7) from the axioms, we obtain a complete axiomatiza-

tion of ‘bisimilarity’ of (regular) synchronization trees, cf. [7,12], and by adding to

the the axioms the identities

f · (g + h) = f · g + f · h
f · 0p,q = 0n,p,

for all f : n → p and g, h : p → q, the resulting system is known to be complete

for (matrix) theories over ω-continuous idempotent semirings, or regular languages,

or theories of binary relations, and many other structures. See [7], where original

references may be found. (We note that (7) now becomes redundant.)

In the presence of some Conway identities and possibly other axioms, the com-

mutative identities (and the group identities) are implied by simpler axioms. Since

150

Ésik

many of these holds in ω-continuous idempotent grove theories, we may derive sev-

eral corollaries to Theorem 6.1 and Corollary 6.2.

A idempotent Park grove theory is an ordered idempotent grove theory equipped

with a dagger operation satisfying the fixed point identity (5), the parameter identity

(6) and the fixed point induction rule:

f · 〈g,1p〉 ≤ g⇒ f † ≤ g,
for all f : n→ n+p and g : n→ p. For example, all ω-continuous idempotent grove

theories are idempotent Park grove theories. It is known, cf. [16], that every idem-

potent Park grove theory is an ordered ω-idempotent iteration theory. A morphism

of idempotent Park grove theories is an idempotent grove theory morphism which

preserves dagger.

Using Theorem 6.1 we have:

Corollary 6.4 For each ranked set Σ, SRSTΣ is the free idempotent Park grove

theory, freely generated by Σ.

Corollary 6.5 The following are equivalent for an identity t = t′ between terms

t, t′ : n→ p involving the theory operations, dagger, and sum.

• t = t′ holds in all ω-continuous idempotent grove theories.

• t = t′ holds in all ordered ω-idempotent grove iteration theories.

• t = t′ holds in all idempotent Park grove theories.

It is well-known that it suffices to require the fixed point induction rule just in

the case when n = 1, see [4,13] or [7].

By the above results, simulation equivalence classes of regular synchronization

trees have a finite implicational axiomatization. Other known implicational or first-

order axiomatizations involve the weak functorial implication of [7], or a version

of the Scott induction rule of [25]. In [22], it is shown that by adding one-sided

residuation to the collection of operations, a finite purely equational system may be

derived.

References

[1] L. Aceto, Z. Ésik and A. Ingólfsdóttir, Equational axioms for probabilistic bisimilarity, Algebraic
Methodology and Software Technology, AMAST 2002, Reunion, LNCS 2422, Springer, 2002, 239–253.

[2] J. Balcázar, J. Gabarró, and M. Sántha, Deciding bisimilarity is P-complete, Formal Aspects of
Computing, 4(1992), 638–648, 1992.

[3] M. Barr and C. Wells, Category Theory for Computing Science, Prentice Hall, 1990.

[4] H. Bekić, Definable operation in general algebras, and the theory of automata and flowcharts, Technical
report, IBM Vienna, 1969. Reprinted in: Programming Languages and Their Definition – Hans Bekic
(1936-1982), LNCS 177, Springer 1984, 30–55.

[5] S.L. Bloom, Varieties of ordered algebras, J. Computer and System Sciences, 13(1976), 200–212.

[6] S.L. Bloom and Z.Ésik, Equational logic of circular data type specification, Theoret. Comput. Sci.,
63(1989), 303–331.

[7] S.L. Bloom and Z. Ésik, Iteration Theories, Springer, 1993.

[8] S.L. Bloom and Z. Ésik, Equational axioms for regular sets, Mathematical Structures in Computer
Science, 3(1993), 1–24.

151

Ésik

[9] S.L. Bloom and Z. Ésik, The equational logic of fixed points, Theoretical Computer Science, 179(1997),
1–60.

[10] S.L. Bloom and Z. Ésik, An extension theorem with an application to formal tree series, J. Autmata,
Languages, and Combinatorics, 8(2003), 145–185.

[11] S.L. Bloom and Z. Ésik, Axiomatizing rational power series over natural numbers, Information and
Computation, 207(2009), 793–811.

[12] S.L. Bloom, Z. Ésik and D. Taubner, Iteration theories of synchronization trees, Inform. and Comput.,
102(1993), 1–55.

[13] J.W. DeBakker and D. Scott, A theory of programs, Technical Report, IBM Vienna, 1969.

[14] J. Engelfriet and E.M. Schmidt, IO and OI, Parts I and II, J. Comput. System Sci., 15(1977), 328–353
and 16(1978), 67–99.

[15] C.C. Elgot, Monadic computation and iterative algebraic theories, Logic Colloquium ’73 (Bristol, 1973),
Studies in Logic and the Foundations of Mathematics, Vol. 80, North-Holland, Amsterdam, 1975, 175–
230.

[16] Z. Ésik, Completeness of Park induction, Theoret. Comput. Sci., 177(1997), 217–283.

[17] Z. Ésik, Axiomatizing the equational theory of regular tree languages, STACS ’98, Paris, LNCS 1373,
Springer-Verlag, 1998, 455-465.

[18] Z. Ésik, Group axioms for iteration, Inform. and Comput., 148(1999), 131–180.

[19] Z. Ésik, Axiomatizing the least fixed point operation and binary supremum, Computer Science Logic
(Fischbachau, 2000), LNCS 1862, 2000, 302–316.

[20] Z. Ésik, Continuous additive algebras and injective simulations of synchronization trees, J. Logic.
Comput., 12(2002), 271–300.

[21] Z. Ésik, Axiomatizing the equational theory of regular tree languages, J. Logic and Algebraic
Programming, 79(2010), 189–213.

[22] Z. Ésik, Residuated Park theories, J. Logic Computation, published on line on Feb. 5, 2013.

[23] Z. Ésik, A connection between concurrency and language theory, arXiv:1303.0044, March 1, 2013.

[24] Z. Ésik, Axiomatizing weighted bisimulation, Theoretical Computer Science, to appear.

[25] Z. Ésik and L. Bernátsky, Scott induction and equational proofs, Mathematical Foundations of
Programming Semantics, New Orleans, ENTCS 1(1995), 32 pages, available at: http://www.elsevier.nl.

[26] Z. Ésik and T. Hajgató, Iteration grove theories with applications, CAI 2009, Thessaloniki, LNCS
5725, Springer, 2009, 227–249.

[27] Z. Ésik and W. Kuich, Free iterative and iteration K-semialgebras, Algebra Universalis, 67(2012),
141–162.

[28] Z. Ésik and W. Kuich, Free inductive K-semialgebras, J. Logic and Algebraic Programming, published
online on 18 January 2013.

[29] Z. Ésik and A. Labella, Equational properties of iteration in algebraically complete categories, Theoret.
Comput. Sci., 195(1998), 61–89.

[30] F. Gécseg and M. Steinby, Tree Automata, Akadémiai Kiadó, Budapest, 1986.

[31] J.A. Goguen, J.W. Thatcher, E.G. Wagner and J.B. Wright, Initial algebra semantics and continuous
algebras, J. ACM, 24(1977), 68–95.

[32] W.F. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A., 50(1963) 869–
872.

[33] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[34] D. Park, Concurrency and automata on infinite sequences, in: Proc. 5th GI-Conference, Karlsruhe,
LNCS 104, Springer, 1981, 167–183.

[35] A.K. Simpson and G.D. Plotkin, Complete axioms for categorical fixed-point operators, LICS 2000,
IEEE Press, 2000, 30–41.

152

Ésik

[36] Z. Sawa and P. Jancar, P-hardness of equivalence testing on finite-state processes, SOFSEM 2001,
LNCS 2234, Springer, 2001, 326–335.

[37] G. Winskel, Synchronization trees, Theoret. Comput. Sci., 34(1984), 33–82.

[38] J.B. Wright, J.W. Thatcher, E.G. Wagner and J.A. Goguen, Rational algebraic theories and fixed-point
solutions, 17th Ann. Symp. Foundations of Computer Science, FOCS 17, IEEE Press, 1976, 147–158.

153

MFPS 2013

History-Preserving Bisimilarity
for Higher-Dimensional Automata

via Open Maps

Uli Fahrenberg and Axel Legay

INRIA/IRISA, Campus de Beaulieu, 35042 Rennes CEDEX, France

Abstract

We show that history-preserving bisimilarity for higher-dimensional automata has a simple characterization
directly in terms of higher-dimensional transitions. This implies that it is decidable for finite higher-
dimensional automata. To arrive at our characterization, we apply the open-maps framework of Joyal,
Nielsen and Winskel in the category of unfoldings of precubical sets.

Keywords: higher-dimensional automaton, history-preserving bisimilarity, homotopy, unfolding,
concurrency

1 Introduction

The dominant notion for behavioral equivalence of processes is bisimulation as in-

troduced by Park [31] and Milner [27]. It is compelling because it enjoys good

algebraic properties, admits several easy characterizations using modal logics, fixed

points, or game theory, and generally has low computational complexity.

Bisimulation, or rather its underlying semantic model of transition systems,

applies to a setting in which concurrency of actions is the same as non-deterministic

interleaving; using CCS notation [27], a|b = a.b+b.a. For some applications however,

a distinction between these two is necessary, which has led to development of so-

called non-interleaving or truly concurrent models such as Petri nets [32], event

structures [30], asynchronous transition systems [4, 35] and others; see [40] for a

survey.

One of the most popular notions of equivalence for non-interleaving systems

is history-preserving bisimilarity (or hp-bisimilarity for short). It was introduced

independently by Degano, De Nicola and Montanari in [6] and by Rabinovich and

Trakhtenbrot [34] and then for event structures by van Glabbeek and Goltz in [39]

and for Petri nets by Best et.al. in [5]. One reason for its popularity is that it is a

congruence under action refinement [5,39], another its good decidability properties:

it has been shown to be decidable for safe Petri nets by Montanari and Pistore [29].

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

Fahrenberg, Legay

As a contrast, its cousin hereditary hp-bisimilarity is shown undecidable for 1-safe

Petri nets by Jurdziński, Nielsen and Srba in [24].

Higher-dimensional automata (or HDA) is another non-interleaving formalism

for reasoning about behavior of concurrent systems. Introduced by Pratt [33] and

van Glabbeek [37] in 1991 for the purpose of a geometric interpretation to the theory

of concurrency, it has since been shown by van Glabbeek [38] that HDA provide a

generalization (up to hp-bisimilarity) to “the main models of concurrency proposed

in the literature” [38], including the ones mentioned above. Hence HDA are useful as

a tool for comparing and relating different models, and also as a modeling formalism

by themselves.

HDA are geometric in the sense that they are very similar to the simplicial

complexes used in algebraic topology, and research on HDA has drawn on a lot of

tools and methods from geometry and algebraic topology such as homotopy [11,14],

homology [15,20], and model categories [16,17], see also the survey [18].

In this paper we give a geometric interpretation to hp-bisimilarity for HDA,

using the open-maps approach introduced by Joyal, Nielsen and Winskel in [23]

and results from a previous paper [7] by the first author. Using this interpretation,

we show that hp-bisimilarity for HDA has a characterization directly in terms of

(higher-dimensional) transitions of the HDA, rather than in terms of runs as e.g. for

Petri nets [13].

Our results imply decidability of hp-bisimilarity for finite HDA. They also put hp-

bisimilarity firmly into the open-maps framework of [23] and tighten the connections

between bisimilarity and weak topological fibrations [3, 25].

Due to lack of space, we have had to omit all proofs in this paper. They can be

found in the long version at [9].

2 Higher-Dimensional Automata

As a formalism for concurrent behavior, HDA have the specific feature that they

can express all higher-order dependencies between events in a concurrent system.

Like for transition systems, they consist of states and transitions which are labeled

with events. Now if two transitions from a state, with labels a and b for example,

are independent, then this is expressed by the existence of a two-dimensional tran-

sition with label ab. Fig. 1 shows two examples; on the left, transitions a and b

are independent, on the right, they can merely be executed in any order. Hence

for HDA, as indeed for any formalism employing the so-called true concurrency

paradigm, the algebraic law a|b = a.b + b.a does not hold; concurrency is not the

same as interleaving.

The above considerations can equally be applied to sets of more than two

events: if three events a, b, c are independent, then this is expressed using a three-

dimensional transition labeled abc. Hence this is different from mutual pairwise

independence (expressed by transitions ab, ac, bc), a distinction which cannot be

made in formalisms such as asynchronous transition systems [4, 35] or transition

systems with independence [40] which only consider binary independence relations.

An unlabeled HDA is essentially a pointed precubical set as defined below. For

labeled HDA, one can pass to an arrow category; this is what we shall do in Section 6.

155

Fahrenberg, Legay

a

b

b

a

ab

a

b

b

a

Fig. 1. HDA for the CCS expressions a|b (left) and a.b+ b.a (right). In the left HDA, the square is filled
in by a two-dimensional transition labeled ab, signifying independence of events a and b. On the right, a
and b are not independent.

Until then, we concentrate on the unlabeled case.

A precubical set is a graded set X = {Xn}n∈N together with mappings δνk :

Xn → Xn−1, k ∈ {1, . . . , n}, ν ∈ {0, 1}, satisfying the precubical identity

δνkδ
µ
` = δµ`−1δ

ν
k (k < `) . (1)

The mappings δνk are called face maps, and elements of Xn are called n-cubes. As

above, we shall usually omit the extra subscript (n) in the face maps. Faces δ0
kx

of an element x ∈ X are to be thought of as lower faces, δ1
kx as upper faces. The

precubical identity expresses the fact that (n−1)-faces of an n-cube meet in common

(n− 2)-faces, see Fig. 2 for an example of a 2-cube and its faces.

Morphisms f : X → Y of precubical sets are graded mappings f = {fn : Xn →
Yn}n∈N which commute with the face maps: δνk ◦ fn = fn−1 ◦ δνk for all n ∈ N,

k ∈ {1, . . . , n}, ν ∈ {0, 1}. This defines a category pCub of precubical sets and

morphisms.

A pointed precubical set is a precubical set X with a specified 0-cube i ∈ X0, and

a pointed morphism is one which respects the point. This defines a category which

is isomorphic to the comma category ∗ ↓ pCub, where ∗ ∈ pCub is the precubical set

with one 0-cube and no other n-cubes. Note that ∗ is not terminal in pCub (instead,

the terminal object is the infinite-dimensional precubical set with one cube in every

dimension).

Definition 2.1 The category of higher-dimensional automata is the comma cate-

gory HDA = ∗ ↓ pCub, with objects pointed precubical sets and morphisms com-

mutative diagrams

∗
}} ""

X
f

// Y .

xδ01x δ11x

δ02x

δ12x

δ01δ
0
2x = δ01δ

0
1x

δ01δ
1
2x = δ11δ

0
1x

δ11δ
0
2x = δ01δ

1
1x

δ11δ
1
2x = δ11δ

1
1x

Fig. 2. A 2-cube x with its four faces δ01x, δ11x, δ02x, δ12x and four corners.

156

Fahrenberg, Legay

Hence a one-dimensional HDA is a transition system; indeed, the category of

transition systems [40] is isomorphic to the full subcategory of HDA spanned by

the one-dimensional objects. Similarly one can show [19] that the category of asyn-

chronous transition systems is isomorphic to the full subcategory of HDA spanned

by the (at most) two-dimensional objects. The category HDA as defined above was

used in [7] to provide a categorical framework (in the spirit of [40]) for parallel com-

position of HDA. In this article we also introduced a notion of bisimilarity which

we will review in the next section.

3 Path Objects, Open Maps and Bisimilarity

With the purpose of introducing bisimilarity via open maps in the sense of [23], we

identify here a subcategory of HDA consisting of path objects and path-extending

morphisms. We say that a precubical set X is a precubical path object if there is a

(necessarily unique) sequence (x1, . . . , xm) of elements in X such that xi 6= xj for

i 6= j,

• for each x ∈ X there is j ∈ {1, . . . ,m} for which x = δν1k1 · · · δ
νp
kp
xj for some indices

ν1, . . . , νp and a unique sequence k1 < · · · < kp, and

• for each j = 1, . . . ,m− 1, there is k ∈ N for which xj = δ0
kxj+1 or xj+1 = δ1

kxj .

Note that precubical path objects are non-selflinked in the sense of [11]. If X

and Y are precubical path objects with representations (x1, . . . , xm), (y1, . . . , yp),

then a morphism f : X → Y is called a cube path extension if xj = yj for all

j = 1, . . . ,m (hence m ≤ p).

Definition 3.1 The category HDP of higher-dimensional paths is the subcategory

of HDA which as objects has pointed precubical paths, and whose morphisms are

generated by isomorphisms and pointed cube path extensions.

A cube path in a precubical set X is a morphism P → X from a precubical path

object P . In elementary terms, this is a sequence (x1, . . . , xm) of elements of X

such that for each j = 1, . . . ,m− 1, there is k ∈ N for which xj = δ0
kxj+1 (start of

new part of a computation) or xj+1 = δ1
kxj (end of a computation part). We show

an example of a cube path in Fig. 3.

A cube path in a HDA i : ∗ → X is pointed if x1 = i, hence if it is a pointed

morphism P → X from a higher-dimensional path P . We will say that a cube path

(x1, . . . , xm) is from x1 to xm, and that a cube x ∈ X in a HDA X is reachable if

there is a pointed cube path to x in X.

Cube paths can be concatenated if the end of one is compatible with the be-

ginning of the other: If ρ = (x1, . . . , xm) and σ = (y1, . . . , yp) are cube paths with

y1 = δ1
kxm or xm = δ0

ky1 for some k, then their concatenation is the cube path

ρ ∗ σ = (x1, . . . , xm, y1, . . . , yp). We say that ρ is a prefix of χ and write ρ v χ if

there is a cube path ρ for which χ = ρ ∗ σ.

Definition 3.2 A pointed morphism f : X → Y in HDA is an open map if it has

the right lifting property with respect to HDP, i.e. if it is the case that there is a

lift r in any commutative diagram as below, for morphisms g : P → Q ∈ HDP,

157

Fahrenberg, Legay

i a x
b

bc c

z d

Fig. 3. Graphical representation of the two-dimensional cube path (i, a, x, b, bc, c, z, d). Its computational
interpretation is that a is executed first, then execution of b starts, and while b is running, c starts to
execute. After this, b finishes, then c, and then execution of d is started. Note that the computation is
partial, as d does not finish.

p : P → X, q : Q→ Y ∈ HDA:

P
p
//

g

��

X

f
��

Q q
//

r

??

Y

HDA X, Y are bisimilar if there is Z ∈ HDA and a span of open maps X ← Z → Y

in HDA.

It follows straight from the definition that composites of open maps are again

open. By the next lemma, morphisms are open precisely when they have a zig-zag

property similar to the one of [23].

Lemma 3.3 For a morphism f : X → Y ∈ HDA, the following are equivalent:

(i) f is open;

(ii) for any reachable x1 ∈ X and any y2 ∈ Y with f(x1) = δ0
ky2 for some k, there

is x2 ∈ X for which x1 = δ0
kx2 and y2 = f(x2);

(iii) for any reachable x1 ∈ X and any cube path (y1, . . . , ym) in Y with y1 = f(x1),

there is a cube path (x1, . . . , xm) in X for which yj = f(xj) for all j = 1, . . . ,m.

Theorem 3.4 For HDA i : ∗ → X, j : ∗ → Y , the following are equivalent:

(i) X and Y are bisimilar;

(ii) there exists a precubical subset R ⊆ X × Y for which (i, j) ∈ R, and such that

for all reachable x1 ∈ X, y1 ∈ Y with (x1, y1) ∈ R,
• for any x2 ∈ X for which x1 = δ0

kx2 for some k, there exists y2 ∈ Y for which

y1 = δ0
ky2 and (x2, y2) ∈ R,

• for any y2 ∈ Y for which y1 = δ0
ky2 for some k, there exists x2 ∈ X for which

x1 = δ0
kx2 and (x2, y2) ∈ R;

(iii) there exists a precubical subset R ⊆ X × Y for which (i, j) ∈ R, and such that

for all reachable x1 ∈ X, y1 ∈ Y with (x1, y1) ∈ R,
• for any cube path (x1, . . . , xm) in X, there exists a cube path (y1, . . . , ym) in

Y with (xp, yp) ∈ R for all p = 1, . . . ,m,
• for any cube path (y1, . . . , ym) in Y , there exists a cube path (x1, . . . , xm) in

X with (xp, yp) ∈ R for all p = 1, . . . ,m.

Note that the requirement that R be a precubical subset, in items (ii) and (iii)

above, is equivalent to saying that whenever (x, y) ∈ R, then also (δνkx, δ
ν
ky) ∈ R

for any k and ν ∈ {0, 1}.

158

Fahrenberg, Legay

i

x

a

b

bc c

z

d

i

x

a

c bc c

z

d

i

x

a

c

b

bc

z

d

i

x

y

a

c

b
z

d

Fig. 4. Graphical representation of the cube path homotopy (i, a, x, b, bc, c, z, d) ∼
(i, a, x, c, bc, c, z, d) ∼ (i, a, x, c, bc, b, z, d) ∼ (i, a, x, c, y, b, z, d).

4 Homotopies and Unfoldings

In order to reason about hp-bisimilarity, we need to introduce in which cases dif-

ferent cube paths are equivalent due to independence of actions. Following [38], we

model this equivalence by a combinatorial version of homotopy which is an extension

of the equivalence defining Mazurkiewicz traces [26].

We say that cube paths (x1, . . . , xm), (y1, . . . , ym) are adjacent if x1 = y1, xm =

ym, there is precisely one index p ∈ {1, . . . ,m} at which xp 6= yp, and

• xp−1 = δ0
kxp, xp = δ0

`xp+1, yp−1 = δ0
`−1yp, and yp = δ0

kyp+1 for some k < `, or

vice versa,

• xp = δ1
kxp−1, xp+1 = δ1

`xp, yp = δ1
`−1yp−1, and yp+1 = δ1

kyp for some k < `, or

vice versa,

• xp = δ0
kδ

1
` yp, yp−1 = δ0

kyp, and yp+1 = δ1
` yp for some k < `, or vice versa, or

• xp = δ1
kδ

0
` yp, yp−1 = δ0

` yp, and yp+1 = δ1
kyp for some k < `, or vice versa.

Homotopy of cube paths is the reflexive, transitive closure of the adjacency

relation. We denote homotopy of cube paths using the symbol ∼, and the homotopy

class of a cube path (x1, . . . , xm) is denoted [x1, . . . , xm]. The intuition of adjacency

is rather simple, even though the combinatorics may look complicated, see Fig. 4.

Note that adjacencies come in two basic “flavors”: the first two above in which the

dimensions of x` and y` are the same, and the last two in which they differ by 2.

The following lemma shows that, as expected, cube paths entirely contained in

one cube are homotopic (provided that they share endpoints).

Lemma 4.1 Let x ∈ Xn in a precubical set X and (k1, . . . , kn), (`1, . . . , `n) se-

quences of indices with kj , `j ≤ j for all j = 1, . . . , n. Let xj = δ0
kj
· · · δ0

kn
x,

yj = δ0
`j
· · · δ0

`n
x. Then the cube paths (x1, . . . , xn, x) ∼ (y1, . . . , yn, x).

We extend concatenation and prefix to homotopy classes of cube paths by defin-

ing [x1, . . . , xm] ∗ [y1, . . . , yp] = [x1, . . . , xm, y1, . . . , yp] and saying that x̃ v z̃, for

homotopy classes x̃, z̃ of cube paths, if there are (x1, . . . , xm) ∈ x̃ and (z1, . . . , zq) ∈ z̃
for which (x1, . . . , xm) v (z1, . . . , zq). It is easy to see that concatenation is well-

defined, and that x̃ v z̃ if and only if there is a homotopy class ỹ for which z̃ = x̃∗ ỹ.

Using homotopy classes of cube paths, we can now define the unfolding of a

159

Fahrenberg, Legay

HDA. Unfoldings of HDA are similar to unfoldings of transition systems [40] or

Petri nets [22, 30], but also to universal covering spaces in algebraic topology. The

intention is that the unfolding of a HDA captures all its computations, up to ho-

motopy.

We say that a HDA X is a higher-dimensional tree if it holds that for any

x ∈ X, there is precisely one homotopy class of pointed cube paths to x. The full

subcategory of HDA spanned by the higher-dimensional trees is denoted HDT. Note

that any higher-dimensional path is a higher-dimensional tree; indeed there is an

inclusion HDP ↪→ HDT.

Definition 4.2 The unfolding of a HDA i : ∗ → X consists of a HDA ĩ : ∗ → X̃

and a pointed projection morphism πX : X̃ → X, which are defined as follows:

• X̃n =
{

[x1, . . . , xm] | (x1, . . . , xm) pointed cube path in X,xm ∈ Xn

}
; ĩ = [i]

• δ̃0
k[x1, . . . , xm] =

{
σ = (y1, . . . , yp) | yp = δ0

kxm, σ ∗ xm ∼ (x1, . . . , xm)
}

• δ̃1
k[x1, . . . , xm] = [x1, . . . , xm, δ

1
kxm]

• πX [x1, . . . , xm] = xm

Proposition 4.3 The unfolding (X̃, πX) of a HDA X is well-defined, and X̃ is a

higher-dimensional tree. If X itself is a higher-dimensional tree, then the projection

πX : X̃ → X is an isomorphism.

Lemma 4.4 If X is a higher-dimensional automaton and (x̃1, . . . , x̃m) is a pointed

cube path in X̃, then (πX x̃1, . . . , πX x̃j) ∈ x̃j for all j = 1, . . . ,m.

Lemma 4.5 For any HDA X there is a unique lift r in any commutative diagram

as below, for morphisms g : P → Q ∈ HDP, p : P → X̃, q : Q→ X ∈ HDA:

P
p
//

g

��

X̃

πX
��

Q q
//

r

??

X

Corollary 4.6 Projections are open, and any HDA is bisimilar to its unfolding.2

5 History-Preserving Bisimilarity

In this section we recall history-preserving bisimilarity for HDA from [38] and show

the main result of this paper: that hp-bisimilarity and the bisimilarity of Def. 3.2

are the same. To do this, we first need to introduce morphisms of homotopy classes

of paths and homotopy bisimilarity.

Definition 5.1 The category of higher-dimensional automata up to homotopy HDAh

has as objects HDA and as morphisms pointed precubical morphisms f : X̃ → Ỹ

of unfoldings.

Hence any morphism X → Y in HDA gives, by the unfolding functor, rise to a

morphism X → Y in HDAh. The simple example in Fig. 5 shows that the converse

is not the case. By restriction to higher-dimensional trees, we get a full subcategory

HDTh ↪→ HDAh.

160

Fahrenberg, Legay

X

πX

X̃

f

Y

πY

Ỹ

Fig. 5. Two simple one-dimensional HDA as objects of HDA and HDAh. In HDA there is no morphism
X → Y , in HDAh there is precisely one morphism f : X → Y .

Lemma 5.2 The natural projection isomorphisms πX : X̃ → X for X ∈ HDT
extend to an isomorphism of categories HDTh

∼= HDT.

Restricting the above isomorphism to the subcategory HDP of HDT allows us to

identify a subcategory HDPh of HDTh isomorphic to HDP.

Definition 5.3 A pointed morphism f : X → Y in HDAh is open if it has the

right lifting property with respect to HDPh, i.e. if it is the case that there is a lift

r in any commutative diagram as below, for all morphism g : P → Q ∈ HDPh,

p : P → X, q : Q→ Y ∈ HDAh:

P
p
//

g

��

X

f
��

Q q
//

r

??

Y

HDA X, Y are homotopy bisimilar if there is Z ∈ HDAh and a span of open maps

X ← Z → Y in HDAh.

The connections between open maps in HDAh and open maps in HDA are as

follows.

Lemma 5.4 A morphism f : X → Y in HDAh is open if and only if f : X̃ → Ỹ is

open as a morphism of HDA. If g : X → Y is open in HDA, then so is g̃ : X̃ → Ỹ .

We also need a lemma on prefixes in unfoldings.

Lemma 5.5 Let X be a HDA and x̃, z̃ ∈ X̃. Then there is a cube path from x̃ to

z̃ in X̃ if and only if x̃ v z̃.

Proposition 5.6 For HDA i : ∗ → X, j : ∗ → Y , the following are equivalent:

(i) X and Y are homotopy bisimilar;

161

Fahrenberg, Legay

(ii) there exists a precubical subset R ⊆ X̃ × Ỹ with (̃i, j̃) ∈ R, and such that for

all (x̃1, ỹ1) ∈ R,
• for any x̃2 ∈ X̃ for which x̃1 = δ0

kx̃2 for some k, there exists ỹ2 ∈ Ỹ for which

ỹ1 = δ0
kỹ2 and (x̃2, ỹ2) ∈ R,

• for any ỹ2 ∈ Ỹ for which ỹ1 = δ0
kỹ2 for some k, there exists x̃2 ∈ X̃ for which

x̃1 = δ0
kx̃2 and (x̃2, ỹ2) ∈ R;

(iii) there exists a precubical subset R ⊆ X̃ × Ỹ with (̃i, j̃) ∈ R, and such that for

all (x̃1, ỹ1) ∈ R,
• for any cube path (x̃1, . . . , x̃n) in X̃, there exists a cube path (ỹ1, . . . , ỹn) in

Ỹ with (x̃p, ỹp) ∈ R for all p = 1, . . . , n,
• for any cube path (ỹ1, . . . , ỹn) in Ỹ , there exists a cube path (x̃1, . . . , x̃n) in

X̃ with (x̃p, ỹp) ∈ R for all p = 1, . . . , n;

(iv) there exists a precubical subset R ⊆ X̃ × Ỹ with (̃i, j̃) ∈ R, and such that for

all (x̃1, ỹ1) ∈ R,
• for any x̃2 w x̃1 in X̃, there exists ỹ2 w ỹ1 in Ỹ for which (x̃2, ỹ2) ∈ R,
• for any ỹ2 w ỹ1 in Ỹ , there exists x̃2 w x̃1 in X̃ for which (x̃2, ỹ2) ∈ R.

Again, the requirement that R be a precubical subset is equivalent to saying

that whenever (x̃, ỹ) ∈ R, then also (δνk x̃, δ
ν
k ỹ) ∈ R for any k and ν ∈ {0, 1}. The

next result is what will allow us to relate hp-bisimilarity and bisimilarity.

Theorem 5.7 HDA X, Y are homotopy bisimilar if and only if they are bisimilar.

The following is an unlabeled version of hp-bisimilarity for HDA as defined

in [38]:

Definition 5.8 HDA i : ∗ → X, j : ∗ → Y are history-preserving bisimilar if there

exists a relation R between pointed cube paths in X and pointed cube paths in Y

for which ((i), (j)) ∈ R, and such that for all (ρ, σ) ∈ R,

• for all ρ′ ∼ ρ, there exists σ′ ∼ σ with (ρ′, σ′) ∈ R,

• for all σ′ ∼ σ, there exists ρ′ ∼ ρ with (ρ′, σ′) ∈ R,

• for all ρ′ w ρ, there exists σ′ w σ with (ρ′, σ′) ∈ R,

• for all σ′ w σ, there exists ρ′ w ρ with (ρ′, σ′) ∈ R.

We are ready to show the main result of this paper, which together with Theo-

rem 5.7 gives our characterization for hp-bisimilarity.

Theorem 5.9 HDA X, Y are homotopy bisimilar if and only if they are history-

preserving bisimilar.

Corollary 5.10 History-preserving bisimilarity is decidable for finite HDA.

6 Labels

We finish this paper by showing how to introduce labels into the above framework of

bisimilarity and homotopy bisimilarity. Also in the labeled case, we are able to show

that the three notions of bisimilarity, homotopy bisimilarity and history-preserving

bisimilarity agree.

162

Fahrenberg, Legay

For labeling HDA, we need a subcategory of pCub isomorphic to the category

of sets and functions. Given a finite or countably infinite set S = {a1, a2, . . . }, we

construct a precubical set !S = {!Sn} by letting

!Sn =
{

(ai1 , . . . , ain) | ik ≤ ik+1 for all k = 1, . . . , n− 1
}

with face maps defined by δνk(ai1 , . . . , ain) = (ai1 , . . . , aik−1
, aik+1

, . . . , ain).

Definition 6.1 The category of higher-dimensional tori HDO is the full subcate-

gory of pCub generated by the objects !S.

As any object in HDO has precisely one 0-cube, the pointed category ∗ ↓ HDO
is isomorphic to HDO. It is not difficult to see that HDO is indeed isomorphic to

the category of finite or countably infinite sets and functions, cf. [21].

Definition 6.2 The category of labeled higher-dimensional automata is the pointed

arrow category LHDA = ∗ ↓ pCub → HDO, with objects ∗ → X → !S labeled

pointed precubical sets and morphisms commutative diagrams

∗
|| ""

X
f

//

��

Y

��

!S σ
// !T

Definition 6.3 A morphism (f, id) : (∗ → X → !S) → (∗ → Y → !S) in LHDA is

open if its component f is open in HDA. Labeled HDA ∗ → X → !S, ∗ → Y → !S

are bisimilar if there is ∗ → Z → !S ∈ LHDA and a span of open maps X ← Z → Y

in LHDA.

Next we establish a correspondence between split traces [38] and cube paths in

higher-dimensional tori. For us, a split trace over a finite or countably infinite set S

is a pointed cube path in !S. Hence e.g. a split trace a+b+a−b+b− (in the notation

of [38]) corresponds to the cube path (i, a, ab, b, bb, b). Both indicate the start of an

a event, followed by the start of a b event, the end of an a event, the start of a b

event, and the end of a b event. Note that contrary to ST-traces [38], the split trace

contains no information as to which of the two b events has terminated at the b−.

By definition, a torus !S on a finite or countably infinite set S = {a1, a2, . . . }
contains all n-cubes (ai1 , . . . , ain). Hence we have the following lemma:

Lemma 6.4 Let (x1, . . . , xm), (y1, . . . , ym) be pointed cube paths in !S with xm =

ym. Then (x1, . . . , xm) ∼ (y1, . . . , ym). 2

Homotopy classes of split traces are thus determined by their endpoint and

length:

Corollary 6.5 The unfolding of a higher-dimensional torus i : ∗ → !S ∈ HDO is

isomorphic to the pointed precubical set j : ∗ → Y given as follows:

• Yn = {(x,m) | x ∈ !Sn,m ≥ n,m ≡ n mod 2}, j = (i, 0)

• δ0
k(x,m) = (δ0

kx,m− 1), δ1
k(x,m) = (δ1

kx,m+ 1) 2

163

Fahrenberg, Legay

The definitions of open maps and bisimilarity in HDAh can now easily be ex-

tended to the labeled case. Again, we only need label-preserving morphisms.

Definition 6.6 The category of labeled higher-dimensional automata up to homo-

topy LHDAh has as objects labeled HDA ∗ → X → !S and as morphisms pairs of

precubical morphisms (f, σ) : (∗ → X̃ → !S̃)→ (∗ → Ỹ → !T̃) of unfoldings.

Definition 6.7 A morphism (f, id) : (∗ → X → !S)→ (∗ → Y → !S) in LHDAh is

open if its component f is open in HDAh. Labeled HDA ∗ → X → !S, ∗ → Y → !S

are homotopy bisimilar if there is ∗ → Z → !S ∈ LHDAh and a span of open maps

X ← Z → Y in LHDAh.

The proof of the next theorem is exactly the same as the one for Theorem 5.7.

Theorem 6.8 Labeled HDA X, Y are homotopy bisimilar if and only if they are

bisimilar. 2

Also for the labeled version, we can now show that homotopy bisimilarity agrees

with history-preserving bisimilarity. We first recall the definition from [38], where

we extend the labeling morphisms to cube paths by λ(x1, . . . , xm) = (λx1, . . . , λxm):

Definition 6.9 Labeled HDA ∗ i−→ X
λ−→ !S, ∗ j−→ Y

µ−→ !S are history-preserving

bisimilar if there exists a relation R between pointed cube paths in X and pointed

cube paths in Y for which ((i), (j)) ∈ R, and such that for all (ρ, σ) ∈ R,

• λ(ρ) = µ(σ),

• for all ρ′ ∼ ρ, there exists σ′ ∼ σ with (ρ′, σ′) ∈ R,

• for all σ′ ∼ σ, there exists ρ′ ∼ ρ with (ρ′, σ′) ∈ R,

• for all ρ′ w ρ, there exists σ′ w σ with (ρ′, σ′) ∈ R,

• for all σ′ w σ, there exists ρ′ w ρ with (ρ′, σ′) ∈ R.

Theorem 6.10 Labeled HDA X, Y are homotopy bisimilar if and only if they are

history-preserving bisimilar.

7 Conclusion

We have shown that hp-bisimilarity for HDA can be characterized by spans of

open maps in the category of pointed precubical sets, or equivalently by a zig-zag

relation between cubes in all dimensions. Aside from implying decidability of hp-

bisimilarity for HDA, and together with the results of [38], this confirms that HDA

is a natural formalism for concurrency: not only does it generalize the main models

for concurrency which people have been working with, but it also is remarkably

simple and natural.

One major question which remains is whether also hereditary hp-bisimilarity

can fit into our framework. Because of its back-tracking nature, it seems that

simple unfoldings of HDA are not the right tools to use; one should rather consider

some form of back-unfoldings of forward-unfoldings. Given the undecidability result

of [24], it seems doubtful, however, that any characterization as simple as the one

we have for hp-bisimilarity can be obtained.

164

Fahrenberg, Legay

Another important question is how HDA relate to other models for concurrency

which are not present in the spectrum presented in [38]. One major such formalism

is the one of history-dependent automata which have been introduced by Montanari

and Pistore in [28,29] and have recently attracted attention in model learning [1,2].

We conjecture that up to hp-bisimilarity, HDA are equivalent to history-dependent

automata.

With regard to the geometric interpretation of HDA as directed topological

spaces, there are two open questions related to the work laid out in the paper:

In [7] we show that morphisms in HDA are open if and only if their geometric

realizations lift pointed directed paths. This shows that there are some connections

to weak factorization systems [3] here which should be explored; see [25] for a related

approach.

In [8] we relate homotopy of cube paths to directed homotopy of directed paths

in the geometric realization. Based on this, one should be able to prove that the

geometric realization of the unfolding of a higher-dimensional automaton is the

same as the universal directed covering [12] of its geometric realization and hence

that morphisms in HDAh are open if and only if their geometric realizations lift

dihomotopy classes of pointed dipaths.

The precise relation of our HDA unfolding to the one for Petri nets [22,30] and

other models for concurrency should also be worked out. A starting point for this

research could be the work on symmetric event structures and their relation to

presheaf categories in [36].

References

[1] Fides Aarts, Faranak Heidarian, and Frits Vaandrager. A theory of history dependent abstractions for
learning interface automata. In CONCUR, volume 7454 of LNCS, pages 240–255. Springer, 2012.

[2] Fides Aarts, Bengt Jonsson, and Johan Uijen. Generating models of infinite-state communication
protocols using regular inference with abstraction. In ICTSS, volume 6435 of LNCS, pages 188–204.
Springer, 2010.

[3] Jǐŕı Adámek, Horst Herrlich, Jǐŕı Rosický, and Walter Tholen. Weak factorization systems and
topological functors. Appl. Categ. Struct., 10(3):237–249, 2002.

[4] Marek A. Bednarczyk. Categories of asynchronous systems. PhD thesis, Univ. of Sussex, 1987.

[5] Eike Best, Raymond R. Devillers, Astrid Kiehn, and Lucia Pomello. Concurrent bisimulations in Petri
nets. Acta Inf., 28(3):231–264, 1991.

[6] Pierpaolo Degano, Rocco De Nicola, and Ugo Montanari. Partial orderings descriptions and
observations of nondeterministic concurrent processes. In Jaco W. de Bakker, Willem P. de Roever, and
Grzegorz Rozenberg, editors, Linear Time, Branching Time and Partial Order in Logics and Models
for Concurrency, volume 354 of LNCS, pages 438–466. Springer, 1989.

[7] Uli Fahrenberg. A category of higher-dimensional automata. In FOSSACS, volume 3441 of LNCS,
pages 187–201. Springer, 2005.

[8] Uli Fahrenberg. Higher-Dimensional Automata from a Topological Viewpoint. PhD thesis, Aalborg
University, Denmark, 2005.

[9] Uli Fahrenberg and Axel Legay. History-preserving bisimilarity for higher-dimensional automata via
open maps. CoRR, abs/1209.4927, 2012. http://arxiv.org/abs/1209.4927.

[10] Lisbeth Fajstrup. Dipaths and dihomotopies in a cubical complex. Adv. Appl. Math., 35(2):188–206,
2005.

[11] Lisbeth Fajstrup, Martin Raussen, and Éric Goubault. Algebraic topology and concurrency. Theor.
Comput. Sci., 357(1-3):241–278, 2006.

165

http://arxiv.org/abs/1209.4927

Fahrenberg, Legay

[12] Lisbeth Fajstrup and Jǐŕı Rosický. A convenient category for directed homotopy. Theor. Appl. Cat.,
21:7–20, 2008.

[13] Sibylle B. Fröschle and Thomas T. Hildebrandt. On plain and hereditary history-preserving
bisimulation. In MFCS, volume 1672 of LNCS, pages 354–365. Springer, 1999.

[14] Philippe Gaucher. Homotopy invariants of higher dimensional categories and concurrency in computer
science. Math. Struct. Comput. Sci., 10(4):481–524, 2000.

[15] Philippe Gaucher. About the globular homology of higher dimensional automata. Cah. Top. Géom.
Diff. Cat., 43(2):107–156, 2002.

[16] Philippe Gaucher. Homotopical interpretation of globular complex by multipointed d-space. Theor.
Appl. Cat., 22:588–621, 2009.

[17] Philippe Gaucher. Towards a homotopy theory of higher dimensional transition systems. Theor. Appl.
Cat., 25:295–341, 2011.

[18] Éric Goubault. Geometry and concurrency: A user’s guide. Math. Struct. Comput. Sci., 10(4):411–425,
2000.

[19] Éric Goubault. Labelled cubical sets and asynchronous transition systems: an adjunction. In CMCIM,
2002.

[20] Éric Goubault and Thomas P. Jensen. Homology of higher dimensional automata. In Rance Cleaveland,
editor, CONCUR, volume 630 of LNCS, pages 254–268. Springer, 1992.

[21] Éric Goubault and Samuel Mimram. Formal relationships between geometrical and classical models
for concurrency. Electr. Notes Theor. Comput. Sci., 283:77–109, 2012.

[22] Jonathan Hayman and Glynn Winskel. The unfolding of general Petri nets. In FSTTCS, volume 2 of
LIPIcs, pages 223–234. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008.

[23] André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps. Inf. Comp.,
127(2):164–185, 1996.

[24] Marcin Jurdziński, Mogens Nielsen, and Jǐŕı Srba. Undecidability of domino games and hhp-bisimilarity.
Inf. Comp., 184(2):343–368, 2003.

[25] Alexander Kurz and Jǐŕı Rosický. Weak factorizations, fractions and homotopies. Appl. Categ. Struct.,
13(2):141–160, 2005.

[26] Antoni W. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI Report PB
78, Aarhus University, Denmark, 1977.

[27] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[28] Ugo Montanari and Marco Pistore. An introduction to history dependent automata. Electr. Notes
Theor. Comput. Sci., 10:170–188, 1997.

[29] Ugo Montanari and Marco Pistore. Minimal transition systems for history-preserving bisimulation. In
STACS, volume 1200 of LNCS, pages 413–425. Springer, 1997.

[30] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets, event structures and domains,
part I. Theor. Comput. Sci., 13:85–108, 1981.

[31] David M.R. Park. Concurrency and automata on infinite sequences. In TCS, volume 104 of LNCS,
pages 167–183. Springer, 1981.

[32] Carl A. Petri. Kommunikation mit Automaten. Bonn: Institut fr Instrumentelle Mathematik, Schriften
des IIM Nr. 2, 1962.

[33] Vaughan Pratt. Modeling concurrency with geometry. In POPL, pages 311–322. ACM Press, 1991.

[34] Alexander M. Rabinovich and Boris A. Trakhtenbrot. Behavior structures and nets. Fund. Inf.,
11(4):357–403, 1988.

[35] Mike W. Shields. Concurrent machines. Comp. J., 28(5):449–465, 1985.

[36] Sam Staton and Glynn Winskel. On the expressivity of symmetry in event structures. In LICS, pages
392–401. IEEE Computer Society, 2010.

[37] Rob J. van Glabbeek. Bisimulations for higher dimensional automata. Email message, June 1991.
http://theory.stanford.edu/~rvg/hda.

[38] Rob J. van Glabbeek. On the expressiveness of higher dimensional automata. Theor. Comput. Sci.,
356(3):265–290, 2006.

[39] Rob J. van Glabbeek and Ursula Goltz. Equivalence notions for concurrent systems and refinement of
actions. In MFCS, volume 379 of LNCS, pages 237–248. Springer, 1989.

[40] Glynn Winskel and Mogens Nielsen. Models for concurrency. In Samson Abramsky, Dov M. Gabbay,
and Thomas S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 4, pages 1–148.
Clarendon Press, Oxford, 1995.

166

http://theory.stanford.edu/~rvg/hda

MFPS 2013

A Geometric View of Partial Order Reduction

Eric Goubault Tobias Heindel Samuel Mimram1

CEA, LIST
Gif-sur-Yvette, France

Abstract

Verifying that a concurrent program satisfies a given property, such as deadlock-freeness, is computationally
difficult. Naive exploration techniques are facing the state space explosion problem: they consider an
exponential number of interleavings of parallel threads (relative to the program size). Partial order reduction
is a standard method to address this difficulty. It is based on the observation that certain sets of instructions,
called persistent sets, are not affected by other concurrent instructions and can thus always be explored first
when searching for deadlocks. More recent models of concurrent processes use directed topological spaces:
states are points, computations are paths, and equivalent interleavings are homotopic. This geometric
approach applies theoretical results of algebraic topology to improve verification. Despite the very different
origin of the approaches, the paper compares partial-order reduction with a construction of the geometric
approach, the category of future components. The main result, which shows that the two techniques make
essentially the same use of persistent transitions, is of foundational interest and aims for cross-fertilization of
the two approaches to improve verification methods for concurrent programs.

Verifying concurrent programs is a computationally difficult task because one

has to check that the desired safety properties are valid for any possible scheduling

of the program and, typically, the number of schedulings is exponential in the size

of the program. For instance, consider the following concurrent program, consisting

of two processes in parallel, each of which is modifying the contents of two memory

cells:

x:=1;y:=2 | y:=3;z:=4 (1)

In the following, we assume that the execution model is sequentially consistent,

so that an execution of the program (1) will interleave the instructions of the two

processes and thus corresponds to one of the following six sequential programs.

x:=1;y:=2;y:=3;z:=4 x:=1;y:=3;y:=2;z:=4 x:=1;y:=3;z:=4;y:=2

y:=3;x:=1;y:=2;z:=4 y:=3;x:=1;z:=4;y:=2 y:=3;z:=4;x:=1;y:=2

(2)

In order to verify that the program (1) is correct, one could thus use traditional

verification techniques on the six programs (2), which can also be pictured as the

paths from x00 to x22 on the left of Figure 1. However, this approach will not scale

1 The authors gratefully acknowledge support from the project PANDA ANR-09-BLAN-0169.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

Goubault, Heindel, Mimram

x00

x01

x02

x10

x11

x12

x20

x21

x22
x:=1

x:=1

x:=1

y:=2

y:=2

y:=2

y:=3 y:=3 y:=3

z:=4 z:=4 z:=4

x:=1 y:=2

y:=3

z:=4

Fig. 1. Asynchronous transition semantics and geometric model of (1).

up because the number of sequential programs corresponding to a concurrent one

grows very fast: this phenomenon is called state space explosion. In order to avoid

it, techniques of state space reduction have been invented that exploit the inherent

dependencies between instructions. For instance, the order in which x:=1 and y:=3

are executed is not relevant for most program properties: both possible executions

result in the same memory state in the end. We use tiles (marked by) on the

left of Figure 1 to indicate when instructions can be switched in this way, and say

that the instructions commute. Formally, the graph with tiles forms an asynchronous

transition system or ats for short [19].

Notice that, in this program, the instruction x:=1 is persistent in the sense

that it commutes with all possible instructions running in parallel with it (forming

the second process). Without loss of generality, we might thus suppose that it is

executed first and we are left to verify that the program x:=1;(y:=2|y:=3;z:=4)

is valid. This program gives rise to only three possible executions, compared to the

six of (2): we can avoid examining the paths going through the states x01 and x02.

Of course we can iteratively use this procedure to reduce the program further, which

results in removing paths going through the state x12. This procedure, introduced

by Valmari and developed by Godefroid [7], is called partial order reduction (por)

and has lead to a wide variety of successful tools such as SPIN [14] (where the above

mentioned persistent sets are complemented with other techniques such as sleep

sets). These tools have been originally devised to optimize deadlock detection (and

have been extended afterwards in various ways). Thus, we shall focus on deadlock

detection, though the intended range of application is wider (full reachability will

be detailed in future works); moreover, we shall mainly be concerned with acyclic

systems, which is also a common restriction in techniques of partial order reduction

(see for example [6]).

Independently of advances of por, work on topological semantics of concurrent

programs has lead to new techniques based on similar observations, but formulated

in a much different context [8,9]. In this line of research, concurrent programs are

modeled as directed topological spaces [4]. For instance, on the right of Figure 1, we

see the space associated to the program (1): ignoring the curvy paths at this point,

the space is essentially a filled square with a square hole (rendered in gray). Notice

the strong resemblance between the space and the asynchronous transition system

on the left: in some precise sense, the topological model is actually the geometrical

counterpart of the ats (viz, its geometric realization): constructions in one setting

can be reformulated in the other; avoiding the formal details about topology, we

appeal to geometric intuition to illustrate the main ideas.

In the geometric approach, program executions are modeled as paths in a space, as

shown in Figure 1. For instance the path that passes underneath the hole corresponds

168

Goubault, Heindel, Mimram

to the first possible scheduling in (2). Notice that paths should always be monotone

when projected to a coordinate; this captures progression in time of each thread of

a program. This is why topological spaces of the model need to be endowed with

a notion of direction [13]. In these topological models, two interleavings that can

be obtained from each other by repeatedly switching commuting instructions are

represented as dihomotopic paths, i.e. paths which can be continuously deformed

into each other. For instance, on the right of Figure 1, the two paths that pass

on top of the hole are dihomotopic, but none of them is dihomotopic to the one

that passes underneath; the reason is that the hole is an obstacle to continuous

deformation of paths below and above the hole.

The interest of defining a program semantics in terms of topological spaces, is

that it allows one to reuse concepts and tools coming from algebraic topology. This

has enabled the formulation of state space reduction methods as follows. From a

concurrency point of view, a path is inessential if it does not change the possible

future paths, up to homotopy: such a path corresponds to an execution where neither

the program has made a significant choice (such as choosing a branch of a conditional

choice) nor the scheduler (such as ordering two concurrent actions which do not

commute). Using a suitable formalization, one is naturally lead to consider the

category of paths in the topological semantics of a program, quotiented by inessential

paths in order to only retain the structure which is relevant for studying the program

up to commutation of instructions, i.e. define a notion of reduced state space. This

category, introduced in [11], is called the category of future components and is used in

the tool ALCOOL [4,9], which has been successfully used in an industrial context [2]

for deadlock detection.

Even though there is a striking similarity between the notions of persistent sets

and inessential paths, the relationship between the two has never been formally

studied and the purpose of this article is to fill this gap, in order for partial order

reduction and geometric techniques to improve each other and combine their potential

to alleviate the state space explosion problem. As a result, we are able to show

that, under fairly reasonable assumptions, persistent transitions are the algebraic

counterpart of inessential paths. Despite the fact that the analogy is intuitive, it

turns out that the theoretical comparison is sometimes technically involved. On a

more practical side, a preliminary comparison, based on experiments, was started

in [4].

In Section 1, we begin with a review of the models of computations used here

to formalize persistent sets: labeled transitions systems with independence (ltsi),

which are generalized into asynchronous transitions systems (ats). In Section 2, we

conservatively extend the original definition of persistent sets from ltsi to ats, which

are closer to geometric models, and show that they retain their fundamental reduction

potential to prune the search space for deadlock detection. Finally, we develop

in Section 3 a first conceptual link between partial order reduction and directed

algebraic topology; in Theorem 3.10, we make precise in what sense persistent

singletons are essentially the same as inessential morphisms, thus identifying a

common concept of geometrical and partial order reduction methods (amongst the

host of techniques and heuristics that are used in both approaches). This is further

discussed in our summary in Section 4, together with venues for future research.

169

Goubault, Heindel, Mimram

1 Models of concurrent computation

We shall use two models for concurrent computations: labeled transitions systems

with independence (ltsi), as traditionally used in the por technique, and asyn-

chronous transition systems (ats), which can be seen as algebraic counterparts of the

directed topological spaces of the geometric point of view. Both of these formalize

the state spaces of programs, such as the example given in Figure 1.

1.1 Labelled transition systems with independence

A labeled transition system (lts) is a triple (S,Λ,→) where S is a set of states, Λ is

a set of transition labels, and→ ⊆ S×Λ×S is a transition relation. We write s
t−→ s′

whenever (s, t, s′) ∈ → and s
t−→ when t ∈ Λ is enabled in s, i.e. when there exists

a state s′ such that s
t−→ s′. We shall here consider only deterministic transition

systems, i.e. s
t−→ s′ and s

t−→ s′′ imply s′ = s′′.

Two (labels of) transitions are considered to be independent if the relative order

in which they are performed does not matter, in the sense that both schedulings

are essentially the same computation and in particular yield the same result. This

notion of independence motivates the following definition [7].

Definition 1.1 (Independence) A labeled transition system with independence

(ltsi) consists of an lts (S,Λ,→) with an independence relation ‖, which is a

symmetric, irreflexive relation ‖ ⊆ Λ × Λ such that for each pair (t1, t2) ∈ ‖ and

every reachable state s,

(i) if s
t1−→ s′ then s′

t2−→ iff s
t2−→; and

(ii) if both s
t1−→ and s

t2−→ hold, there exists a unique s′′ such that (for a unique

pair of states s1, s2 ∈ S) both s
t1−→ s1

t2−→ s′′ and s
t2−→ s2

t1−→ s′′ hold.

1.2 Asynchronous transition systems

Geometric models for concurrency have been introduced with the idea to apply tools

developed in algebraic topology to the analysis of concurrent programs [8]; those

programs are considered as directed topological spaces, in which (directed) paths

correspond to particular executions of the program, and dihomotopy between paths

is an equivalence of executions (relating schedulings of a concurrent program that

lead to the same result). For the analysis of concurrent systems, the topological

formalization can be replaced by its algebraic counterpart, namely asynchronous

transition systems (or more generally precubical sets), which brings us closer to the

formalism of ltsi as we recall here, see [12] for a detailed comparison between those

models.

Recall that a graph G = (V,E, src, tgt) consists of a set V of vertices, a set E of

edges, and two functions src, tgt : E → V , which associate to each edge its source

and target, respectively. A path u from vertex x to vertex y, denoted by u : x� y,

is a sequence of consecutive edges; the empty path on a vertex x is denoted by

εx : x � x. The concatenation of two paths u : x � y and v : y � z is denoted by

u · v : x� z.

170

Goubault, Heindel, Mimram

Definition 1.2 (Asynchronous transition system) An asynchronous transition

system, or ats for short, is a pair (G, �) where G is a graph (whose vertices are

called positions and edges are called transitions) and � is a relation on the set of

paths of length two that have the same source and target, i.e. (u, v) ∈ � only if

u, v : x � y. The elements of � are called tiles. Two transitions m : x → y and

n : x→ z are independent, written m ‖ n, if there exist transitions m′ and n′ such

that (m · n′) � (n ·m′), i.e. we have the tile as in (3), on the right below.

·
·

·
·

m n′

m′n

(3)

To formalize the fact that we can reschedule independent events

in the run of a concurrent system without changing the actual

computation that is performed, we use the following definition of

trace, which refines Mazurkiewicz’s notion and is the algebraic

counterpart of homotopy in topological spaces.

Definition 1.3 (Trace) Two paths u, v : x� y are homotopic, written u ∼ v, if u

can be obtained from v by repeatedly replacing path fragments m·n′ by m′ ·n whenever

there exists a tile (3), i.e. the relation ∼ is the smallest congruence w.r.t. path

composition that extends �. A trace is an equivalence class w.r.t. ∼ and we write [u]

for the equivalence class of a path u.

Definition 1.4 (Trace category) The trace category associated to an ats (G, �)
has the vertices of G as objects and traces [u] with u : x � y as morphisms from

x to y. Composition is the operation induced on traces by path concatenation and

identities are empty traces [εx].

In order to relate this model with the one introduced in previous section, we

should remark that each ltsi (Definition 1.1) naturally induces an ats as follows.

Definition 1.5 (Induced ATS) Let (S, ‖) be an ltsi

where S = (S,Λ,→). Its induced ats, denoted by

ats
‖
S = (G, �), has vertices as positions and edges as tran-

sitions, i.e. V = S and E = →; moreover, for each

e = (s, t, s′) ∈ E we have src(e) = s, tgt(e) = s′, and

� contains a tile as pictured on the right whenever t1 ‖ t2
and s

t1−→ and s
t2−→.

s

s1

s2

s′

(s,t1,s1) (s1,t′2,s
′)

(s2,t′1,s
′)(s,t2,s2)

Example 1.6 Consider the ltsi on the left below with ‖ = {(a, c), (c, a)}; its

associated ats is shown in the middle. Notice that no ltsi can generate the ats on

the right, because to generate its transitions, we would have to generate the “full

cube” as stated in Lemma 2.11. In this sense, ats are more general than ltsi.

c c c

a

a

b

b

A labeled variant of ats can easily be defined and all the constructions performed

on ats in this article can be generalized to the labeled case (see [12] for the precise

relations between those models). However, the labels of transitions are not really

needed since a suitable notion of transition label can be recovered abstractly as its

associated event:

171

Goubault, Heindel, Mimram

Definition 1.7 (Event) Let (G, �) be an ats. Two transitions m and m′ are

parallel, written m2m′, if they form opposite sides of some tile (3), i.e. if there

exists a tile (m · n′, n · m′) ∈ � for some transitions n and n′. An event is an

equivalence class w.r.t. the least equivalence relation on transitions that contains 2.

For instance, in the middle ats in Example 1.6, the two vertical transitions on the

left are elements of the same event, while the rightmost is not: considering the ltsi

on the left, since b and c are not independent, performing c before or after b does

not correspond to the same event – even though they carry the same label.

Remark 1.8 In the sequel, we shall restrict to ats that have unique ways to “close”

tiles, and “switchings” of transitions are uniquely defined. Formally, the former

means that (m · p) � (n · q) and (m · p′) � (n · q′) imply p = p′ and q = q′ while the

latter says that u � v and u �w imply v = w. All ats that are induced by ltsi satisfy

this property.

2 Persistent sets in asynchronous transition systems

Persistent sets are one of the most well-known techniques to reduce the number

of executions to be explored to check that a concurrent program cannot lead to

a deadlock state. Here, we generalize their definition to ats to compare it with

geometric reduction techniques in Section 3. We begin by recalling Godefroid’s

original definition [7].

Definition 2.1 (Persistent set) Given an ltsi (S,Λ,→, ‖) and a state s ∈ S, a

set R ⊆ Λ of transition labels that are enabled in a state s ∈ S is persistent in s, if

for all nonempty transition sequences

s = s1
t1−→ s2

t2−→ s3 . . .
tn−1−−−→ sn

tn−→ sn+1

from s that satisfy ti /∈ R (1 ≤ i ≤ n), tn ‖ t holds for every transition t ∈ R.

A single transition can be considered persistent whenever it can be pulled back

to the state at which it was first enabled by permuting it with independent (not

necessarily persistent) transitions. More generally, persistent sets typically comprise

the actions of a conditional choice of some concurrent component, as illustrated in

the following example.

Example 2.2 Consider the programs below, with their respective ltsi semantics.

x:=1 | y:=2

·

·

· ·
x:=1

y:=2

y:=2

x:=1 if (z<0)

x:=1 | y:=2

else

y:=3 ·

·

· ·
x:=1

y:=2

y:=2

x:=1

·
y:=3

(4)

In the ltsi on the left, we have x:=1 and y:=2 running completely in parallel; thus,

both {x:=1} and {y:=2} are persistent sets at the initial state. In contrast, in the

system on the right, the transitions x:=1 and y:=2 are in conflict with y:=3; the

only persistent set consists of a “monolithic” component with no threads running

172

Goubault, Heindel, Mimram

concurrently, i.e. {x:=1, y:=2, y:=3} is the only persistent set at the initial state. As

a final example, in Figure 1, {x:=1} and {x:=1, y:=3} are persistent in the initial

state while the set {y:=3} is not.

Recall that a deadlock is a state in which no transition is enabled. As explained

before, the main interest of persistent sets is to narrow the search for deadlocks in

a concurrent program: given a choice of persistent set for each state, a reachable

deadlock is always reachable by a path containing only transitions in the chosen

persistent sets; it is therefore sufficient to explore a system “along” persistent sets:

Proposition 2.3 (Persistent deadlock reachability [7, Theorem 4.3]) Given

a choice of a non-empty persistent set Rs at each state s that is not a deadlock, for

each path s0
t0−→ s1 . . . sn

tn−→ d to a deadlock d, there exists a path s0
t′0−→ s′1 . . . s

′
n

t′n−→ d

such that t′i ∈ Rsi for all i ∈ {0, . . . , n}.

The proof of the preceding proposition is based on the following observation:

for each path u : s � d leading to a deadlock d and persistent set R at s, there

exists a path v ∈ [u] (i.e. v ∼ u) whose initial transition is in R. This motivates our

generalization of the definition of persistent sets, based on the following definitions:

Definition 2.4 Let (G, �) be an ats. Given a path u : x� z, a transition m : x→ y

is initial modulo homotopy if there exists a path v : y � z such that u ∼ m · v; the

set of all transitions that are initial modulo homotopy in u is denoted by ı̃(u). Two

paths u : x� y and v : x� z with common source x are compatible, written u ↑ v,

if there exist paths wy : y � x′ and wz : z � x′ with common target x′ such that

u · wy ∼ v · wz.

Thus, in particular all transitions that are initial modulo homotopy in some path

are pairwise compatible. These notions enable us to generalize persistence to ats as

follows:

Definition 2.5 (Homotopy persistent set) Let R be a set of transitions in an

ats (G, �) that share a state x as common source. The set R is homotopy persistent,

if each path u : x � z is compatible with all transitions in R provided that no

transition in R is amongst its homotopy initial ones, i.e.

∀u : x� z, R ∩ ı̃(u) = ∅ ⇒ ∀m ∈ R. u ↑ m.

Remark 2.6 A persistent singleton (a persistent set with a single element) corre-

sponds to a transition that is compatible with all paths with the same source.

Example 2.7 The singleton {o → y} is an homotopy persistent set in the ats

below in (5). Note that the transition o→ y is compatible with the transition o→ x

even though the two transitions are not “independent”.

o

yo′

x

y′z

x′ ō′

x̄

ȳ′ z̄

x̄′

(5)

Situations like this typically arise in consumer pro-

ducer problems where n-ary semaphores are used to

ensure that an exhausted resource is not used, such

as when implementing a queue with limited size. For

instance, suppose that we have a queue in which we

can put at most two elements (if there are already two

173

Goubault, Heindel, Mimram

elements, the put operation blocks until an element is

taken from the queue).

The following program generates the above ats (the arrow subscripts indicate

the direction of the corresponding transitions).

put↑ | if (...) {take↗ | put→} else {take↖ | put←}

It remains to show that the notion of homotopy persistent set is in fact a

conservative extension of the original one (Definition 2.1). The proof is based on

the observation that in each ats that is induced by an ltsi, a transition m : x→ y

has a unique residual path u/m : y � z′ after a compatible path u : x � z; we

say this kind of ats has compatible residuals. The residual u/m of m after u has

intuitively the “same effect” as u, once m has been performed. The assumption

made in Remark 1.8 is necessary for the following definition to be sound.

Definition 2.8 (Residual) Let m : x→ y be a transition, let u : x� z be a path.

The residual of u after m, denoted by u/m, and the residual of m after u, denoted

by m/u, are defined by induction on the length of u as follows.

• εx/m = εy and m/εx = m

• (m · u′)/m = u′ and m/(m · u′) = ε

• If n 6= m, (n · u)/m = n′ · (u/m′) where m′ and n′ are transitions such that

m · n′ � n ·m′ as in (3) (where m′ is uniquely determined by Remark 1.8).

x1

y1

x2

y2

x3

y3

xk−1

yk−1

xk

yk

· · ·

· · ·
m m/u

u

u/m

yk

yk

yk+1

yk+1

yl−1

yl−1

yl

yl
m/u

ε

· · ·

· · ·
ε ε ε ε

v

v/m

m/v

Remark 2.9 The residual m/u of a transition m after a path u (when it exists) is

either a transition or empty (as illustrated above). It is straightforward to extend

the definition to the residual v/u of a path v : x� z after a path u : x� y.

x
o

y
m n

x′

o′

z′

y′

q

r

p

n′ m′

⇒
x

o

z
y

m n

x′
z′

y′

p q

n′ m′

(6)

The fact that every ats that is

induced by an ltsi has compatible

residuals can be deduced from the

fact that they satisfy a particular di-

agrammatic property; it can be ex-

pressed as follows [17].

Definition 2.10 (Forward Cube Property)

An ats has the Forward Cube Property (or fcp) if for every three tiles as shown

on the left in (6) there exist three matching tiles as shown on the right in (6).

Lemma 2.11 The induced ats of an ltsi has the fcp property.

Our main interest in this property is the following property [16]:

Proposition 2.12 (Residuation) An ats with the fcp has compatible residuals.

174

Goubault, Heindel, Mimram

This proposition is the main tool to show that in fact our definition of persistent set

is a conservative extension of the original one:

Proposition 2.13 (Homotopy persistent is persistent) Let (S,Λ,→, ‖) be an

ltsi, let x be a position, and let R ⊆ Λ be a set of transitions that are all enabled

at x. The set R is persistent at x if and only if the set R′ = {(x, t, y) | t ∈ R, x t−→ y}
is homotopy persistent at x in ats

‖
S.

Proof. If R is persistent, it is easy to show that R′ is homotopy persistent since

if a transition label in R is independent with all transitions labels on the path, it

is in particular compatible with the corresponding transitions (by Definition 2.8).

Conversely, assume that R′ is homotopy persistent. Since ats
‖
S has the fcp by

Lemma 2.11, for every path u : x � z, we can use Proposition 2.12 to show that

either some residual of a transition in R′ occurs in u (if ı̃(u) ∩R′ 6= ∅), or we have

residuals of all transitions in R′ after u (if u is compatible with all transitions in R′).

It can easily be checked that the residual of any transition in R′ always carries the

same label as the “original” in R′. 2

With this result at hand, we refer to homotopy persistent sets in ats as persistent

ones from now on. Moreover, we have a further successful “soundness check” for our

generalization of persistent sets, namely, the fundamental fact about reachability of

deadlocks “along” persistent sets, namely Proposition 2.3, lifts to any ats.

Lemma 2.14 Let G = (G, �) be an ats, let u : x � d be a path such that d is a

deadlock and let R be a non-empty persistent set at x. Then R contains some of the

initial transitions of u (i.e. u ∼ m · v for some m ∈ R and a suitable path v).

Proof. Consider a path u : x � d leading to a deadlock d. Suppose that u is

compatible with all transitions in R. Because R is non-empty, there exists some

transition m : x→ y in R and paths u′ : d� z and v : y � z such that u · u′ ∼ m · v.

Since d is supposed to be a deadlock, we necessarily have u′ = εd and z = d.

Therefore u ∼ m · v, i.e. m ∈ ı̃(u) and we conclude. Otherwise, u is incompatible

with some transition m : x→ y of R. Since R is homotopy persistent, R∩ ı̃(u) 6= ∅.2

Corollary 2.15 (Persistent deadlock reachability) Let (G, �) be an ats with

V and E as set of vertices and edges respectively, let R : V → ℘(E) be a function

such that for all non-deadlocking states x ∈ V , the set Rx is a non-empty persistent

set at x. Given a deadlock d ∈ V reachable by a path u : x0 � d, there exists a

path v : x0 � d such that u ∼ v and every transition m : x → y occurring in v is

persistent at x, i.e. m ∈ Rx.

Note that for arbitrary safety properties, persistent sets alone do not suffice, and

one has to use extra techniques similar to the sleep sets of [7].

Finally, the following technical lemma will be useful in the following:

Lemma 2.16 In the trace category associated to an ats which satisfies the fcp every

morphism is epi, that is for every paths u : x� y and v, w : y � z, [u · v] = [u · w]

implies [v] = [w].

175

Goubault, Heindel, Mimram

3 Comparing POR and categories of future components

In this section, we relate the notion of persistent set with the construction of

the category of future components [10], which gives a condensed representation of

(geometric models of) concurrent programs by eliminating states that enable only

“inessential” transitions. We first reformulate this construction in the setting of ats,

as well as related properties: we introduce the notion of future-reflecting trace, and

the category of future components is then defined as the quotient of the category of

traces by a consistent set of future-reflecting traces. After that, the crucial point

is to make precise which transitions are considered as inessential. Intuitively, one

might expect that all persistent transitions are inessential. However, the general

definition of ats allows peculiar situations which do not occur in ats that are

generated by usual programs (for instance persistent transitions might not be stable

under residuation). Nevertheless, we will show, for suitably “well-behaved” ats,

that inessential transitions are the same as persistent ones and that the category of

future components does only contain states that do not enable persistent transitions.

The first requirement for inessential transitions is that they do not influence

any choices that might lead to deadlocks. Intuitively, choices available in the future

before and after performing an inessential transition should be the same: they should

be future reflecting in the following sense.

Definition 3.1 (Future-reflecting trace) A trace [u] : x� y is future-reflecting

if for each position z reachable from y (i.e. there exists a path y � z), precomposition

with [u] induces a bijection between traces from y to z and traces from x to z.

x y
[u]

z

⇒ x y
[u]

z

[v] ;
; x y

[u]

z
[v′]

Example 3.2 (Future-reflecting transition) Reconsider the ats in Figure 1.

The only important choice for scheduling the transitions concerns the relative order

of the instructions y:=3 and y:=2. Namely, the transition x00 → x10 (with label

x:=1) does not influence the choice and thus is intuitively “inessential”. In fact, it

reflects all futures according to the definition. For example, the two traces from

x10 to x22 factor uniquely through x00 → x10. In contrast, the transition x10 → x20

(with label y:=2) does not reflect futures as there is only one trace from x20 to x22

while there are two traces from x10 to x22.

In other words, if a trace is future-reflecting, all choices in the future are already

present at their source. The notion of future-reflecting transition is close to the

notion of persistent transition; however, the two do not generally coincide as seen in

the following examples.

Example 3.3 Consider the cube on the right. All

x

o

z
y

x′

o′

z′

y′pairs of transitions are independent except for o→ o′ and

o→ y (the front face of the cube is not a tile). Now, both

transitions o → y and o → o′ are persistent since they

are compatible with all other transitions from o. However

176

Goubault, Heindel, Mimram

neither of them is a future-reflecting trace. To see that

o→ y is not a future-reflecting trace, consider the trace

[y → y′]. There is only one trace from y to y′ but two from o to y′. The argument

for o→ o′ is symmetric. The important point to notice in this example, is that the

associated trace category is not a poset (it might have more than one morphism

between two objects). In fact, it can be shown that when the trace category is a poset

(this is the case for event structures), all persistent transitions are future-reflecting.

o y

x zx′

In the ats on the right, the transition o→ y is persistent.

However, it is not a future-reflecting trace since the trace

[o→ x] does not factor through [o→ y]. Also note that this

ats is actually induced by an ltsi.

The basic idea of state space reduction used in the category of future components

is that future-reflecting transitions are not informative from a concurrency point

of view and thus need not be represented explicitly. So, starting from an ats, one

might be tempted to consider the associated trace category (Definition 1.4) and

quotient it by all the future-reflecting traces, which amounts to formally turn them

into identities. It turns out that this crushes too much information about traces

(see [5], in particular there is no equivalence between the quotient and the fraction

category and no compositionality result via Van Kampen theorems). A suitable

solution is to quotient wrt a subset of all future-reflecting traces, namely those that

are closed under composition and “residuals”; the formal details are as follows.

Definition 3.4 (System of inessentials) Let (G, �) be an ats, and let Σf be a

set of traces. The set Σf is a system of inessentials (soi) if

(i) each element of Σf is a future-reflecting trace;

(ii) Σf contains all empty traces and is closed under composition;

(iii) Σf is stable under pushout, i.e. for every trace σ : x � z ∈ Σf and for any

trace [u] : x� y, there exists a pushout z
[u′]−−→ x′

σ′←− y of z
σ←− x [u]−→ y such that

σ′ ∈ Σf .

A

B

C

f

g

D
g′

f ′
D′

h

k

l

We recall that the pushout of two morphisms f : A→ B and

g : A→ C in a category C is a pair of morphisms g′ : B → D

and f ′ : C → D such that f ′ ◦ g = g′ ◦ f and moreover for

any other pair of morphisms h : B → D′ and k : C → D′

that satisfy k ◦ g = h ◦ f , there exists a unique morphism

l : D → D′ such that both k = l ◦ f ′ and h = l ◦ g′ (as illustrated to the right).

Definition 3.5 (Inessential trace) A trace is inessential if it belongs to the union

of all systems of inessentials of an ats (which is a non-empty soi which is maximal

wrt inclusion).

In fact, in most of the following examples, the pushout of an inessential trace

along another one is just its residual. The following example shows that the set of

future-reflecting transitions need not be closed under residuals and thus the maximal

soi does not contain all future-reflecting traces.

177

Goubault, Heindel, Mimram

Example 3.6 Consider the ats on the right, in which all faces

but the back face are tiles. The transition o → o′ is future-

reflecting. Its residual after o→ x, namely x→ x′, is not future-

reflecting (and not even persistent). In fact, the largest soi

is the closure of {o′ → x′, o′ → y′, y → z, y → y′} by residuals,

composition, and identities.

x
o

z
y

x′

o′

z′

y′

Note that the ats of this example does not satisfy the Forward Cube Property.

Nevertheless, the category of future components is well-defined.

Definition 3.7 (Category of future components) The category of future com-

ponents of an ats is its trace category quotiented by inessential traces.

This construction amounts to forgetting inessential transitions by considering them

as identities. Another point of view, formalized by the following proposition, is that

this construction removes states which enable inessential transitions: informally,

passing through them does not bring any new information about possible future

traces (as no important choice can be made by the program or the scheduler). This

agrees with the informal explanations of the introductory example in Figure 1; the

state space reduction removes states x01, x02 and x12.

Proposition 3.8 Let (G, �) be an ats, let Σ be the maximal soi. If Σ is finite, the

category of future components is the full subcategory of the category of traces that is

induced by all states that do not enable any transition in Σ.

Finally, we give sufficient conditions which imply that the category of future compo-

nents yields the expected state space. The final condition is the absence of déjà vus

(cf. Example 3.3).

Definition 3.9 (Déjà vu) A déjà vu is a transition m : x → y such that there

exists a path u : y′ � x and a transition m′ : x′ → y′ in u that is the same event as

m. The ats is déjà vu free if none of its transitions are déjà vus.

In other words, an ats is déjà vu free if none of its paths contains two transitions that

are instances of the same event. For example, in the second ats of Example 3.3, the

transition x→ z is a déjà vu since the path o→ x′ → x→ z contains two occurrences

of the same event: (x → z)2(o → y)2(x → x′). Similarly, any cyclic ats has

déjà vus though déjà vus need not necessarily be cycles. With this final proviso,

we obtain a formal correspondence between inessential and persistent transitions

(i.e. transitions m : x→ y such that {m} is a persistent set at x).

Theorem 3.10 (Inessential vs. persistent transitions) In any déjà vu free ats

that has the forward cube property, a transition is persistent iff it belongs to some

soi (and in particular the maximal one). If the trace category of the ats is finite,

the category of future components is the full subcategory containing all objects that

do not enable persistent transitions.

Proof. Assume that Σf is a soi and m ∈ Σf a transition. We want to show

that {m} is a persistent set. For any path coinitial with m, we have a pushout of m

along u because Σf is closed under pushouts. Thus m ↑ u and m is persistent by

Remark 2.6.

Conversely, let Σ′ be the set of traces that consist only of persistent transitions.

178

Goubault, Heindel, Mimram

It suffices to show that Σ′ is a soi. To show that Σ′ is stable under pushouts, let

m1 · · ·mk ∈ Σ′ and let u be a path coinitial with m1. We successively take residuals

of mi along u using the fcp, Remark 2.6, and Proposition 2.12, and verify that the

composite of the residuals is a pushout. Next, we show that persistent transitions

are future-reflecting. Let m : x→ y be a persistent transition and z a state reachable

from y. Since the ats is supposed to have the fcp, the transition m is an epimorphic

trace by Lemma 2.16, i.e. for every paths u and v such that [m · u] = [m · v] we

have [u] = [v]. Namely, in this case we have u = (m · u)/m ∼ (m · v)/m = v, the

middle homotopy being justified by the fact that m · u ∼ m · v and residuation is

compatible with homotopy [16]. Precomposition with m with traces from y to z is

thus injective and it remains to show that it is surjective. Given a path u : x� z,

we have to show that u factors through m. The transition m is compatible with u

by Remark 2.6, and thus we can pushout [m] along [u], which is just the residual of

m after u; it must be the identity as we would obtain a déjà vu otherwise and thus,

in fact, [u] factors as [m] · [u′] where [u′] is the pushout of [u] along [m]. 2

Thus, in a large class of common systems, including those generated by event

structures or Petri nets with acyclic causality, persistent singletons are in fact the

same as inessential morphisms. Thus, despite the huge gap between the origins of

the geometric approach and the por technique, in a large class of systems, we do

not have only “obvious” similarities, but in fact, a formal argument that inessential

transitions are exploited in the same way.

4 Conclusion

We have developed a conservative extension of persistent sets to asynchronous

transition systems (Definition 2.5) that coincides with the original concept on ltsi

(Proposition 2.13). This extension forms the base of our comparison of the partial

order reduction technique and the geometric approach to state space reduction,

since ats are the algebraic counterpart of geometrical models. In particular, we

have shown that our definition retains the main application of persistent sets which

consists in pruning the search for deadlocks (Corollary 2.15).

These preliminaries are crucial for our main contribution, which demonstrates

the practical relevance of the theoretical construction of the category of future

components and further results in [10], where state space reduction is performed for

general directed topological spaces. Glossing over details, Theorem 3.10 says that

inessential transitions are the same as persistent singletons. As a direct consequence,

the construction of the category of future components roughly amounts to the

application of the por technique when we use only persistent singletons. Thus, we

have found a common core of the geometric approach and the por technique, while

both approaches have additional heuristics and methods to improve performance.

There are favorable examples for the geometric approach [4], which motivates future

research.

In theory, a fully general correspondence between persistent singletons and

inessential transitions is impossible (as witnessed by Example 3.3), which is not

surprising given the difference of origins. To gauge the advantages of each of the

approaches in practice, a systematic practical comparison of por and the geometric

179

Goubault, Heindel, Mimram

approach is called for. We further plan extensions of the geometric approach using

methods and tools from Petri nets [3,15]. This is motivated by the fact that Petri nets

are closer to both – the geometric approach and the por techniques – as witnessed

by the study of so-called stubborn sets in Petri nets [18], which are a particular

case of persistent sets [7]. The addition of Petri net inspired techniques is based on

the observation that the category of future components bears similarities with the

facet abstraction for occurrence nets [1] and that recent advances of the geometric

approach in [4] use a notion of “weak causality”, which is tightly related to classical

models such as event structures and Petri net processes [19]. In the end, we expect

to obtain representative experimental results, which will complement the theoretical

results of the present paper.

References

[1] S. Balaguer, T. Chatain, and S. Haar. Building tight occurrence nets from reveals relations. In ACSD,
pages 44–53. IEEE, 2011.

[2] R. Bonichon and al. Rigorous evidence of freedom from concurrency faults in industrial control software.
Computer Safety, Reliability, and Security, pages 85–98, 2011.

[3] J.-M. Couvreur, D. Poitrenaud, and P. Weil. Branching processes of general petri nets. In Applications
and Theory of Petri Nets, volume 6709 of LNCS, pages 129–148. Springer, 2011.

[4] L. Fajstrup, E. Goubault, E. Haucourt, S. Mimram, and M. Raußen. Trace spaces: An efficient new
technique for state-space reduction. In ESOP, pages 274–294, 2012.

[5] L. Fajstrup, E. Goubault, E. Haucourt, and M. Raußen. Components of the fundamental category.
Applied Categorical Structures, 12(1):81–108, 2004.

[6] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software. In
POPL’05, pages 110–121, 2005.

[7] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems: An Approach to the
State-Explosion Problem, volume 1032 of Lecture Notes in Computer Science. Springer, 1996.

[8] E. Goubault. Geometry and concurrency: a user’s guide. Mathematical Structures in Computer Science,
10(4):411–425, 2000.

[9] E. Goubault and E. Haucourt. A practical application of geometric semantics to static analysis of
concurrent programs. In Proc. of CONCUR’05, volume 3653 of LNCS, pages 503–517. Springer, 2005.

[10] E. Goubault and E. Haucourt. Components of the Fundamental Category II. Applied Categorical
Structures, 15(4):387–414, 2007.

[11] E. Goubault, E. Haucourt, and S. Krishnan. Future path-components in directed topology. In MFPS,
volume 265 of ENTCS, pages 325–335, sep 2010.

[12] E. Goubault and S. Mimram. Formal relationships between geometrical and classical models for
concurrency. ENTCS, 2012.

[13] M. Grandis. Directed Algebraic Topology: Models of Non-Reversible Worlds, volume 13 of New
Mathematical Monographs. Cambridge University Press, 2009.

[14] G. Holzmann. The Model Checker SPIN. IEEE Trans. Soft. Eng., 23(5):279–295, 1997.

[15] V. Khomenko and A. Mokhov. An Algorithm for Direct Construction of Complete Merged Processes.
In Applications and Theory of Petri Nets, volume 6709 of LNCS, pages 89–108. Springer Berlin, 2011.

[16] S. Mimram. Sémantique des jeux asynchrones et réécriture 2-dimensionnelle. PhD thesis, Université
Paris Diderot, UFR d’Informatique, 2008.

[17] R. Morin. Concurrent Automata vs. Asynchronous Systems. In MFCS, volume 3618 of LNCS, pages
686–698. Springer, 2005.

[18] A. Valmari. Stubborn sets for reduced state space generation. In Applications and Theory of Petri
Nets, pages 491–515, 1989.

[19] G. Winskel. Handbook of Logic in Computer Science, volume 4: Semantic Modelling, chapter 1: Models
for concurrency. Oxford University Press, 1995.

180

MFPS 2013

Coinductive Predicates and

Final Sequences in a Fibration

Ichiro Hasuo Kenta Cho Toshiki Kataoka

Department of Computer Science, University of Tokyo, Japan

Bart Jacobs

ICIS, Radboud University Nijmegen, The Netherlands

Abstract

Coinductive predicates express persisting “safety” specifications of transition systems. Previous observa-
tions by Hermida and Jacobs identify coinductive predicates as suitable final coalgebras in a fibration—a
categorical abstraction of predicate logic. In this paper we follow the spirit of a seminal work by Worrell and
study final sequences in a fibration. Our main contribution is to identify some categorical “size restriction”
axioms that guarantee stabilization of final sequences after ω steps. In its course we develop a relevant
categorical infrastructure that relates fibrations and locally presentable categories, a combination that does
not seem to be studied a lot. The genericity of our fibrational framework can be exploited for: binary
relations (i.e. the logic of “binary predicates”) for which a coinductive predicate is bisimilarity; constructive
logics (where interests are growing in coinductive predicates); and logics for name-passing processes.

Keywords: coalgebra; (co)recursive predicate; modal logic; fibration; locally presentable category

1 Introduction

Coinductive predicates postulate properties of state-based dynamic systems that

persist after a succession of transitions. In computer science, safety properties of

nonterminating, reactive systems are examples of paramount importance. This has

led to an extensive study of specification languages in the form of fixed point logics

and model-checking algorithms.

In this paper we follow [26,27] (further extended in [5,20]; see also [32, Chap. 6])

and take a categorical view on coinductive predicates. Here coalgebras represent

transition systems; a fibration is a “predicate logic”; and a coinductive predicate is

identified as a suitable coalgebra in a fibration. Our contribution is the study of

final sequences—an iterative construction of final coalgebras that is studied notably

in [2, 44]—in such a fibrational setting.

Coalgebras have been successfully used as a categorical abstraction of transition

systems (see e.g. [32,41]): by varying base categories and functors, coalgebras bring

general results that work for a variety of systems at once. Fixed point logics (or

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

Hasuo, Cho, Kataoka, Jacobs

modal logics in general), too, have been actively studied coalgebraically: coalgebraic

modal logic is a prolific research field (see [12]); their base category is typically Sets

but works like [34] go beyond and use presheaf categories for processes in name-

passing calculi; and literature including [11, 13, 43] studies coalgebraic fixed point

logics.

Unlike most of these works, we follow [26, 27] and parametrize the underlying

“predicate logic” too with the categorical notion of fibration. The conventional

setting of classical logic is represented by the fibration
Pred
↓

Sets
(see Appendix A.3 for

an introduction to fibrations).

fibration

P
↓p
C

Pred
↓

Sets

Rel
↓

Sets
coalgebra invariant bisimulation

final
coalgebra

coindutive
predicate

bisimilarity

However there are various other “logics”

modeled as fibrations, and hence the fibra-

tional language provides a uniform treatment

of these different settings. An example is bi-

nary relations (instead of unary predicates)

that form a fibration
Rel
↓

Sets
(see Appendix A.3). In this case coinductive predicates

are bisimilarity (see the table, and Example 5.12 later).

Another example is predicates in constructive logics. They are modeled by the

subobject fibration of a topos. In fact, coinductive predicates in constructive logics

are an emerging research topic: coinduction is supported in the theorem prover

Coq (based on the constructive calculus of constructions), see e.g. [6]; and, working

in Coq, some interesting differences between classically equivalent (co)inductive

predicates have been studied e.g. in [39].

Yet another example is modal logics for processes in various name-passing calculi.

They are best modeled by the subobject fibration of a suitable (pre)sheaf category

like SetsI and SetsF.

1.1 Coinductive Predicates and Their Construction, Conventionally

In order to illustrate our technical contributions (§3) we first present a special case,

with classical logic and Kripke models. We first introduce syntax.

Definition 1.1 (Rudimentary logic Rν) This fragment of the µ-calculus allows

only one greatest fixed-point operator at the outermost position.

Rνu ∋ α ::= a | a | 2u | 3u | α ∧ α | α ∨ α ; Rν ∋ β ::= νu. α . (1)

Here a belongs to the set AP of atomic propositions; a stands for the negation of a;

and u is the only fixed-point variable (with possibly multiple occurrences).

An Rν-formula can be thought of as a recursive definition of a coinductive predi-

cate. Later we will model such a “definition” categorically as a predicate lifting.

A specification expressible in Rν is (may-) deadlock freedom (“there is an infinite

path”). It is expressed by νu.3u and is our recurring example.

An Rν-formula is interpreted in Kripke models. Let c = (X,→, V) be a Kripke

model, where X is a state space, → ⊆ X ×X is a transition relation and V : X →
P(AP) is a valuation. The conventional interpretation [νu.α]c of Rν-formulas in the

182

Hasuo, Cho, Kataoka, Jacobs

Kripke model c is given as follows (see e.g. [9]). Firstly, we interpret α ∈ Rνu as a

function [α]c : PX → PX. Concretely:

[a]c(P) = {x | a ∈ V (x)} [a]c(P) = {x | a 6∈ V (x)}

[2u]c(P) = {x | ∀y ∈ X. (x→ y implies y ∈ P)} [3u]c(P) = {x | ∃y ∈ X. (x→ y and y ∈ P)}

[α ∧ α′]c(P) = [α]P ∩ [α′]P [α ∨ α′]c(P) = [α]P ∪ [α′]P

This function [α]c is easily seen to be monotone, since u occurs only positively in

α. Finally we define [νu.α]c ⊆ X to be the greatest fixed point of the monotone

function [α]c : PX → PX.

The Knaster-Tarski theorem guarantees the existence of such a greatest fixed

point [νu.α]c in a complete lattice PX. However its proof is highly nonconstructive.

In contrast, a well-known construction [14] by Cousot and Cousot computes [νu.α]c
as the limit of the following descending chain (see also [9]). Here ⊤ denotes the

subset X ⊆ X.

⊤ ≥ [α]c⊤ ≥ [α]2c⊤ ≥ · · · (2)

c1

· · ·

An issue now is the length of the chain. If [α]c preserves limits
∧

(which is the case with α ≡ 2u), clearly ω steps are enough and yields∧
i∈ω([α]

i
c⊤) as the greatest fixed point. This is not the case with

α ≡ 3u. Indeed, for the Kripke model c1 on the right [νu.3u]c1 6=∧
i∈ω([3u]ic1⊤): there is no infinite path from the root; but it satisfies [3u]ic1⊤

(‘there is a path of length ≥ i’) for each i.

Yet the chain (2) eventually stabilizes, bounded by the size of the poset PX.

Therefore the calculation of [νu.α]c is, in general, via transfinite induction. This is

what we call a state space bound for (2).

Besides a state space bound, another (possibly better and seemingly less known)

bound can be obtained from a behavioral view. One realizes that not only the size

of the state space X but also the branching degree can be used to bound the length

of the chain (2). For example, a result similar to [24, Thm. 2.1] states that the

chain stabilizes after ω steps if the Kripke model c is finitely branching. This holds

however large the state space X is; and also for any Rν-formula νu.α. Notice that

the model c1 (depicted above) is not finitely branching.

1.2 Final Sequences in a Fibration

This paper is about putting the observations in §1.1 in general categorical terms.

Our starting observation is that the chain (2) resembles a final sequence, a classic

construction of a final coalgebra.

In the theory of coalgebra a final F -coalgebra is of prominent importance since

it is a fully abstract domain with respect to the F -behavioral equivalence. Therefore

a natural question is if a final F -coalgebra exists; the well-known Lambek lemma

prohibits e.g. a final P-coalgebra. What matters is the size of F : when it is suitably

bounded, it is known that a final coalgebra can be constructed via the following final

F -sequence.

1 F1! · · ·F ! F i1F i−1 ! · · ·F i ! (3)

Here 1 is a final object in C, and ! is the unique arrow. In particular, if F is

finitary, a final coalgebra arises as a suitable quotient of the ω-limit of the final

183

Hasuo, Cho, Kataoka, Jacobs

sequence (3). This construction in Sets is worked out in [44]; it is further extended

to locally presentable categories (those are categories suited for speaking of “size”)

with additional assumptions in [2].

Turning back to coinductive predicates, indeed, the fibrational view [26,27] iden-

tifies coinductive predicates as final coalgebras in a fibration. This leads us to

scrutinize final sequences in a fibration. Our main result (Thm. 3.7) is a categori-

cal generalization of the behavioral ω-bound (§1.1)—more precisely we axiomatize

categorical “size restrictions” for that bound to hold.

The conditions are formulated in the language of locally presentable categories

(see e.g. [4]; also Appendix A.2); and the combination of fibrations and locally

presentable categories does not seem to have been studied a lot (an exception is [37,

§5.3]). We therefore develop a relevant categorical infrastructure (§5.1). Our results

there include a sufficient condition for the total category Sub(C) of a subobject

fibration to be locally (finitely) presentable, and the same for a family fibration

Fam(Ω) too. Via these results, in §5.2 we list some concrete examples of fibrations

to which our results in §3 on the behavioral bounds apply. They include:
Pred
↓

Sets

(classical logic);
Rel
↓

Sets
(for bisimulation and bisimilarity);

Sub(C)
↓
C

for C that is

locally finitely presentable and locally Cartesian closed (a topos is a special case);

and

Fam(Ω)
↓

Sets
for a well-founded algebraic lattice Ω.

1.3 Summary and Future Work

To summarize, our contributions are: 1) combination of the mathematical observa-

tions in [26,27] and [32, Chap. 6] for a general formulation of coinductive predicates;

2) categorical behavioral bounds for final sequences that approximate coinductive

predicates; and 3) a categorical infrastructure that relates fibrations and locally

presentable categories.

While our focus is on coinductive predicates, inductive ones are just as important

in system verification; so are their combinations. Such mixture of induction and

coinduction is studied fibrationally in [25], but over mixed inductive and coinductive

data types, and not over a coalgebra. We have obtained some preliminary fibrational

observations in this direction.

Search for useful coinduction proof principles is an active research topic (see

e.g. [8, 28]). We are interested in the questions of whether these principles are

sound in a general fibrational setting, and what novel proof principles a fibrational

view can lead to.

Coalgebraic modal logic is more and more often introduced based on a Stone-like

duality (see e.g. [34]). Fibrational presentation of such dualities will combine the

benefits of duality-based modal logics and the current results. We are also interested

in the relationship to coalgebraic infinite traces [10, 30].

Kozen’s metric coinduction [35] is a construction of coinductive predicates by

the Banach fixed point theorem and is an alternative to the current paper’s order-

theoretic one. Its fibrational formulation is an interesting future topic.

184

Hasuo, Cho, Kataoka, Jacobs

Practical applications of our categorical behavioral bounds shall be pursued, too.

Our results’ precursor—the bounds for the final sequences in Sets [2,44]—have been

used to bound execution of some algorithms e.g. for state minimization [3, 15, 16].

We aim at similar use. Finally, games are an extremely useful tool in fixed point

logics (also in their coalgebraic generalization, see [11,13,43]; also [36]). We plan to

investigate the use of games in the current (even more general) fibrational setting.

Organization of the Paper

In §2 we identify coinductive predicates as final coalgebras in a fibration, following

the ideas of [26, 27, 32]. The main technical results are in §3, where we axiomatize

size restrictions on fibrations and functors for a final sequence to stabilize after ω

steps. These results are reorganized in §4 as a fibration of invariants. §5 is devoted

to examples: first we develop a necessary categorical infrastructure then we discuss

concrete examples.

In Appendix A we present minimal introductions to the theories of coalgebras,

locally presentable categories and fibrations—the three topics that our technical

developments rely on. Most proofs are deferred to Appendix B.

2 Coinductive Predicates as Final Coalgebras

In this section we follow the ideas in [26,27,32] and characterize coinductive pred-

icates in various settings (for different behavior types, and in various underlying

logics) in the language of fibration. An introduction to fibration is e.g. in [29]; see

also Appendix A.3. In this paper for simplicity we focus on poset fibrations. It

should however not be hard to move to general fibrations.

Definition 2.1 (Fibration) We refer to poset fibrations (where each fiber is a

poset rather than a category) simply as fibrations.

Definition 2.2 (Predicate lifting) Let
P
↓p
C

be a fibration and

F be an endofunctor on C. A predicate lifting of F along p is a

functor ϕ : P → P such that (ϕ,F) is an endomap of

P
ϕ

p

P
p

C
F

C

(4)

fibrations. This means: that the diagram on the right commutes; and that ϕ

preserves Cartesian arrows, that is, ϕ(f∗Q) = (Ff)∗(ϕQ). See below.

P

p

f∗Q
fQ

Q ϕ(f∗Q)
ϕ(fQ)

ϕQ

(Ff)∗(ϕQ) Ff(ϕQ)

C X
f

Y FX
Ff

FY

(5)

In the prototype example
Pred
↓

Sets
, the above definition coincides (see [32]) with

the one used in coalgebraic modal logic (see e.g. [12])—presented as a (monotone)

natural transformation 2() ϕ
⇒ 2F () : Setsop → Sets.

We think of predicate liftings as (co)recursive definitions of coinductive pred-

icates (see Example 2.4). On top of it, we identify coinductive predicates (and

invariants) as coalgebras in a fiber.

185

Hasuo, Cho, Kataoka, Jacobs

Definition 2.3 (Invariant, coinductive predicate) Let ϕ be a predicate lifting

of F along
P
↓p
C

; and X
c
→ FX be a coalgebra in C. They together induce an

endofunctor (a monotone function) on the fiber PX , namely PX
ϕ
→ PFX

c∗
→ PX ,

where ϕ restricts to PX → PFX because of (4).

(i) A ϕ-invariant in c is a (c∗ ◦ ϕ)-coalgebra in PX , that is, an object P ∈ PX

such that P ≤ c∗(ϕP) in PX .

(ii) The ϕ-coinductive predicate in c is the final (c∗ ◦ ϕ)-coalgebra (if it exists). Its

carrier shall be denoted by JνϕKc. It is therefore the largest ϕ-invariant in c;

Lambek’s lemma yields that JνϕKc = (c∗ ◦ ϕ)(JνϕKc).

Example 2.4 (Rν) The conventional interpretation [νu.α]c (described in §1.1) of

Rν-formulas is a special case of Def. 2.3. Indeed, let us work in the fibration
Pred
↓

Sets
,

and with the endofunctor FK = P(AP) × P() on Sets. An FK-coalgebra X
c
→

P(AP)×PX is precisely a Kripke model: c combines a valuation X → P(AP) and

the map X → PX that carries a state to the set of its successors. To each formula

α ∈ Rνu we associate a predicate lifting ϕα of FK. This is done inductively as

follows.

ϕa(U ⊆ X) =
(

{V ∈ FKX | a ∈ π1(V)} ⊆ FKX
)

ϕa(U ⊆ X) =
(

{V | a 6∈ π1(V)} ⊆ FKX
)

ϕ2u(U ⊆ X) =
(

{V | π2(V) ⊆ U} ⊆ FKX
)

ϕ3u(U ⊆ X) =
(

{V | ∃x ∈ U. x ∈ π2(V)} ⊆ FKX
)

ϕα∧α′(U ⊆ X) =
(

(ϕαU ∩ ϕα′U) ⊆ FKX
)

ϕα∨α′(U ⊆ X) =
(

(ϕαU ∪ ϕα′U) ⊆ FKX
)

(6)

In the above, π1 and π2 denote the projections from FKX = P(AP)×PX. Then it

is easily seen by induction that JνϕαKc in Def. 2.3 coincides with the conventional

interpretation [νu.α]c described in §1.1.

In fact, the predicate liftings ϕα in (6) are the ones commonly used in coalgebraic

modal logic (where they are presented as natural transformations). We point

out that the same definition of ϕα—they are written in the internal language of

toposes—works for the subobject fibration

Sub(C)
↓
C

of any topos C. Therefore the

categorical definition of coinductive predicates (Def. 2.3) allows us to interpret the

language Rν in constructive underlying logics. Suitable completeness of C ensures

that a final (c∗ ◦ ϕ)-coalgebra in Def. 2.3 exists.

Proposition 2.5 Let ϕ be a predicate lifting of F along
P
↓p
C

; X
c
→ FX be a

coalgebra in C; and P ∈ PX . We have P ≤ JνϕKc if and only if there exists a

ϕ-invariant Q such that P ≤ Q. 2

The proposition is trivial but potentially useful. It says that an invariant can

be used as a “witness” for a coinductive predicate. This is how bisimilarity is

commonly established; and it can be used e.g. in [1, §6] as an alternative to the

metric coinduction principle used there. 1

1 To be precise: only if we take PE in [1] as an atomic proposition (and that is essentially what is done in
the proofs in [1, §6]). Our future work on nested µ’s and ν’s will more adequately address the situation.

186

Hasuo, Cho, Kataoka, Jacobs

Remark 2.6 The coalgebraic modal logic literature exploits the fact that there

can be many predicate liftings (in the form of natural transformations) of the same

functor F . Different predicate liftings correspond to different modalities (such as

2 vs. 3 for the same functor P). This view of predicate liftings is also the current

paper’s (see Example 2.4).

In contrast, in fibrational studies like [5, 20, 26, 27], use of predicate liftings has

focused on the validity of the (co)induction proof principle. For such purposes it is

necessary to choose a predicate lifting ϕ that is “comprehensive enough,” covering

all the possible F -behaviors. In fact, it is common in these studies that “the”

predicate lifting, denoted by Pred(F), is assigned to a functor F . An exception

is [31].

3 Final Sequences in a Fibration

Here we present our main technical result (Thm. 3.7). It generalizes known be-

havioral ω-bounds (like [24, Thm. 2.1]; see §1.1); and claims that the chain (2) for

a coinductive predicate stabilizes after ω steps, assuming that the behavior type

functor F and the underlying logic
P
↓p
C

are “finitary” in a suitable sense (but no

size restriction on ϕ).

3.1 Size Restrictions on a Fibration

We axiomatize finitariness conditions in the language of locally presentable cate-

gories (see Appendix A.2 for a minimal introduction). Singling out these conditions

lies at the heart of our technical contribution.

Definition 3.1 (LFP category) A category C is locally finitely presentable

(LFP) if it is cocomplete and it has a (small) set F of finitely presentable (FP)

objects such that every object is a directed colimit of objects in F.

Definition 3.2 (Finitely determined fibration) A (poset) fibration
P
↓p
C

is

finitely determined if it satisfies the following.

(i) C is LFP, with a set F of FP objects (as in Def. 3.1).

(ii)
P
↓p
C

has fiberwise limits and colimits.

(iii) For arbitrary X ∈ C, let (XI)I∈I be the canonical diagram for X with respect

to F (i.e. I = (F ↓X)), with a colimiting cocone (XI
κI→ X)I∈I. Then for any

P,Q ∈ PX ,

P ≤ Q ⇐⇒ κ∗IP ≤ κ∗IQ in PXI
for each I ∈ I.

The intuition of Cond. iii) is that a predicate P ∈ PX (over arbitrary X ∈ C) is

determined by its restrictions (κ∗IP)I∈I to FP objects XI . One convenient sufficient

condition for Cond. iii) is that the total category P is itself LFP, with its FP objects

above the FP objects in C (Cor. 5.3). We note that Cond. i) guarantees, since LFP

implies completeness, an (ωop-)limit Fω1 of the final F -sequence (3). However this

187

Hasuo, Cho, Kataoka, Jacobs

does not mean (nor we need for later) that Fω1 carries a final F -coalgebra (it fails

for F = Pω; see [44]).

Definition 3.3 (Well-founded fibration) A well-founded fibration is a finitely

determined fibration that further satisfies:

(iv) If X ∈ F (hence FP), the fiber PX is such that: the category P
op
X consists solely

of FP objects.

Since PX is complete, this is equivalent to: there is no (ωop-)chain P0 >

P1 > · · · in PX that is strictly descending.

We note that the following stronger variant of the condition

(iv’) For any X ∈ C, there is no strictly descending ωop-chain in PX

rarely holds (it fails in
Pred
↓

Sets
). The original Cond. iv) holds in many examples (as

we will see later in §5) thanks to the restriction that X is FP.

The following trivial fact is written down for the record.

Lemma 3.4 A finitely determined fibration
P
↓p
C

is well-founded if PX is a finite

category for each X ∈ F. 2

3.2 Final Sequences in a Fibration

The following result from [29, Prop. 9.2.1] is crucial in our development.

Lemma 3.5 Let
P
↓p
C

be a fibration, with C being complete. Then p has fiberwise

limits if and only if P is complete and p : P → C preserves limits. If this is the case,

a limit of a small diagram (PI)I∈I in P can be given by

∧
I∈I(π

∗
IPI) over LimI∈IXI .

Here XI := pPI ; (LimI∈IXI
πI→ XI)I∈I is a limiting cone in C; and

∧
I∈I denotes

the limit in the fiber PLimI XI
. 2

Fig. 1 presents two sequences. Here we assume that
P
↓p
C

is finitely determined

(Def. 3.2) and that ϕ is a predicate lifting of F . In the bottom diagram (in C), the

P ϕω⊤1

⊤1 ϕ⊤1 · · · ϕi⊤1 · · ·

ϕω+1⊤1

b′

C Fω1
πi

1 F1! · · · F i1F i−1 ! · · ·F i !

Fω+11
Fπi−1

b

Figure 1. Final sequences in a fibration

188

Hasuo, Cho, Kataoka, Jacobs

object 1 ∈ C is a final one (it exists since LFP implies completeness); F1
!
→ 1 is

the unique map; Fω+11 := F (Fω1); and b is a unique mediating arrow to the limit

Fω1. In the top diagram (in P), the object ⊤1 is the final object in the fiber P1; by

Lem. 3.5 this is precisely a final object in the total category P. Hence this diagram

is nothing but a final sequence for the functor ϕ in P. A limit ϕω⊤1 of this final

sequence exists, again by Lem. 3.5, and moreover it can be chosen above Fω1. We

define ϕω+1⊤1 := ϕ(ϕω⊤1).

Lemma 3.6 (Key lemma) Let
P
↓p
C

be a well-founded fibration; F : C → C be

finitary; and ϕ be a predicate lifting of F . Then the final ϕ-sequence stabilizes after

ω steps. More precisely: in Fig. 1, we have ϕω+1⊤1 = b∗(ϕω⊤1).

The object ϕω⊤1 is a “prototype” of ϕ-coinductive predicates in various coalgebras.

This is one content of the following main theorem.

It is standard that a coalgebra X
c
→ FX in C induces a cone over the final

F -sequence, and hence a mediating arrow X → Fω1 (see below). Concretely, ci :

X → F i1 is defined inductively by: X
c0→ 1 is !; and ci+1 is the composite X

c
→

FX
Fci→ F i+11. The induced arrow to the limit Fω1 is denoted by cω.

Fω1πi

1 F1! · · · F i1 · · ·

X
ci

cω (7)

Theorem 3.7 (Main result) Let
P
↓p
C

be a well-founded fibration; F : C → C be

a finitary functor; ϕ be a predicate lifting of F along p; and X
c
→ FX be a coalgebra

in C.

(i) The ϕ-coinductive predicate JνϕKc in c (Def. 2.3) exists. It is obtained by the

following reindexing of ϕω⊤1, where cω is the mediating map in (7).

JνϕKc = c∗ω(ϕ
ω⊤1) (8)

(ii) Moreover, the predicate JνϕKc is the limit of the following ωop-chain in the fiber

PX
⊤X ≥ (c∗ ◦ ϕ)(⊤X) ≥ (c∗ ◦ ϕ)2(⊤X) ≥ · · · , (9)

that stabilizes after ω steps. That is, JνϕKc =
∧

i∈ω(c
∗ ◦ ϕ)i(⊤X). 2

Example 3.8 (Rν) We continue Example 2.4 and derive from Thm. 3.7 the be-

havioral bound result described in §1.1: the chain (2) stabilizes after ω steps, for

each α ∈ Rνu and each finitely branching Kripke model c.

Indeed, the latter is the same thing as a coalgebra X
c
→ FfbKX, where FfbK =

P(AP)×Pω(). Compared to FK in Example 2.4 the powerset functor is restricted

from P to Pω; this makes FfbK a finitary functor. Still the same definition of ϕα

defines a predicate lifting of FfbK. Thm. 3.7.ii can then be applied to the fibration
Pred
↓

Sets
(easily seen to be well-founded, Example 5.11), the finitary functor FfbK

and the predicate lifting ϕα for each α. It is not hard to see that the function

[α]c : PX → PX in §1.1 coincides with c∗ ◦ ϕα : PredX → PredX (note that

189

Hasuo, Cho, Kataoka, Jacobs

PredX
∼= 2X ∼= PX); thus the chain (2) coincides with (9) that stabilizes after ω

steps by Thm. 3.7.

Remark 3.9 The ω-bound of the length of the chain (9) is sharp.

A (counter)example is given in the setting of Example 3.8, by the

predicate lifting ϕ3u and the coalgebra (i.e. Kripke structure) c2 on

the right. There bi,i has no successors. Indeed, while Jνϕ3uKc2 is

{ai | i ∈ ω}, its i-th approximant ((c2)
∗
i ◦ ϕi

3u)(⊤X) in (9) contains

bi,0 too.

a0
b0,0 a1

b1,0
b1,1

a2
b2,0
b2,1
b2,2

...

c2

Remark 3.10 It is notable that Thm. 3.7 imposes no size restrictions on ϕ : P → P.

Being a predicate lifting is enough.

Final F -sequences are commonly used for the construction of a final F -coalgebra.

It is not always the case, however, that the limit Fω1 is itself the carrier of a final

coalgebra (even for finitary F ; see [44, §5]). One obtains a final coalgebra either by:

1) quotienting Fω1 by the behavioral equivalence (see e.g. [40]); or 2) continuing

the final sequence till ω + ω steps. The latter construction is worked out in [44]

(in Sets) and in [2] (in LFP C with additional assumptions). Its relevance to the

current work is yet to be investigated.

Coalgebra morphisms are compatible with coinductive predicates. This fact, like

Prop. 2.5, is potentially useful in establishing coinductive predicates.

Proposition 3.11 Let f : X → Y be a coalgebra morphism from X
c
→ FY to

Y
d
→ FY . In the setting of Lem. 3.6 and Thm. 3.7:

(i) If Q ∈ PY is a ϕ-invariant in d, so is f∗Q ∈ PX in c.

(ii) We have JνϕKc = f∗
(
JνϕKd

)
. 2

Remark 3.12 The current paper focuses on finitely presentable objects, finitary

functors, etc.—i.e. the ω-presentable setting (see [4, §1.B]). This is for the simplicity

of presentation: the results, as usual (as e.g. in [34]), can be easily generalized to

the λ-presentable setting for an arbitrary regular cardinal λ. In such an extended

setting we obtain a behavioral λ-bound.

4 A Fibration of Invariants

We organize the above observations in a more abstract fibered setting. The technical

results are mostly standard; see e.g. [26, 27] and [32, Chap.6].

We write Coalg(F) for the category of F -coalgebras.

Proposition 4.1 Let ϕ be a predicate lifting of F along
P
↓p
C

. Then the fibration

P
↓p
C

is lifted to a fibration

Coalg(ϕ)
↓p

Coalg(F)
, with two forgetful functors forming a map of

fibrations from the latter to the former. 2

The next observation explains the current section’s title.

190

Hasuo, Cho, Kataoka, Jacobs

Proposition 4.2 Let

Coalg(ϕ)
↓p

Coalg(F)
be the lifted fibration in Prop. 4.1. For each coal-

gebra X
c
→ FX, the fiber over c coincides with the poset of ϕ-invariants in c. That

is:
Coalg(ϕ)

X
c
→FX

∼= Coalg(c∗ ◦ ϕ)

PX

. 2

Therefore Thm. 3.7.i) and Prop. 3.11.ii) state the fibration

Coalg(ϕ)
↓p

Coalg(F)
has fiberwise

final objects. (At least part of) this statement itself is shown quite easily using the

Knaster-Tarski theorem (each fiber is a complete lattice). Our contribution is its

concrete construction as an ωop-limit (Thm. 3.7.ii).

The following is an immediate consequence of Lem. 3.5.

Corollary 4.3 Let ϕ be a predicate lifting of F along
P
↓p
C

; and assume that a final

F -coalgebra exists. The following are equivalent.

(i) The coinductive predicate JνϕKc exists for each coalgebra c : X → FX. More-

over they are preserved by reindexing (along coalgebra morphisms).

(ii) There exists a final ϕ-coalgebra that is above a final F -coalgebra. 2

5 Examples of Fibrations

5.1 Examples at Large

Here are several results that ensure a fibration to be finitely determined or well-

founded, and hence enable us to apply Thm. 3.7. Some of them are well-known;

others—especially those which relate fibrations and locally (finitely) presentable

categories, including Lem. 5.4 and Cor. 5.7—seem to be new.

Lemma 5.1 [29, Prop. 5.4.7] An (elementary) topos is a locally Cartesian closed

category (LCCC). 2

The following results provide sufficient conditions for a fibration to be finitely

determined (Def. 3.2). Recall that a full subcategory F of P is said to be dense if

each object P ∈ P is a colimit of a diagram in F.

Lemma 5.2 Let
P
↓p
C

be a fibration with fiberwise limits and colimits. Assume

further that C is LFP with a set FC of FP objects (as in Def. 3.1). If the total

category P has a dense subcategory FP such that every R ∈ FP is above FC (i.e.

pR ∈ FC), then p is finitely determined. 2

Corollary 5.3 Let
P
↓p
C

be a fibration with fiberwise limits and colimits, where C is

LFP with a set FC of FP objects (in Def. 3.1). If the total category P is also LFP,

with a set FP of FP objects (as in Def. 3.1) chosen so that every R ∈ FP is above

FC, then p is finitely determined. 2

The following is one of the results that are less trivial.

191

Hasuo, Cho, Kataoka, Jacobs

Lemma 5.4 Let C be an LFP category with F being a set of FP objects (as in

Def. 3.1). Assume that C is at the same time an LCCC. Then the total category

Sub(C) of the subobject fibration is LFP: the set FSub(C) := { (P ֌ X) | P,X ∈ F}

consists of FP objects in Sub(C); and every object (Q ֌ Y) ∈ Sub(C) is a colimit

of a directed diagram in FSub(C). 2

It follows from Lem. 5.1, 5.4, and Cor. 5.3 that the internal logic of a topos that is

LFP is finitely determined.

Corollary 5.5 Let C be LFP and at the same time a topos (or more generally an

LCCC). Then the subobject fibration

Sub(C)
↓
C

is finitely determined. 2

We turn to the family fibration

Fam(Ω)
↓

Sets
over a poset Ω (see Appendix A.3).

Lemma 5.6 Let Ω be an algebraic lattice, i.e. a complete lattice in which each

element is a join of compact elements. (Equivalently, Ω is LFP when considered as

a category.) Then the set

FFam(Ω) :=
{

f : X → Ω | X is finite; for each x ∈ X, f(x) is compact in Ω
}

(10)

consists of finitely generated objects and is dense in Fam(Ω). Therefore by Lem. 5.2,
Fam(Ω)

↓
Sets

is finitely determined. 2

It is known that the existence of a dense set of FG objects (like FFam(Ω) in Lem. 5.6)

ensures the category to be locally λ-presentable. This is however for some regular

cardinal λ that is possibly bigger than ω. See [4, Thm. 1.70].

Corollary 5.7 Let Ω be an algebraic lattice. Then the total category Fam(Ω) of
Fam(Ω)

↓
Sets

is locally presentable. 2

We turn to the notion of well-founded fibration (Def. 3.3; see also Lem. 3.4).

Example 5.8 (Presheaf categories) Let A be small. The presheaf category

SetsA is LFP: the set F of finite colimits of representable presheaves yA, where

yA = A(A,), satisfies the conditions of Def. 3.1.

The coming results are less trivial, too.

Lemma 5.9 Let A be small. For any X ∈ A, Sub(yX) is finite if and only if the

subset {Im(yA
yf
→ yX) | A ∈ A, f : X → A} ⊆ Sub(yX) is finite.

As a special case, if every arrow f with domain X ∈ A factors f = m ◦ e as a

split mono m followed by an epi e, then Sub(yX) is finite if and only if Quot(X)

is finite. Here Quot(X) denotes the set of quotient objects of X. 2

Corollary 5.10 If one of the conditions in Lem. 5.9 holds, the fibration

Sub(SetsA)
↓

SetsA

is well-founded. 2

192

Hasuo, Cho, Kataoka, Jacobs

5.2 Concrete Examples

Example 5.11 (Pred) The fibration
Pred
↓

Sets
for the conventional setting of classi-

cal logic is easily seen to be well-founded. In particular, PredX
∼= PX is finite if

X is FP (i.e. finite). Therefore to any finitary F and any predicate lifting ϕ, the

results in §3 apply.

The (interpretations of the) formulas in Rν (see Example 3.8) are examples of

coinductive predicates in
Pred
↓

Sets
. Besides them, the study of coalgebraic modal logic

has identified many predicate liftings for many functors F (probabilistic systems,

neighborhood frames, strategy frames, weighted systems, etc.; see e.g. [12] and the

references therein). These “modalities” all define coinductive predicates, to which

the results in §3 may apply.

Example 5.12 (Rel) The fibration
Rel
↓

Sets
can be introduced from

Pred
↓

Sets
via

change-of-base; concretely, an object of Rel is a pair (X,R) of a set X and a

relation R ⊆ X × X; an arrow f : (X,R) → (Y, S) is a function f : X → Y such

that xRx′ implies f(x)Sf(x′). See [29, p. 14].

This fibration is also easily seen to be well-founded; therefore to any finitary F

the results in §3 apply. A predicate lifting ϕ along
Rel
↓

Sets
is more commonly called

a relation lifting [27]; by choosing a suitable ϕ (a “sufficiently comprehensive” one)

like in [27], a ϕ-invariant is precisely a bisimulation relation, and the ϕ-coinductive

predicate is bisimilarity. We expect that the ω-behavioral bound in Thm. 3.7 can be

used to bound execution of bisimilarity checking algorithms by partition refinement

(for many different functors F).

In the following example, one can think of Ω as a Heyting algebra, and then the

underlying logic becomes constructive.

Example 5.13 (Fam(Ω)) Let Ω be an algebraic lattice that has no strictly de-

scending (ωop-)chains. Then the family fibration

Fam(Ω)
↓

Sets
is well-founded (see

Lem. 5.6). Therefore to any finitary F the results in §3 apply. It is not hard

to interpret the language Rν in this setting, by defining predicate liftings similar

to (6). This gives examples of coinductive predicates in

Fam(Ω)
↓

Sets
.

Presheaf Examples

Let F be the category of natural numbers as finite sets (i.e. n = {0, 1, . . . , n−1}) and
all functions between them; F+ be its full subcategory of nonzero natural numbers;

and I be the category of natural numbers and injective functions. Coalgebras in

the presheaf categories SetsF, SetsF+ and SetsI are commonly used for modeling

processes in various name-passing calculi. For the π-calculus SetsI has been found

appropriate (see e.g. [17,18]); while for the fusion calculus we do need non-injective

functions in F or F+ (see [38,42]).

193

Hasuo, Cho, Kataoka, Jacobs

Inspired by [34], we are interested in coinductive predicates for such processes.

They are naturally modeled in the subobject fibration of a presheaf category. Here

we find a distinction: the subobject fibrations of SetsF and SetsF+ are well-

founded; but that of SetsI is not. In view of Cor. 5.5 and Example 5.8, the only

condition to check is Cond. iv) in Def. 3.3.

Example 5.14 (Sub(SetsF), Sub(SetsF+)) The subobject fibration
Sub(SetsF+)

↓
SetsF+

is well-founded: this is shown by Cor. 5.10. An important fact

here is that in Sets a mono with a nonempty domain splits.

The subobject fibration

Sub(SetsF)
↓

SetsF
is well-founded, too. To show that

Sub(y0) is finite, we appeal to the first half of Lem. 5.9: we observe that the

set {Imyf | n ∈ F, f : 0 → n} is equal to the two-element set
{
Im(y(0

id0→

0)), Im(y(0
!
→ 1))

}
since 0

!
→ n and 0

!
→ m factor through each other, for each

n,m ≥ 1.

We turn to functors F and ϕ. In modeling processes of name-passing calculi

as coalgebras in these categories, one typically uses endofunctors F that are con-

structed from the following building blocks. Let N ∈ {F,F+, I}.

• Constant functors, binary sum +, binary product ×, and exponentials ()X .

These are much like for polynomial functors on Sets. An important example of

the first is the name presheaf N = Hom(1,) ∈ SetsN.

• The abstraction functor δ : SetsN → SetsN given by δX = X(+ 1).

• The free semilattice functor Pf for finite branching. This captures Kuratowski

finiteness and suitable in SetsI. See e.g. [17, 42].

• In SetsF and SetsF+ , another choice of a “finite powerset functor” K̃ is more

appropriate. See [38]; also [42, p. 4].

All such functors are known to be finitary (see e.g. [38]).

Coinductive predicates in this setting can be introduced much like Rν in Ex-

ample 2.4 (note that SetsN is a topos), for properties like deadlock freedom. Such

a language can be extended further through the modalities proposed in [34]: they

correspond to constructions specific to presheaves and include the modality 〈a(b)〉
for a binding ‘input’ operation. More examples will be worked out in our future

paper.

Example 5.15 (Sub(Setsω),Sub(SetsI)) Consider the presheaf category Setsω

over the ordinal ω as a poset. The fibration

Sub(Setsω)
↓

Setsω
is finitely determined

but not well-founded. It fails to satisfy Cond. iv) in Def. 3.3: let Pn : ω → Sets be

the family of presheaves defined by

Pn(m) :=
(
0 if m < n; 1 if n ≤ m

)

for each n ∈ ω. Then P0 > P1 > · · · is a strictly descending chain in Sub(y0). The

same counterexample works for Sub(SetsI).

194

Hasuo, Cho, Kataoka, Jacobs

In contrast, the subobject fibration for Setsω
op

is well-founded by Lem. 5.9.

Remark 5.16 Well-foundedness fails in Sub(Setsω), Sub(SetsI), and in Fam(Ω)

for Ω that does have a strictly descending ωop-chain. This means the logics modeled

by the fibrations are inherently “big.” Still, extensions of our results in §3 are

possible from finitary (i.e. ω-presentable) to the λ-presentable setting for bigger λ,

so that they apply to the (current) nonexamples.

Acknowledgments

Thanks are due to Kazuyuki Asada, Keisuke Nakano, Keiko Nakata, Ana

Sokolova, and the participants of Dagstuhl Seminar 12411 “Coalgebraic Log-

ics” (including Samson Abramsky, Vincenzo Ciancia, Corina Cı̂rstea, Ernst-Erich

Doberkat, Clemens Kupke, Alexander Kurz, and Yde Venema) for useful discus-

sions. We are grateful to the anonymous referees for their careful reading and

useful suggestions, too. I.H., K.C. and T.K. are supported by Grants-in-Aid for

Young Scientists (A) No. 24680001 and Grants-in-Aid for Challenging Exploratory

Research No. 23654033, JSPS, and by Aihara Innovative Mathematical Modeling

Project, FIRST Program, JSPS/CSTP.

References

[1] S. Abramsky and V. Winschel. Coalgebraic analysis of subgame-perfect equilibria in infinite games
without discounting, 2012. ArXiv:1210.4537.

[2] J. Adámek. On final coalgebras of continuous functors. Theor. Comp. Sci., 294:3–29, 2003.

[3] J. Adámek, F. Bonchi, M. Hülsbusch, B. König, S. Milius and A. Silva. A coalgebraic perspective on
minimization and determinization. In Birkedal [7], pp. 58–73.

[4] J. Adámek and J. Rosický. Locally Presentable and Accessible Categories, vol. 189 of London Math.
Soc. Lect. Note Series. Cambridge Univ. Press, 1994.

[5] R. Atkey, N. Ghani, B. Jacobs and P. Johann. Fibrational induction meets effects. In Birkedal [7], pp.
42–57.

[6] Y. Bertot and E. Komendantskaya. Inductive and coinductive components of corecursive functions in
Coq. Elect. Notes in Theor. Comp. Sci., 203(5):25–47, 2008.

[7] L. Birkedal, editor. Foundations of Software Science and Computational Structures - 15th International
Conference, FOSSACS 2012, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings, vol. 7213 of Lect.
Notes Comp. Sci. Springer, 2012.

[8] F. Bonchi and D. Pous. Checking nfa equivalence with bisimulations up to congruence. In Giacobazzi
and Cousot [21], pp. 457–468.

[9] J. Bradfield and C. Stirling. Modal mu-calculi. In P. Blackburn, J. van Benthem and F. Wolter, editors,
Handbook of Modal Logic, vol. 3 of Studies in Logic and Practical Reasoning, chap. 12. Elsevier, 2006.

[10] C. Ĉırstea. Maximal traces and path-based coalgebraic temporal logics. Theor. Comput. Sci.,
412(38):5025–5042, 2011.

[11] C. Ĉırstea, C. Kupke and D. Pattinson. Exptime tableaux for the coalgebraic µ-calculus. In E. Grädel
and R. Kahle, editors, CSL, vol. 5771 of Lecture Notes in Computer Science, pp. 179–193. Springer,
2009.

[12] C. Ĉırstea, A. Kurz, D. Pattinson, L. Schröder and Y. Venema. Modal logics are coalgebraic. Comput.
J., 54(1):31–41, 2011.

[13] C. Ĉırstea and M. Sadrzadeh. Modular games for coalgebraic fixed point logics. Electr. Notes Theor.
Comput. Sci., 203(5):71–92, 2008.

195

Hasuo, Cho, Kataoka, Jacobs

[14] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems. Pacific Journal of
Mathematics, 82(1):43–57, 1979.

[15] G.L. Ferrari, U. Montanari and M. Pistore. Minimizing transition systems for name passing calculi: A
co-algebraic formulation. In M. Nielsen and U. Engberg, editors, FoSSaCS, vol. 2303 of Lect. Notes
Comp. Sci., pp. 129–158. Springer, 2002.

[16] G.L. Ferrari, U. Montanari and E. Tuosto. Coalgebraic minimization of hd-automata for the pi-calculus
using polymorphic types. Theor. Comp. Sci., 331(2–3):325–365, 2005.

[17] M. Fiore and D. Turi. Semantics of name and value passing. In Logic in Computer Science, pp. 93–104.
IEEE, Computer Science Press, 2001.

[18] M.P. Fiore and S. Staton. Comparing operational models of name-passing process calculi. Inf. &
Comp., 204(4):524–560, 2006.

[19] M.P. Fiore and S. Staton. A congruence rule format for name-passing process calculi. Inf. & Comp.,
207(2):209–236, 2009.

[20] C. Fumex, N. Ghani and P. Johann. Indexed induction and coinduction, fibrationally. In A. Corradini,
B. Klin and C. Ĉırstea, editors, CALCO, vol. 6859 of Lect. Notes Comp. Sci., pp. 176–191. Springer,
2011.

[21] R. Giacobazzi and R. Cousot, editors. The 40th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013. ACM, 2013.

[22] I. Hasuo. Generic forward and backward simulations II: Probabilistic simulation. In P. Gastin and
F. Laroussinie, editors, CONCUR, vol. 6269 of Lect. Notes Comp. Sci., pp. 447–461. Springer, 2010.

[23] I. Hasuo, B. Jacobs and A. Sokolova. Generic trace semantics via coinduction. Logical Methods in
Comp. Sci., 3(4:11), 2007.

[24] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journ. ACM,
32(1):137–161, 1985.

[25] U. Hensel and B. Jacobs. Proof principles for datatypes with iterated recursion. In E. Moggi and
G. Rosolini, editors, Category Theory and Computer Science, no. 1290 in Lect. Notes Comp. Sci., pp.
220–241. Springer, Berlin, 1997.

[26] C. Hermida. Fibrations, Logical Predicates and Indeterminates. PhD thesis, Univ. Edinburgh, 1993.
Techn. rep. LFCS-93-277.

[27] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting. Inf. & Comp.,
145:107–152, 1998.

[28] C.K. Hur, G. Neis, D. Dreyer and V. Vafeiadis. The power of parameterization in coinductive proof.
In Giacobazzi and Cousot [21], pp. 193–206.

[29] B. Jacobs. Categorical Logic and Type Theory. North Holland, Amsterdam, 1999.

[30] B. Jacobs. Trace semantics for coalgebras. In J. Adámek and S. Milius, editors, Coalgebraic Methods
in Computer Science, vol. 106 of Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam, 2004.

[31] B. Jacobs. Predicate logic for functors and monads, March 2010. Preprint.

[32] B. Jacobs. Introduction to coalgebra. Towards mathematics of states and observations, 2012. Draft of
a book (ver. 2.0), available online.

[33] P. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Oxford Logic Guides. Clarendon
Press, 2002.

[34] B. Klin. Coalgebraic modal logic beyond Sets. In MFPS XXIII, vol. 173, pp. 177–201. Elsevier,
Amsterdam, 2007.

[35] D. Kozen and N. Ruozzi. Applications of metric coinduction. Logical Methods in Computer Science,
5(3), 2009.

[36] C. Kupke. Terminal sequence induction via games. In P. Bosch, D. Gabelaia and J. Lang, editors,
TbiLLC, vol. 5422 of Lecture Notes in Computer Science, pp. 257–271. Springer, 2007.

[37] M. Makkai and R. Paré. Accessible categories: the foundations of categorical model theory. Contemp.
Math., 104, 1989.

[38] M. Miculan. A categorical model of the fusion calculus. Elect. Notes in Theor. Comp. Sci., 218:275–293,
2008.

196

Hasuo, Cho, Kataoka, Jacobs

[39] K. Nakata, T. Uustalu and M. Bezem. A proof pearl with the fan theorem and bar induction—walking
through infinite trees with mixed induction and coinduction. In H. Yang, editor, APLAS, vol. 7078 of
Lecture Notes in Computer Science, pp. 353–368. Springer, 2011.

[40] D. Pattinson. An introduction to the theory of coalgebras. Course notes for NASSLLI, 2003. Available
online.

[41] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theor. Comp. Sci., 249:3–80, 2000.

[42] S. Staton. Relating coalgebraic notions of bisimulation. Logical Methods in Comp. Sci., 7(1), 2011.

[43] Y. Venema. Automata and fixed point logic: A coalgebraic perspective. Inf. Comput., 204(4):637–678,
2006.

[44] J. Worrell. On the final sequence of a finitary set functor. Theor. Comp. Sci., 338(1–3):184–199, 2005.

A Appendix: Preliminaries

A.1 Theory of Coalgebra

Given a category C and an endofunctor F : C → C, an F -coalgebra is a pair ofX ∈ C

and an arrow c : X → FX (we shall denote a coalgebra simply by X
c
→ FX). The

notion has turned out to be a useful categorical abstraction of state-based dynamic

systems. In an F -coalgebra X
c
→ FX, the carrier object X ∈ C is understood as

a state space; the functor F specifies the behavior type; and the arrow c represents

actual dynamics. In the most common setting of C = Sets, examples of functors F

(and the corresponding behavior types) are:

• A× () for A-stream automata;

• P(AP)× P() for Kripke models;

• P(AP)×Pω() for finitely branching Kripke models, with where Pω is the finite

powerset functor;

• P(A ×) for labeled transition systems;

• D(A×) for generative probabilistic systems;

and so on. See [32,41] for detailed introduction.

In the theory of coalgebra as a categorical theory of (state-based dynamical)

systems, the notion of final coalgebra plays a prominent role. A final F -coalgebra

Z
ζ
→ FZ is one such that, for any F -coalgebra X

c
→ FX, there is a unique morphism

of coalgebras from c to ζ.

FX Fc FZ

X c
c

Z
final ζ (A.1)

Its system-theoretic significance is that: 1 Z is often the collection of “all possible

F -behaviors”; and 2 the induced arrow c assigns, to each state in X, its behavior.

The “behaviors” here follow a black-box view on systems (it ignores internal states)

and often captures the natural notion of “F -bisimilarity.”

Therefore a question arises if a final F -coalgebra exists. The well-known Lambek

lemma (that ζ is necessarily an iso) prohibits e.g. a final P-coalgebra. What matters

here is the size of F : when it is suitably bounded, a concrete construction of a final

coalgebra is known. It obtains a final coalgebra via a final F -sequence (Here 1 is a

final object in C).

1 F1! · · · F i1F i−1 ! · · ·F i ! (A.2)

197

Hasuo, Cho, Kataoka, Jacobs

In particular, if F is finitary (a size restriction described later), a final coalgebra

arises as a suitable quotient of the limit of the final sequence (3). This construction

in Sets is worked out in [44]; it is further extended to locally presentable categories

(those are categories suited for speaking of “size”) with additional assumptions

in [2]. The current paper’s goal is to apply this construction also to coinductive

predicates.

A.2 Locally Finitely Presentable Categories

The theory of coalgebra has been mainly developed in the base category C = Sets.

Exceptions include the category of nominal sets or (pre)sheaf categories (e.g. [18,19])

for name-passing calculi, and Kleisli categories (e.g. [22,23]) for trace semantics and

simulation. The current paper follows [2, 34] and finds locally finitely presentable

categories a convenient abstract setting. Here we follow [4] and list a minimal set

of definitions and results on locally finitely presentable categories.

The following is a categorical formalization of “finiteness” of objects. Examples

are finite sets (in Sets), and algebras presented by finitely many generators and

finitely many equations (in suitable categories of algebras).

Definition A.1 (Finitely presentable object) An object X ∈ C is finitely pre-

sentable (FP) if the functor C(X,) : C → Sets preserves filtered colimits.

Definition A.2 (Locally finitely presentable category) A category C is lo-

cally finitely presentable (LFP) if it is cocomplete and it has a (small) set F of

FP objects such that every object is a directed colimit of objects in F.

Lemma A.3 Let C be LFP, with a set F of FP objects as in Def. 3.1; and X ∈ C.

The canonical diagram for X with respect to F

(F↓X)
π

−→ F −֒→ C (A.3)

has X as its colimit. Here π is the projection.

Proof The proof of [4, Prop. 1.22] yields the claim. 2

Lemma A.4 [4, Cor. 1.28 & Prop. 1.61] Let C be LFP.

(i) C is complete.

(ii) C has (StrongEpi,Mono)- and (Epi,StrongMono)-factorization structures. 2

The following notion (which is already in Def. A.1) is about the “size” of functors.

An intuition (when C = Sets) is: a functor F is finitary if F ’s action FX on an

arbitrary set X is determined by its action FX ′ on all the finite subsets X ′ ⊆ X.

Definition A.5 (Finitary functor) An endofunctor F : C → C is finitary if it

preserves filtered colimits.

This notion is commonly used to bound the “branching degree” of systems as F -

coalgebras. For example, the finite powerset functor Pω is finitary; the (full) pow-

erset functor P is not.

198

Hasuo, Cho, Kataoka, Jacobs

There are many LFP categories, among which are Sets, the category Posets

of posets and monotone maps, and categories of algebras with finitary operations.

See [4] for more examples.

Example A.6 (Presheaf categories) Let A be a small category. The presheaf

category SetsA is LFP: the set

F := {finite colimits of representable presheaves yA} ,

where yA = A(A,), satisfies the conditions of Def. A.1.

Definition A.7 (Finitely generated object) An object X ∈ C is finitely gener-

ated (FG) if the functor C(X,) : C → Sets preserves directed colimits of monos—

that is, directed colimits of diagrams in which every (connecting) arrow is a mono.

It is clear that FP implies FG. In algebraic terms, FP objects are algebras presented

by finitely many generators and finitely many equations; while for FG objects only a

set of generators is required to be finite. The two notions coincide in “non-algebraic”

examples such as Sets. See [4, §1.E].

A.3 Fibrations

We follow [29], although we focus on the simpler notion of poset fibration.

Introduction (via Indexed Posets)

This paper’s interest is in coinductive predicates, hence in predicate logic. The

most straightforward formalization of predicate is as a subset P ⊆ X of a set (a

‘universe’) X: an element x ∈ X satisfies P if x ∈ P . Accompanying is the natural

notion of entailment: P entails Q if P ⊆ Q. This way we obtain the poset (2X ,⊆)

of predicates over X.

However it is not on a single universe X that we consider predicates. For

example, in a situation where there are two Kripke models c = (X,→, VX),

d = (Y,→, VY) and a “homomorphism” f : X → Y , a natural question is if the

interpretation of a formula νu.α is preserved by f . (It is; see Prop. 3.11). Here we

are comparing the predicate Jνu.αKc ⊆ X with the predicate Jνu.αKd ⊆ Y reindexed

via f : X → Y . The latter is concretely described as the inverse image

f−1
(
Jνu.αKd

)
=

{
x ∈ X

∣∣ f(x) ∈ Jνu.αKd
}

.

Therefore a reindexing structure is also relevant to predicate logic: a function f :

X → Y induces reindexing f−1 : 2Y → 2X . Additionally, the map f−1 is monotone.

To summarize: 1) predicates on a universeX form a poset; 2) a function f : X →
Y between universes induces a monotone reindexing function from the collection

of predicates over X to that over Y . Such a situation is nicely described as a

(contravariant) functor

Φ : C
op −→ Posets , (A.4)

where Posets is the category of posets and monotone functions. The functor Φ

assigns, to each ‘universe’ X ∈ C, the poset ΦX of predicates over X. Moreover,

199

Hasuo, Cho, Kataoka, Jacobs

f : X → Y in C induces a reindexing map Φf : ΦY → ΦX. This functor Φ is a

special case of an indexed category [29, §1.10].

In the current paper, however, we favor an equivalent presentation of such a

structure by a fibration, since we find the latter to be more amenable to gener-

alization of structures in ordinary category theory (such as limits). The equiva-

lence between index categories and fibrations are well-known; here we sketch the

Grothendieck construction from the former to the latter. Its idea is to “patch up”

the posets (ΦX)X∈C and form a big category P, as in the following figure.

ΦX ΦY
• •

• •
Φf
←− •

• •

X
f

Y

“patch up”
=⇒

• •

P

p

• • •

• •

C X
f

Y

On the right we add some arrows (denoted by 99K) so that we have an arrow

(Φf)(Q) → Q in P for each Q ∈ ΦY . (On the left the arrows p99K depicts the action

of the map Φf .) The above diagram in P should be understood as a Hasse diagram:

those arrows which arise from composition are not depicted.

Formally:

Definition A.8 (The Grothendieck construction) Given Φ : Cop → Posets,

we define the category PΦ by

• its object is a pair (X,P) of an object X ∈ C and an element P of the poset ΦX;

and

• its arrow f : (X,P) → (Y,Q) is an arrow f : X → Y in C such that

P ≤ (Φf)(Q) .

Here ≤ refers to the order of ΦX.

Thus arises a category PΦ that incorporates: the order structure of each of the

posets (ΦX)X∈C; and the reindexing structure by (Φf)f : C-arrow. For fixed X ∈ C,

the objects of the form (X,P) and the arrows idX between them form a subcategory

of P. This is denoted by PX and called the fiber over X. It is obvious that PX is a

poset that is isomorphic to ΦX.

Moreover, there is a canonical projection functor p : P → C that carries (X,P)

to X.

Formal Definition of (Poset) Fibration

We axiomatize those structures which arise in the way described above.

Definition A.9 ((Poset) fibration) A (poset) fibration
P
↓p
C

consists of two cat-

egories P,C and a functor p : P → C, that satisfy the following properties.

• Each fiber PX is a poset. Here the fiber PX for X ∈ C is the subcategory of P

consisting of objects P ∈ P such that pP = X and arrows f : P → Q such that

pf = idX (such arrows are said to be vertical).

200

Hasuo, Cho, Kataoka, Jacobs

• Given f : X → Y in C and Q ∈ PY , there is an object f∗Q ∈ PX and a P-arrow

fQ : f∗Q → Q with the following universal property. For any P ∈ PX and

g : P → Q in P, if pg = f then g factors through f(Q) uniquely via a vertical

arrow. That is, there exists a unique g′ such that g = f(Q) ◦ g′ and pg′ = idX .

P

p

Q

=⇒

f∗Q
f(Q)

Q

P
gg′

C X
f

Y X
f

Y

• The correspondences ()∗ and () are functorial:

id∗Y Q = Q , (g ◦ f)∗(Q) = f∗(g∗Q) ,

idY (Q) = idQ , g ◦ f(Q) = gQ ◦ f(g∗Q) .

The last equality can be depicted as follows.

P

p

f∗(g∗Q)
f(g∗Q)

g∗Q
gQ

Q

(g ◦ f)∗Q
g◦f(Q)

C X
f

Y
g

Z

The category P is called the total category of the fibration; C is the base category.

The arrow fQ : f∗Q → Q is called the Cartesian lifting of f and Q. An arrow in P

is Cartesian (or reindexing) if it coincides with fQ for some f and Q.

In the case where
P
↓p
C

is induced by an indexed category Φ : Cop → Posets via

Def. A.8, a Cartesian lifting is obviously given by f∗(Q) = (Φf)(Q).

In the current paper we focus on poset fibrations (which we shall simply call

fibrations). In a (general) fibration a fiber PX is not just a poset but a category,

and this elicits a lot of technical subtleties. Nevertheless, it should not be hard to

generalize the current paper’s results to general, not necessarily poset, fibrations

(especially to the split ones).

We shall often denote a vertical arrow in P (i.e. an arrow inside a fiber) by ≤.

Examples

Example A.10 (Subobject fibration) Let C be a (well-powered) category with

finite limits. The category Sub(C) is defined by: its object is a pair (P,X) of

X ∈ C and its subobject P ֌ X (we write (P ֌ X) ∈ Sub(C)); and its arrow

(P ֌ X)
f
→ (V ֌ Y) is a C-arrow f : X → Y that restricts to P → Q. That is,

given an arrow f : X → Y in C,

f is an arrow in Sub(C)

(P
m
֌ X)

f
→ (Q

n
֌ Y)

⇐⇒ ∃f ′ s.t.
P

f ′

m
Q
n

X
f

Y
. (A.5)

201

Hasuo, Cho, Kataoka, Jacobs

The projection (P ֌ X) 7→ X defines a functor; thus arises the

subobject fibration

Sub(C)
↓
C

of C. In particular, given X
f
→ Y in C

and (Q ֌ Y) ∈ Sub(Y), the Cartesian lifting f∗Q is defined by a

pullback.

f∗Q
fQ

m

Q
n

X
f

Y

A special case is the following most straightforward modeling of predicate logic. It

arises from the contravariant powerset functor 2() : Setsop → Posets via Def. A.8.

Example A.11 (
Pred
↓

Sets
) The subobject fibration

Sub(Sets)
↓

Sets
of Sets is denoted by

Pred
↓

Sets
. An object of its total category is often denoted by (U ⊆ X). Reindexing is

given by inverse images.

More concretely, in the category Pred, an object is a pair (P,X) of a set X and

its subset P ⊆ X; an arrow (P ⊆ X)
f
→ (Q ⊆ Y) is a function X

f
→ Y that restricts

to P → Q (i.e. P ⊆ f−1Q).

Example A.12 (Rel) The fibration
Rel
↓

Sets
can be introduced from

Pred
↓

Sets
via the

following change-of-base.

Rel Pred

Sets
X 7→X×X

Sets

Concretely, an object of Rel is a pair (X,R) of a set X and a relation R ⊆ X ×X;

an arrow f : (X,R) → (Y, S) is a function f : X → Y such that xRx′ implies

f(x)Sf(x′). See [29, p. 14].

Example A.13 (Family fibration) The family fibration

Fam(Ω)
↓

Sets
over a poset Ω

is introduced as follows. An object in the fiber Fam(Ω)X is a function f : X → Ω;

and an arrow (X
f
→ Ω)

k
→ (Y

g
→ Ω) in the total category Fam(Ω) is a function

k : X → Y such that f(x) ≤ g(k(x)) for each x ∈ X. See e.g. [29, Def. 1.2.1] for

more details.

Structures in a Fibration

In a fibration
P
↓p
C

, a C-arrow X
f
→ Y induces a correspondence PY

f∗

→ PX via

reindexing. This is easily seen to be a monotone map (i.e. a functor between posets

as categories).

Definition A.14 (Fiberwise (co)limits) A fibration
P
↓p
C

is said to have fiber-

wise limits if:

• each fiber PX has, as a category, all limits (meaning it has arbitrary inf’s
∧
); and

• for each C-arrow X
f
→ Y , the reindexing functor PY

f∗

→ PX preserves these limits.

In this case each fiber PX has a final object (denoted by ⊤X).

202

Hasuo, Cho, Kataoka, Jacobs

Similarly, a fibration has fiberwise colimits if each fiber has them and they are

preserved by reindexing.

The following notions must be distinguished from “fiberwise (co)products.”

Definition A.15 ((Co)products between fibers) A fibration
P
↓p
C

is said to

have products (between fibers) if

• each reindexing functor f∗ : PY → PX has a right adjoint f∗ ⊣
∏

f ; and

• the functors (
∏

f)f satisfy the so-called Beck-Chevalley condition. See [29, §1.9].

Similarly, a fibration has coproducts (between fibers) if each reindexing has a left

adjoint
∐

f and they satisfy the Beck-Chevalley condition.

The prototype example
Pred
↓

Sets
has fiberwise (co)limits: each fiber is a complete

lattice; and
∧

and
∨

are preserved by inverse images. It has (co)products
∐

between fibers, too: specifically
∐

f is given by the direct image of the function f .

See [29, §1.9].

Throughout the paper we rely on the following result. It follows from [29,

Lem. 9.1.2 & Prop. 9.2.1], and extends Lem. 3.5.

Lemma A.16 Let
P
↓p
C

be a fibration. Assume that C is complete; then the follow-

ing are equivalent.

(i) The fibration p has fiberwise limits.

(ii) The total category P is complete and p : P → C preserves limits.

If this is the case, a limit of a small diagram (PI)I∈I in P can be given by

∧
I∈I(π

∗
IPI) over LimI∈IXI .

Here XI := pPI ; (LimI∈IXI
πI→ XI)I∈I is a limiting cone in C; and

∧
I∈I denotes

the limit computed in the fiber PLimI XI
.

(Sort of) dually, let
P
↓p
C

be a fibration with coproducts
∐

between fibers, and

assume that C is cocomplete. Then p has fiberwise colimits if and only if P is

cocomplete and p : P → C preserves colimits. In this case a colimit of a small

diagram (PI)I∈I in P can be given by

∨
I∈I(

∐
κI

PI) over ColimI XI ,

where XI := pPI and (XI
κI→ ColimI XI)I∈I is a colimiting cocone in C. 2

B Appendix: Omitted Proofs

B.1 Proof of Lem. 3.6

Proof We proceed by steps.

203

Hasuo, Cho, Kataoka, Jacobs

a) We observe that, in Fig. 1, the top diagram is carried to the one below by the

functor p : P → C. This is straightforward: the arrow ϕ⊤1 → ⊤1 must be carried

to the unique arrow ! : F1 99K 1; on the mediating arrow b′ in P, since pb′ is again

a mediating arrow in C, it must coincide with b.

b) Before moving on, we observe that Cond. iii) in Def. 3.2 yields a seemingly

stronger statement (Cond. iii’) below).

Sublemma B.1 For a finitely determined fibration
P
↓p
C

the following holds.

iii’) Let X ∈ C; P,Q ∈ PX ; and (YJ)J∈J be an arbitrary filtered diagram in C such

that ColimJ YJ = X, with a colimiting cocone (YJ
γJ→ X)J∈J. Then P ≤ Q if and

only if for each J ∈ J, γ∗JP ≤ γ∗JQ in PYJ
.

Proof (Of Sublem. B.1) The only nontrivial statement is the ‘if’ part of the di-

rection iii) ⇒ iii’). It suffices to show that γ∗JP ≤ γ∗JQ (for each J ∈ J) implies

κ∗IP ≤ κ∗IQ (for each I ∈ I), where κI and I are as in Cond. iii).

Let I ∈ I. Since XI is FP, an arrow κI : XI → X to a filtered colimit X =

ColimJ YJ factors through some YJI

γJI→ X, as in the diagram below.

XI

κI

hI

X = ColimJ YJ
YJI

γJI

Now we have κ∗IP = h∗Iγ
∗
JI
P ≤ h∗Iγ

∗
JI
Q = κ∗IQ, where the inequality is by the

assumption that γ∗JP ≤ γ∗JQ for each J ∈ J. This proves Sublem. B.1. 2

c) By Step a) we see that ϕω+1⊤1 ≤ b∗(ϕω⊤1) by the universality of a Cartesian

arrow. In what follows we shall prove its converse:

b∗(ϕω⊤1) ≤ ϕω+1⊤1 in PFω+11. (B.1)

Let us take a directed diagram (XI)I∈I in C such that XI ∈ F (for each I ∈ I) and

Fω1 = ColimI∈IXI , with (XI
κI→ Fω1)I∈I being the colimiting cocone. Then we

have

Fω+11 = F (Colim
I∈I

XI) = Colim
I∈I

FXI ,

by the assumption that F is finitary; moreover (FXI
FκI→ Fω+11)I∈I is a colimiting

cocone. The diagram (XI)I∈I is directed, and so is the latter diagram (FXI)I∈I.

Thus by Cond. iii’) in Sublem. B.1, showing the following proves (B.1).

(FκI)
∗
(
b∗(ϕω⊤1)

)
≤ (FκI)

∗(ϕω+1⊤1) for each I ∈ I. (B.2)

d) To prove (B.2) we first prove the following fact: for each I ∈ I there exists

iI ∈ ω such that

κ∗I(ϕ
ω⊤1) = κ∗I

(
π∗iI (ϕ

iI⊤1)
)

in PXI
. (B.3)

That is: the final sequence in P (Fig. 1), when restricted toXI (that is FP), stabilizes

within finitely many steps. Indeed, by Lem. A.16 the limit ϕω⊤1 is described as an

inf in PFω1:

ϕω⊤1 =
∧

i∈ω π
∗
i (ϕ

i⊤1) . (B.4)

204

Hasuo, Cho, Kataoka, Jacobs

Therefore we have κ∗I(ϕ
ω⊤1) =

∧
i∈ω κ∗Iπ

∗
i (ϕ

i⊤1) since reindexing κ
∗
I preserves fiber-

wise limits
∧
. Now we claim that the sequence

(
κ∗Iπ

∗
i (ϕ

i⊤1)
)
i∈ω

in PXI
is descend-

ing: it follows from the fact that
(
π∗i (ϕ

i⊤1)
)
i∈ω

in PFω1 is descending, which in

turn is shown from the universality of the Cartesian arrow πi(ϕ
i⊤1). See below.

π∗
i (ϕ

i⊤1)
πi(ϕ

i
⊤1)

P π∗
i+1(ϕ

i+1⊤1)
!

ϕi⊤1 ϕi+1⊤1

Fω1
πi

πi+1
C F i1 F i+11

F i !

Therefore, by p being a well-founded fibration (Def. 3.3), there exists iI ∈ ω at

which the descending sequence stabilizes, that is,

∧
i∈ω π

∗
i (ϕ

i⊤1) = π∗iI (ϕ
iI⊤1) in PFω1.

Combined with (B.4), this proves (B.3).

e) Finally let us prove (B.2). For each I ∈ I,

(FκI)
∗
(
b∗(ϕω⊤1)

)

= (FκI)
∗
(
b∗
(∧

i∈ω π∗i (ϕ
i⊤1)

))
by (B.4)

=
∧

i∈ω(FκI)
∗
(
b∗
(
π∗i (ϕ

i⊤1)
))

reindexing preserves
∧

=
∧

i∈ω(FκI)
∗
(
(Fπi−1)

∗(ϕi⊤1)
)

by πi ◦ b = Fπi−1 (see Fig. 1)

=
∧

i∈ω ϕ
(
(πi−1 ◦ κI)

∗(ϕi−1⊤1)
)

by Def. 2.2

≤ ϕ
(
(πiI ◦ κI)

∗(ϕiI⊤1)
)

letting i = iI + 1 on the LHS

= ϕ
(
κ∗Iπ

∗
iI
(ϕiI⊤1)

)
= ϕ

(
κ∗I(ϕ

ω⊤1)
)

by (B.3)

= (FκI)
∗(ϕω+1⊤1)

by Def. 2.2 and ϕω+1⊤1 = ϕ(ϕω⊤1).

This proves (B.2) and concludes the proof of Lem. 3.6. 2

B.2 Proof of Thm. 3.7

Proof We proceed by steps.

205

Hasuo, Cho, Kataoka, Jacobs

ia) We first show that c∗ω(ϕ
ω⊤1) indeed carries a (c∗ ◦ ϕ)-coalgebra.

c∗
(
ϕ(c∗ω(ϕ

ω⊤1))
)

= c∗
(
(Fcω)

∗(ϕ(ϕω⊤1))
)

by Def. 2.2

= c∗
(
(Fcω)

∗(b∗(ϕω⊤1))
)

by Lem. 3.6

= (b ◦ Fcω ◦ c)∗(ϕω⊤1)

= c∗ω(ϕ
ω⊤1) .

For the last equality we used b ◦ Fcω ◦ c = cω, which is proved by showing that

b ◦ Fcω ◦ c is also a mediating map in (7). Indeed, for each i ∈ ω,

πi ◦ b ◦ Fcω ◦ c

= Fπi−1 ◦ Fcω ◦ c see Fig. 1

= Fci−1 ◦ c by (7)

= ci by def. of ci.

ib) We show that the coalgebra obtained in Step a) is final. Let U ≤ c∗(ϕU) be

an arbitrary (c∗ ◦ ϕ)-coalgebra (i.e. a ϕ-invariant in c), where U ∈ PX . We aim to

establish the following diagram in P and see that it is above the one in (7).

ϕω⊤1

⊤1 ϕ⊤1 · · · ϕi⊤1 · · ·

U

c′
ω (B.5)

We first show that

U ≤ c∗i (ϕ
i⊤1) for each i ∈ ω. (B.6)

The proof is by induction. The base case i = 0 is obvious since reindexing c∗i
preserves ⊤. For the step case:

U ≤ c∗(ϕU) U carries a (c∗ ◦ ϕ)-coalgebra

≤ c∗
(
ϕ
(
c∗i (ϕ

i⊤1)
))

by induction hypothesis

= c∗
(
(Fci)

∗(ϕi+1⊤1)
)

by Def. 2.2

= (ci+1)
∗(ϕi+1⊤1) by def. of ci+1.

This proves (B.6) and establishes the arrows U → ϕi⊤1 in (B.5), for each i. There-

fore we obtain a mediating map c′ω : U 99K ϕω⊤1 to the limit ϕω⊤1, too. The arrow

c′ω is easily shown to be above cω (much like b′ in Fig. 1 is shown to be above b); this

means U ≤ c∗ω(ϕ
ω⊤1). Since PX is a poset, this arrow ≤ is necessarily a coalgebra

morphism from U to c∗ω(ϕ
ω⊤1); moreover it is a unique such. This proves i).

206

Hasuo, Cho, Kataoka, Jacobs

ii) We have

JνϕKc

= c∗ω(ϕ
ω⊤1) by i)

= c∗ω
(∧

i∈ω π∗i (ϕ
i⊤1)

)
by Lem. A.16

=
∧

i∈ω c
∗
ω

(
π∗i (ϕ

i⊤1)
)

since reindexing preserves
∧

=
∧

i∈ω c
∗
i (ϕ

i⊤1) by def. of cω.

(B.7)

Furthermore, c∗i (ϕ
i⊤1) in the above is seen to be equal to (c∗ ◦ ϕ)i(⊤X). This is

shown by induction on i ∈ ω. For i = 0 the claim amounts to !∗(⊤1) = ⊤X , which

holds since reindexing preserves ⊤. For the step case,

c∗i+1(ϕ
i+1⊤1)

= c∗(Fci)
∗(ϕi+1⊤1) by ci+1 = Fci ◦ c

= c∗ϕ
(
c∗i (ϕ

i⊤1)
)

by Def. 2.2

= (c∗ ◦ ϕ)
(
(c∗ ◦ ϕ)i(⊤X)

)
by induction hypothesis.

Finally let us check that the chain (9) stabilizes after ω steps.

(c∗ ◦ ϕ)
(∧

i∈ω(c
∗ ◦ ϕ)i⊤X

)

= (c∗ ◦ ϕ)
(∧

i∈ω c∗i (ϕ
i⊤1)

)
by the previous paragraph

= (c∗ ◦ ϕ)
(
c∗ω(ϕ

ω⊤1)
)

by (B.7)

= c∗(Fcω)
∗
(
ϕ(ϕω⊤1)

)
by Def. 2.2

= c∗(Fcω)
∗
(
b∗(ϕω⊤1)

)
by Lem. 3.6

= c∗ω(ϕ
ω⊤1) by b ◦ Fcω ◦ c = cω, see Step 1a)

= c∗ω(
∧

i∈ω π∗i (ϕ
i⊤1)) by (B.4)

=
∧

i∈ω c
∗
ωπ
∗
i (ϕ

i⊤1)

=
∧

i∈ω c
∗
i (ϕ

i⊤1)

=
∧

i∈ω(c
∗ ◦ ϕ)i⊤X by the previous paragraph.

This concludes the proof. 2

B.3 Proof of Prop. 3.11

Proof 1)

f∗Q ≤ f∗d∗(ϕQ) Q is an invariant

= c∗(Ff)∗(ϕQ) f is a homomorphism

= (c∗ ◦ ϕ)(f∗Q) by Def. 2.2.

207

Hasuo, Cho, Kataoka, Jacobs

2) The coalgebras give rise to mediating arrows X
cω→ Fω1 and Y

dω→ Fω1,

respectively, as in (7). It is easy to see that cω = dω ◦ f (using the universality of

the limit Fω1); using (8) the claim follows. 2

B.4 Proof of Prop. 4.1

Proof It is easy to check each fiber Coalg(ϕ)
X

c
→FX

is a poset. Let (X
c
→ FX)

f
→

(Y
d
→ FY) be an arrow in Coalg(F), and P

s
→ ϕP be above Y

d
→ FY . A Cartesian

lifting of f are obtained as in the following diagram.

P ϕf∗P
ϕf(P)

ϕP

f∗P

t

f(P)
P

s

C FX
Ff

FY

X

c

f
Y
d

Here we used the universality of the Cartesian lifting ϕf(P) (see Def. 2.2).

The two forgetful functors constitute a map of fibrations: the commutativity (4)

is obvious, and Cartesian liftings in

Coalg(ϕ)
↓p

Coalg(F)
(which we constructed above) are

based on the Cartesian liftings in
P
↓p
C

. 2

B.5 Proof of Prop. 4.2

Proof Given a ϕ-coalgebra P
s
→ ϕP above X

c
→ FX, we use the universality of

the Cartesian lifting of c to obtain a (c∗ ◦ϕ)-coalgebra as in the following diagram.

c∗ϕP
c(ϕP)

ϕP

P
s

Conversely, given a (c∗ ◦ ϕ)-coalgebra Q
t
→ c∗(ϕQ), we obtain a ϕ-coalgebra above

X
c
→ FX as the following composite.

c∗ϕQ
c(ϕQ)

ϕQ

Q
t

Then it is straightforward to see that the mappings are monotone and inverse to

each other. The mappings commute with the forgetful functors since they do not

change the carriers. 2

208

Hasuo, Cho, Kataoka, Jacobs

B.6 Proof of Lem. 5.4

Proof The proof is by steps.

a) First we show that Sub(C) is complete and cocomplete. We rely on Lem. A.16.

We start with fiberwise limits in

Sub(C)
↓
C

; the proof is like in [29, Exam-

ple 1.8.3(iii)]. By Lem. A.4 an LFP category C is complete. This equips each

fiber Sub(X) with arbitrary inf’s
∧

computed as wide pullbacks. A reindexing

functor (by pullbacks) preserves these inf’s since limits commute. Therefore by

Lem. A.16 the total category Sub(C) is complete.

By the assumption that C is an LCCC,

Sub(C)
↓
C

has products
∏

f ⊢ f∗ between

fibers [29, Cor. 1.9.9].

Next we show that

Sub(C)
↓
C

has fiberwise colimits. Each fiber (which is a poset)

has arbitrary inf’s; hence it is a complete lattice and arbitrary sup’s also exist.

These sup’s (i.e. colimits in a fiber) are preserved by reindexing f∗ since the latter

is a left adjoint f∗ ⊣
∏

f .

We further show that

Sub(C)
↓
C

has coproducts
∐

between fibers. An abstract

proof can be given by Freyd’s adjoint functor theorem (note that each fiber Sub(X)

is a complete lattice, and that reindexing f∗ preserves inf’s). Instead we explicitly

introduce
∐

exploiting a factorization structure of LFP C (Lem. A.4.ii). Namely,

given (P
m
֌ X) ∈ Sub(X) and f : X → Y , the coproduct

∐
f P is defined by the

(StrongEpi,Mono)-factorization of f ◦ m, as below.

P
m

∐
f P

X
f

Y
(B.8)

The fact that
∐

f P ≤ Q if and only if P ≤ f∗Q is easily proved using the diagonal-

ization property of the factorization structure. This establishes
∐

f as a left adjoint

to reindexing f∗. These coproducts
∐

satisfy the Bech-Chevalley condition since

the products
∏

do [29, Lem. 1.9.7]. Using Lem. A.16 we conclude that Sub(C) is

cocomplete.

b) First we prove that, if P and X are both FP in C, then (P
m
֌ X) is FP in

Sub(C). Let (QI

nI
֌ YI)I∈I be a filtered diagram in Sub(C); (Q

n
֌ Y) its colimit;

and g : (P
m
֌ X) → (Q

n
֌ Y) an arrow in Sub(C). By Lem. A.16 the colimit

(Q ֌ Y) can be explicitly described as

Y = Colim
I∈I

YI , Q =
∨

I∈I

∐
κI

QI , (B.9)

where (YI
κI→ Y)I∈I is a colimiting cocone.

Sublemma B.2 The object Q ∈ C is a colimit ColimI∈IQI computed in C.

209

Hasuo, Cho, Kataoka, Jacobs

Proof (Of the sublemma) Both (QI)I∈I and (YI)I∈I are I-shaped diagrams in C

with a monotransformation (QI

nI
֌ YI)I . Therefore by [4, Cor. 1.60], the induced ar-

row ColimI QI → ColimI YI is monic, establishing ColimI QI ∈ Sub(Y). It suffices

to find arrows a, b in the diagram below.

ColimI QI

a
Q

n
b

Y

(B.10)

The arrow a is obtained in the following way. Since κI is an arrow (QI ֌ YI) →
(Q ֌ Y) in Sub(C), by (A.5) we have an arrow QI → Q in C, for each I ∈ I. These

arrows induce a as a mediating arrow.

To obtain b in (B.10), since Q =
∨

I∈I

∐
κI

QI (see (B.9)), it suffices to find bI
below for each I ∈ I.

∐

κI
QI

bI
ColimI QI

Y

This is obtained as the following diagonal fill-in. Recall that Y = ColimI YI .

QI

nI

∐

κI
QI

bI

YI

κI

ColimI QI [κI◦nI]I
ColimI YI

This proves Sublem. B.2. 2

We are back in Step b). Since g : (P
m
֌ X) → (Q

n
֌ Y) is an arrow in Sub(C),

we also have an arrow g′ : P → Q, such that n ◦ g′ = g ◦ m, by (A.5). Now Q

and Y are filtered colimits of (QI)I∈I and (YI)I∈I, respectively (the former is by

Sublem. B.2). Since P and X are FP, I0 ∈ I can be chosen such that g factors

through YI0 → Y and g′ factors through QI0 → Q. That is,

P
h′

g′

m

QI0
nI0

Q
n

X
h

g

YI0 κI0
Y .

It is not (yet) necessarily the case that the square on the left commutes, i.e. nI0 ◦
h′ = h ◦ m. The two arrows give factorizations of the arrow n ◦ g′ = g ◦ m : P → Y

via YI0

κI0→ Y ; since P is FP, there exists I1 ∈ I with i : I0 → I1 such that

(Y i) ◦ nI0 ◦ h′ = (Y i) ◦ h ◦ m

(essential uniqueness of factorization, [4, Def. 1.1]). It is clear that, for such I1, the

arrow g in Sub(C) factors through (QI1 ֌ YI1)
κI1→ (Q ֌ Y). This concludes Step

b) that (P ֌ X) is FP in Sub(C).

c) Recall that

FSub(C) := { (P ֌ X) | P,X ∈ F} . (B.11)

The set FSub(C) in (B.11) is small, since F is small and C is well-powered [4,

Rem. 1.56].

210

Hasuo, Cho, Kataoka, Jacobs

d) In the remainder of the proof we show that every object (Q
n
֌ Y) ∈ Sub(C)

is a colimit of the canonical diagram with respect to FSub(C) from (B.11). Let

(QJ

nJ

֌ YJ)J∈J be the canonical diagram (i.e. J = (FSub(C) ↓n)), with the canonical

cocone (
(QJ

nJ
֌ YJ)

fJ−→ (Q
n
֌ Y)

)
J∈J

. (B.12)

Let us denote the canonical diagram for Y ∈ C with respect to F by (Y ′I)I∈I (i.e.

I = (F↓Y)), with a canonical cocone (Y ′I
κI→ Y)I∈I. The cocone is colimiting (Y =

ColimI∈I Y
′
I) since C is LFP. In this Step d) we show ColimJ∈J YJ

∼= ColimI∈I Y
′
I =

Y . A cocone (YJ

κIJ→ ColimI∈I Y
′
I)J∈J can be defined by finding (unique) IJ ∈ I

such that Y ′IJ

f ′
IJ→ Y is equal to YJ

fJ→ Y . In order to see that this cocone is colimiting,

let (YJ
gJ→ Z)J∈J be another cocone (recall that J = (FSub(C) ↓n)).

Sublemma B.3 If the indices J, J ′ ∈ J satisfy YJ = YJ ′ and fJ = fJ ′ (cf. (B.12)),

then gJ = gJ ′ .

Proof (Of the sublemma) Let 0 be an initial object in C. We first prove that 0 is a

subobject of any object of C. Indeed, since C is an LCCC (hence a CCC), its initial

object 0 is strict, meaning that if U → 0 exists then U is also initial (a standard

result; see e.g. [33, Lem. 1.5.12]). This makes any arrow 0 → V in C a mono.

Therefore we have an object (0 ֌ YJ) in Sub(C) induced by initiality. In view

of (A.5), an arrow fJ in C induces an arrow

(0 ֌ YJ)
fJ=fJ′

(Q
n
֌ Y) in Sub(C);

therefore there exists an index J ′′ ∈ J = (FSub(C) ↓n) such that (0 ֌ YJ) = (QJ ′′

nJ′′

֌

YJ ′′), and fJ ′′ = fJ = fJ ′ .

This gives us the following diagram in J = (FSub(C) ↓n).

(QJ

nJ

֌ YJ) (QJ ′′

nJ′′

֌ YJ ′′)
idY

J′idYJ (QJ ′

nJ′

֌ YJ ′)

Therefore, since (YJ
gJ→ Z)J∈J is a cocone, the following diagram in Cmust commute.

YJ

gJ

YJ ′′
idid

gJ′′

YJ ′

gJ′Z

This proves gJ = gJ ′ = gJ ′′ , as required in Sublem. B.3. 2

We are back in Step d). For each Y ′I
f ′
I→ Y in (F ↓ Y), there exists JI ∈ J such

that YJI = Y ′I and fJI = f ′I (one can take the initial object 0, which is FP, as QJI).

Using such JI we obtain an arrow

[gJI]I∈I : Colim
I∈I

Y ′I −→ Z .

That this is a mediating arrow, i.e. that the diagram

YJ

gJ

κIJ

Z

ColimI∈I Y
′
I

[gJI
]I∈I

211

Hasuo, Cho, Kataoka, Jacobs

commutes, is precisely the content of Sublem. B.3. Uniqueness of a mediating arrow

is easy, too. This proves ColimJ∈J YJ
∼= ColimI∈I Y

′
I .

e) By Step d) we obtain Y = ColimJ∈J YJ . In view of Lem. A.16, we are done if

we show that Q =
∨

J∈J

∐
fJ

QJ .

One direction Q ≥
∨

J∈J

∐
fJ

QJ is easy: since fJ in (B.12) is an arrow in Sub(C)

we have QJ ≤ f∗JQ, that is,
∐

fJ
QJ ≤ Q, for each J ∈ J.

To prove the other direction (Q ≤
∨

J∈J

∐
fJ

QJ), let (QK)K∈K be the canonical

diagram for Q with respect to F (i.e. K = (F ↓ Q)), with the canonical cocone

(QK
cK→ Q)K∈K. Then Q = ColimK∈KQK since C is LFP; furthermore, much like

the proof of Sublem. B.2, we can show that ColimK∈KQK
∼=

∨
K∈K

∐
cK

QK . Hence

it suffices to show

∐
cK

QK ≤
∨

J∈J

∐
fJ

QJ in Sub(Y), for each K ∈ K. (B.13)

It is easy to see (using (A.5)) that n ◦ cK is an arrow

(QK

id
֌ QK)

n◦cK−→ (Q
n
֌ Y)

in Sub(C). Since QK ∈ F, this arrow n ◦ cK is an object of the index category

J = (FSub(C) ↓n). This yields

∐
n◦cK

QK ≤
∨

J∈J

∐
fJ

QJ . (B.14)

Now the following diagram shows that
∐

n◦cK
QK =

∐
cK

QK as a subobject of Y ,

via the uniqueness of factorization.

QK

cK
∐

cK
QK Q

n
Y

∐

n◦cK
QK

∼=

Therefore (B.14) proves (B.13). This concludes the proof. 2

B.7 Proof of Lem. 5.2

Proof The only nontrivial part is the ⇐ direction of Cond. iii). For that it suffices

to show that arbitrary P ∈ P is a colimit of the diagram (κ∗IP)I∈I. Here I and κI
are as in Cond. iii).

By Lem. A.16 the colimit ColimI∈I κ
∗
IP is described as

∨
I∈I

∐
κI

κ∗IP using a

sup
∨

in PX , since (XI
κI→ X)I∈I is colimiting. We have

∐
κI

κ∗IP ≤ P as a counit

of an adjunction; therefore ColimI∈I κ
∗
IP ≤ P .

Thus it suffices to show that P ≤ ColimI∈I κ
∗
IP in PX . Let (PJ)J∈J be a diagram

in P such that PJ ∈ FP and there is a colimiting cocone (PJ
gJ→ P)J∈J. Such a

diagram exists since FP is dense.

By the assumption, for each J the object PJ ∈ FP lies above an object in

FC. Therefore the arrow pgJ : pPJ → pP = X is an object of (FC ↓ X); since

I = (FC ↓X), we can choose IJ ∈ I such that κIJ = pgJ . Now an arrow PJ
gJ→ P in

P induces

PJ ≤ (pgJ)
∗P = κ∗IJP (B.15)

212

Hasuo, Cho, Kataoka, Jacobs

by the universality of Cartesian arrows. We proceed as follows.

P = ColimJ∈J PJ
(∗)
=

∨
J∈J

∐
pgJ

PJ

(†)

≤
∨

J∈J

∐
κIJ

κ∗IJP

≤
∨

I∈I

∐
κI

κ∗IP
(∗)
= ColimI∈I κ

∗
IP .

For (∗) we used Lem. A.16; (†) holds since IJ is chosen so that κIJ = pgJ and (B.15)

hold. This concludes the proof. 2

B.8 Proof of Lem. 5.6

Proof 1a) Let us first see that Fam(Ω) is cocomplete. In view of Lem. A.16, it

suffices to show that

Fam(Ω)
↓

Sets
has fiberwise colimits and coproducts

∐
between

fibers (the base category Sets is cocomplete). The former follows from Ω being a

complete lattice; the latter is shown from [29, Lem. 1.9.5].

1b) Before going on we prove the following.

Sublemma B.4 An arrow in Fam(Ω) is a mono if and only if its underlying func-

tion is a mono in Sets.

Proof (Of Sublem. B.4) The ‘if’ part is obvious. For the ‘only if’ part, let (X
f
→

Ω)
m
֌ (Y

g
→ Ω) be a monic arrow in Fam(Ω), and k, l : U → X be arrows in Sets

such that m ◦ k = m ◦ l. This induces the following situation in Fam(Ω):

(⊥ : U → Ω)
k

l
(f : X → Ω)

m
(g : Y → Ω) ,

where ⊥ : U → Ω is the constant function to the least element ⊥ ∈ Ω. Therefore

k = l; this proves Sublem. B.4. 2

1c) We prove that each (X
f
→ Ω) ∈ FFam(Ω) is FG (Def. A.7) in Fam(Ω). Let

(
(YI

gI→ Ω)
hI→ (Y

g
→ Ω)

)
I∈I

be a colimiting cocone from a directed diagram I whose

arrows are all monos; and (X
f
→ Ω)

k
→ (Y

g
→ Ω) be an arrow in Fam(Ω). We aim

at showing that k factors through some hI .

By Lem. A.16 we obtain that Y = ColimI∈I YI ; and that

g(y) = (
∨

I∈I

∐
hI

gI)(y) =
∨

I∈I

(
(
∐

hI
gI)(y)

)

=
∨

I∈I

(∨
y′∈h−1

I
(y) gI(y

′)
)

for each y ∈ Y .
(B.16)

The first equality is by Lem. A.16; the second is because the order in the fiber

Fam(Ω)Y = ΩY is pointwise; and the third is by the concrete description [29,

Lem. 1.9.5] of
∐

in

Fam(Ω)
↓

Sets
.

We observe that each hI is a mono in Fam(Ω). To see it, (YI
hI→ Y)I∈I is a

colimiting cocone in Sets from a directed diagram of monos; since Sets is LFP, we

can use [4, Prop. 1.62]; and then we use Sublem. B.4.

213

Hasuo, Cho, Kataoka, Jacobs

Now we have

f(x) ≤ g(k(x)) =
∨

I∈I

(∨
y′∈h−1

I
(k(x)) gI(y

′)
)
;

here the first inequality is because k is an Fam(Ω)-arrow; and the second equality

is from (B.16). By the assumptions that f(x) is compact and that X is finite, there

exists I0 ∈ I such that f(x) ≤
∨

y′∈h−1
I0

(k(x)) gI0(y
′) for each x ∈ X (recall that I is

filtered). Furthermore, since X
k
→ Y = ColimI∈I YI is an arrow from an FP object

(in Sets) to a directed colimit, it factors through some hI1 :

X
lI1

k

YI1
hI1

Y .

By choosing I2 such that I0, I1 ≤ I2, we have

f(x) ≤
∨

y′∈h−1
I2

(k(x)) gI2(y
′) = gI2(lI2(x)) for each x ∈ X;

here the last equality holds since hI is an injection and hI(lI(x)) = k(x). This

proves that lI2 is a Fam(Ω)-arrow (X
f
→ Ω) → (YI2

gI2→ Ω), hence k = hI2 ◦ lI2 in

Fam(Ω). This concludes Step 1c).

1d) The collection FFam(Ω) is obviously small.

1e) We are done if we prove that every object P ∈ Fam(Ω) is a directed colimit

of its subobjects from FFam(Ω). This easily follows from the fact that the same is

true in Sets (obvious) and in Ω (being an algebraic lattice). 2

B.9 Proof of Lem. 5.9

Proof Any presheaf P ∈ SetsA has a canonical isomorphism Colim(A,p)∈
∫

P yA ∼=
P induced by (yA)(B) = A(A,B) ∋ g 7→ P (g)(p) ∈ P (A) for A ∈ A and

p ∈ P (A), where
∫
P is the category of elements of P . (Remark: The category

of elements of covariant functor P : A → Sets consists of objects (A, p) in the

above and arrows h : (A, p) → (B, q) for all arrows h : B → A in A such that

P (h)(q) = p.) In the situation, we assume that P is a subpresheaf of yX. Then

P (g) = (yX)(g) = (g ◦) shows that arrows {(◦ f) = yf : yA → yX}(A,f)

induce the composition (Colim(A,f)∈
∫

P yA) ∼= P →֒ yX. Regarding P as the im-

age Im
(
(Colim(A,f)∈

∫

P yA) ֌ yX
)
, the following component-wise calculation on

214

Hasuo, Cho, Kataoka, Jacobs

objects B ∈ A shows P =
⋃

(A,f)∈
∫

P Imyf :

(
Im

(
(Colim
(A,f)∈

∫

P
yA) → yX

))
(B)

=
(∗)

Im
(
(Colim
(A,f)∈

∫

P
yA)(B) → yX(B)

)

=
(†)

Im
((

Colim
(A,f)∈

∫

P

(
yA(B)

))
→ yX(B)

)

= Im
((∐

(A,f)∈
∫

P

(
yA(B)

))
/∼ → yX(A)

)

= Im
((∐(

yA(B)
))

։
(∐(

yA(B)
))
/∼ → yX(A)

)

=
⋃

(A,f)∈
∫

P Im
(
yA(B) → yX(B)

)

=
(∗)

⋃
(A,f)∈

∫

P

(
(Imyf)(B)

)
=
(†)

(⋃
(A,f)∈

∫

P Imyf
)
(B),

where ∼ is a suitable equivalence relation in the explicit formula of colimits in Sets.

Note that Im in the first line and the last line are the images in SetsA while they

denote the images in Sets elsewhere; and that (∗) and (†) holds because limits and

colimits are component-wise, with a fact for (∗) that an image is an equalizer of

a cokernel pair in both Sets and SetsA. Therefore, there are only finitely many

subpresheaves P of yX if {Imyf | A ∈ A, f : X → A} is finite.

For the special case in the second half, we first prove the following.

Sublemma B.5 The inclusion relation on {Imyf | A ∈ A, f : X → A} is derived

from a preorder . on {f | A ∈ A, f : X → A} such that (f : X → A) . (g : X → B)

iff f = h ◦ g for some h : B → A.

Proof (Of Sublem. B.5) If Imyf ⊆ Imyg, then f = (yf)A(idA) ∈ Im(yf)(A) ⊆
Im(yg)(A) = {h ◦ g | h : B → A}. Conversely, for f = h ◦ g, any arrow k ◦ f =

(yf)C(k) ∈ Im(yf)(C) is in Im(yg)(C) because k ◦ f = k ◦ h ◦ g = (yg)C (k ◦ h). 2

It is enough to show that Quot(X) ∋ Y 7→ Im(yY ֌ yX) ∈ {Imyf | A ∈
A, f : A → X} is a bijection. It is obviously injective because epis e : X ։ Y and

e′ : X ։ Y ′ factor through each other if and only if e and e′ are the same objects in

Quot(X). We shall prove the mapping is surjective. Let f : X → A be an arbitrary

arrow and f = m ◦ e be its factorization. Then, Imyf ⊆ Imye and conversely,

we also have Imye ⊆ Imyf by e = r ◦ f for a retraction r of m. Therefore,

Imyf = Imye is a image of the mapping. 2

B.10 Proof of Cor. 5.10

Sublemma B.6 Let (XI)I be a finite diagram in SetsA. If Sub(XI) is finite for

each I, then so is Sub(ColimI XI).

Proof (Of Sublem. B.6) In a topos (hence a regular category) SetsA coproducts

are disjoint (see e.g. [29]); thus we have

Sub(X1 + · · ·+Xn) ∼= Sub(X1)× · · · × Sub(Xn) .

215

Hasuo, Cho, Kataoka, Jacobs

Let X ⇒ Y
e
։ Z be a coequalizer in SetsA. The correspondence e∗ : Sub(Z) →

Sub(Y) is easily seen to be injective. Indeed, assume P 6∼= P ′ in Sub(Z); then

PA 6∼= P ′A for some A ∈ A in Sets, and since eA is surjective, we have

(e∗P)A = e−1A (PA) 6∼= e−1A (P ′A) = (e∗P)A .

Therefore if Sub(Y) is finite, so is Sub(Z). This concludes the proof of the sub-

lemma. 2

Proof (Of Cor. 5.10) By Example 5.8, Lem. 5.1, Sublem. B.6, and Cor. 5.5. 2

216

MFPS 2013

Quasicontinuous Domains and the Smyth

Powerdomain

Reinhold Heckmann2

AbsInt Angewandte Informatik GmbH
Science Park 1

D-66123 Saarbrücken, Germany

Klaus Keimel1,3

Fachbereich Mathematik
Technische Universität Darmstadt

D-64289 Darmstadt, Germany

Abstract

In Domain Theory quasicontinuous domains pop up from time to time generalizing slightly the powerful
notion of a continuous domain. It is the aim of this paper to show that quasicontinuous domains occur in a
natural way in relation to the powerdomains of finitely generated and compact saturated subsets. Properties
of quasicontinuous domains seem to be best understood from that point of view. This is in contrast to the
previous approaches where the properties of a quasicontinuous domain were compared primarily with the
properties of the lattice of Scott-open subsets. We present a characterization of those domains that occur
as domains of nonempty compact saturated subsets of a quasicontinuous domain.
A set theoretical lemma due to M. E. Rudin has played a crucial role in the development of quasicontinuous
domains. We present a topological variant of Rudin’s Lemma where irreducible sets replace directed sets.
The notion of irreducibility here is that of a nonempty set that cannot be covered by two closed sets except
if already one of the sets is covering it. Since directed sets are the irreducible sets for the Alexandroff
topology on a partially ordered set, this is a natural generalization. It allows a remarkable characterization
of sober spaces.
For this we denote by QX the space of nonempty compact saturated subsets (with the upper Vietoris
topology) of a topological space X. The following properties are equivalent: (1) X is sober, (2) QX is
sober, (3) X is strongly well-filtered in the following sense: Whenever A is an irreducible subset of QX and
U an open subset of X such that

⋂
A ⊆ U , then K ⊆ U for some K ∈ A. This result fills a gap in the

existing literature.

Keywords: Quasicontinuous Domains, M. E. Rudin’s Lemma, Powerdomains of compact saturated
subsets.

1 During working on this paper, the second author profited from a research visit to Nanyang Technological
University supported by Academic Research Fund No. RP/10 HKW. Particular thanks to Dr. Ho Weng
Kin and Dr. Zhao Dongsheng.
2 Email: heckmann@absint.com
3 Email: keimel@mathematik.tu-darmstadt.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:heckmann@absint.com
mailto:keimel@mathematik.tu-darmstadt.de

Heckmann and Keimel

1 Introduction

In this paper we deal with the powerspace of compact saturated sets, quasicontin-

uous domains and variants of Rudin’s Lemma. We intend to show that these three

ingredients are inseparably tied together.

Quasicontinuous domains introduced by Gierz, Lawson and Stralka [5] capture

many of the essential features of continuous domains. Recently they have attracted

increased attention through the remarkable work of J. Goubault-Larrecq [6] and

through a paper by Li and Xu [11].

An important result concerning continuous domains is their characterization by

properties of their Scott topology. A dcpo is continuous if and only if its lattice

of Scott open subsets is completely distributive. Gierz, Lawson and Stralka [5]

have characterized quasicontinuous domains by the property that their lattice of

Scott-open subsets is hypercontinuous. One of the characterizations of hypercon-

tinuous lattices is that they are images of completely distributive lattices under

maps preserving arbitrary meets and directed joins.

A characterization of the lattice of open subsets is equivalent to a characteriza-

tion of the opposite lattice of closed subsets. The lattice of Scott-closed subsets of

a dcpo is often called the Hoare or lower powerdomain of a dcpo. Thus, one can

say that Gierz, Lawson and Stralka have characterized quasicontinuous domains

through their lower powerdomains.

In this paper we intend to show that quasicontinuous domains should be tied up

with the Smyth or upper powerdomain [15,16] rather than the lower powerdomain.

We show that among dcpos the quasicontinuous domains can be characterized by the

property that the poset of finitely generated upper sets ordered by reverse inclusion

is a continuous poset. We claim that this opens useful insights and simpler proofs

for known properties (see 4.5). We finish with a characterization of quasicontinuous

domains through properties of their upper powerdomains (see Theorem 4.9).

From the beginning, the development of the notion of a quasicontinuous domain

was dependent on a set theoretical lemma. In fact, M. E. Rudin provided the

appropriate lemma as an answer to a question asked by Gierz, Lawson and Stralka,

when they prepared the paper [5], where the notion of a quasicontinuous domain was

introduced. In the same spirit, variants of Rudin’s Lemma are the third ingredient

of this paper (see Section 3). Rudin’s original lemma is captured in Lemma 3.4

and Corollary 3.5. We also need it in our approach to quasicontinuous domains in

Lemma 4.1.

A new topological variant of Rudin’s Lemma is presented in Lemma 3.1; di-

rected sets in Rudin’s original Lemma are viewed as special cases of irreducible

218

Heckmann and Keimel

sets in topological spaces. This lemma allows a characterization of sober spaces

(see Theorem 3.13). We use this theorem for a simplified proof of the sobriety of

quasicontinuous posets (see Property 4.5(vii)).

Theorem 3.13 solves an open problem. A topological space had been called well-

filtered if, whenever
⋂
F ⊆ U for a filter basis F of compact saturated sets and an

open subset U , then K ⊆ U for some K ∈ F . It is known that every sober space is

well-filtered. Conversely every locally compact well-filtered space is sober (Theorem

[4, II-1.21]). But sobriety is not characterized by well-filterednes in general (for a

counterexample see [10]). Theorem 3.13 tells us that sobriety is characterized by

the property of being strongly well-filtered. By this we mean that, whenever A is

an irreducible set in the hyperspace of compact saturated subsets (with the upper

Vietoris topology) such that
⋂
A is contained in an open set U , then K ⊆ U for

some K ∈ A.

2 Preliminaries

2.1 Order theoretical notions

For a partially ordered set (= poset) P , more generally for a preordered set, we fix

the following terminology:

D ⊆ P is directed if D is nonempty and if for any d1, d2 in D there is a d in D

above d1 and d2.

In a poset P , a directed subset D may or may not have a least upper bound. We

adopt the following convention: if we write
∨↑

D then we mean that D is a directed

subset of P which has a least upper bound in P which we denote by
∨↑

D.

P is directed complete (a dcpo) if every directed subset D of P has a least upper

bound
∨↑

D.

For a ∈ P let ↑a denote the set of all x ∈ P with a ≤ x and, for a subset A, let

↑A =
⋃
a∈A ↑a. A subset A of P is an upper set if A = ↑A. We denote by UX the

collection of all upper sets in X. The order dual concepts are ↓a, ↓A and lower set.

For any set X, we denote by PX the set of all subsets and by PfX the collection

of all finite subsets; the letters F,G,H will always denote nonempty finite subsets.

If X is a partially ordered set, more generally a preordered set, we introduce a

preorder v on the powerset PX, sometimes called the Smyth preorder, by

A v B ⇐⇒ ↑B ⊆ ↑A,

that is, A v B iff for every element b ∈ B there is an element a ∈ A with a ≤ b.

On the collection UX of upper sets, v is a partial order, namely reverse inclusion.

219

Heckmann and Keimel

We denote by

ηX :X → PX the map ηX(x) = ↑x

which is an order embedding.

Every topological space X carries a natural (pre-)order, the specialization (pre-

)order x ≤ y iff x ∈ cl{y}, the closure of the singleton {y}. The previous order

theoretical concepts can be applied to the specialization (pre-)order. And when

we apply order theoretical notions to topological spaces, they always refer to the

specialization (pre-)order. A subset of a topological space that is an upper set for

its specialization (pre-)order is also called a saturated set.

Conversely, every poset X can be topologized in various ways. The upper sets

form the Alexandroff topology UX. A coarser topology is the Scott topology σX: A

subset U ⊆ X is Scott-open if U is an upper set and if
∨↑

D ∈ U ⇒ D∩U 6= ∅, that

is, if for every directed set D with
∨↑

D ∈ U , there is a d ∈ D with d ∈ U , provided

that D has a least upper bound in X. The Scott-open sets form indeed a topology.

2.2 Compact and supercompact sets

A subset K of a topological space X is compact if for all directed families (Ui)i∈I

of opens, K ⊆
⋃
i∈I Ui implies K ⊆ Uk for some k in I. It is supercompact if for

arbitrary families (Ui)i∈I of opens, K ⊆
⋃
i∈I Ui implies K ⊆ Uk for some k in I.

Using that K ⊆ U if and only if K does not meet C = X \ U , compactness can

also be characterized using closed instead of open sets:

Fact 2.1 A set K is compact iff for all filtered families (Ci)i∈I of closed sets, K

meets
⋂
i∈I Ci whenever K meets all Ci. A set K is supercompact iff for all families

(Ci)i∈I of closed sets, K meets
⋂
i∈I Ci whenever K meets all Ci.

Note that a subset K is compact if and only if its saturation, the upper set ↑K
generated by K w.r.t. the specialization (pre)-order, is compact.

Fact 2.2 The supercompact saturated sets of a topological space X are exactly the

sets ↑x with x in X.

Proof. The sets ↑x are clearly supercompact and saturated. For the opposite

direction, let S be a supercompact upper set. The set S meets all sets of the family

(↓a)a∈S of closed sets. By supercompactness, it meets
⋂
a∈S ↓a. Let x be a member

of S ∩
⋂
a∈S ↓a. Since S is an upper set, ↑x ⊆ S holds. On the other hand, x is in

↓a for all a in S, whence S ⊆ ↑x. 2

220

Heckmann and Keimel

2.3 The Upper Powerspace

On the powerset PX of all subsets of a topological space X we consider the upper

Vietoris topology v, the topology generated by the sets

2U = {K ∈ PX | K ⊆ U},

where U ranges over the open subsets of X. Since

2(U ∩ V) = 2U ∩2V,

the sets 2U form indeed a basis for the upper Vietoris topology. Equivalently, the

sets 3C = {K ∈ PX | K ∩ C 6= ∅} are closed for all closed sets C of X and they

form a basis for the closed sets of the upper Vietoris topology. The canonical map

ηX = (x 7→ ↑x):X → PX is a topological embedding. The specialization preorder

for the upper Vietoris topology on PX agrees with the Smyth preorder A v B,

i.e., ↑B ⊆ ↑A. We consider several subspaces of PX:

PfX, the space of all nonempty finite subsets of X,

KX, the space of all nonempty compact subsets,

QfX, the space of all nonempty finitely generated saturated sets ↑F, F ∈ PfX,

and

QX, the space of all nonempty compact saturated subsets of X.

These spaces are always endowed with the upper Vietoris topology, and the special-

ization preorder is v as above. The specialization preorder is a partial order only

on QX and QfX.

We also have a semilattice operation on PX, namely AuB = A∪B, and PfX,

KX, QfX, and QX are subsemilattices thereof. The basic open neighborhoods 2U

are filters, that is, A u B ∈ 2U if and only if A ∈ 2U and B ∈ 2U . This implies

that the semilattice operation u is continuous with respect to the upper Vietoris

topology.

2.4 Irreducible Sets

Let us collect some known facts about irreducible sets in a topological space X.

Using that A meets U if and only if A 6⊆ X \ U we see:

Fact 2.3 For a set A in a topological space X, the following are equivalent:

(i) For any finite family (Ci)i∈F of closed sets: if A ⊆
⋃
i∈F Ci, then A ⊆ Ci for

some i.

221

Heckmann and Keimel

(ii) For any finite family (Ui)i∈F of open sets: if A meets all Ui, then A meets⋂
i∈F Ui.

A subset A of a topological space X is said to be irreducible if it satisfies the

equivalent conditions of 2.3.

Fact 2.4 For a closed set A in a topological space, the following are equivalent:

(i) A is irreducible.

(ii) For any finite family (Ci)i∈F of closed sets: if A =
⋃
i∈F Ci, then A = Ci for

some i.

Since an open set meets the closure of A iff it meets A, we have:

Fact 2.5 A set is irreducible iff its closure is irreducible.

Fact 2.6 Let f : X → Y be a continuous map of topological spaces X and Y . If A

is irreducible in X, then its image f(A) is irreducible in Y .

Proof. If f(A) ⊆
⋃
i∈F Ci, then A ⊆ f−1(

⋃
i∈F Ci) =

⋃
i∈F f

−1Ci, whence A ⊆
f−1Ci for some i in F , and so f(A) ⊆ Ci. 2

Fact 2.7 Every directed set is irreducible. (Here, “directed” refers to the special-

ization preorder.)

Proof. Let A be a directed set. We use 2.3 (ii). If A meets U1, . . . , Un, then there

are points xi in A ∩ Ui. Since A is directed, there is an upper bound x of x1, . . . ,

xn in A. Since open sets are upper sets, x is in A ∩ U1 ∩ · · · ∩ Un. 2

Fact 2.8 The irreducible sets of a poset P endowed with the Alexandroff topology

are exactly the directed sets of P .

Proof. Directed sets are irreducible by 2.7. For the opposite direction, let A be

an irreducible set and x1, . . . , xn be elements of A. Then A meets the upper (=

Alexandroff open) sets ↑x1, . . . , ↑xn. Since A is irreducible, A∩↑x1 ∩ · · · ∩ ↑xn 6= ∅
follows. Any member of this intersection is a common upper bound of x1, . . . , xn

in A. 2

3 Rudin’s Lemma and its topological variants

In her original paper [13], which is not easily accessible, M. E. Rudin formulated

the following theorem: If F is a collection of finite subsets of P which is directed

and converges to 1, then there is a subset of
⋃
F which is directed and converges

to 1. Here P is a poset with a maximal element 1; a v-directed family F is said to

converge to 1 if
⋂
F∈F ↑F = {1}, and a directed set D is said to converge to 1 if

222

Heckmann and Keimel

⋂
d∈D ↑d = {1}. M. E. Rudin used transfinite induction for the proof. For the use

in domain theory a modified version as in Corollary 3.5 has become prominent.

3.1 A topological variant of Rudin’s Lemma

The original Rudin Lemma deals with directed sets. Fact 2.8 suggests to replace

directed sets by irreducible sets in a topological setting.

Lemma 3.1 (Topological Rudin Lemma) Let X be a topological space and A an

irreducible subset of KX (Q(X), QfX, respectively). Any closed set C ⊆ X that

meets all members of A contains an irreducible closed subset A that still meets all

members of A.

Proof. Let C be the set of all closed subsets of C that meet all members of A. Then

C is not empty as it contains C, and is closed under filtered intersections by 2.1 since

all members of A are compact. By the order-dual of Zorn’s Lemma, C contains a

minimal element A. As a member of C, A is closed and meets all members of A.

We show that A is irreducible using 2.4 (ii).

So let A =
⋃
i∈F Ci where (Ci)i∈F is a finite family of closed sets. Every K in

A meets A, and therefore some Ci. Hence A ⊆
⋃
i∈F 3Ci. Since A is irreducible

in KX and the sets 3Ci are closed in KX (Section 2.3), A ⊆ 3Ck for some k in I

follows by 2.3 (1). Thus Ck meets all members of A, whence Ck is in C and is a

subset of A. By minimality of A in C, A = Ck follows. 2

In the previous Lemma 3.1, one may choose C = X so that for every irreducible

subset A of KX, QX and QfX, respectively, there is an irreducible closed subset

of X that meets all members of A.

By 2.7, directed sets are irreducible. Therefore, 3.1 implies the following corol-

lary:

Corollary 3.2 Let X be a topological space and A a v-directed family of nonempty

compact subsets of X. Any closed set C that meets all members of A contains an

irreducible closed subset A that still meets all members of A.

Remark 3.3 M. Erné [3, Proposition 3] had already obtained the following equiv-

alent version of Corollary 3.2:

For every filtered collection A of nonempty compact saturated subsets of a space

X, there is an irreducible (closed) subset A meeting all members of A.

In his paper, Erné emphasizes the fact that this result can be proved without

using the full strength of Zorn’s lemma (as we did in the proof of 3.1), but only the

ultrafilter principle. He also avoids the upper powerspace, but rather embeds the

space X into its sobrification Xs. The saturations ↑XsK in Xs of the K ∈ A form

223

Heckmann and Keimel

a filtered collection of compact saturated sets which has a nonempty intersection.

Picking an element a in this intersection, the set A = X ∩ clXs{a} is a closed

irreducible subset of X meeting all members of A. One can also prove this corollary

directly by a slight modification of the proof of 3.1. The price for avoiding the

upper powerspace is that 3.2 is less general than 3.1 (but still more general than

the original Order Rudin Lemma; see below).

3.2 Rudin’s Lemma

We now apply Corollary 3.2 to a space arising from a preorder P with the Alexan-

droff topology. In such a space, closed = lower, irreducible = directed, and compact

= finitary, where those sets K are called finitary whose up-sets are finitely gener-

ated, that is, ↑K = ↑F for some finite set F . We obtain:

Lemma 3.4 (Order Rudin Lemma) Let P be a preorder and F a v-directed family

of finitary upper sets of P . Any lower set L that meets all members of F has a

directed lower subset A that still meets all members of F .

From this version, it is easy to derive A. Jung’s version of Rudin’s Lemma [9,

Theorem 4.11]:

Corollary 3.5 If (Fi)i∈I is a v-directed family of nonempty finite sets in a poset

P , then there is a directed subset A of
⋃
i∈I Fi that meets all Fi.

Proof. Let Q be the poset
⋃
i∈I Fi with the order inherited from P . Since all Fi

are non-empty, Q itself is a lower set that meets all Fi. By 3.4, it has a directed

lower subset A that still meets all Fi. 2

In Rudin’s Lemma it is essential to restrict to collections F of finite subsets.

Indeed, if we take an infinite set M with the discrete order and consider the filter

F of cofinite subsets, then F is directed for reverse inclusion, but of course there is

no directed subset D satisfying D ∩ F 6= ∅ for all F ∈ F ; indeed, the only directed

sets are singleton.

3.3 Another variant of Rudin’s Lemma

One may ask the following question: Let (Fi)i∈I be a v-directed family of nonempty

finite sets of a poset X. Is there a directed subset D of
⋃
i Fi which intersects each

Fi in exactly one point? A positive answer would be a strengthening of Jung’s

version 3.5 of Rudin’s Lemma, which asserts that there is a directed subset D of⋃
i Fi which intersects each Fi in at least one point.

The answer to the question above is negative in general. It is not difficult to come

up with a finite counterexample. For treelike directed families, there is a positive

224

Heckmann and Keimel

answer to our question. For this we use a variant of Rado’s Selection Lemma due

to R. J. Cowen [2, Theorem 3]:

Let F be a set of partial functions defined on subsets of a set I with the following

properties:

(i) F is of finite character, that is, f belongs to F if and only if the restriction of

f to any finite subset of its domain belongs to F .

(ii) {f(i) | f ∈ F} is finite for each i ∈ I.

(iii) For each finite J ⊆ I, there exists an f ∈ F whose domain contains J .

Then F contains a function defined on all of I.

Lemma 3.6 Let I be a directed poset which is a tree in the sense that the upper

set of each i ∈ I is linearly ordered. Let (Fi)i∈I be a collection of nonempty finite

subsets of a poset P such that Fi v Fj whenever i ≤ j. Then one may choose

xi ∈ Fi for every i such that xi ≤ xj whenever i ≤ j.

Proof. We consider the collection F of order preserving maps f defined on subsets

J of I such that f(i) ∈ Fi for all i ∈ J . The hypotheses (i), (ii), (iii) of the Cowen

Lemma are satisfied: Clearly, this collection F is of finite character. For every finite

subset J of I, we can find an order preserving map x from J to
⋃
i Fi such that

xj ∈ Fj for all j ∈ J . For this, we may suppose that J has a greatest element j0.

We begin by choosing any xj0 ∈ Fj0 . We now look at the immediate predecessors

j1, . . . , jk of j0 in J and we choose xjι ∈ Fjι such that xjι ≤ xj0 which is possible,

since ↑Fj0 ⊆ ↑Fjι for ι = 1, . . . , k. For each of the jι we repeat the same procedure.

After finitely many steps we have exhausted the finite set J . We have used that the

directed set I is a tree: descending paths in the finite subset J never meet.

We now can apply Cowen’s Selection Lemma cited above and we obtain the

desired conclusion. 2

Remark 3.7 Notice that a directed set which is a tree has cofinal chains; just take

↑x for any member x of the tree. Using König’s Lemma, the preceding Lemma 3.6

has been proved by Goubault-Larrecq [6, Lemma 4.12] for the case where I is the

set of natural numbers with its usual order.

3.4 The Dcpo Case

The Order Rudin Lemma 3.4 has interesting consequences in a dcpo.

Fact 3.8 Let D be a dcpo and F a filtered family of nonempty finitely generated

upper sets of D. Any Scott-closed set C that meets all members of F also meets⋂
F .

225

Heckmann and Keimel

Proof. Let C be a Scott-closed, hence lower set that meets all members of F .

By 3.4, it has a directed subset A that still meets all members of F . The least

upper bound x of A exists in the dcpo D and is in C since C is Scott-closed. Since

A meets all members of F and since these members are upper sets, the upper bound

x of A is in all of them, i.e., x is in C ∩
⋂
F . 2

By contraposition and complementing C, one obtains the following:

Corollary 3.9 Let D be a dcpo and F a v-directed family of nonempty finite sets

of D. If
⋂
F∈F ↑F is a subset of a Scott-open set U , then already some member of

F is a subset of U .

Note that these two statements are based on considering two different topologies

on the underlying set: 3.4 is the instance of the Topological Rudin Lemma for the

Alexandroff topology, whereas the derivation of 3.8 and 3.9 from 3.4 is based on the

Scott topology.

Corollary 3.10 Let D be a dcpo and F a filtered family of nonempty finitary upper

sets of D. Then
⋂
F is a nonempty compact saturated set.

Proof. Applying 3.8 in the case C = X, we see that
⋂
F is nonempty. In order to

show the compactness of
⋂
F , suppose that (Ui)i is a family of open sets covering⋂

F . By the previous corollary, some K ∈ F is contained in the open set
⋂
i Ui.

By the compactness of K, finitely many of the Ui already cover K, hence they also

cover
⋂
F . 2

3.5 The Sober Case

The Topological Rudin Lemma itself has analogous consequences in a sober space.

Recall that a topological space is sober, if every irreducible closed subset A is the

closure of a uniquely determined point a. Unlike the dcpo case, all arguments are

based on a single topology. Thus, the following is not a generalization of 3.8, but a

logically unrelated statement.

Proposition 3.11 Let X be a sober space and A an irreducible subset of KX (QX,

QfX, respectively). Then any closed subset C of X that meets all members of A
also meets

⋂
K∈A ↑K, and if

⋂
K∈A ↑K is a subset of an open set U , then already

some member of A is a subset of U .

Proof. Let C be a closed set that meets all members of A. By 3.1, it has an

irreducible closed subset A that still meets all members of A. Since X is sober, A

is the closure of a unique point x, A = cl{x} = ↓x. Then x ∈ A ⊆ C, and since A

meets all members of A, the greatest element x of A belongs to ↑K for all K ∈ A.

226

Heckmann and Keimel

The statement about the open set follows by contraposition and complementing the

closed set. 2

The following lemma is useful in the proof of the subsequent soberness criterion:

Fact 3.12 Let A be a set of compact (supercompact) subsets of a topological space

X and K an arbitrary subset of X with the property that K is a subset of an open

set U iff some member of A is a subset of U . Then K is compact (supercompact).

Proof. Let (Ui)i∈I be a directed (arbitrary) family of open sets such that K ⊆⋃
i∈I Ui. By hypothesis, there is some Q in A such that Q ⊆

⋃
i∈I Ui. Since Q is

compact (supercompact), Q ⊆ Uk holds for some k in I. By the hypothesis again,

K ⊆ Uk follows. 2

We now can prove the main result in this section:

Theorem 3.13 For a topological space X, the following are equivalent:

(i) X is sober.

(ii) If A is an irreducible set of QX such that
⋂
A is a subset of an open set U ,

then already some member of A is a subset of U .

(iii) QX is sober.

Proof. The implication (i) ⇒ (ii) holds by 3.11. For (ii) ⇒ (iii), let A be an

irreducible closed set in QX. By 3.12, K =
⋂
A is compact, i.e., an element of

QX. The property K ∈ 2U , i.e., K ⊆ U , is equivalent to A∩2U 6= ∅ by (ii). This

equivalence proves clQX{K} = A.

Finally assume QX is sober and let C be an irreducible closed set of X. Then

A = cl{↑x | x ∈ C} is an irreducible closed set of QX by 2.6 ((x 7→ ↑x) : X → QX

is continuous) and 2.5. Since QX is sober, there is a compact saturated set K

such that A = cl{K}. Hence K ∈ 2U iff {↑x | x ∈ C} meets 2U . Therefore,

{↑x | x ∈ C} and K satisfy the hypothesis of 3.12, whence K is supercompact.

By 2.2, K = ↑a holds for some a in X. For all open sets U , C meets U iff ↑x ⊆ U

for some x in C, iff K = ↑a ⊆ U , iff a in U . This equivalence implies C = cl{a}. 2

Remark 3.14 (1) In Statement (ii) one may replace the collection QX of all

nonempty compact saturated sets by the collection KX of all nonempty compact

sets.

(2) Statement (ii) of 3.13 implies the corresponding statement for filtered sets

F of compact upper sets: Whenever F is a filtered collection of compact saturated

sets and U an open set such that
⋂
F ⊆ U , then Q ⊆ U for some Q ∈ F . In [4,

Definition I-1.24.1] a space has been called well-filtered, if this latter property holds.

227

Heckmann and Keimel

This “filtered” version of 3.11 can be derived from 3.2, the filtered version of the

Topological Rudin Lemma. In his PhD thesis [8, Problem 6, p. 120], the first author

asked the question whether the “filtered” version of 3.11 is equivalent to soberness.

The answer is “no”! Hui Kou [10] exhibited a counterexample. Thus 3.13 shows that

the general “irreducible” version of 3.11 is strictly more powerful than the “filtered”

version. In [4, Theorem II-1.21] it is shown nevertheless that “well-filtered” implies

“sober” for locally compact spaces.

(3) The implication (i) ⇒ (iii) in the previous theorem had already been proven

by A. Schalk [14, Lemma 7.20].

4 Quasicontinuous domains

We present an approach to quasicontinuous dcpos by focussing on the poset QfX

of nonempty finitely generated sets and on the poset QX of nonempty compact sat-

urated sets rather than the Scott-open ones. We present simpler proofs of known

results and a characterization of those dcpos that are Smyth powerdomains of qua-

sicontinuous domains.

4.1 The way-below relation on finite subsets

Throughout let X be a dcpo. As before, QfX denotes the collection of all nonempty

finitely generated upper sets ordered by v, that is, reverse inclusion. By F,G,H, . . .

we always denote nonempty finite subsets.

Let us recall the definition of the way-below relation on an arbitrary poset P .

For x, y ∈ P one writes

x� y ⇐⇒ (y ≤
∨↑

D ⇒ ∃d ∈ D. x ≤ d)

that is, x� y if, for every directed subset D of P such that y ≤
∨↑

D, there is an

element d ∈ D with x ≤ d, provided that D has a least upper bound in P .

Let us apply this definition to the poset QfX ordered by reverse inclusion: ↑G�
↑H iff for every v-directed family (↑Fi)i such that

⋂
i ↑Fi is a finitely generated

upper set contained in ↑H, there is an i such that Fi ⊆ ↑G.

We will write G � H if ↑G � ↑H. The following lemma shows that the way-

below relation on the poset QfP agrees with the way-below relation defined for

finite subsets of a dcpo in [5] and in [4, Definition III-3,1]:

Lemma 4.1 For nonempty finite subsets of a dcpo X one has G� H if and only

if, whenever h ≤
∨↑

D for some h ∈ H and directed D, then d ∈ ↑G for some

d ∈ D.

228

Heckmann and Keimel

Proof. Suppose first that G� H according to our definition. Consider a directed

set D such that
∨↑

D ∈ ↑H. Then the principal ideals ↑d, d ∈ D, form a filtered

family of nonempty finitely generated upper sets with
⋂
d∈D ↑d = ↑(

∨↑
D) ⊆ ↑H.

Thus, if ↑G� ↑H, there is a d ∈ D such that d ∈ ↑G.

Conversely, suppose that
∨↑

D ∈ ↑H ⇒ ∃d ∈ D. d ∈ ↑G. In order to show that

↑G � ↑H, consider any filtered family of nonempty finitely generated upper sets

(↑Fi)i whose intersection is a finitely generated upper set contained in ↑H. Suppose

that none of the Fi is contained in ↑G. Then the F ′i = Fi \ ↑G are nonempty and

they still form a v-directed family. By Jung’s version 3.5 of Rudin’s Lemma, there

is a directed set D ⊆
⋃
i F
′
i such that D ∩ F ′i 6= ∅ for all i. Then

∨↑
D ∈ ↑F ′i ⊆ ↑Fi

for all i, whence
∨↑

D ∈
⋂
i ↑Fi ⊆ ↑H. By our hypothesis, this implies d ∈ ↑G for

some d ∈ D, which contradicts the fact that d belongs to some F ′i which is disjoint

from ↑G by its definition. Thus, some Fi is contained in ↑G. 2

We abbreviate G� {y} by G� y. As a special case of the previous lemma we

obtain:

Corollary 4.2 G� y iff (y ≤
∨↑

D ⇒ ∃d ∈ D. d ∈ ↑G).

In particular, {x} � {y} in QfX iff x � y in X. Thus the canonical map

x 7→ ↑x:X → QfX is an embedding for the order, for directed suprema and for �.

Also note that G� H iff G� y for all y ∈ H.

4.2 Quasi-continuous dcpos

Recall that a poset P is called continuous if, for all x ∈ P , the set of all y � x is

directed and x =
∨↑{y | y � x}. We now define:

Definition 4.3 A dcpo X is called quasicontinuous if the poset QfX of nonempty

finitely generated upper sets ordered by reverse inclusion v is continuous.

In the following proposition we show that our definition of quasicontinuity is

equivalent to the one given in [5] and [4, Definition III-3.2]:

Proposition 4.4 A dcpo X is quasicontinuous iff (*) for every x ∈ X the family

of nonempty finite sets F � x is v-directed and
⋂
F�x ↑F = ↑x, that is, for all

y 6≥ x there is a finite F � x such that y 6∈ ↑F .

Proof. Suppose first that X is quasicontinuous according to our definition, that

is, (QfX,v) is a continuous poset. Then the F � x form a v-directed subset of

Qf (P) and ↑x =
⋂
{↑F | F � x}.

Suppose conversely that condition (*) is satisfied. As we have remarked, we

have F � G iff F � x for all x ∈ G. By hypothesis, the set of F � x is a v-ideal.

229

Heckmann and Keimel

In a semilattice, an intersection of finitely many ideals is an ideal. Thus, the set of

F � G is v-directed. Further
⋂
F�G ↑F =

⋃
x∈G

⋂
F�x ↑F =

⋃
x∈G ↑x by condition

(*), = ↑G. 2

We deduce some properties of quasicontinuous dcpos X:

Properties 4.5 Let X be a quasicontinuous dcpo.

(i) The way-below relation F � G on QfX has the interpolation property. In

particular, if F � x, then there is a G such that F � G � x. (Compare [4,

Proposition III-3.5].)

Indeed, by definition QfX is a continuous poset, and the way-below relation

on every continuous poset has the interpolation property.

(ii) A subset U of X is Scott-open if and only if, for every x ∈ U , there is a

nonempty finite set F � x such that ↑F ⊆ U . (Compare [4, Proposition

III-3.6].)

Proof. Let U be a Scott-open subset of X and x ∈ U . We know that ↑x =⋂
F�x ↑F . Since the collection of F � x is v-directed, Corollary 3.9 tells us

that there is an F � x such that F ⊆ U . Suppose conversely that for every

x ∈ U there is a finite set F � x such that ↑F ⊆ U . In order to show that

U is Scott-open, notice first that U is an upper set; indeed, for every x ∈ U
there is a finite set F � x such that ↑F ⊆ U , whence ↑x ⊆ U . Now, consider

any directed family (xi)i such that
∨↑

xi ∈ U . By hypothesis there is a finite

F �
∨↑

i xi such that ↑F ⊆ U ; hence there is an element x ∈ F and an i such

that x ≤ xi, whence xi ∈ U . 2

(iii) For every nonempty finite subset F , the set {x ∈ X | F � x} is the interior

of ↑F for the Scott topology and, hence, Scott open. Moreover, the sets of the

form {x ∈ X | F � x}, F finite, form a basis for the Scott topology on X.

(Compare [4, Proposition III-3.6].)

Proof. For a nonempty finite set F let U = {x ∈ X | F � x}. By the

interpolation property, for every x ∈ U there is an F ′ such that F � F ′ � x.

Then F � x′ for every x′ ∈ F ′, whence F ′ ⊆ U . By the previous item we

conclude that U is Scott-open. Further, U is the interior of ↑F . Let indeed x

be an element in the interior of ↑F . There is a finite set F ′ in int ↑F such that

F ′ � x. Then also F � x, whence x ∈ U . 2

(iv) Every nonempty compact saturated subset Q of X has a neighborhood basis of

finitely generated upper sets.

Proof. Let Q be nonempty, compact and saturated. Let U be a Scott-open

230

Heckmann and Keimel

set containing Q. By property (ii), for x ∈ Q we may choose a finite set Fx ⊆ U
such that Fx � x. By property (iii), ↑Fx is a neighborhood of x for the Scott

topology. Since Q is compact, finitely many of those neighborhoods cover Q.

Thus there is a finite subset F in U such that ↑F is a neighborhood of Q.

Thus, Q has a neighborhood basis of finitely generated upper sets. 2

(v) A quasicontinuous dcpo X is locally compact for its Scott topology. (Compare

[4, Proposition III-3.7(a)].)

By (iv) every x ∈ X has a neighborhood basis of finitely generated upper

sets and those are compact.

(vi) On QX, the upper Vietoris topology agrees with the Scott topology. (Compare

[14, Lemma 7.26][6, Corollary 3.6].)

Proof. The basic open sets for the upper Vietoris topology, 2U for Scott-open

U ⊆ X, are also Scott-open in QX. Indeed if (↑Fi) is a v-directed family such

that
⋂
i ↑Fi ⊆ U , then ↑Fi ⊆ U for some i by Corollary 3.9.

Conversely, a basic open set of the Scott topology on QX is of the form

{Q ∈ QX | ↑F � Q} and this set can be rewritten as 2V where V = {x ∈
X | F � x} is Scott-open by (iii). 2

(vii) A quasicontinuous dcpo X is sober. (Compare [4, Proposition III-3.7].)

Indeed, QX is a continuous dcpo, hence sober for its Scott topology. Since

the Scott topology agrees with the upper Vietoris topology (vi), X is sober by

Theorem 3.13.

Let us draw some conclusions for the powerdomain QX of all nonempty compact

saturated subsets:

Proposition 4.6 Let X be a quasicontinuous dcpo. Then

(1) QX is a continuous semilattice with respect to the operation KuK ′ = K∪K ′,
(2) the nonempty finitely generated upper sets form a basis QfX of QX,

(3) the semilattice operation preserves the way-below relation in the sense that

K � Q, K ′ � Q′ imply K uK ′ � Q uQ′.
Moreover, the canonical embedding ηX = (x 7→ ↑x):X → QX is an embedding

for the respective Scott, lower and Lawson topologies.

Proof. Since X is locally compact for the Scott topology by 4.5(v), QX is a con-

tinuous dcpo in which K � Q iff K is a neighborhood of Q by [14, Proposition

7.25]. The finitely generated upper sets form a basis by 4.5(iv). Property (3) is a

consequence of the fact that if K is a neighborhood of Q and K ′ a neighborhood of

Q′, then K ∪K ′ is a neighborhood of Q ∪Q′.

231

Heckmann and Keimel

The map ηX = (x 7→ ↑x):X → QX is an embedding of X (with the Scott

topology) into QX with the upper Vietoris topology which agrees with the Scott

topology by 4.5(vi).

The map ηX is also an embedding for the respective lower topologies: Since every

compact saturated set is the intersection of a filtered family of finitely generated

upper sets, a subbasis for the closed sets of the lower topology on QX is given by

the sets of the form {Q ∈ QX | Q ⊆ ↑F}, where F ranges over the finite subsets of

X. The inverse image of such a set under ηX is the set {x ∈ X | ↑x ⊆ ↑F} = ↑F ,

and these sets form a basis for the closed sets for the lower topology on X. 2

Since the Lawson topology on the continuous dcpo QX is regular and Haus-

dorff, these properties are inherited by the Lawson topology on X. (Compare [4,

Proposition III-3.7(b)].)

4.3 Abstract characterization of the domains QX for quasicontinuous X

We intend to show that the properties (1), (2), and (3) in Proposition 4.6 character-

ize those dcpos that are (isomorphic to) the powerdomain of all compact saturated

subsets of quasicontinuous dcpos.

For this we have to identify X in QX. In QX we can find the elements x of

X through the sets of the form ↑x. Can we distinguish these particular compact

saturated sets from the others in the domain QX by an intrinsic property?

Recall that an element p of a meet-semilattice is called prime if x∧y ≤ p implies

x ≤ p or y ≤ p. If there is a top element, we consider it to be prime as in [4]. The

property of being prime extends from finite meets to meets of compact sets:

Lemma 4.7 If p is a prime element in a quasi-continuous meet-semilattice S and

Q a Scott-compact subset of S with a greatest lower bound
∧
Q in S then

∧
Q ≤ p

implies that q ≤ p for some q ∈ Q.

Proof. Assume q 6≤ p for all q ∈ Q. Then for all q in Q, there is a finite Fq � q

such that p 6∈ ↑Fq. The sets {x | Fq � x}, q ∈ Q, form an open cover of Q. By

compactness, there is a finite G ⊆ Q such that Q ⊆
⋃
q∈G{x | Fq � x}. Let F be

the finite set
⋃
q∈G Fq. Then Q ⊆ ↑F , and so p ≥

∧
Q ≥

∧
F . Since p is prime,

there is some a in F such that p ≥ a, whence there is some q in G such that p ∈ ↑Fq
– a contradiction. 2

We use this lemma for the following:

Lemma 4.8 Let X be a quasicontinuous dcpo. The prime elements of the u-

semilattice QX are the principal filters ↑x, x ∈ X.

232

Heckmann and Keimel

Proof. All the ↑x, x ∈ X, are prime in QX. Indeed ↑x ⊆ K1 ∪K2 implies x ∈ K1

or x ∈ K2, whence ↑x ⊆ K1 or ↑x ⊆ K2. It remains to show that every prime

element in QX is of the form ↑x for some x ∈ X.

Consider K ∈ QX. The set K = {↑x | x ∈ K} is a compact subset of QX. Its

union is K, so K has an infimum K =
d
K in QX. We now use Lemma 4.7: If K

is prime in QX, then there is an element ↑x ∈ K such that ↑x v K, which implies

that K = ↑x for some x ∈ K. 2

We now can formulate our representation theorem:

Theorem 4.9 Suppose that

(1) L is a continuous directed complete ∧-semilattice,

(2) the finite meets of prime elements form a basis of L,

(3) the way-below relation � on L is preserved by the semilattice operation ∧,

that is, if a� b and a′ � b′ then a ∧ a′ � b ∧ b′.
Then the prime elements of L form a quasicontinuous dcpo X in the induced

order and L is isomorphic to the continuous u-semilattice of all compact saturated

subsets of X.

We will prove the theorem in several steps. For this we use two relaxed notions

of primeness. An ideal I of a ∧-semilattice is called prime if a∧ b ∈ I implies a ∈ I
or b ∈ I. An element p is called pseudoprime if there is a prime ideal I such that

p =
∨↑

I. Further, p is called weakly prime if x1 ∧ . . . ∧ xn � p implies xi ≤ p for

some i (compare [4, Definition V-3.1 and Lemma V-3.4]).

Clearly prime elements are pseudoprime and weakly prime. By [4, Proposition

I-3.28] we have:

Lemma 4.10 Let L be a continuous directed complete ∧-semilattice. Suppose that

∧ preserves the way-below relation in L. Then the pseudoprime elements agree with

the prime elements.

In order to prove that weakly prime elements are pseudoprime in our setting we

use distributivity. The following definition of distributivity for semilattices agrees

with the usual definition of distributivity when applied to lattices:

Definition 4.11 A ∧-semilattice is distributive if the following property holds for

all a, b, and x: If a∧ b ≤ x, then there exist a′ ≥ a and b′ ≥ b such that a′ ∧ b′ = x.

By [4, Corollary I-3.13], in a distributive continuous ∧-semilattice every element

is a meet of primes. Let us remark:

Lemma 4.12 If the directed complete ∧-semilattice L satisfies the three hypotheses

of Theorem 4.9, then L is a distributive semilattice.

233

Heckmann and Keimel

Proof. We first consider the basis Lf of L consisting of all finite meets of prime

elements. Clearly, Lf is a subsemilattice of L. We show that Lf is distributive. Let

a, b, x be elements of Lf such that a ∧ b ≤ x. Let G,H,F be finite sets of prime

elements such that a =
∧
G, b =

∧
H, x =

∧
F . We first claim that F ⊆ ↑(G∪H).

Indeed, as a ∧ b ≤ x, we have
∧

(G ∪H) =
∧
G ∧

∧
H ≤

∧
F ≤ p for every p ∈ F ;

since p is prime, there is a q ∈ G ∪H such that q ≤ p. Now let G′ = F ∩ ↑G and

H ′ = F ∩ ↑H and a′ =
∧
G′, b′ =

∧
H ′. Then a′ ∧ b′ =

∧
(F ∩ ↑G) ∧

∧
(F ∩ ↑H) =∧

((F ∩ ↑G) ∪ (F ∩ ↑H)) =
∧

(F ∩ (↑G ∪ ↑H)) =
∧
F = x.

It is more or less routine to check now that L itself is a distributive semilattice.2

We will need the following separation property:

Lemma 4.13 Let F be a filter and J an ideal disjoint from F in a distributive

∧-semilattice L. Then there is a prime ideal I containing J but still disjoint from

F .

This is Lemma 2 in [7, Section II.5]. For a proof [7] only refers to the correspond-

ing proof for distributive lattices, although in the case of semilattices the proof is

slightly more sophisticated. An explicit proof can be found, for example, in [1].

Lemma 4.14 (compare [4, Proposition I-3.25]) In a continuous directed complete

distributive ∧-semilattice L, the pseudoprime elements agree with the weakly prime

elements.

Proof. Let p be pseudoprime and I a prime ideal with p =
∨↑

I. Suppose x1∧ . . .∧
xn � p. Then x1∧ . . .∧xn ∈ I which implies xi ∈ I for some i. Thus, xi ≤

∨↑
I = p

which shows that p is weakly prime.

Suppose now that L is distributive and p weakly prime. Let F be the filter

generated by L \ ↓p. Since p is weakly prime, F is disjoint from the ideal ��p = {a ∈
L | a� p}. By distributivity and Lemma 4.13, there is a prime ideal I containing

the ideal ��p disjoint from F , hence contained in ↓p. Thus p =
∨↑��p ≤ ∨↑

I ≤ p,

whence p =
∨↑

I, that is, p is pseudoprime. 2

Proof of Theorem 4.9. Suppose that L satisfies the hypotheses of the theorem.

Let X be the set of prime elements of L. Under our hypotheses the notions prime,

weakly prime and pseudoprime agree by Lemma 4.10 and Lemma 4.14. We conclude

that the join of a directed set D of prime elements is prime; indeed, ↓D is a prime

ideal, whence
∨↑

D is pseudoprime and consequently prime.

Now let Lf be the set of all finite meets of primes in L. We firstly notice that,

for every x ∈ L, the sets ��f = {f ∈ Lf | f � x} form a neighborhood basis with

respect to the Scott topology. Indeed, if U is a Scott open neighborhood of x ∈ L,

234

Heckmann and Keimel

there is an x′ ∈ U with x′ � x. Since x′ is the sup of a directed family of elements

in Lf , there is an element f ∈ Lf with f ∈ U and f ≤ x′ whence ��f is a Scott-open

neighborhood of x contained in U .

Now look at a p ∈ X and a finite subset F of X such that
∧
F � p in L.

We conclude that F � {p} in X. Indeed, if D is a directed set in X such that

p ≤
∨↑

D, then there is a d ∈ D such that
∧
F ≤ d which implies that x ≤ d for

some x ∈ F , since d is prime. The set of all f ∈ Lf such that f � p is directed,

since the ��f, f � p, f ∈ Lf form a neighborhood base of p in L. Let q be a prime

element with p 6≤ q. There is an f =
∧
F ∈ Lf such that f � p but f 6≤ q. Thus

F � {p} in X but q 6∈ ↑XF . This shows that X is a quasicontinuous dcpo.

We now have to show that L is isomorphic to the domain QX of Scott-compact

saturated subsets of X. For every a ∈ L consider the saturated subset ↑a ∩ X of

X. Suppose first a ∈ Lf . Then a = p1 ∧ . . .∧ pn for prime elements p1, . . . , pn ∈ X.

For any p ∈ X, one has p ≥ a iff p ≥ pi for some i. Thus, ↑a ∩X is the upper set

in X generated by the finite set {p1, . . . , pn}, hence a compact saturated subset of

X. An arbitrary a ∈ L is the sup of the directed family of elements fj in Lf with

fj � a. Then ↑a ∩ X is the intersection of the filtered family ↑Fj ∩ X of finitely

generated upper sets in X, hence compact and saturated by 3.10. Thus a 7→ ↑a∩X
is a map from L into QX, which clearly is order preserving.

Conversely, let K be a Scott-compact saturated subset of X. Then K is the

intersection of the filtered family ↑Fj of finitely generated upper sets in X such that

Fj � K. We assign to K the element
∨↑

j

∧
Fj of L and we have a map from QX

to L which also is clearly order preserving.

It is straightforward to check that these two maps are inverse to each other, and

the proof is complete. 2

References

[1] Celani, S. A., Topological representation of distributive semilattices, Scientiae Mathematicae Japonicae
Online 8 (2003), 41–51.

[2] Cowen, R. J., Some combinatorial theorems equivalent to the prime ideal theorem, Proceedings of the
American Mathematical Society 41 (1973), 268–273.

[3] Erné, M., Sober spaces, well-filtration and compactness principles. Preprint, Universität Hannover,
http://www.iazd.uni-hannover.de/~erne/preprints/sober.pdf

[4] Gierz, G., K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, “Continuous Lattices
and Domains,” Encyclopedia of Mathematics and its Applications, vol.93, Cambridge University Press,
2003, xxxvi+591 pages.

[5] Gierz, G., J. D. Lawson, and A. R. Stralka, Quasicontinuous posets, Houston Journal of Mathematics
9(2) (1983), 191–208.

[6] Goubault-Larrecq, J., QRB-domains and the probabilistic powerdomain, Logical Methods in Computer
Science 8(1:14) (2012), 1–33.

235

http://www.iazd.uni-hannover.de/~erne/preprints/sober.pdf

Heckmann and Keimel

[7] Grätzer, G., “Lattice Theory: Foundations,” Birkhäuser, 2011.

[8] Heckmann, R., “Power Domain Constructions,” PhD Dissertation, Universität des Saarlandes, 1990.
http://rw4.cs.uni-sb.de/~heckmann/diss/diss.html

[9] Jung, A., “Cartesian Closed Categories of Domains,” CWI Tracts vol. 66, Centrum voor Wiskunde en
Informatica, Amsterdam 1989, 107 pp.

[10] Kou, Hui, Uk-admitting dcpo’s need not be sober. In K. Keimel, G.-Q. Zhang, Y.-M. Liu, and Y.-X.
Chen (eds.), “Domains and Processes,” Proc. of the First Int. Conf. on Domain Theory, Shanghai 1999,
Semantic Structures in Computation vol. 1, pages 41-50. Kluwer, 2001.

[11] Li G. and L. Xu, QFS-Domains and their Lawson compactness. Order 30 (2013), 233–248.

[12] Lystad, G. S., “Compact Zero-dimensional Semilattices,” Ph.D. Dissertation, University of California,
Riverside, 1978.

[13] Rudin, M. E., Directed sets which converge, Proc. Riverside Symposium on Topology and Modern
Analysis, 1980, 305–307.

[14] Schalk, A., “Algebras for Generalized Power Constructions,” PhD thesis, Technische Universität
Darmstadt, 1993. http://www.cs.man.ac.uk/~schalk/publ/index.html

[15] Smyth, M. B., Powerdomains, Journal of Computer and System Sciences 16 (1978), 23–36.

[16] Smyth, M. B., Powerdomains and predicate transformers: a topological view, In J. Diaz (ed.),
“Automata, Languages and Programming,” Lecture Notes in Computer Science 154, 662–675. Springer
Verlag, 1983.

[17] Venugopalan, P., Quasicontinuous posets, Semigroup Forum 41 (1990), 193–200.

236

http://rw4.cs.uni-sb.de/~heckmann/diss/diss.html
http://www.cs.man.ac.uk/~schalk/publ/index.html

MFPS 2013

On Block Structures in Quantum
Computation

Bart Jacobs

Institute for Computing and Information Sciences (iCIS),
Radboud University Nijmegen, The Netherlands.

Web address: www. cs. ru. nl/ B. Jacobs

June 24, 2013

Abstract

A block is a language construct in programming that temporarily enlarges the state space. It is typically
opened by initialising some local variables, and closed via a return statement. The “scope” of these local
variables is then restricted to the block in which they occur. In quantum computation such temporary
extensions of the state space also play an important role. This paper axiomatises “logical” blocks in a
categorical manner. Opening a block may happen via a measurement, so that the block captures the
various possibilities that result from the measurement. Following work of Coecke and Pavlović we show
that von Neumann projective measurements can be described as an Eilenberg-Moore coalgebra of a comonad
associated with a particular kind of block structure. Closing of a block involves a collapse of options. Such
blocks are investigated in non-deterministic, probabilistic, and quantum computation. In the latter setting
it is shown that there are two block structures in the category of C∗-algebras, via copowers and via matrices.

Keywords: Block structure, non-deterministic, probabilistic, quantum program semantics, effect logic

1 Introduction

In imperative programming languages one may find block structures of the form:

{int v = 0; ...; return} (1)

Such a block is a temporary extension of the state space. It is “opened” by initial-

isation of some variables, and “closed” by a return statement. Although quantum

programming is still in an embryonic state, it is clear, at least at the abstract level,

that some sort of block structure is essential. For instance, in [9, Corollary 4.19]

one finds that each completely positive map S : DM(H)→ DM(H) between density

matrices on a Hilbert space H — the interpretation of a quantum program — is of

the form:

S(ρ) = trK
(
U(ρ⊗ ξ)U †

)
,

1 bart@cs.ru.nl

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

www.cs.ru.nl/B.Jacobs

Jacobs

where U is unitary operator on a state space H ⊗K enlarging H with an “ancilla”

spaceK, ξ is a pure state |v 〉〈 v | for some vector |v 〉 ∈ K, and trK is the partial trace

operation. Essentially, this normal form result is based on Stinespring’s Theorem

(see loc. cit.). Here we see, similar to (1), extension of the state with K, opening of

this block via the initial value ξ, and closing of the block via the partial trace trK .

In this paper we explore block structures at a more elementary level. They are

defined as a collection of endofunctors Bn : A→ A, for natural numbers n > 0, on a

category A, together with “in” and “out” maps for opening and closing a block. A

“logical” block structures comes equipped with “characteristic” or “measurement”

maps X → Bn(X), induced by n-tests of predicates. Such maps can also open a

block structure, via the various options that result from measurement. These log-

ical block structures will be described in various categories, for non-deterministic,

probabilistic (both discrete and continuous), and quantum computation. Interest-

ingly, on Hilbert spaces with their standard logic of effects, there is no logical block

structure, because there is no operation for closing blocks. This structure does exist

on C∗-algebras. Hence, not directly on a Hilbert space H, but on the associated

C∗-algebra L(H) of endomaps, we find the relevant logical block structure.

In the final section we use these logical block structures to give a diagrammatic

description of two familiar quantum protocols, namely superdense coding and tele-

portation. The ultimate goal is to develop an appropriate logic for such protocols

and to formalise the representation in a computer algebra tool, for simulation and

verification. Thus, the paper follows earlier work on semantics of quantum pro-

gramming languages, like, for instance [1,19,20,21] and [7].

Among the logical predicates that we use there is a subclass of “projections”,

with as typical property that iterated measurements give the same outcome. In [3]

it was noticed that this property (of von Neumann projective measurements) is

captured categorically by the “δ-law” for an Eilenberg-Moore coalgebra c, which

requires δ ◦ c = T (c) ◦ c, where T is the comonad involved; this corresponds to the

requirement PiPj = δijPi. The other equality that such a coalgebra must satisfy,

namely ε ◦ c = id, corresponds to the condition
∑

i Pi = 1. The block structures

that we use here allow us to generalise this approach in several directions, by showing

that it also:

• occurs in simpler situations than quantum models, namely in non-deterministic

and in probabilistic models, represented by the Kleisli categories of the powerset

monad P, and of the distribution and Giry monads D and G;

• extends to C∗-algebras, but only in the commutative case, for one of the available

block structures, namely the “copower” one that forms a comonad.

This paper unveils two block structures on C∗-algebras: one given by copowers

and one by matrices. At this stage it fails to provide an answer to the question

whether one of them is the right one, and in which sense? This will require more

research.

238

Jacobs

2 Block structures

This section contains the basic definition of a block structure as a collection of

endofunctors indexed by natural numbers, and also some examples. It starts with

a very basic result describing some of the relevant endofunctors as (co)monads.

We shall write + for a coproduct in a category, with coprojections κi : Xi →
X1+X2 and cotupling [f1, f2] : X1+X2 → Y , for fi : Xi → Y . For maps gi : Xi → Yi
there is the coproduct of maps g1 + g2 = [κ1 ◦ g1, κ2 ◦ g2] : X1 + X2 → Y1 + Y2.

Dually, we write products as ×, with projections πi : X1 × X2 → Xi and tupling

〈f, g〉 : Y → X1 ×X2.

Lemma 2.1 Let C be a category with coproducts +. For each natural number

n > 0, the n-fold copower functor n · (−) : C→ C is a comonad, where

n ·X = X + · · ·+X︸ ︷︷ ︸
n times

The counit ε : n ·X → X and comultiplication δ : n ·X → n · (n ·X) are given by:

ε = ∇ = [id, . . . , id] δ = κ1 + · · ·+ κn = [κi ◦ κi]i≤n.

Dually, in presence of products ×, the n-fold power functor (−)n is a monad on

C, with unit η = ∆ = 〈id, . . . , id〉 : X → Xn and multiplication µ = 〈πi ◦
πi〉i∈n : (Xn)n → Xn. �

On an abstract level these (co)monad structures arise because the n-element

set n carries a comonoid structure 1
!←− n 〈id,id〉−−−−→ n× n. But on a more concrete

level, it is not hard to verify the comonad equations ε ◦ δ = id = (n · ε) ◦ δ and

δ ◦ δ = (n · δ) ◦ δ.

Definition 2.2 A block structure on a category A consists of a collection of endo-

functors Bn : A→ A, for n > 0, with natural isomorphisms

B1(X) ∼= X and Bm(Bn(X)) ∼= Bm×n(X), (2)

and with two collections of natural transformations inn : Id ⇒ Bn and outn : Bn ⇒
Id with outn ◦ inn = id, as in:

X
inn //Bn(X)

outn
��
X

For the comonad X 7→ n · X and monad X 7→ Xn from Lemma 2.1 there are

obvious isomorphisms as in (2), namely:

1 ·X ∼= X m · (n ·X) ∼= (m× n) ·X X1 ∼= X (Xn)m ∼= Xm×n.

One can turn the copower n · (−) into a block structure by choosing the first copro-

jection κ1 : X → n · X as “in”. This however, looks rather arbitrary. In the next

239

Jacobs

example we see that a more natural option exists in a quantitative setting, as given

by the Kleisli category of the distribution monad D. We recall that D is the (finite

discrete) distribution monad D : Sets→ Sets, given by formal finite convex sums:

D(X) = {ϕ : X → [0, 1] | supp(ϕ) is finite, and
∑

x ϕ(x) = 1}.

Such an element ϕ ∈ D(X) may be identified with a finite, formal convex sum∑
i rixi with xi ∈ X and ri ∈ [0, 1] satisfying

∑
i ri = 1. The unit η : X → D(X)

and multiplication µ : D2(X) → D(X) of this monad are given by singleton/Dirac

convex sum ηD(x) = 1x and by matrix multiplication: µD(Φ)(x) =
∑

ϕ Φ(ϕ) ·ϕ(x).

Example 2.3 The Kleisli category K`(D) of the distribution monad D : Sets →
Sets inherits coproducts + from Sets, so that X 7→ n ·X is a comonad, following

Lemma 2.1. We can turn n · (−) into a block structure via an “in” map in K`(D),

namely

X
inn // n ·X given by x � // 1

nκ1x+ · · ·+ 1
nκnx.

Thus, inn(x) ∈ D(X) defines a uniform distribution over the various coprojections

κix ∈ n · X. Taking the counit ε = ∇ : n · X → X as “out” map we get a block

structure. Writing Kleisli composition as g � f = µD ◦ D(g) ◦ f , we have:(
∇ � inn

)
(x) =

(
µD ◦ D([ηD, . . . , ηD])

)(∑
i

1
nκix

)
= µD

(∑
i

1
n([ηD, . . . , ηD] ◦ κi)x

)
= µD

(∑
i

1
n1x

)
= µD

(
1(1x)

)
= 1x = ηD(x) = id(x).

The product case X 7→ Xn is a bit more subtle, because × is a tensor, not a

cartesian product, on K`(D). But since D(1) = 1, the tensor unit is the terminal

object 1, so we have a tensor with projections. This allows us to define η and µ

as in Lemma 2.1. An associated “out” map can be defined, again via a uniform

distribution:

Xn outn //X namely (x1, . . . , xn) � // 1
nx1 + · · ·+ 1

nxn

Then: (
outn � η

)
(x) =

(
µD ◦ D(outn)

)(
1(x, . . . , x)

)
= µD

(
1outn(x, . . . , x)

)
= µD

(
1(1
nx+ · · ·+ 1

nx)
)

= µD
(
1(1x)

)
= 1x.

Example 2.4 In the Kleisli category K`(P) of the powerset monad P : Sets →
Sets the coproducts + are also products (and thus “biproducts”). This means that

we have a particularly simple example of a block structure, namely:

X
in=η=∆ // n ·X out=ε=∇ //X (3)

where η and ε are the unit and counit from Lemma 2.1. Explicitly, in(x) =

{κ1x, . . . , κnx} and out(κix) = {x}.

240

Jacobs

Example 2.5 The category Hilb of Hilbert spaces (over the complex numbers)

also has biproducts ⊕, given by direct sums. Hence we can form blocks Bn(H) =

n · H = H ⊕ · · · ⊕ H as before, for a Hilbert space H. But the obvious maps

in = ∆ and out = ∇ as in (3) do not work in this case. One has to compensate by

appropriate division. This can be done on either side, as in:

H
in= 1

n
∆ // n ·H

out=∇=
∑

��

H in=∆ // n ·H
out= 1

n
∇

��
H H

(4)

where (1
n∆)(x) = (1

nx, . . . ,
1
nx) and (1

n∇)(x1, . . . , xn) = x1+···+xn
n . Alternatively, it

can be done in a more symmetric manner:

H
in= 1√

n
∆
// n ·H

out= 1√
n
∇

��
H

(5)

In this symmetric case we have in† = out, where (−)† is the conjugate transpose.

The equation in† ◦ in = id makes in a dagger mono — and out a dagger epi.

3 Blocks and predicates

This section describes how predicates may be related to block structures via certain

“characteristic” or “measurement” maps, much like in [10]. We assume that the

predicates, on an object in a base category, carry the structure of an effect algebra.

Such effect algebras are generalisations of logical structures used in classical logic

(esp. Boolean algebras), in probabilistic logic (fuzzy predicates), and in quantum

logic (projections and effects). Briefly, an effect algebra is a partial commutative

monoid, with partial binary operation > and zero 0, together with a unique ortho-

complenent x⊥, such that x> x⊥ = 1 = 0⊥, and such that x> 1 is defined only for

x = 0. The main example is the unit interval [0, 1], with r > s defined and equal

to the sum r + s if r + s ≤ 1, and with r⊥ = 1 − r. In a pointwise manner this

structure extends to fuzzy predicates [0, 1]X , see below. Each Boolean algebra also

forms an effect algebra, with x> y defined and equal to the join x ∨ y if x ∧ y = 0.

We shall use this below for powerset Boolean algebras P(X), where > is union of

disjoint sets. For more information, see e.g. [5,4,12,13]. A morphism of effect alge-

bras f : E → D is a function between the underlying sets satisfying f(1) = 1 and:

if x ⊥ y, then f(x) ⊥ f(y) and f(x> y) = f(x) > f(y). This yields a category EA.

An n-test in an effect algebra E is an n-tuple e = (e1, . . . , en) of elements ei ∈ E
which satisfy e1 > · · · > en = 1. In this setting we describe a “logic of effects”

categorically as a functor (or “indexed category”) Pred : A → EAop. It maps an

object X ∈ A to the effect algebra Pred(X) of predicates on X. A map f : X → Y

gives rise to a “substitution” functor Pred(f) : Pred(Y)→ Pred(X). In categorical

logic it is often written as f−1.

241

Jacobs

Definition 3.1 Let A be a category with an indexed category Pred : A → EAop

of effect algebras, and with a block structure Bn : A → A. We say this is a logical

block structure if

(i) for each X ∈ A and n > 0 there is a “universal” n-test on Bn(X), written

as Ω = (Ω1, . . . ,Ωn), with Ωi ∈ Pred(Bn(X)) satisfying Ω1 > · · · > Ωn =

1; moreover, these Ωi should be stable under substitution, in the sense that

Bn(f)−1(Ωi) = Ωi, for each f : X → Y in A;

(ii) for each X ∈ A and n-test p = (p1, . . . , pn) on X, where pi ∈ Pred(X) satisfy

p1 > · · ·>pn = 1, there is a “characteristic” map charp : X → Bn(X) in A with

char−1
p (Ωi) = pi, for each i ∈ n.

The characteristic map yields a block opening charp(x) ∈ Bn(X) whose n differ-

ent options are determined by the n predicates pi in p.

Our first example clearly shows the importance of understanding powersets of

predicates as effect algebras, because the disjoint union is crucial for having char-

acteristic maps.

Example 3.2 On the Kleisli category K`(P) of the powerset monad P there is an

indexed category Pred : K`(P) → EAop given by ordinary predicates: Pred(X) =

P(X). This set of predicates is a Boolean algebra, and thus an effect algebra, with

sum > defined as union, but only for disjoint subsets. For a Kleisli map f : X → Y

we have a substitution functor:

P(Y)
f−1=Pred(f) //P(X) given by V � // {x | f(x) ⊆ V }.

(This substitution f−1 is not the same as inverse image, which is often also written

as f−1.)

We show that the block structure Bn(X) = n · X from Example 2.4 is a

logical block structure. For each number n > 0 and set X there is an n-test

Ω = (Ω1, . . . ,Ωn) on Bn(X) = n ·X given by subsets:

Ωi = {κix | x ∈ X} ⊆ n ·X = X + · · ·+X = Bn(X).

These subsets Ωi are all disjoint, so their effect algebra sum Ω1 > · · · > Ωn exists

and equals the maximal predicate 1 = n · X ⊆ n · X in Pred(n · X). It is easy to

see that Ω is stable under composition: for f : X → Y in K`(P),

Bn(f)−1(Ωi) = {z ∈ n ·X | (n · f)(z) ⊆ Ωi} = {κix | x ∈ X} = Ωi.

For an arbitrary n-test U = (U1, . . . , Un) on X, where U1 > · · ·> Un = 1, there

is a characteristic map in the Kleisli category K`(P):

X
charU //Bn(X) namely x � // {κix}, if x ∈ Ui.

Since the predicates Ui are mutually disjoint with join X, this forms a well-defined

map. The required substitution equation in Definition 3.1 (2) holds:

char−1
U (Ωi) = {x | charU (x) ⊆ Ωi} = {x | x ∈ Ui} = Ui.

242

Jacobs

It is not hard to verify that this map charU : X → Bn(X) is an Eilenberg-Moore

coalgebra of the comonad Bn = n · (−), i.e. that the equations outn � charU = id

and δ � charU = Bn(charU) � charU hold, where δ is the comultiplication from

Lemma 2.1. In fact one can prove that there is a bijective correspondence:

Boolean n-tests U = (U1, . . . , Un) in P(X)
==
Eilenberg-Moore coalgebras X −→ Bn(X) in K`(P)

(6)

With intersection ∩ as multiplication operation, each of these predicates Ui is a

projection, since U2
i = Ui ∩ Ui = Ui.

Example 3.3 The Kleisli category K`(D) carries an indexed category

Pred : K`(D) → EAop given by fuzzy predicates: Pred(X) = [0, 1]X . The

effect algebra structure on [0, 1]X is inherited pointwise from [0, 1]. In particular,

for p, q ∈ [0, 1]X , if p(x) + q(x) ≤ 1 for all x ∈ X, then p > q is defined and

(p > q)(x) = p(x) + q(x). Each map f : X → Y in K`(D) yields a substitution

functor:

[0, 1]Y
f−1=Pred(f) // [0, 1]X by q � // λx.

∑
y f(x)(y) · q(y).

We show that the copower block structure X 7→ n ·X from Example 2.3 is logical.

(i) The “universal” n-test Ω consists of predicates Ωi ∈ [0, 1]n·X , given by Ωi(κjx)

is 1 if i = j and 0 otherwise. Then: Ω1>· · ·>Ωn = 1; moreover these predicates

Ωi are stable under substitution.

(ii) For an arbitrary n-test p on X, given by pi ∈ [0, 1]X with p1 > · · ·> pn = 1, we

define a characteristic map charp : X → n ·X in K`(D) via the convex sums:

charp(x) = p1(x)κ1x+ · · ·+ pn(x)κnx,

using that p1(x) + · · ·+ pn(x) = 1. Then:

char−1
p (Ωi)(x) =

∑
z∈n·X charp(x)(z) · Ωi(z)

=
∑

y∈X charp(x)(κiy)

= pi(x).

In general the map charp : X → Bn(X) does not form an Eilenberg-Moore coalgebra

of the comonad Bn: we do have outn � charp = id, but the δ-law may fail. However,

the law holds for n-tests given by fuzzy projections pi ∈ [0, 1]X , satisfying p2
i = pi.

Automatically, pipj = 0, for j 6= i, since the pi add up to 1. It is not hard to see

that these projections correspond to “Boolean” fuzzy tests, determined by indicator

functions 1Ui : X → [0, 1] with 1Ui(x) = 1 if x ∈ Ui and 1Ui(x) = 0 otherwise,

for disjoint subsets Ui ⊆ X with U1 > · · · > Un = 1. Thus we have a bijective

correspondence like in (6):

Boolean n-tests U = (U1, . . . , Un) in P(X)
===
n-tests of projections p = (p1, . . . , pn) in [0, 1]X with p2

i = pi
===

Eilenberg-Moore coalgebras X −→ Bn(X) in K`(D)

(7)

243

Jacobs

The fuzzy predicates in [0, 1]X form not only an effect algebra but an effect

module (see [13] for details): they come with scalar multiplication, with scalars

r from [0, 1], via r · p = λx. r · p(x). In the subcategory EMod ↪→ EA of such

effect modules maps preserve the scalar multiplication. In this setting there are

alternative characterisations of n-tests in [0, 1]X , in the style of [10], which we

express via bijective correspondences:

fuzzy n-tests p = (p1, . . . , pn) in [0, 1]X

==============================
effect module maps [0, 1]n // [0, 1]X
==============================

Kleisli maps X //Bn(1) in K`(D)
=====================================
Kleisli maps X

f
//Bn(X) with outn � f = id

(8)

where 1 = {∗} is the singleton set. The first correspondence is standard. An n-test

p corresponds to a Kleisli map g : X → Bn(1) via g(x) =
∑

i pi(x)κi∗, and to a map

f : X → Bn(X) via f = charp. Such a map f gives rise to an n-test with predicates

pi = λx. f(x)(κix).

Example 3.4 The distribution monad D is used in a categorical approach to dis-

crete probability. For the continuous case one uses the Giry monad [8]. It is defined

as monad G : Meas → Meas on the category of measurable spaces, where G(X)

contains the probability measures ΣX → [0, 1], defined on the measurable subsets

ΣX ⊆ P(X). We briefly illustrate how it carries a logical block structure, in line

with [11]. We follow the constructions and notation used there.

The logic is given by a functor Pred : K`(G)→ EModop that sends a measurable

space X to the homset Pred(X) = Meas(X, [0, 1]) of measurable maps to [0, 1], with

pointwise effect module structure. For a Kleisli map f : X → G(Y) and predicate

q : Y → [0, 1] one defines substitution by integration:

Pred(f)(q) = f−1(q) = λx.

∫
q df(x).

There is a (comonad) block structure Bn(X) = n ·X defined via copowers on K`(G),

with the in : X → G(n ·X) and out : n ·X → G(X) maps given by:

in(x) = λM ∈ Σn·X .
1
n

∑
i 1M (κix) out(κix) = λN ∈ ΣX .1N (x).

The predicates Ωi : n·X → [0, 1] are defined, as in Example 3.3, as Ωi = 1κiX , i.e. as

Ωi(κjx) = 1 if i = j and Ωi(κjx) = 0 otherwise. And for an n-test p = (p1, . . . , pn)

of predicates pi ∈ Pred(X) with p1 > · · · > pn = 1, we can define a characteristic

map charp : X → Bn(X) in K`(G) by:

charp(x) = λM ∈ Σn·X .
∑

i pi(x) · 1M (κix).

Also in this case the n-tests pi : X → [0, 1] that consist of projections, i.e. that

satisfy p2
i = pi, can be characterised as Eilenberg-Moore coalgebras, like in (7).

They also correspond to indicator functions 1Mi , for Mi ∈ ΣX pairwise disjoint.

244

Jacobs

Since the measurable subsets ΣX form an effect algebra, with > given by disjoint

union, they form n-tests in ΣX . Thus we get bijective correspondences:

n-tests M = (M1, . . . ,Mn) in ΣX
==
n-tests of projections p = (p1, . . . , pn) in Meas(X, [0, 1]) with p2

i = pi
==

Eilenberg-Moore coalgebras X −→ Bn(X) in K`(G)

(9)

Example 3.5 In the context of Hilbert spaces, several of the ingredients encoun-

tered above are present, but we do not find a logical block structure, for the standard

logic of effects. We briefly describe the situation, building on Example 2.5.

We start with the logic. We write Hilbisom ↪→ Hilb for the subcategory of

Hilbert spaces with isometries between them. Such an isometry f is bounded linear

function that is a “dagger mono”, i.e. satisfies f † ◦ f = id. There is an “effect”

predicate functor Ef : Hilbisom → EModop that sends a Hilbert space H to the set

of effects:

Ef(H) = {A : H → H | 0 ≤ A ≤ id}.

These effects are the quantum fuzzy/unsharp predicates, see e.g. [16,15,5]. An effect

A>B is defined and equal to A+B if A+B ≤ id. The orthocomplement is given by

A⊥ = id−A. Scalar multiplication rA, for r ∈ [0, 1] is done in a pointwise manner.

Hence this Ef(H) is an effect module.

For a dagger monic map f : H � K one defines f−1 = Ef(f) = f † ◦ (−) ◦
f : Ef(K) → Ef(H). This substitution functor f−1 preserves the effect module

structure because f is a dagger mono.

Let Bn(H) = n ·H = H ⊕ · · · ⊕H be the block structure on Hilb from Exam-

ple 2.5. There is an n-test Ω = (Ω1, . . . ,Ωn) of effects Ωi = κi ◦ πi ∈ Ef(Bn(H)).

More explicitly, Ωi(x1, . . . , xn) = (0, . . . , 0, xi, 0, . . . , 0). These Ωi’s are stable under

substitution.

For an n-test A = (A1, . . . , An) of effects Ai ∈ Ef(H) we can define a character-

istic map charA : H → Bn(H) in Hilbisom as n-tuple of square roots of (positive)

maps:

charA = 〈
√
A1, . . . ,

√
An〉 : H −→ H ⊕ · · · ⊕H = Bn(H).

This characteristic map is a dagger mono, since, as shown in [10]:(
charA

)† ◦ charA = [
√
A1, . . . ,

√
An] ◦ 〈

√
A1, . . . ,

√
An〉 = A1 + · · ·+An = id.

Clearly, we have:

(charA)−1(Ωi) =
(
charA

)† ◦ Ωi ◦ charA
= [
√
A1, . . . ,

√
An] ◦ κ1 ◦ πi ◦ 〈

√
A1, . . . ,

√
An〉

=
√
Ai ◦

√
Ai

= Ai.

The map in = 1√
n

∆: H → Bn(H) in (5) arises in this manner as characteristic

map of the n-test (1
n id, . . . , 1

n id). However, the corresponding “out” map in (5),

245

Jacobs

out = in† = 1√
n
∇, is not a morphism in the category Hilbisom, since it is not a

dagger mono (but a dagger epi). Thus this does not give us a logical block structure

in Hilbisom.

Using ⊕ as coproduct we have a comonad structure (ε, δ) on Bn = n · (−), as in

Lemma 2.1. Following [3] we call a map c : H → Bn(H) in Hilb self-adjoint if the

following diagram commutes.

H c //

η=∆

��

Bn(H)

Bn(H)
δ=κ1⊕···⊕κn

//Bn(Bn(H))

Bn(c†)

OO

This means that each component ci = πi ◦ c : H → H is self-adjoint, i.e. satisfies

c†i = ci.

The subset of projections (or sharp predicates) Pr(H) ↪→ Ef(H) contains those

p : H → H with p ◦ p = p = p†. An n-test A = (A1, . . . , An) in Ef(H) is called

a von Neumann test if each Ai satisfies Ai ◦ Ai = Ai and Ai ◦ Aj = 0 for each

j 6= i. Such an Ai is then a projection. One of the main results of [3] (specifically:

Thm. 16.6) says that there is a bijective correspondence:

von Neumann n-tests p = (p1, . . . , pn) in Ef(H)
===
self-adjoint Eilenberg-Moore coalgebras H → Bn(H)

(10)

A test p corresponds to its characteristic map charp = 〈√p1, . . . ,
√
pn〉 =

〈p1, . . . , pn〉.

4 Copower block structure on C∗-algebras

In the present context all C∗-algebras have a unit. The maps f : A → B between

C∗-algebras that we consider are linear functions which are unital (preserve the

unit) and positive (preserve positive elements: for each x ∈ A there is an y ∈ B
with f(x∗x) = y∗y). We often refer to these morphisms as ‘PU-maps’. We shall

write CstarPU for the category of C∗-algebras with such unital positive maps, and

CCstarPU ↪→ CstarPU for the full subcategory of C∗-algebras with commutative

multiplication. These categories of C∗-algebras are most naturally used in oppo-

site form — as (CstarPU)op and (CCstarPU)op — just like the category cHA of

complete Heyting algebras typically occurs in opposite form, as category of locales

Loc = cHAop, see e.g. [14].

In the literature on C∗-algebras it is most common to use *-homomorphism as

maps. These preserve multiplication (M), involution (I) and are unital (U). In [6]

these *-homomorphisms are called MIU-maps, in order to distinguish them from

the PU-maps which are used here. MIU-maps are very restrictive, which is useful

for Gelfand duality. But the PU-maps are the appropriate notion in a probabilistic

or quantum context.

Let’s write K`N(D) ↪→ K`(D) for the full subcategory with natural numbers

n ∈ N as objects, considered as n-element set. There is a full and faithful func-

tor K`N(D) → (CCstarPU)op, which sends an object n to Cn = C × · · · × C, the

246

Jacobs

n-fold power of the complex numbers C; it sends a Kleisli map f : n → m to the

PU-map Cm → Cn given by v 7→ λi ∈ n.
∑

j∈m f(i)(j) · v(j). This functor re-

stricts to an equivalence between K`N(D) and the subcategory of finite dimensional

commutative C∗-algebras, see [6]. In fact, in [6] it is shown that there is an equiva-

lence between (CCstarPU)op and the Kleisli category of the “Radon” monad on the

compact Hausdorff spaces. The point we are trying to make is that the category

(CCstarPU)op of commutative C∗-algebras is a natural universe for probabilistic

(monadic) computation.

In general, the multiplication term ab, for two positive elements a, b in a C∗-

algebra, need not be positive. The following easy observations will be useful.

Lemma 4.1 Let a be a positive element in an arbitrary C∗-algebra. Then:

(i) x∗ax is positive, for each element x;

(ii) xax is positive, for each positive x;

Proof Write a = y∗y; then x∗ax = x∗y∗yx = (yx)∗(yx) is clearly positive. If x is

positive itself, then x∗ = x, so the second point follows from the first one. �

For two C∗-algebras A,B we write A⊕B for the C∗-algebra with product A×B
as underlying set, with componentwise operations, and with maximum of the norms.

Together with the usual projection and pairing operations this ⊕ forms a product

in CstarPU and CCstarPU, and thus a coproduct in their dual categories. By

Lemma 2.1 the mapping

A 7−→ Bn(A)
def
= n ·A = A⊕ · · · ⊕A

is a comonad on (CstarPU)op and (CCstarPU)op. We show that it extends to a

block structure, both on (CstarPU)op and (CCstarPU)op, namely:

A
inn //Bn(A)

outn //A, (11)

where outn is the diagonal (counit) map A → An given by outn(a) = (a, . . . , a).

The map inn : An → A takes the average: inn(a1, . . . , an) = a1+···+an
n . Keeping the

‘opposite’ in mind we see that the required block structure equation holds:

(
outn ◦op inn

)
(a) = inn

(
outn(a)

)
=
a+ · · ·+ a

n
= a.

We further notice that inn is a PU-map, but outn is a MIU-map.

For a C∗-algebra A we write [0, 1]A = {x ∈ A | 0 ≤ x ≤ 1} for the “effects” in

A, that is, for the positive elements below the unit. These form an effect algebra,

with x > y defined and equal to x + y if x + y ≤ 1. The orthocomplement of

x ∈ [0, 1]A is 1 − x. In fact, [0, 1]A is not just an effect algebra but an effect

module, since scalar multiplication rx, where r is in the unit interval [0, 1] ⊆ R
and x ∈ [0, 1]A, yields an effect rx ∈ [0, 1]A. Each PU-map f : A → B restricts

to a map of effect algebras [0, 1]A → [0, 1]B. In [6] it is shown that the mapping

A 7→ [0, 1]A yields a full and faithful functor CstarPU → EMod. We shall use

it as Pred : (CstarPU)op → EModop, where Pred(A) = [0, 1]A. The substitution

247

Jacobs

functor Pred(f) = f−1 : [0, 1]B → [0, 1]A associated with f : A→ B in (CstarPU)op

is obtained simply by restriction.

In this situation, like in (8), tests can be characterised in various ways.

Lemma 4.2 For a C∗-algebra A, there are bijective correspondences between:

n-tests p = (p1, . . . , pn) in [0, 1]A
==============================
effect module maps [0, 1]n // [0, 1]A
==============================
maps A //Bn(C) in (CstarPU)op

(12)

Proof Given an n-test e = (e1, . . . , en), define h : A → Bn(C) in (CstarPU)op,

that is h : Cn → A in CstarPU, by h(z1, . . . , zn) =
∑

i ziei. This h is clearly

positive, and unital since h(1, . . . , 1) =
∑

i ei = 1. Conversely, a PU-map

f : Cn → A is determined by the values f(|i〉), where |i〉 is the standard base

vector (0, . . . , 1, . . . , 0) ∈ Cn. Since 0 ≤ |i〉 ≤ 1 one has f(|i〉) ∈ [0, 1]A. �

Proposition 4.3 Let −→ai = (a1, . . . , an) ∈ An = Bn(A) be an n-tuple in a C∗-

algebra A.

(i) If
∑

i a
∗
i ai = 1 there is a PU-map:

Bn(A)
meas(−→ai)//A given by

−→
bi

� //
∑

i a
∗
i biai

(ii) If a∗i ai = 1 for each i, then there is a PU-map:

Bn(A)
map(−→ai)=

∏
i a
∗
i (−)ai //Bn(A) given by

−→
bi

� // (a∗1b1a1, . . . , a
∗
nbnan)

Proof The conditions
∑

i a
∗
i ai = 1 and ∀i. a∗i ai = 1 ensure that the functions

meas(−→ai) and map(−→ai) are unital. Positivity is trivial, by Lemma 4.1. �

Example 4.4 Let ψ = (z1, . . . , zn) ∈ Cn be a state, so that ‖ψ‖ = 1. This means

that 〈ψ |ψ〉 =
∑

i zizi =
∑

i |zi|2 = 1, where · is conjugation of complex numbers.

Hence in each C∗-algebra A this ψ gives rise to an n-tuple zi1 with
∑

i(zi1)∗(zi1) =

1. These elements zi1 ∈ A arise via the unique map C → A, using initiality of C
among C∗-algebras. The “measure” map from Proposition 4.3 then gives a PU-map

Bn(A)→ A, namely

(b1, . . . , bn) 7−→
∑

i(zi1)∗bi(zi1) =
∑

i(zizi)bi =
∑

i |zi|2bi.

In the opposite category this operation forms a map A → Bn(A) which describes

how a context is opened and initialised by the state ψ ∈ Cn, via a probabilistic

mixture determined by |zi|2 ∈ [0, 1], corresponding to the Born rule.

It turns out that the “copower” definition Bn = n · (−) yields a logical block

structure, also for C∗-algebras, with predicate logic given by their effects: Pred(A) =

[0, 1]A. In the next section we show that there is another block structure.

Proposition 4.5 The assignment A 7→ Bn(A) = A⊕ · · · ⊕A, with maps (11), is a

logical block structure, both on (CstarPU)op and on (CCstarPU)op.

248

Jacobs

(i) The universal n-test Ω = (Ω1, . . . ,Ωn) consists of Ωi ∈ [0, 1]Bn(A) = ([0, 1]A)n

given by the n-tuple of effects (0, . . . , 1, . . . , 0), with 1 only at the i-th position.

(ii) For an n-test e = (e1, . . . , en) one can define a characteristic maps chare : A→
Bn(A) as:

chare(a1, . . . , an) =
√
e1a1
√
e1 + · · ·+√enan

√
en.

If A is commutative, we get chare(a1, . . . , an) =
∑

i eiai.

Proof It is clear that the predicates Ωi are stable under substitution. Further,

char−1
e (Ωi) = chare(0, . . . , 1, . . . , 0) =

√
ei
√
ei = ei. �

The following result gives a C∗-algebraic version of the correspondences (6), (7),

and (10). It only applies in the commutative case.

Generalising Example 3.5 we call an n-test e = (e1, . . . , en) in a C∗-algebra a

von Neumann n-test if each ei is a projection, i.e. satisfies e2
i = ei, and satisfies

eiej = 0 for each j 6= i.

Theorem 4.6 In a C∗-algebra A there are bijective correspondences:

von Neumann n-tests e = (e1, . . . , en) in [0, 1]A
=====================================

maps A //Bn(C) in (CstarMIU)op

=== (∗)
Eilenberg-Moore coalgebras A −→ Bn(A) in (CstarPU)op

(13)

where the second correspondence, marked with (∗), only works if the C∗-algebra A

is commutative.

Proof We first do the first correspondence. Given a von Neumann n-test e =

(e1, . . . , en) we can define a MIU-map f : Cn → A as sum of scalar multiplications:

f(z1, . . . , zn) =
∑

i ziei, as in the proof of Lemma 4.2. It now preserves multiplica-

tion:

f(−→zi) · f(−→wi) =
(∑

i ziei
)
·
(∑

iwiei
)

=
∑

i,j ziei · wjej
=
∑

i,j(zi · wj)(ei · ej)
=
∑

i(zi · wi)ei = f(
−−−−→
(z · w)i).

In the other direction, given such a MIU-map f : Cn → A we obtain an n-test of

effects ei = f(|i〉), like before. Now we have:

eiej = f(|i〉)f(|j 〉) = f(|i〉|j 〉) =

{
f(|i〉) = ei if i = j

f(0) = 0 otherwise.

Hence the ei form mutually orthogonal projections, and thus a von Neumann test.

For the second correspondence, assume A is commutative. Let e = (e1, . . . , en)

be a von Neumann n-test. The corresponding characteristic PU-map Bn(A) → A

from Proposition 4.5, is given by chare(
−→a) =

∑
i

√
eiai
√
ei =

∑
i eiai. The latter

249

Jacobs

simple form, resulting from commutativity, is crucial for proving the ε-equation for

a coalgebra, in the opposite category (CstarPU)op.

(
ε ◦op chare

)
(a) =

(
chare ◦ out

)
(a)

= chare(a, . . . , a)

=
∑

i eia

= (
∑

i ei)a

= 1a

= a.(
Bn(chare) ◦op chare

)
(
−→
ti) = chare

(
chare(t1), . . . , chare(tn)

)
for ti ∈ An

=
∑

i ei(
∑

j ejtij)

=
∑

i,j eiejtij

=
∑

i eitii

= chare
(
δ(
−→
ti)
)

=
(
δ ◦op chare

)
(
−→
ti).

Finally, assuming a coalgebra f : A → Bn(A) in (CstarPU)op, we define effects

ei = f(|i〉A), where |i〉A = (0, . . . , 1, . . . , 0) ∈ ([0, 1]A)n = [0, 1]An = [0, 1]Bn(A).

Clearly, e1 > · · · > e1 = f(1) = 1. The equation ε ◦op f = f ◦ out = id yields that

f is a “map of bimodules”:

b · f(a1, . . . , an) · c = f
(
out(b) · (a1, . . . , an) · out(c)

)
(14)

This follows from [22, Thm. 1], because f is a PU-map and out a MIU-map, and

will be used without further ado.

We can now prove that the ei are mutually orthogonal projections. Consider

the “matrix” t = |j 〉〈 i | ∈ Bn(Bn(A)), so that t(x)(y) is 1 if x = i and y = j, and 0

otherwise. Then:

ei · ej = f(|i〉) · ej = f
(
|i〉 · out(ej)

)
by (14)

= f
(
0, . . . , 0, ej , 0, . . . , 0

)
with ej at position i

= f
(
f(0), . . . , f(|j 〉), . . . , f(0)

)
=
(
Bn(f) ◦op f

)
(t)

=
(
δ ◦op f

)
(t)

= f(λx. t(x)(x))

=

{
f(|i〉) = ei if i = j

f(0) = 0 otherwise.
�

We conclude this section with some basic observations. First, the opening of

a the block via inn : A → Bn(A) as in (11) can be described via the characteristic

maps A → Bn(A), for the “uniform” n-test (1
n1, . . . , 1

n1). Alternatively, it may be

250

Jacobs

understood as initialisation like in Example 4.4, given by the state (1√
n
, . . . , 1√

n
) ∈

Cn.

Second, the functor K`N(D) → (CCstarPU)op preserves block structures, since

for m ∈ K`N(D) we have:

Bn(Cm) = (Cm)n ∼= Cn×m = CBn(m). (15)

An n-test p1, . . . , pn ∈ [0, 1]m for K`N(D) → EModop is at the same time an n-

test for (CCstarPU)op → EModop, since the effects [0, 1]Cm = [0, 1]m of Cm ∈
(CCstarPU)op are the same as the effects on m ∈ K`N(D), so that the diagram on

the left commutes.

EModop Cm

K`N(D)

::

C(−)
// (CCstarPU)op

gg

CBn(m) ∼

Ccharp

<<

(Cm)n Bn(Cm)

charp

cc

The triangle on the right shows that the characteristic maps are also preserved

via (15) in CCstarPU, where charp on the left is in K`N(D), see Example 3.3, and

charp on the right is in the category of C∗-algebras, see Proposition 4.5, using that

Cm is commutative.

5 Matrix block structure on C∗-algebras

For a C∗-algebra A and number n ∈ N letMn(A) = An×n be the vector space of n×
n-matrices with entries from A. It is again a C∗-algebra with matrix multiplication,

unit and conjugate transpose (−)†. Clearly M1(A) ∼= A, but also Mk(Mn(A)) ∼=
Mk×n(A). Hence these matrices behave like a block structure.

It turns out that Mn is not a functor CstarPU → CstarPU, since Mn(f) need

not be positive when f is positive. One therefore calls f completely positive when

Mn(f) is positive, for each n. We write CstarcPU ↪→ CstarPU for the (non-full)

subcategory of C∗-algebras with completely positive maps between them.

Each MIU-map is completely positive. When f : A → B is a PU-map, where

either A or B is commutative, then f is completely positive. One thus requires com-

plete positivity only in the non-commutative PU-case, that is, in a proper quantum

setting. The following is the analogue of Proposition 4.3 for matrices.

Proposition 5.1 Let −→ai = (a1, . . . , an) ∈ An be an n-tuple in a C∗-algebra A. The

tuple can be used to form “measurement” and “map” functions.

(i) If
∑

i a
∗
i ai = 1 there is a completely positive map:

Mn(A)
meas(−→ai) //M given by M � // (a∗1 . . . a

∗
n)M

(
a1...
an

)
(ii) If a∗i ai = 1 for each i, then there is a completely positive map:

Mn(A)
map(−→ai) //Mn(A) given by M � // diag(

−→
a∗i)Mdiag(−→ai)

251

Jacobs

where diag(−→ai) is the diagonal matrix

(
a1 0 0
0 ... 0
0 0 an

)
. �

We present an example later on in Example 5.5.

Lemma 5.2 Taking n× n-matrices yields a functor Mn : CstarcPU → CstarcPU,

for each n > 0. It forms a block structure via “in” and “out” natural transformations

in a commuting triangle in (CstarcPU)op

A
inn //Mn(A)

outn
��
A

These natural transformations are given by:

inn(M) = 1
ntr(M) = 1

n

∑
i≤nMii outn(a) = aIn =

(
a 0 0
0 ... 0
0 0 a

)
,

where In ∈Mn(A) is the unit/identity matrix. Here, outn is a MIU-map.

Moreover, the diagonal map diag : Bn(A)→Mn(A) is a natural transformation

that commutes with the in’s and out’s.

Proof By definition there is a functor Mn : CstarcPU → CstarPU. We have to

prove thatMn(f) is completely positive, for a completely positive map f . Hence for

each k, the mapMk(Mn(f)) must be positive. But the latter can also be described

as Mk×n(f), via the isomorphism Mk ◦ Mn
∼=Mk×n, which is positive because f

is completely positive.

It is a basic fact that the trace map tr is completely positive. Hence so is inn =
1
ntr. The map outn : A → Mn(A) preserves multiplication and is thus completely

positive. Clearly,

(
out ◦op in

)
(a) = in

(
out(a)

)
= in

(
a 0 0
0 . . . 0
0 0 a

)
= 1

ntr

(
a 0 0
0 . . . 0
0 0 a

)
= 1

nna = a.

It is easy to see that diag is natural, i.e. that the equation Mn(f) ◦ diag = diag ◦
Bn(f) holds. Moreover, diag commutes with the B and M maps:

(
diag ◦op inM

)
(−→ai) = inM

(
a1 0 0
0 . . . 0
0 0 an

)
= 1

n

∑
i ai = inB(−→ai)(

outB ◦op diag
)
(a) = diag(a, . . . , a) =

(
a 0 0
0 . . . 0
0 0 a

)
= a · In = outM(a). �

The next step is to show that matrices form a logical block structure.

Proposition 5.3 The matrix block structure Mn on (CstarcPU)op is logical, with:

(i) the universal n-test consisting of positive matrices Ωi = |i〉〈 i | ∈ Mn(A),

clearly with >i Ωi = In;

252

Jacobs

(ii) for an arbitrary n-test ei ∈ [0, 1]A a characteristic map chare : A→Mn(A) in

(CstarcPU)op given by:

chare(M) = (
√
e1 . . .

√
en)M

(√
e1...√
en

)

The characteristic maps for the copower and matrix block structures Bn and Mn

are related via the diagonal: diag ◦op charMe = charBe .

Proof Clearly char−1
e (Ωi) = chare(|i〉〈 i |) =

√
ei
√
ei = ei. And:

(
diag ◦op charMe

)
(a1, . . . , an) = charMe

(
a1 0 0
0 . . . 0
0 0 an

)
= (
√
e1 . . .

√
en)

(
a1 0 0
0 . . . 0
0 0 an

)(√e1...√
en

)
=
√
e1a1
√
e1 + · · ·+√enan

√
en

= charBe (a1, . . . , an). �

The following result collects some standard facts.

Proposition 5.4 Let L(H) be the set of bounded linear maps H → H, where H is

a Hilbert space. The mapping H 7→ L(H) forms a functor

Hilbisom
L // (CstarcPU)op, (16)

where Hilbisom is the category of Hilbert spaces with isometries (dagger monos)

between them. Each such a dagger mono f : H � K gives a completely positive

map L(f) = f † ◦ (−) ◦ f : L(K)→ L(H). In this situation we have:

Mn(L(H)) ∼= L(Hn) ∼= L(H ⊗ Cn) where Hn = H ⊕ · · · ⊕H.

Thus L maps the copower block structure n · (−) on Hilb, from Example 2.5, to the

matrix block structure Mn on (CstarPU)op. This functor L also preserves effects

and characteristic maps.

Proof A matrix in Mn(L(H)) consists of n × n bounded maps H → H. Since

direct sum ⊕ is a biproduct for Hilbert spaces, these maps correspond to a single

map Hn → Hn, i.e. an element of L(Hn). Next we use that C is the tensor unit in

Hilb and that ⊗ distributes over ⊕ in:

Hn = H ⊕ · · · ⊕H ∼= (H ⊗ C)⊕ · · · ⊕ (H ⊗ C)

∼= H ⊗ (C⊕ · · · ⊕ C) = H ⊗ Cn.

For an isometry (dagger mono) f : H � K in Hilb we have L(f) = f † ◦ (−) ◦
f : L(K)→ L(H). We use Mn(B(H)) ∼= B(H ⊗ Cn), with the map corresponding

to Mn(L(f)) being:

L(K ⊗ Cn)
(f†⊗id)◦(−)◦(f⊗id) //L(H ⊗ Cn).

253

Jacobs

We show that if g ∈ L(K⊗Cn) is positive, then so is (f †⊗ id)g(f⊗ id) ∈ L(H⊗Cn).

For a vector v ∈ H ⊗ Cn, write w = (f ⊗ id)v; then, using that g is positive:

〈 v |(f † ⊗ id)g(f ⊗ id)|v 〉 = 〈 (f ⊗ id)v |g|(f ⊗ id)v 〉 = 〈w |g|w 〉 ≥ 0.

The effects associated with the C∗-algebra L(H) are the effects Ef(H) =

[0, 1]L(H) described Example 3.5. Thus the triangle on the left below commutes.

EModop L(H)

Hilbisom

::

L
// (CstarPU)op

ff

L(Bn(H)) ∼

L(charA)
;;

Mn(H)

charA
bb

For an n-test A = (A1, . . . , An) in Ef(H), the triangle on the right also commutes in

(CstarPU). The char map on the left is as in Example 3.5, and the one on the right

as in Proposition 5.3. As described above, a map f : Bn(H) → Bn(H) corresponds

to a matrix Mf . Then:

charMA (Mf) = (
√
A1 . . .

√
An)

(
π1◦f◦κ1 ··· π1◦f◦κn...

...
πn◦f◦κ1 ··· πn◦f◦κn

)(√
A1...√
An

)
(∗)
= [
√
A1 . . .

√
An] ◦ f ◦ 〈

√
A1 . . .

√
An〉

= 〈
√
A1 . . .

√
An〉† ◦ f ◦ 〈

√
A1 . . .

√
An〉

= L(〈
√
A1 . . .

√
An〉)(f)

= L(charBA)(f).

The marked equation
(∗)
= involves some elementary calculations with biproducts ⊕

in Hilb. �

Example 5.5 Consider the “identity” and “negation” matrices I2 = (1 0
0 1) and X =

(0 1
1 0) as elements I2, X ∈ L(C2). The “map” operation from Proposition 5.1 (ii)

yields:

M2(L(C2))
map(I2,X) //M2(L(C2)) given by M � //

(
I2 0
0 X

)
M
(
I2 0
0 X

)
Via the isomorphismM2(L(C2)) ∼= L(C4) this is the operation L(CNOT) : L(C4)→
L(C4), where CNOT is the “conditional negation” matrix:

CNOT =

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)
=
(
I2 0
0 X

)
.

Remark 5.6 The category CstarcPU also has monoidal structure. In fact, there

is a “minimal” and a “maximal” tensor A ⊗ B, but as long as either A or B is

finite-dimensional, they coincide (with C as tensor unit). Via these tensors we can

see a closer analogy between the copower and matrix block structures B andM on

C∗-algebras, namely:

Bn(A) = An ∼= Cn ⊗A = Bn(C)⊗A and Mn(A) ∼= Mn(C)⊗A.

254

Jacobs

In particular, for a Hilbert space H tensors are preserved:

L(Cn ⊗H) ∼= Mn(H) ∼= Mn(C)⊗ L(H) = L(Cn)⊗ L(H).

6 Examples and discussion

So far we have seen examples of block structures in a non-deterministic and proba-

bilistic setting — in the Kleisli categories K`(P) and K`(D) — and also in a quantum

setting, in the categories of Hilbert spaces and of C∗-algebras. In the latter set-

ting we have seen two block structures, namely copower Bn(A) = n ·A and matrix

Mn(A). It seems that Bn is most appropriate in a commutative/probabilistic set-

ting, and Mn in a quantum setting, because:

• Bn is a comonad, involving a copying operation; Mn is not a comonad, since

copying is impossible in a non-commutative setting, see e.g. [17].

• The functor K`(D) → (CCstarPU)op putting probabilistic transitions in a C∗-

algebraic context commutes with Bn.

• The functor Hilbisom → (CstarcPU)op from (16) commutes with Mn.

The issue of which block structure to use, in which situation, remains unclear and

will be further explored in follow-up research. In the remainder of this section we

briefly investigate how block structures can be used to describe familiar quantum

protocols like superdense coding and teleportation as maps in the category of C∗-

algebras. Such descriptions can be used to represent the protocols in computer

algebra tools, for simulation and verification. The whole point that we are trying

to suggest is that logical blocks may form a clean language construct in a future

(quantum) programming language.

We start by recalling some basic material. The Bell basis of C4 is given by the

vectors:

|b1 〉 = 1√
2
(|00〉+ |11〉) |b2 〉 = 1√

2
(|01〉+ |10〉)

|b3 〉 = 1√
2
(|00〉 − |11〉) |b4 〉 = 1√

2
(|01〉 − |10〉)

The associated projections ei = |bi 〉〈 bi | ∈ Ef(C4) can be described by the matrices:

e1 = 1
2

(
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

)
e2 = 1

2

(
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

)
e3 = 1

2

(
1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

)
e4 = 1

2

(
0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

)
They satisfy e1 > e2 > e3 > e4 = id and thus form a 4-test in Ef(C4) = [0, 1]L(C4).

Since e2
i = ei we have

√
ei = ei. Further, because the Bell basis is orthogonal, we

have eiej = 0 for i 6= j. We shall write charBell in (CstarcPU)op for the associated

measurement operation L(C4)→M4(L(C4)).

Next we need the four Pauli matrices in L(C2):

σ1 = (1 0
0 1) σ2 = X = (0 1

1 0) σ3 = Z =
(

1 0
0 −1

)
σ4 = XZ =

(
0 −1
1 0

)
.

They all satisfy σ†iσi = I2, and may thus be used in “map” constructions, like in

Propositions 4.3 and 5.1

255

Jacobs

6.1 Superdense coding

What the superdense coding algorithm of [2] achieves is sending two classical bits

via one (entangled) qubit. Two parties, Alice and Bob each possess one qubit of a

shared entangled (Bell) state. Alice applies one of 4 operations σi to her qubit —

thus encoding one the four options i ∈ 4 given by 2 classical bits — and sends the

result to Bob. Through the local operations, represented as σi ⊗ id ∈ L(C4), Alice

affects the shared state. By performing a Bell measurement Bob can find out which

of the four operations σi was applied by Alice, and thus which i ∈ 4 is transmitted.

Our block-based representation of the superdense coding protocol consists of the

following four maps in the category (CstarPU)op.

L(C4)

inB4
��

B4(L(C4))

B4(L(C4))
map(

−−−→
σi⊗id) //B4(L(C4))

B4(charBell) //B4(M4(L(C4)))

B4(outM4)

OO

(17)

First a copower 4-block is opened to deal with the four classical options (correspond-

ing to the two classical bits at hand). In each of these four options Alice performs

one of the operations σi, only to her part of the shared state, via σi ⊗ id. These

operations are combined in a single one via “map”. At this stage Alice transfers

her qubit to Bob, and Bob owns the whole state. In each of the four block options

he performs a Bell measurement. Then he closes the outer block. The outcome of

these Bell measurements distinguishes the various block options and enables Bob

to recognise these options.

The computation (17) in (CstarPU)op consists of a computation B4(L(C4)) →
L(C4) that computes the weakest precondition. We shall compute it with the above

Bell projections (e1, e2, e3, e4) as input to this computation going backwards:

(
B4(outM4) ◦op B4(charBell) ◦op map(

−−−−→
σi ⊗ id) ◦op inB4

)
(e1, e2, e3, e4)

=
(
inB4 ◦ map(

−−−−→
σi ⊗ id) ◦ (charBell)

4
)(
e1I4, e2I4, e3I4, e4I4

)
=
(
inB4 ◦ map(

−−−−→
σi ⊗ id)

)(∑
i

√
eie1
√
ei,
∑

i

√
eie2
√
ei,
∑

i

√
eie3
√
ei,
∑

i

√
eie4
√
ei
)

=
(
inB4 ◦ map(

−−−−→
σi ⊗ id)

)
(e1, e2, e3, e4)

= inB4
(
(σ1 ⊗ id)†e1(σ1 ⊗ id), (σ2 ⊗ id)†e2(σ2 ⊗ id),

(σ3 ⊗ id)†e3(σ3 ⊗ id)(σ4 ⊗ id)†e4(σ4 ⊗ id)
)

(∗)
= inB4 (e1, e1, e1, e1)

= e1.

The equalities (σ†i ⊗ id)ei(σi ⊗ id) = e1 used in marked equation
(∗)
= are left to the

reader.

This calculation for (17) can be interpreted as follows. In order to get as post-

condition (e1, e2, e3, e4), one has to start the computation with precondition e1.

This precondition e1 = |b1 〉〈 b1 | for |b1 〉 = 1√
2
(|00〉+ |11〉) is the shared Bell state

that usually serves as starting point for super dense coding.

256

Jacobs

6.2 Teleportation

For the teleportation protocol (see e.g. [18]) we open a “matrix” block via initialisa-

tion. The bell basis vector |b1 〉 = 1√
2
(|00〉+|11〉) ∈ C4 gives rise to a (dagger monic)

map id ⊗ |b1 〉 : C2 � C2 ⊗C4. By applying the functor L from Proposition 5.4 we

obtain:

L(C2) //L(C2 ⊗ C4) ∼=M4(L(C2))

This is the first map in the protocol below.

L(C2)

��

L(C2)

M4(L(C2))
charBell //B4(M4(L(C2)))

B4(outM4)//B4(L(C2))
map(−→σi) //B4(L(C2))

outB4

OO

In this case, after initialisation Alice does a measurement charBell giving a copower

block B4 in order to transfer two bits of information to Bob. Here we consider the

above matrices ei as matrices over L(C2). In each of the resulting 4 block options

Bob does an adjustment, with the Pauli matrices σi. It can be shown that the

resulting map L(C2)→ L(C2) is the identity.

Conclusions

This paper presents the first steps towards understanding the structure and role of

blocks and predicates in non-deterministic / probabilistic / quantum programming.

The opening of blocks via characteristic maps (measurements) induced by n-tests in

effect algebras is common in these approaches. For the particular case of “von Neu-

mann” n-tests of projections this can be described via Eilenberg-Moore coalgebras.

In the general case there is much variation that requires further investigation.

Acknowledgements

Thanks to Robert Furber and Jorik Mandemaker for helpful discussions.

References

[1] T. Altenkirch and J. Grattage. A functional quantum programming language. In Logic in Computer
Science, pages 249–259. IEEE, Computer Science Press, 2005.

[2] C. Bennett and S.J. Wiesner. Communication via one- and two-particle operators on Einstein-Podolsky-
Rosen states. Phys. Review Letters, 69(20):2881–2884, 1992.

[3] B. Coecke and D. Pavlović. Quantum measurements without sums. In G. Chen, L. Kauffman, and
S. Lamonaco, editors, Mathematics of Quantum Computing and Technology, pages 559–596. Taylor
and Francis, 2008.

[4] A. Dvurečenskij and S. Pulmannová. New Trends in Quantum Structures. Kluwer Acad. Publ.,
Dordrecht, 2000.

[5] D. J. Foulis and M.K. Bennett. Effect algebras and unsharp quantum logics. Found. Physics,
24(10):1331–1352, 1994.

[6] R. Furber and B. Jacobs. From Kleisli categories to commutative C∗-algebras: Probabilistic Gelfand
duality. See arxiv.org/abs/1303.1115, 2013.

[7] S. Gay. Quantum programming languages: survey and bibliography. Math. Struct. in Comp. Sci.,
16:581–600, 2006.

257

Jacobs

[8] M. Giry. A categorical approach to probability theory. In B. Banaschewski, editor, Categorical Aspects
of Topology and Analysis, number 915 in Lect. Notes Math., pages 68–85. Springer, Berlin, 1982.

[9] T. Heinosaari and M. Ziman. The Mathematical Language of Quantum Theory. From Uncertainty to
Entanglement. Cambridge Univ. Press, 2012.

[10] B. Jacobs. New directions in categorical logic, for classical, probabilistic and quantum logic. See
arxiv.org/abs/1205.3940, 2012.

[11] B. Jacobs. Measurable spaces and their effect logic. In Logic in Computer Science. IEEE, Computer
Science Press, 2013.

[12] B. Jacobs and J. Mandemaker. Coreflections in algebraic quantum logic. Found. of Physics, 42(7):932–
958, 2012.

[13] B. Jacobs and J. Mandemaker. Relating operator spaces via adjunctions. In J. Chubb Reimann,
V. Harizanov, and A. Eskandarian, editors, Logic and Algebraic Structures in Quantum Computing
and Information, Lect. Notes in Logic. Cambridge Univ. Press, 2013. See arxiv.org/abs/1201.1272.

[14] P. Johnstone. Stone Spaces. Number 3 in Cambridge Studies in Advanced Mathematics. Cambridge
Univ. Press, 1982.

[15] K. Kraus. States, Effects, and Operations. Springer Verlag, Berlin, 1983.

[16] G. Ludwig. Foundations of Quantum Mechanics I. Springer Verlag, New York, 1983.

[17] H. Maassen. Quantum probability and quantum information theory. In F. Benatti, M. Fannes,
R. Floreanini, and D. Petritis, editors, Quantum Information, Computation and Cryptography, number
808 in Lect. Notes Physics, pages 65–108. Springer, Berlin, 2010.

[18] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge Univ. Press,
2000.

[19] P. Selinger. Towards a quantum programming language. Math. Struct. in Comp. Sci., 14(4):527–586,
2004.

[20] P. Selinger and B. Valiron. A lambda calculus for quantum computation with classical control. Math.
Struct. in Comp. Sci., 16(3):527–552, 2006.

[21] P. Selinger and B. Valiron. Quantum lambda calculus. In S. Gay and I. Mackie, editors, Semantical
Techniques in Quantum Computation, pages 135–172. Cambridge Univ. Press, 2010.

[22] J. Tomiyama. On the projection of norm one in W ∗-algebras. Proc. Japan Acad., 10:608–612, 1957.

258

MFPS 2013

Rational Operational Models

Stefan Milius1

Lehrstuhl für Theoretische Informatik, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

Marcello M. Bonsangue2

LIACS – Leiden University and Centrum Wiskunde en Informatica (CWI), The Netherlands

Robert S.R. Myers3

Institut für Theoretische Informatik, TU Braunschweig, Germany

Jurriaan Rot4

LIACS – Leiden University and Centrum Wiskunde en Informatica (CWI), The Netherlands

Abstract

GSOS is a specification format for well-behaved operations on transition systems. Aceto introduced a
restriction of this format, called simple GSOS, which guarantees that the associated transition system is
locally finite, i.e. every state has only finitely many different descendent states (i.e. states reachable by a
sequence of transitions).
The theory of coalgebras provides a framework for the uniform study of systems, including labelled transition
systems but also, e.g. weighted transition systems and (non-)deterministic automata. In this context GSOS
can be studied at the general level of distributive laws of syntax over behaviour. In the present paper we
generalize Aceto’s result to the setting of coalgebras by restricting abstract GSOS to bipointed specifications.
We show that the operational model of a bipointed specification is locally finite, even for specifications with
infinitely many operations which have finite dependency. As an example, we derive a concrete format for
operations on regular languages and obtain for free that regular expressions have finitely many derivatives
modulo the equations of join semilattices.

Keywords: coalgebra, distributive law, regular process, simple GSOS, rational behaviour

1 Introduction
GSOS [13] is a popular specification format for operations on transition systems,

which guarantees that bisimulation is a congruence. Every GSOS specification in-

duces an operational model, which is a concrete transition system on the closed

1 Email: mail@stefan-milius.eu
2 Email: marcello@liacs.nl
3 Email: me.robmyers@gmail.com
4 Email: jrot@liacs.nl. The research of this author has been funded by the Netherlands Organisation for
Scientific Research (NWO), CoRE project, dossier number: 612.063.920.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:mail@stefan-milius.eu
mailto:marcello@liacs.nl
mailto:me.robmyers@gmail.com
mailto:jrot@liacs.nl

Bonsangue, Milius, Myers and Rot

terms of the syntax. Aceto’s simple GSOS [1] is a restriction of this format which

guarantees the operational model to be locally finite. This means that any state

in this model is contained in a finite subsystem, i.e. it has only finitely many dif-

ferent descendent states. Consequently, the behaviour of each term is some kind

of regular tree modulo bisimilarity. Simple GSOS rules differ from ordinary GSOS

in that the target of a conclusion is either a single operation or a variable, rather

than an arbitrary term. Moreover, while the number of operations can be infinite,

each operation may only depend on finitely many others. Most operations used in

practice can be specified in simple GSOS [2].

Operations that preserve finiteness are of considerable importance in automata

theory. In order to provide a uniform mathematical treatment of operations on

different types of systems, including those from automata theory, we use the theory

of universal coalgebra, where the type of a system is completely specified by an endo-

functor F . In this context, the rational fixpoint of a endofunctor F on Set is that

subcoalgebra of the final F -coalgebra which consists of the behaviours of all finite

F -coalgebras. Bipointed specifications were introduced in [14] as a format which, for

a given finite signature of finite arity operations, defines algebraic operations on the

rational fixpoint. This provides an easy syntactic criterion for the preservation of

finite behaviour, whose format is a restriction of Turi’s and Plotkin’s generalization

of GSOS via distributive laws [31,20]. Under the assumption that the signature is

finite, bipointed specifications for labelled transition systems coincide with simple

GSOS. However, the operational model was not considered in [14].

In this paper we complete the generalization of Aceto’s results: (a) we extend

the results of [14] from specifications for finitely many algebraic operations to spec-

ifications that may define infinitely many operations, but with finite dependency

(cf. [2]); (b) we prove that for a bipointed specification having finite dependency its

operational model is locally finite. Result (a) allows, e.g. to treat all real numbers

as constants in the stream calculus [28], while (b) gives a construction of a finite

model for each term, thus paving the way for decidability results.

For the set functor whose coalgebras are deterministic automata, the rational

fixpoint is carried by the set of regular languages. At this point one might expect

that all the operators of regular expressions might be specified by bipointed speci-

fications for this functor. However, the corresponding rule format is not expressive

enough to capture concatenation or the Kleene star. So as a final result we derive

a concrete rule format for operations on regular languages, by instantiating our re-

sults in the category of join semilattices. Operations defined by rules in this format

preserve regular languages, examples being the shuffle product or sequential com-

position. In fact the format allows us to define the behaviour of regular expressions.

Consequently we obtain for free the well-known result [16] that regular expressions

modulo the axioms of join semilattices have only finitely many derivatives.

Due to space constraints we omit all proofs; a version of this paper containing

all proofs is available at http://www.stefan-milius.eu.

260

http://www.stefan-milius.eu

Bonsangue, Milius, Myers and Rot

2 Preliminaries

We assume that the reader is familiar with basic notions from category theory,

including (initial) algebras and (final) coalgebras for endofunctors. Let us now fix

notation and briefly mention some examples. We denote by Set the category of sets

and functions and by Jsl the category of join semilattices and their morphisms.

We denote the initial algebra for a functor Σ : A → A by ι : Σ(µΣ)→ Σ. In most

cases in this paper, Σ will be a polynomial functor on Set given by a (finitary, yet

not necessarily finite) signature of operation symbols, each with prescribed finite

arity. Algebras and homomorphisms for such a functor are precisely the general

algebras and homomorphisms for the signature.

The final coalgebra for a functor F : A → A is denoted by t : νF → F (νF). We

consider several examples of coalgebras for A = Set (see [27] for many more):

Example 2.1 (1) Deterministic automata with input alphabet A are coalgebras

for FX = 2 ×XA, where 2 = {0, 1}. The final coalgebra is carried by the set

of languages P(A∗).

(2) Finitely branching labelled transition systems (LTS) with actions from the set A

are coalgebras for FX = Pf(A×X). The final coalgebra for F exists and can be

thought of as consisting of processes modulo strong bisimilarity of Milner [25].

(3) Weighted transition systems (WTS) are labelled transition systems where tran-

sitions have weights (modelling multiplicities, costs, probabilities, etc.) in a

monoid M = 〈M,+, 0〉. They can be seen as coalgebras (see e.g. Klin [19]):

one considers the functor FM, which acts on a set X and a function f :

X → Y as FM(X) = {φ : X → M | φ has finite support} and FMf(φ)(y) =∑
x∈f−1(y) φ(x). Weighted transition systems with actions from the set A are

then precisely coalgebras for FX = (FMX)A.

2.1 Locally finitely presentable coalgebras. We are interested in alge-

braic operations on regular behaviour, i.e. behaviour of finite coalgebras (S, f) for a

functor F . As previously in [14] we present our results for endofunctors on general

categories A in which it makes sense to talk about “finite” objects and the ensuing

rational behaviour of “finite” coalgebras. So we work with the locally finitely pre-

sentable categories of Gabriel and Ulmer [17] (see also Adámek and Rosický [7]),

and we now briefly recall the basics.

A functor F : A → B is called finitary if A has and F preserves filtered colimits.

An object X of a category A is called finitely presentable if its hom-functor A(X,−)

is finitary. A category A is locally finitely presentable (lfp) if (a) it is cocomplete,

and (b) it has a set of finitely presentable objects such that every object of A is a

filtered colimit of objects from that set.

Example 2.2 (1) Examples of lfp categories include the category Set, the category

of posets and monotone functions, and the category of (multi)graphs and graph

morphisms. Their finitely presentable objects are the finite sets, finite posets

and finite graphs, respectively.

(2) Fix any finitary signature and also a set of equations between terms over this

signature. This induces a finitary variety i.e. a category whose objects are the

261

Bonsangue, Milius, Myers and Rot

algebras for this signature which satisfy the equations, e.g. groups, monoids,

join semilattices etc. Its morphisms are the usual algebra morphisms for the

signature. Such categories are lfp: the finitely presentable objects are those

algebras presented by finitely many generators and finitely many relations.

(3) As a special case consider locally finite varieties, where the free algebras on

finitely many generators are finite. Examples include join semilattices, dis-

tributive lattices, boolean algebras and the two-sorted variety of multigraphs.

Here the finitely presentable objects are precisely the finite algebras.

(4) Another special case of point (2) is the category VecF of vector spaces over

any fixed field F, where the finitely presentable objects are precisely the finite

dimensional vector spaces.

Remark 2.3 On the category Set, a finitary functor is determined by its behaviour

on finite sets. More precisely, a functor F : Set → Set is finitary iff it is bounded

(see, e.g. Adámek and Trnková [10]), i.e. for every set X and every element t ∈ FX,

there exists a finite subset i : Y ↪→ X such that t ∈ Fi[FY] ⊆ FX.

Example 2.4 The finite powerset functor Pf is finitary, whereas the ordinary pow-

erset functor P is not. The functor FX = XA is finitary if and only if A is a finite

set. More generally, the class of finitary endofunctors on Set contains all constant

functors and the identity functor, and it is closed under finite products, arbitrary

coproducts and composition. Thus, a polynomial functor Σ is finitary iff every op-

eration symbol of the corresponding signature has finite arity (but there may be

infinitely many operations). The functor FX = R×X is finitary both on Set and

on VecR.

Assumption 2.5 Throughout the rest of this paper, we assume, unless stated

otherwise, that A is a locally finitely presentable category and F : A → A is a

finitary functor. So F has a final coalgebra t : νF → F (νF) (see Makkai and

Paré [23]).

For a functor F on an lfp category A, the notion of a “finite” coalgebra is

captured by requiring the carrier to be finitely presentable. That is, we denote

by Coalgf(F) the full subcategory of Coalg(F) consisting of those F -coalgebras f :

S → FS whose carrier S is a finitely presentable object in A. In order to talk

about the behaviour of finite coalgebras in this setting, we would like to consider

a coalgebra that is final amongst all coalgebras in Coalgf(F). However, Coalgf(F)

need not have a final object; for example, in the case of deterministic automata (see

Example 2.1(1)), the desired final coalgebra for finite automata should be formed by

all regular languages, but this coalgebra is itself not finite. For this reason we take

the closure of Coalgf(F) under filtered colimits in Coalg(F), in which the desired

final object exists. It is often useful to view these filtered colimits as directed unions

of machines, taken at the level of their carrier. We will write Coalglfp(F) for this

closure. The objects of Coalglfp(F) were called locally finitely presentable coalgebras

in [24,15,14]; they are precisely the filtered colimits of diagrams over Coalgf(F), i.e.

colimits of filtered diagrams of the form D → Coalgf(F) ↪→ Coalg(F).

Example 2.6 We recall from [24,15] concrete descriptions of the objects of

Coalglfp(F) in some categories of interest.

262

Bonsangue, Milius, Myers and Rot

(1) A coalgebra for a functor on Set is locally finitely presentable iff it is locally

finite, i.e. every finite subset of its carrier is contained in a finite subcoalgebra.

(2) For an endofunctor on a locally finite variety, a coalgebra is locally finitely

presentable iff every finite subalgebra of its carrier lies in a finite subcoalgebra.

(3) A coalgebra (S, f) for a functor on VecF is locally finitely presentable iff every

finite dimensional subspace of its carrier S is contained in a subcoalgebra of

(S, f) whose carrier is finite dimensional.

Recall from [23], that the Ind-completion of a category is the free completion of

that category under filtered colimits. We will make use of the following non-trivial

fact:

Theorem 2.7 The category Coalglfp(F) is the Ind-completion of Coalgf(F).

2.2 The rational fixpoint. Clearly, the category Coalglfp(F) has a final object

given by the filtered colimit of the inclusion functor Coalgf(F) ↪→ Coalg(F). We

denote this coalgebra by r : ρF → F (ρF). This coalgebra captures the behaviour of

all coalgebras in Coalgf(F). It has been shown in [5] that it is a fixpoint of F , i. e.,

its structure morphism r is an isomorphism. Following [24,15] we call the coalgebra

(ρF, r) the rational fixpoint of F .

Remark 2.8 ForA = Set the rational fixpoint ρF is the union of all images f †[S] ⊆
νF , where f : S → FS ranges over the finite F -coalgebras and f † : S → νF is the

unique coalgebra homomorphism (see [5, Proposition 4.6 and Remark 4.3]). So, in

particular, we see that ρF is a subcoalgebra of νF .

For endofunctors on different categories than Set, this need not be the case as

shown in [15, Example 3.15]. However, for functors preserving monomorphisms on

categories of vector spaces over a field and on locally finite varieties such as Jsl the

rational fixpoint always is a subcoalgebra of νF (see [15, Proposition 3.12]).

Example 2.9 We give a number of examples of ρF ; for more, see [5,15].

(1) For the functor FX = R × X on Set whose final coalgebra is carried by the

set Rω of all streams over R, the rational fixpoint consists of all streams that

are eventually periodic, i.e., of the form σ = vwwww . . . for words v ∈ R∗ and

w ∈ R+. For the similar functor FV = R× V on the category of vector spaces

over R, the rational fixpoint consists of all rational streams (e. g., Rutten [29]).

(2) The carrier of the rational fixpoint of the deterministic automata functor FX =

2×XA is the set of all languages accepted by finite automata, viz. the set of all

regular languages. If we define F instead on the category Jsl of join semilattices,

its rational fixpoint is still given by all regular languages, this time with the

join semilattice structure given by union and ∅.
(3) For FX = Pf(A×X) on Set the rational fixpoint contains all finite-state pro-

cesses (modulo bisimilarity); more precisely, ρF is the coproduct of all finite

F -coalgebras modulo the largest bisimulation.

(4) For the functor FX = (FMX)A of weighted transition systems the rational fix-

point is obtained as the coproduct of all finite WTS’s modulo weighted bisimi-

larity.

263

Bonsangue, Milius, Myers and Rot

2.3 Bipointed specifications. In [14] we introduced bipointed specifications,

which are natural transformations of the form Σ(F × Id) → F (Σ + Id), where

Σ : A → A is a given functor. We also showed that for Σ a polynomial endofunc-

tor for a finite signature on Set and for FX = Pf(A ×X) bipointed specifications

are equivalent to transition system specifications in the simple GSOS format of

Aceto [1]. In order to understand Aceto’s theorem below and to give a first in-

tuition on bipointed specifications we now recall GSOS and simple GSOS. Given

a signature Σ, a GSOS rule for an operator f ∈ Σ of arity n is of the form (1)

{xij
aj→ yj}j=1..m {xik

bk
6→}k=1..l

f(x1, . . . , xn)
c→ t

(1)

where m is the number of pos-

itive premises, l is the num-

ber of negative premises, and

a1, . . . , am, b1, . . . , bl, c ∈ A are labels. The variables x1, . . . , xn, y1, . . . , ym are pair-

wise distinct; let V denote the set of these variables. Finally t is a Σ-term over

variables in V . In the simple GSOS format, t is restricted to be either a variable

in V or a flat term g(z1, . . . , zp), where g is a p-ary operation symbol in Σ and

z1, . . . , zp ∈ V . Additionally there is a finiteness condition on the dependency of

operators, which we recall below in Section 4. Examples of GSOS rules which adhere

to the simple GSOS format include the parallel operator, choice, action prefixing,

relabelling and many more.

In the mathematical operational semantics of Turi and Plotkin [31] (see also

Bartels [12]) one considers for a specification in the form of a natural transforma-

tion as above (and more general formats; see Klin [20] for an overview) an opera-

tional model and a denotational model. The operational model is an F -coalgebra

structure on the initial Σ-algebra (µΣ, ι) and the denotational model is given by a

Σ-algebra structure on the final F -coalgebra (νF, t); we denote those structures by

c : µΣ→ F (µΣ) and α : Σ(νF)→ νF . Notice that c is uniquely determined by the

commutativity of the diagram below 5 :

Σ(µΣ) ι //

〈c,id〉
��

µΣ

c
��

Σ(F (µΣ)× µΣ)
λ

//F (Σ(µΣ) + µΣ)
F [ι,id]

//F (µΣ)

(2)

Similarly, α is uniquely determined by the commutativity of the “dual” diagram

(replacing µΣ by νF and reversing and renaming arrows as appropriate).

In concrete instances, c provides behaviour on closed terms over the signature

of the algebraic operations specified, and α provides the denotational semantics of

the algebraic operations as specified by λ, taking input from the final coalgebra.

In the previous paper [14] we assumed that a bipointed specification λ : Σ(F ×
Id)→ F (Σ+Id) is given, where Σ is a strongly finitary functor [4], i. e., Σ is finitary

and it preserves finitely presentable objects.

Example 2.10 (1) The class of strongly finitary functors on Set contains the iden-

tity functor, all constant functors on finite sets, the finite power-set functor Pf ,
and it is closed under finite products, finite coproducts and composition. A

5 In diagrams we will omit indices of natural transformations (here λ) indicating the component.

264

Bonsangue, Milius, Myers and Rot

polynomial functor Σ on Set is strongly finitary iff the corresponding signature

has finitely many operation symbols of finite arity.

(2) The functor FX = 2×XA is strongly finitary iff A is a finite set.

(3) The type functor FX = R×X of stream systems as coalgebras is finitary but

not strongly so. However, if we consider F as a functor on VecR, then it is

strongly finitary; in fact, for every finite dimensional real vector space V , R×V
is finite dimensional, too.

The main result in [14] is the following

Theorem 2.11 Let λ be a bipointed specification where Σ is strongly finitary. Then

there is a unique Σ-algebra structure β : Σ(ρF) → ρF such that the following

diagram commutes:

Σ(ρF)
Σ〈r,id〉

//

β

��

Σ(F (ρF)× ρF)
λρF //F (Σ(ρF) + ρF)

F [β,id]

��

ρF r //F (ρF)

(3)

It then follows that the unique F -coalgebra homomorphism (ρF, r)→ (νF, t) is

a Σ-algebra homomorphism from (ρF, β)→ (νF, α). So in those cases where ρF is

a subcoalgebra of νF , β is a restriction of α to ρF . This shows that the rational

fixpoint is closed under operations on the denotational model specified by bipointed

specifications.

In [14], we also provided a number of applications, which we briefly recall. In

each case Σ is a polynomial functor for a finite signature.

Labelled transition systems. As already mentioned in the discussion above,

for FX = Pf(A × X) and a polynomial endofunctor Σ on Set corresponding to a

finite signature, bipointed specifications correspond precisely to transition system

specifications in Aceto’s simple GSOS format. As a special case of Theorem 2.11 we

thus obtain the well-known result that for a finite signature, finite state processes

(i. e., the elements of ρF) are closed under operations specified by simples GSOS

rules. This includes for example all CCS combinators and many other operations.

But the results on the simple GSOS format are not restricted to finite signatures. So

one aim of the present paper is to extend our previous results to infinite signatures,

and we do this in Section 4.

Streams. For the functor FX = R × X and Σ a polynomial functor, we worked

out a concrete rule format which is equivalent to bipointed specifications. So The-

orem 2.11 yields the result that the coalgebra ρF of eventially periodic streams is

closed under operations specified by rules in our format. Concrete examples include

the well-known zipping operation and many others.

Non-deterministic automata. This application considers FX = 2 × (PfX)A,

and here we provide a concrete rule format that yields bipointed specifications (but

not necessarily conversely). Theorem 2.11 then yields the result that the rational

fixpoint ρF (of finite state branching behaviours) is closed under operations specified

in our format. This includes examples such as the shuffle product. One would wish

265

Bonsangue, Milius, Myers and Rot

for formats defining operations on formal languages—so our results would then yield

that regular languages are closed under such operations. However, if one works out

what bipointed specifications mean for deterministic automata (i. e., FX = 2×XA),

then the format is not powerful enough to capture intesting operations like the

shuffle product. So one aim of this paper is to work in the category Jsl in lieu of

Set to obtain a more powerful format; we do this in Section 5.

Weighted transition systems. For FX = (FMX)A we obtain a concrete rule for-

mat corresponding to bipointed specifications by restricting a general GSOS format

for weighted transition system given by Klin [19]. Then Theorem 2.11 specializes to

the result that the coalgebra ρF of all finite weighted transitions systems modulo

weighted bisimilarity is closed by operations specified in our format.

3 Operational model and behaviour on free Σ-algebras

We will now make a first step towards proving our main result, the generalization

of Aceto’s theorem to mathematical operational semantics. We will prove in this

section that for a bipointed specification the operational model is a locally finitely

presentable coalgebra, our notion of regularity.

Actually, we will prove a more general result concerning free algebras first. In

fact, we will show that the free monad on Σ lifts to a functor on Coalglfp(F). This

means that for every locally finitely presentable coalgebra (S, f) the free algebra

Σ̂S of “terms in S” carries an operational model.

Assumption 3.1 In this section we assume that λ : Σ(F × Id) → F (Σ + Id) is

a bipointed specification, where F : A → A is finitary and Σ : A → A a strongly

finitary functor on the lfp category A.

Since Σ is (strongly) finitary, on every object X of A a free Σ-algebra Σ̂X exists.

As proved by Barr [11], free algebras yield free monads. Indeed, Σ̂ is the object

assignment of a free monad on Σ. Recall from [3] the free algebra construction by

which Σ̂X is obtained as the colimit of the chain

X inr //ΣX +X
Σinr+X //Σ(ΣX +X) +X // · · · (4)

Furthermore, it follows that as a functor Σ̂ can be constructed as the colimit of the

chain

Id inr //Σ + Id
Σinr+Id //Σ(Σ + Id) + Id // · · · (5)

More precisely, we define functors Tn : A → A, n < ω, by induction: T 0 = Id and

Tn+1 = ΣTn+ Id . The connecting natural transformations are defined by t0,1 = inr
and tn+1,n+2 = Σtn,n+1+Id . In order to prove the main result of this section further

below we first need the following auxiliary property

Lemma 3.2 The chain (5) lifts to a chain of endofunctors on Coalgf(F).

Theorem 3.3 The free monad Σ̂ : A → A lifts to an functor on Coalglfp(F).

Since µΣ = Σ̂0, it follows that µΣ carries some F -coalgebra structure that

turns it into a locally finitely presentable coalgebra. It remains to show that the

266

Bonsangue, Milius, Myers and Rot

coalgebra structure on µΣ provided by the previous theorem is indeed the structure

c : µΣ→ F (µΣ) of the operational model from the previous section:

Theorem 3.4 The operational model of λ is an object in Coalglfp(F).

4 Finite dependency

With Theorem 3.4 we have the main ingredient for generalizing Aceto’s theorem for

simple GSOS specifications. However, notice that our restriction to strongly finitary

functors Σ means that Theorem 3.4 only generalizes Aceto’s theorem for the special

case of transition system specifications over a finite signature of specified operations.

However, Aceto’s theorem was proved for transition system specifications having

finite dependency. In this section we briefly recall that concept. Then we generalize

finite dependency to bipointed specifications, and we prove that our previous results

hold for bipointed specifications having finite dependency.

4.1 GSOS specifications having finite dependency. Let T be a transition

system specification in the GSOS format defining operations in the signature Σ

(see [2] and Section 2.3). Operator dependency is the smallest transitive relation on

Σ such that an operation f depends on an operation g if there is a rule in T of the

form (1) where g occurs in the term t. We say that T has finite dependency if each

operation f of Σ only depends on finitely many other operations.

The positive trigger of a rule (1) is the sequence 〈{aij | j = 1, . . . ,mi}〉i=1,...,ar(f).

An operation f is called bounded if for every positive trigger there are only finitely

many rules with f on the left-hand side of the conclusion. In the following theorem,

by the associated transition system of T we mean the (operational) term model

given by the initial Σ-algebra. Regularity means that from every state there are

only finitely many other states reachable by a sequence of transitions.

Theorem 4.1 ([2, Theorem 5.28]) Let T be a transition system specification in

simple GSOS format having finite dependency, where every operation is bounded.

Then the associated transition system of T is regular.

Example 4.2 A simple example of a transition

system specification is given by the prefixing op-

eration for an infinite label alphabet A; the infinite

rule set in (6) obviously has finite dependency.
a.P

a−→ P
(a ∈ A) (6)

4.2 Bipointed specifications having finite dependency. As we recalled

in Section 2.3, for a finite signature, simple GSOS specifications correspond to

bipointed specifications Σ(Pf(A × Id) × Id) → Pf(A × (Σ + Id)). Now observe

that for an arbitrary signature boundedness ensures that this 1-1-correspondence

still holds; the functor Pf in the codomain of the bipointed specification models the

finitely many transitions specified for f for each positive trigger.

Now we will analyze how finite dependency can be captured on the level

of bipointed specifications. Let T be a transition system specification sat-

isfying the conditions in Theorem 4.1 and let λ : Σ(F × Id) → F (Σ +

Id) be the corresponding bipointed specification (where Σ is a not necessar-

ily finitary polynomial endofunctor on Set). Suppose that Γ is a subfunc-

267

Bonsangue, Milius, Myers and Rot

tor of Σ that corresponds to a subsignature that is closed under operator de-

pendency in Σ and let inΓ : Γ → Σ be the corresponding inclusion map.

Γ(F × Id)
λΓ //

inΓ(F×Id)

��

F (Γ + Id)

F (inΓ+Id)

��

Σ(F × Id)
λ
//F (Σ + Id)

(7)

Then there exists a bipointed speci-

fication λΓ : Γ(F × Id)→ F (Γ + Id)

such that inΓ is a morphism of bi-

pointed specifications, i.e. the square

on the right commutes. Also every

inclusion m : Γ → Γ′ between closed

subsignatures of Σ is a morphism of bipointed specifications; one has F (m+Id)·λΓ =

λΓ′ ·m(F ×Id). Recall from Example 2.9(1) that a polynomial functor Γ is strongly

finitary iff its associated signature is finite.

Proposition 4.3 Let T be a transition system specification as in Theorem 4.1 and

let λ : Σ(F × Id) → F (Σ + Id) be its corresponding bipointed specification. Then

Σ is the directed union of a diagram of strongly finitary polynomial functors Γ such

that there exist λΓ as in (7).

So the previous proposition states that λ is the directed union of the λΓ. In the

following definition we consider the colimit of a filtered diagram of bipointed speci-

fications λΓ : Γ(F × Id)→ F (Γ + Id), i.e. the bipointed specification for the colimit

Σ of all functors Γ from the diagram uniquely determined by the commutativity of

the squares (7).

Definition 4.4 Let F : A → A be finitary and Σ : A → A. A bipointed specifica-

tion λ : Σ(F × Id)→ F (Σ + Id) has finite dependency if it is the filtered colimit of

a diagram of bipointed specifications λΓ : Γ(F × Id) → F (Γ + Id) where each Γ is

a strongly finitary functor.

Remark 4.5 (1) One common instance of the above definition is when Σ can be

decomposed into a (not necessarily finite) coproduct Σ =
∐
i∈I Σi such that there

are bipointed specifications λi : Σi(F × Id) → F (Σi + Id) such that (7) commutes

with Γ replaced by Σi for each i ∈ I. Indeed, Σ is then the filtered colimit of all

ΣJ =
∐
i∈J Σi, where J ranges over all finite subsets of I with λJ formed by the

obvious “copairing” involving those λi with i ∈ J . For a concrete example consider

FX = R×X and the behavioural differential equation (see [28]) r̂ = r : r̂ for every

r ∈ R. Then one has I = R and Σi is contant on 1 for all i.

(2) That filtered colimits are necessary in Definition 4.4 is demonstrated by the usual

definition of constants in the stream calculus [28]: [r] = r : [0]. All constants [r]

depend on [0], and therefore the signature can not be decomposed into a coproduct.

In the context of simple GSOS rules on transition systems, a similar example can

be found by defining infinitely many constants cn, n < ω, by the axioms cn+1
a−→ cn,

for some a ∈ A. This specification cannot be decomposed into finite independent

parts as in point (1) above.

Proposition 4.6 Let λ be a bipointed specification having finite dependency, and

let (λΓ)Γ∈D be as in Definition 4.4. Then, for each Γ, the denotational models

α : Σ(νF)→ νF and αΓ : Γ(νF)→ νF of λ and λΓ, respectively, satisfy

αΓ = (Γ(νF)
inΓ−−→ Σ(νF)

α−→ νF).

268

Bonsangue, Milius, Myers and Rot

This proposition is related to results of Lenisa, Power and Watanabe [22, Sec-

tion 5] for distributive laws of monads over copointed endofunctors. Indeed, notice

that a bipointed specification can equivalently be presented as a distributive law of

the free pointed functor Σ + Id over the cofree copointed functor F × Id , and the

latter gives rise to a distributive law of the free monad on Σ over F × Id . Lenisa,

Power and Watanabe show how to combine distributive laws using coproduct; here

we consider filtered colimits.

The following result extends the main result from [14] from the bipointed spec-

ifications considered in Section 2.3 to those with finite dependency.

Corollary 4.7 Let λ be a bipointed specification having finite dependency. Then

(a) there is a unique Σ-algebra structure β : Σ(ρF)→ ρF such that the diagram (3)

commutes, and (b) the unique F -coalgebra homomorphism (ρF, r) → (νF, t) is a

Σ-algebra homomorphism from (ρF, β) to (νF, α).

We are now ready to state the main result of this paper, the generalization of

Theorem 4.1 to bipointed specifications.

Theorem 4.8 Let λ be a bipointed specification having finite dependency. Then

the lifted functor Σ̂ : Coalg(F)→ Coalg(F) restricts to Coalglfp(F).

In other words, for every locally finitely presentable coalgebra (S, f) the free

Σ-algebra Σ̂S carries a canonical locally finitely presentable coalgebra. So finally,

we obtain the desired generalization of Aceto’s theorem:

Theorem 4.9 Let λ be a bipointed specification having finite dependency. Then

the operational model of λ is a locally finitely presentable coalgebra.

Notice that this theorem is not just a trivial corollary of Theorem 4.8; as for

Theorem 3.4 we still need to prove that the canonical F -coalgebra structure arising

on Σ̂0 = µΣ coincides with the operational model c : νΣ→ F (νΣ).

Remark 4.10 We chose to present all our results for bipointed specifications be-

cause in applications it is easier to find concrete rule formats corresponding to them.

But we believe that all of our results can be proved more generally for so-called coG-

SOS laws ΣF̄ → F (Σ+Id), where F̄ denotes the cofree comonad on F (see Klin [20,

Section 6.4]).

5 A rule format for operations on regular languages

In [14] there are a number of examples of concrete formats and operations cor-

responding to bipointed specifications. All of these examples are on Set. How-

ever, for example in the case of deterministic automata, bipointed specifications

on Set are rather limited; standard operations like concatenation, Kleene star or

the shuffle product of languages cannot be specified by bipointed specifications for

FX = 2 × XA on Set. But moving from Set to the category Jsl bipointed speci-

fications allow for different and more powerful specification formats that allow to

use the join semilattice operations (union and ⊥) in the conclusion of a rule. We

will now work out such a concrete specification format and then show that con-

269

Bonsangue, Milius, Myers and Rot

catenation, Kleene star and the shuffle operations can be specified with a bipointed

specification.

Recall that the functor F = 2 × IdA lifts to the functor F̄ = 2 × IdA on Jsl,
the category of join semilattices, where 2 = {0, 1} is the join semilattice where 0 is

bottom and the join is the usual “or” operation on bits. Recall from Example 2.9(2)

that the rational fixpoint of F̄ is carried by the set of regular languages as well. In

this section we exploit this fact to derive a concrete format for operations on regular

languages from bipointed specifications for F̄ . This format is more expressive than

bipointed specifications for F , as the join semilattice structure allows to express

non-determinism in the conclusion of rules.

Before we present a concrete rule format we will analyze (certain) bipointed

specifications for F̄ . In the sequel let U : Jsl //⊥ Set
oo

: Φ denote the free and

forgetful functor, respectively. We also denote by J : FJsl → Jsl the inclusion of

the full subcategory given by free join semilattices. We are interested in functors

Σ : Jsl → Jsl of the form ΦPΓU , where PΓ : Set → Set is a polynomial functor

associated to the signature Γ. The reason for this is that Σ-algebras are precisely join

semilattices A equipped with a function PΓ : UA → UA, i. e., for every operation

symbol γ ∈ Γ a (not necessarily join preserving) operation Aar(γ) → A.

Lemma 5.1 Families of natural transformations

γ̂ : (FUJ × UJ)ar(γ) ⇒ FU(ΣJ + J) γ ∈ Γ (8)

are in one-to-one correspondence with bipointed specifications of Σ = ΦPΓU over

the functor F̄ .

We proceed to move from free join semilattices to plain sets and consider natural

transformations

γ̄ : (F × Id)ar(γ) ⇒ FUΦ(PΓUΦ + Id) γ ∈ Γ (9)

Such families of natural transformations induce bipointed specifications, but the

converse does not hold.

Lemma 5.2 Every γ̄ as in (9) induces a γ̂ as in (8), and consequently such a

collection induces a bipointed specification.

Remark 5.3 The above treatment of bipointed specifications on Jsl does not de-

pend on the specific properties of join semilattices, but works similarly for any

locally finite variety.

We are now ready to define a concrete syntactic rule format, inducing the above

families of natural transformations γ̂.

5.1 A concrete format for deterministic automata on Jsl. In the remainder

of this section let Σ be a finitary signature. A transition rule and an output rule

are of the form

{xi↓}i∈I {xi↑}i∈J
σ(x1, . . . , xn)

a−→ t
and

{xi↓}i∈I {xi↑}i∈J
σ(x1, . . . , xn)↓

270

Bonsangue, Milius, Myers and Rot

respectively, where x1, . . . , xn is a collection of pairwise distinct variables, σ an n-ary

operator of Σ; further I, J ⊆ {1, 2, . . . , n} and t is a term over the grammar

t ::= ⊥ | t⊕ t | τ(u1, . . . , uar(τ)) | x u ::= ⊥ | u⊕ u | x,

where τ ranges over the operators of Σ, x ranges over the least collection of variables

V such that xi ∈ V for all i, and for each alphabet letter a ∈ A and index i ≤ n there

is a distinct variable xai ∈ V . Intuitively, xi↑ and xi↓ represent states that must be

non-final and final, respectively, and xai represents the unique state reached by xi
after an a-transition 6 . A (bipointed) DFA (SOS) specification is a set of transition

rules and output rules such that for every operator σ of Σ, every alphabet symbol

a ∈ A and every possible sets of premises {xi↓}i∈I and {xi↑}i∈J only finitely many

rules with conclusion σ(x1, . . . , xn)
a−→ t exist. (Notice that this finiteness property

corresponds to boundedness of GSOS specifications.)

Operator dependency on Σ and finite dependency of a DFA specification is

defined in exactly the same way as for GSOS specifications (see Section 4.1).

Proposition 5.4 Any DFA specification (having finite dependency) induces a bi-

pointed specification (having finite dependency).

Thus by Corollary 4.7 the rational fixpoint, i.e., the set of regular languages, is

closed under any operations defined by a DFA specification having finite dependency.

And by Theorem 4.9 the operational model is locally finite. We proceed to show

several examples.

Given two words w and v, the shuffle of w and v, denoted w ./ v, is the

set of words obtained by arbitrary interleavings of w and v [30]. For example,

ab ./ c = {abc, acb, cab}. The shuffle of two languages L1 and L2 is the pointwise

extension: L1 ./ L2 =
⋃
w∈L1,v∈L2

w ./ v. The shuffle operator can be defined in

terms of a DFA specification as follows:

x
a→ x′

x ./ y
a→ x′ ./ y

y
a→ y′

x ./ y
a→ x ./ y′

x↓ y↓
(x ./ y)↓

By Corollary 4.7 the set of regular languages is closed under shuffle.

Concatenation, Kleene star, a single alphabet letter and the neutral element

1 = {ε} w.r.t. concatenation, are defined as follows (the Kleene star is defined

using an additional binary operation f , such that intuitively f(L1, L2) = L1 · L∗2):

x
a→ x′

x · y a→ x′ · y
x↓ y

a→ y′

x · y a→ y′

x↓ y↓
(x · y)↓ a

a→ 1
a ∈ A

x
a→ x′

f(x, y)
a→ f(x′, y)

x↓ y
a→ y′

f(x, y)
a→ f(y′, y)

x↓
f(x, y)↓ 1↓

For the corresponding signature Γ the functor Σ = FPΓU on Jsl thus represents

syntactically the above operations, in addition to the join semilattices operations.

6 In analogy with standard SOS we will denote xai by a variable y by writing a transition xi
a→ y in the

premise of the rule.

271

Bonsangue, Milius, Myers and Rot

Thus the initial algebra of Σ consists of regular expressions (with a binary Kleene

star) plus the join semilattice equations. So the operational model is precisely the

coalgebra of regular expressions; by Theorem 4.9 this is locally finite. As such, we

obtain for free that the number of derivatives of a regular expression is finite modulo

the join semilattice equations (cf. [16]).

Interestingly, Proposition 5.4 works for any DFA specification having finite de-

pendency, thus also when considering signature with an infinite set of operators.

Consider, for example, the (obviously infinite) signature containing all regular lan-

guages L ⊆ A∗ as constant, together with the following DFA specification:

L
a→ La L↓

if ε ∈ L

where La is the a-derivative of L given by {w | aw ∈ L}. Because every regular

languages has finitely many different derivatives [16], the above DFA specification

has finite dependency, and thus by Theorem 4.9 the operational model is locally

finite (it coincides, in fact, with the rational fixpoint, with, as carrier, the set of all

regular languages).

6 Conclusions and future work

We have generalized Aceto’s theorem on the regularity of the operational model

of a transition system specification from process algebra to the realm of mathe-

matical operational semantics of Turi and Plotkin. In previous work [14] it was

already shown that bipointed specifications for F = Pf(A × Id) generalize Aceto’s

simple GSOS format, and it was proved that for general bipointed specifications of

a strongly finitary functor Σ over a finitary one F a canonical Σ-algebra structure

is induced on the rational fixpoint of F “restricting” the denotational model on the

final coalgebra for F . Here we have extended this result to finitary functors Σ that

are not necessarily strongly finitary. The key to our extension is an abstract formu-

lation of the notion of finite dependendy for bipointed specifications that captures

Aceto’s more concrete notion for simple GSOS specifications as a special instance.

This then allows us to prove our generalisation of Aceto’s result in Theorem 4.9:

the operational model of such a specification is a locally finitely presentable coal-

gebra. The latter property is interesting for a possible tool development, as in any

locally finite variety it implies decidability of bisimilarity: there are only finitely

many states to check. Moreover, recent results on up-to context techniques [26]

may lead to a generic and efficient construction of a bisimulation witness of the

desired equivalence.

Our second contribution is the new rule format of DFA specifications for op-

erations on formal languages. These specifications are obtained by instantiating

bipointed specifications for functors of the form Σ = ΦPΓU on the category of join

semilattices. From our results we then conclude that regular languages are closed

under operations specified by DFA specification, and as a corollary we also obtain

the well-known result that regular expressions have only finitely many derivatives

modulo the axioms of join semilattices.

Many interesting directions are still to be explored. The process described in

272

Bonsangue, Milius, Myers and Rot

Section 5.1 can easily be adapted to other locally finite varieties, allowing to derive

more expressive concrete formats based on adding equations. In order to treat ra-

tional power series and even context-free ones, one needs to move to other algebraic

categories, such as vector spaces and idempotent semirings. Furthermore, we plan

to investigate the extension of bipointed specification to coGSOS laws [20] to allow

arbitrary lookahead in premises of rules.

References

[1] Aceto, L., GSOS and finite labelled transition systems, Theoret. Comput. Sci. 131 (1994), pp. 181–195.

[2] Aceto, L., W. Fokkink and C. Verhoef, Structural operational semantics, in: Handbook of Process
Algebra, Elsevier Science, 2001 pp. 197–292.

[3] Adámek, J., Free algebras and automata realizations in the language of categories,
Comment. Math. Univ. Carolin. 15 (1974), pp. 589–602.

[4] Adámek, J., S. Milius and J. Velebil, Free iterative theories: a coalgebraic view, Math. Structures
Comput. Sci. 13 (2003), pp. 259–320.

[5] Adámek, J., S. Milius and J. Velebil, Iterative algebras at work, Math. Structures Comput. Sci. 16
(2006), pp. 1085–1131.

[6] Adámek, J. and H.-E. Porst, On tree coalgebras and coalgebras presentations, Theoret. Comput. Sci.
311 (2004), pp. 257–283.

[7] Adámek, J. and J. Rosický, “Locally presentable and accessible categories,” Cambridge Univ. Press,
1994.

[8] Adámek, J. and J. Rosický, On sifted colimits and generalized varieties, Theory Appl. Categ. 8 (2001),
pp. 33–53.

[9] Adámek, J., J. Rosický and E. Vitale, “Algebraic Theories,” Cambridge Univ. Press, 2011.

[10] Adámek, J. and V. Trnková, “Automata and Algebras in Categories,” Mathematics and its Applications
37, Kluwer Academic Publishers, 1990.

[11] Barr, M., Coequalizers and free triples, Math. Z. 116 (1970), pp. 307–322.

[12] Bartels, F., “On generalised coinduction and probabilistic specification formats,” Ph.D. thesis, CWI,
Amsterdam (2004).

[13] Bloom, B., S. Istrail and A. Meyer, Bisimulation can’t be traced, J. ACM 42 (1995), pp. 232–268.

[14] Bonsangue, M., S. Milius and J. Rot, On the specification of operations on the rational behaviour of
systems, in: EXPRESS/SOS’12, Elect. Proc. of Theoret. Comput. Sci. 89, 2012, pp. 3–18.

[15] Bonsangue, M., S. Milius and A. Silva, Sound and complete axiomatizations of coalgebraic language
equivalence, ACM Trans. Comput. Log. 14 (2013).

[16] Brzozowski, J. A., Derivatives of regular expressions, J. ACM 11 (1964), pp. 481–494.

[17] Gabriel, P. and F. Ulmer, “Lokal präsentierbare Kategorien,” Lecture Notes Math. 221, Springer, 1971.

[18] Johnstone, P., “Stone Spaces,” Cambridge University Press, 1986.

[19] Klin, B., Structural operational semantics for weighted transition systems, in: Semantics and Algebraic
Specification, LNCS 5700 (2009).

[20] Klin, B., Bialgebras for structural operational semantics: An introduction, Theoret. Comput. Sci. 412
(2011), pp. 5043–5069.

[21] Kurz, A. and J. Rosický, Strongly complete logic for coalgebras, Log. Meth. in Comput. Sci. 8 (2012),
pp. 3–14.

[22] Lenisa, M., A. J. Power and H. Watanabe, Category theory for operational semantics,
Theoret. Comput. Sci. 327 (2004).

[23] Makkai, M. and R. Paré, “Accessible categories: the foundation of categorical model theory,”
Contemporary Math. 104, Amer. Math. Soc., Providence, RI, 1989.

[24] Milius, S., A sound and complete calculus for finite stream circuits, in: Proc. of LICS 2010 (2010), pp.
421–430.

[25] Milner, R., “Communication and Concurrency,” Prentice Hall, 1989.

[26] Rot, J. Bonsangue, M., Rutten, J., Coalgebraic Bisimulation-Up-To, in Proc. of SOFSEM 2013, Lecture
Notes in Comput. Sci. 7741 , Springer (2013) pp. 369–381.

273

Bonsangue, Milius, Myers and Rot

[27] Rutten, J., Universal coalgebra: a theory of systems, Theoret. Comput. Sci. 249 (2000).

[28] Rutten, J., A coinductive calculus of streams, Math. Structures Comput. Sci. 15 (2005), pp. 93–147.

[29] Rutten, J., Rational streams coalgebraically, Log. Meth. in Comput. Sci. 4 (2008), pp. 1–22.

[30] Shallit, J., “A Second Course in Formal Languages and Automata Theory,” Cambridge Univ. Press,
2008.

[31] Turi, D. and G. Plotkin, Towards a mathematical operational semantics, in: Proc. of LICS 1997 (1997),
pp. 280–291.

274

MFPS 2013

A Categorical Theory of Patches

Samuel Mimram and Cinzia Di Giusto

CEA, LIST

Abstract

When working with distant collaborators on the same documents, one often uses a version control system,
which is a program tracking the history of files and helping importing modifications brought by others
as patches. The implementation of such a system requires to handle lots of situations depending on the
operations performed by users on files, and it is thus difficult to ensure that all the corner cases have
been correctly addressed. Here, instead of verifying the implementation of such a system, we adopt a
complementary approach: we introduce a theoretical model, which is defined abstractly by the universal
property that it should satisfy, and work out a concrete description of it. We begin by defining a category
of files and patches, where the operation of merging the effect of two coinitial patches is defined by pushout.
Since two patches can be incompatible, such a pushout does not necessarily exist in the category, which
raises the question of which is the correct category to represent and manipulate files in conflicting state. We
provide an answer by investigating the free completion of the category of files under finite colimits, and give
an explicit description of this category: its objects are finite sets labeled by lines equipped with a transitive
relation and morphisms are partial functions respecting labeling and relations.

1 Introduction

It is common nowadays, when working with distant collaborators on the same files

(multiple authors writing an article together for instance), to use a program which

will track the history of files and handle the operation of importing modifications

of other participants. These software called version control systems (vcs for short),

like git or Darcs, implement two main operations. When a user is happy with the

changes it has brought to the files it can record those changes in a patch (a file

coding the differences between the current version and the last recorded version)

and commit them to a server, called a repository. The user can also update its

current version of the file by importing new patches added by other users to the

repository and applying the corresponding modifications to the files. One of the

main difficulties to address here is that there is no global notion of “time”: patches

are only partially ordered. For instance consider a repository with one file A and

two users u1 and u2. Suppose that u1 modifies file A into B by committing a patch

f , which is then imported by u2, and then u1 and u2 concurrently modify the file B

into C (resp. D) by committing a patch g (resp. h). The evolution of the file is

1 This work was partially supported by the French project ANR-11-INSE-0007 REVER.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

Mimram and Di Giusto

depicted on the left and the partial ordering of patches in the middle:

C D

B
g

``
h

>>

A
f
OO

g h

f

\\ AA

E

C

h/g >>

D

g/h``

B
g

``
h

>>

A
f
OO

Now, suppose that u2 imports the patch g or that u1 imports the patch h. Clearly,

this file resulting from the merging of the two patches should be the same in both

cases, call it E. One way to compute this file, is to say that there should be a

patch h/g, the residual of h after g, which transforms C into E and has the “same

effect” as h once g has been applied, and similarly there should be a patch g/h

transforming D into E. Thus, after each user has imported changes from the other,

the evolution of the file is as pictured on the right above. In this article, we introduce

a category L whose objects are files and morphisms are patches. Since residuals

should be computed in the most general way, we formally define them as the arrows

of pushout cocones, i.e. the square in the figure on the right should be a pushout.

However, as expected, not every pair of coinitial morphisms have a pushout in the

category L: this reflects the fact that two patches can be conflicting (for instance if

two users modify the same line of a file). Representing and handling such conflicts in

a coherent way is one of the most difficult part of implementing a vcs (as witnessed

for instance by the various proposals for Darcs: mergers, conflictors, graphictors,

etc. [10]). In order to be able to have a representation for all conflicting files, we

investigate the free completion of the category L under all pushouts, this category

being denoted P, which corresponds to adding all conflicting files to the category,

in the most general way as possible. This category can easily be shown to exist

for general abstract reasons, and one of the main contributions of this work is to

provide an explicit description by applying the theory of presheaves. This approach

paves the way towards the implementation of a vcs whose correctness is deduced

from universal categorical properties.

Related work. The Darcs community has investigated a formalization of patches

based on commutation properties [10]. Operational transformations tackle essen-

tially the same issues by axiomatizing the notion of residual patches [9]. In both

cases, the fact that residual should form a pushout cocone is never explicitly stated,

excepting in informal sentences saying that “g/f should have the same effect as g

once f has been applied”. We should also mention another interesting approach

to the problem using inverse semigroups in [4]. Finally, Houston has proposed a

category with pushouts, similar to ours, in order to model conflicting files [3], see

Section 6.

Plan of the paper. We begin by defining a category L of files and patches in Sec-

tion 2. Then, in Section 3, we abstractly define the category P of conflicting files

obtained by free finite cocompletion. Section 4 provides a concrete description of

the construction in the simpler case where patches can only insert lines. We give

some concrete examples in Section 5 and adapt the framework to the general case

276

Mimram and Di Giusto

in Section 6. We conclude in Section 7.

2 Categories of files and patches

In this section, we investigate a model for a simplified vcs: it handles only one file

and the only allowed operations are insertion and deletion of lines (modification of

a line can be encoded by a deletion followed by an insertion). We suppose fixed a

set L = {a, b, . . .} of lines (typically words over an alphabet of characters). A file A

is a finite sequence of lines, which will be seen as a function A : [n] → L for some

number of lines n ∈ N, where the set [n] = {0, 1, . . . , n − 1} indexes the lines of

the files. For instance, a file A with three lines such that A(0) = a, A(1) = b and

A(2) = c models the file abc. Given a ∈ L, we sometimes simply write a for the

file A : [1] → L such that A(0) = a. A morphism between two files A : [m] → L

and B : [n] → L is an injective increasing partial function f : [m] → [n] such that

∀i ∈ [m], B ◦ f(i) = A(i) whenever f(i) is defined. Such a morphism is called a

patch.

Definition 2.1 The category L has files as objects and patches as morphisms.

Notice that the category L is strictly monoidal with [m] ⊗ [n] = [m + n] and

for every file A : [m] → L and B : [n] → L, (A ⊗ B)(i) = A(i) if i < m and

(A ⊗ B)(i) = B(i −m) otherwise, the unit being the empty file I : [0] → L, and

tensor being defined on morphisms in the obvious way. The following proposition

shows that patches are generated by the operations of inserting and deleting a line:

Proposition 2.2 The category L is the free monoidal category containing L as

objects and containing, for every line a ∈ L, morphisms ηa : I → a (insertion of

a line a) and εa : a → I (deletion of a line a) such that εa ◦ ηa = idI (deleting an

inserted line amounts to do nothing).

Example 2.3 The patch corresponding to transforming the file abc into dadeb, by

deleting the line c and inserting the lines labeled by d and e, is modeled by the

partial function f : [3]→ [5] such that f(0) = 1 and f(1) = 4 and f(2) is undefined.

Graphically,
a
b
c

d
a
d
e
b

The deleted line is the one on which f is not defined and the inserted lines are those

which are not in the image of f . In other words, f keeps track of the unchanged

lines.

In order to increase readability, we shall consider the particular case where L is

reduced to a single element. In this unlabeled case, the objects of L can be identified

with integers (the labeling function is trivial), and Proposition 2.2 can be adapted

to achieve the following description of the category, see also [6].

Proposition 2.4 If L is reduced to a singleton, the category L is the free category

whose objects are integers and morphisms are generated by sni : n → n + 1 and

277

Mimram and Di Giusto

dni : n + 1 → n for every n ∈ N and i ∈ [n + 1] (respectively corresponding to

insertion and deletion of a line at i-th position), subject to the relations

sn+1
i snj = sn+1

j+1 s
n
i dni s

n
i = idn dni d

n+1
j = dnj d

n+1
i+1 (1)

whenever 0 ≤ i ≤ j < n.

We will also consider the subcategory L+ of L, with same objects, and total injective

increasing functions as morphisms. This category models patches where the only

possible operation is the insertion of lines: Proposition 2.2 can be adapted to show

that L+ is the free monoidal category containing morphisms ηa : I → a and, in the

unlabeled case, Proposition 2.4 can be similarly adapted to show that it is the free

category generated by morphisms sni : n → n + 1 satisfying sn+1
i snj = sn+1

j+1 s
n
i with

0 ≤ i ≤ j < n.

3 Towards a category of conflicting files

Suppose that A is a file which is edited by two users, respectively applying patches

f1 : A→ A1 and f2 : A→ A2 to the file. For instance,

a c c b
f1←− a b

f2−→ a b c d (2)

Now, each of the two users imports the modification from the other one. The result-

ing file, after the import, should be the smallest file containing both modifications

on the original file: accbcd. It is thus natural to state that it should be a pushout of

the diagram (2). Now, it can be noticed that not every diagram in L has a pushout.

For instance, the diagram

a c b
f1←− a b

f2−→ a d b (3)

does not admit a pushout in L. In this case, the two patches f1 and f2 are said to

be conflicting.

In order to represent the state of files after applying two conflicting patches,

we investigate the definition of a category P which is obtained by completing the

category L under all pushouts. Since, this completion should also contain an initial

object (i.e. the empty file), we are actually defining the category P as the free

completion of L under finite colimits: recall that a category is finitely cocomplete

(has all finite colimits) if and only if it has an initial object and is closed under

pushouts [6]. Intuitively, this category is obtained by adding files whose lines are

not linearly ordered, but only partially ordered, such as on the left of

a
�� ��
c
��

d
��
b

a

<<<<<<< HEAD

c

=======

d

>>>>>>> 5c55...

b

(4)

which would intuitively model the pushout of the diagram (3) if it existed, indi-

cating that the user has to choose between c and d for the second line. Notice

278

Mimram and Di Giusto

the similarities with the corresponding textual notation in git on the right. The

name of the category L reflects the facts that its objects are files whose lines are

linearly ordered, whereas the objects of P can be thought as files whose lines are

only partially ordered. More formally, the category is defined as follows.

Definition 3.1 The category P is the free finite conservative cocompletion of L: it

is (up to equivalence of categories) the unique finitely cocomplete category together

with an embedding functor y : L → P preserving finite colimits, such that for every

finitely cocomplete category C and functor F : L → C preserving finite colimits,

there exists, up to unique isomorphism, a unique functor F̃ : P → C preserving

finite colimits and satisfying F̃ ◦ y = F :

L
y ��

F // C

P F̃

??

Above, the term conservative refers to the fact that we preserve colimits which

already exist in L (we will only consider such completions here). The “standard”

way to characterize the category P, which always exists, is to use the following

folklore theorem, often attributed to Kelly [5,1]:

Theorem 3.2 The conservative cocompletion of the category L is equivalent to

the full subcategory of L̂ whose objects are presheaves which preserve finite limits,

i.e. the image of a limit in Lop (or equivalently a colimit in L) is a limit in Set

(and limiting cones are transported to limiting cones). The finite conservative co-

completion P can be obtained by further restricting to presheaves which are finite

colimits of representables.

Example 3.3 The category FinSet of finite sets and functions is the conservative

cocompletion of the terminal category 1.

We recall that the category L̂ of presheaves over L, is the category of functors

Lop → Set and natural transformations between them. The Yoneda functor

y : L → L̂ defined on objects n ∈ L by yn = L(−, n), and on morphisms by

postcomposition, provides a full and faithful embedding of L into the correspond-

ing presheaf category, and can be shown to corestrict into a functor y : L → P [1].

A presheaf of the form yn for some n ∈ L is called representable.

Extracting a concrete description of the category P from the above proposition

is a challenging task, because we a priori need to characterize firstly all diagrams

admitting a colimit in L, and secondly all presheaves in L̂ which preserve those

diagrams. This paper introduces a general methodology to build such a category.

In particular, perhaps a bit surprisingly, it turns out that we have to “allow cycles”

in the objects of the category P, which will be described as the category whose objects

are finite sets labeled by lines together with a transitive relation and morphisms are

partial functions respecting labels and relations.

279

Mimram and Di Giusto

4 A cocompletion of files and insertions of lines

In order to make our presentation clearer, we shall begin our investigation of the

category P in a simpler case, which will be generalized in Section 6: we compute

the free finite cocompletion of the category L+ (patches can only insert lines) in

the case where the set of labels is a singleton. To further lighten notations, in this

section, we simply write L for this category.

We sometimes characterize the objects in L as finite colimits of objects in a

subcategory G of L. This category G is the full subcategory of L whose objects are 1

and 2: it is the free category on the graph 1 //// 2 , the two arrows being s1
0 and s1

1.

The category Ĝ of presheaves over G is the category of graphs: a presheaf P ∈ Ĝ is a

graph with P (1) as vertices, P (2) as edges, the functions P (s1
1) and P (s1

0) associate

to a vertex its source and target respectively, and morphisms correspond to usual

morphisms of graphs. We denote by x� y a path going from a vertex x to a vertex

y in such a graph. The inclusion functor I : G → L induces, by precomposition, a

functor I∗ : L̂ → Ĝ. The image of a presheaf in L̂ under this functor is called its

underlying graph. By well known results about presheaves categories, this functor

admits a right adjoint I∗ : Ĝ → L̂: given a graph G ∈ Ĝ, its image under the right

adjoint is the presheaf G∗ ∈ L̂ such that for every n ∈ N, G∗(n + 1) is the set of

paths of length n in the graph G, with the expected source maps, and G∗(0) is

reduced to one element.

Recall that every functor F : C → D induces a nerve functor NF : D → Ĉ defined

on an object A ∈ C by NF (A) = D(F−, A) [7]. Here, we will consider the nerve

NI : L → Ĝ associated to the inclusion functor I : G → L. An easy computation

shows that the image NI(n) of n ∈ L is a graph with n vertices, so that its objects

are isomorphic to [n], and there is an arrow i → j for every i, j ∈ [n] such that

i < j. For instance,

NI(3) = 0 // 771 // 2 NI(4) = 0 // '' 551 // ''2 // 3

It is, therefore, easy to check that this embedding is full and faithful, i.e. morphisms

in L correspond to natural transformations in Ĝ. Moreover, since NI(1) is the graph

reduced to a vertex and NI(2) is the graph reduced to two vertices and one arrow

between them, every graph can be obtained as a finite colimit of the graphs NI(1)

and NI(2) by “gluing arrows along vertices”. For instance, the initial graph NI(0) is

the colimit of the empty diagram, and the graph NI(3) is the colimit of the diagram

NI(2) NI(2)

NI(1)

NI(s1) ,,

NI(s1) 55

NI(1)

NI(s0)ii NI(s1) 55

NI(1)

NI(s0)ii

NI(s0)rr
NI(2)

which may also be drawn as on the left of

**

:: gg 77 dd

tt

2 2

1

&&

@@

1

^^ @@

1

^^

xx2

280

Mimram and Di Giusto

by drawing the graphs NI(0) and NI(1). Notice, that the object 3 is the colimit

of the corresponding diagram in L (on the right), and this is generally true for all

objects of L, moreover this diagram is described by the functor El(NI(3))
π−→ L.

The notation El(P) refers to the category of elements of a presheaf P ∈ Ĉ, whose

objects are pairs (A, p) with A ∈ C and p ∈ P (A) and morphisms f : (A, p)→ (B, q)

are morphisms f : A→ B in C such that P (f)(q) = p, and π is the first projection

functor. The functor I : G → L is thus a dense functor in the sense of Definition 4.2

below, see [7] for details.

Proposition 4.1 Given a functor F : C → D, with D cocomplete, the associated

nerve NF : D → Ĉ admits a left adjoint RF : Ĉ → D called the realization along F .

This functor is defined on objects P ∈ Ĉ by

RF (P) = colim(El(P)
π−→ C F−→ D)

Proof Given a presheaf P ∈ Ĉ and an object D, it can be checked directly that

morphisms P → NFD in Ĉ with cocones from El(P)
D−→ to D, which in turn are in

bijection with morphisms RF (P)→ D in D, see [7]. 2

Definition 4.2 A functor F : C → D is dense if it satisfies one of the two equivalent

conditions:

(i) the associated nerve functor NF : D → Ĉ is full and faithful,

(ii) every object of D is canonically a colimit of objects in C: for every D ∈ D,

D ∼= colim(El(NFD)
π−→ C F−→ D) (5)

Since the functor I is dense, every object of L is a finite colimit of objects in G,

and G does not have any non-trivial colimit. One could expect the free conservative

finite cocompletion of L to be the free finite cocompletion P of G. We will see that

this is not the case because the image in L of a non-trivial diagram in G might still

have a colimit. By Theorem 3.2, the category P is the full subcategory of L̂ of

presheaves preserving limits, which we now describe explicitly. This category will

turn out to be equivalent to a full subcategory of Ĝ (Theorem 4.8). We should first

remark that those presheaves satisfy the following properties:

Proposition 4.3 Given a presheaf P ∈ L̂ which is an object of P,

(i) the underlying graph of P is finite,

(ii) for each non-empty path x� y there exists exactly one edge x→ y (in partic-

ular there is at most one edge between two vertices),

(iii) P (n+ 1) is the set of paths of length n in the underlying graph of P , and P (0)

is reduced to one element.

Proof We suppose given a presheaf P ∈ P, it preserves limits by Theorem 3.2.

281

Mimram and Di Giusto

The diagram on the left

3

2

s22 <<

2

s20bb

1s10

bb
s11

<<

P (3)

P (2)
xx

P (s22)

P (2)
&&

P (s20)

P (1)
&&

P (s10)
xx
P (s11)

is a pushout in L, or equivalently the dual diagram is a pullback in Lop. There-

fore, writing D for the diagram 2 1
s10oo s11 // 2 in L, a presheaf P ∈ P should satisfy

P ((colimD)op) ∼= limP (Dop), i.e. the above pushout diagram in L should be trans-

ported by P into the pullback diagram in Set depicted on the right of the above

figure. This condition can be summarized by saying that P should satisfy the iso-

morphism P (3) ∼= P (2) ×P (1) P (2) (and this isomorphism should respect obvious

source and target maps given by the fact that the functor P should send a limiting

cone to a limiting cone). From this fact, one can deduce that the elements α of

P (3) are in bijection with the paths x→ y → z of length 2 in the underlying graph

of P going from x = P (s2
2s

1
1)(α) to z = P (s2

0s
1
0)(α). In particular, this implies that

for any path α = x→ y → z of length 2 in the underlying graph of P , there exists

an edge x → z, which is P (s2
1)(α). More generally, given any integer n > 1, the

object n+ 1 is the colimit in L of the diagram

2 2 2 2

1

s11 ;;

1

s10cc s11 ;; s10aa

. . .

s11 ==

1

s10cc s11 ;;

1

s10cc (6)

with n+1 occurrences of the object 1, and n occurrences of the object 2. Therefore,

for every n ∈ N, P (n + 1) is isomorphic to the set of paths of length n in the

underlying graph. Moreover, since the diagram

2 2 2 2

1

s11
,,

s11 ;;

1

s10cc s11 ;; s10aa

. . .

s11 ==

1

s10cc s11 ;;

1

s10cc

s10
rr2

(7)

with n + 1 occurrences of the object 1 also admits the object n + 1 as colimit, we

should have P (n+ 1) ∼= P (n+ 1)× P (2) between any two vertices x and y, i.e. for

every non-empty path x � y there exists exactly one edge x → y. Also, since the

object 0 is initial in L, it is the colimit of the empty diagram. The set P (0) should

thus be the terminal set, i.e. reduced to one element. Finally, since I is dense, P

should be a finite colimit of the representables NI(1) and NI(2), the set P (1) is

necessarily finite, as well as the set P (2) since there is at most one edge between

two vertices. 2

Conversely, we wish to show that the conditions mentioned in the above propo-

sition exactly characterize the presheaves in P among those in L̂. In order to prove

so, by Theorem 3.2, we have to show that presheaves P satisfying these conditions

preserve finite limits in L, i.e. that for every finite diagram D : J → L admitting a

colimit we have P (colimD) ∼= lim(P ◦Dop). It seems quite difficult to characterize

the diagrams admitting a colimit in L, however the following lemma shows that it

is enough to check diagrams “generated” by a graph which admits a colimit.

282

Mimram and Di Giusto

Lemma 4.4 A presheaf P ∈ L̂ preserves finite limits if and only if it sends the

colimits of diagrams of the form

El(G)
πG−−→ G I−→ L (8)

to limits in Set, where G ∈ Ĝ is a finite graph such that the above diagram admits

a colimit. Such a diagram in L is said to be generated by the graph G.

Proof In order to check that a presheaf P ∈ L̂ preserves finite limits, we have to

check that it sends colimits of finite diagrams in L which admit a colimit to limits

in Set, and therefore we have to characterize diagrams which admit colimits in L.

Suppose given a diagram K : J → L. Since I is dense, every object of linear is a

colimit of a diagram involving only the objects 1 and 2 (see Definition 4.2). We can

therefore suppose that this is the case in the diagram K. Finally, it can be shown

that diagram K admits the same colimits as a diagram containing only s1
0 and s1

1

as arrows (these are the only non-trivial arrows in L whose source and target are 1

or 2), in which every object 2 is the target of exactly one arrow s1
0 and one arrow

s1
1. For instance, the diagram in L below on the left admits the same colimits as

the diagram in the middle.

2 3

1s10

^^

s11
��

s22s
1
1 @@

1

s10
��

s20s
1
0

^^

1
s10ii2

2 2 2

1

s11 @@

1

s10^^ s11 @@

s11 &&

1

s10^^ s11 @@

1

s10xx

s10^^

2

0 // 1 // 772 // 3

Any such diagram K is obtained by gluing a finite number of diagrams of the form

1
s11 // 2 1

s10oo along objects 1, and is therefore of the form El(G)
π−→ G I−→ L for some

finite graph G ∈ Ĝ: the objects of G are the objects 1 in K, the edges of G are

the objects 2 in K and the source and target of an edge 2 are respectively given

by the sources of the corresponding arrows s1
1 and s1

0 admitting it as target. For

instance, the diagram in the middle above is generated by the graph on the right.

The fact that every diagram is generated by a presheaf (is a discrete fibration) also

follows more abstractly and generally from the construction of the comprehensive

factorization system on Cat [8,11]. 2

Among diagrams generated by graphs, those admitting a colimit can be charac-

terized using the following proposition:

Lemma 4.5 Given a graph G ∈ Ĝ, the associated diagram (8) admits a colimit

in L if and only if there exists n ∈ L and a morphism f : G→ NIn in L̂ such that

every morphism g : G → NIm in L̂, with m ∈ L, factorizes uniquely through NIn:

G
f //

g
22NIn //NIm

Proof Follows from the existence of a partially defined left adjoint to NI , in the

sense of [8], given by the fact that I is dense (see Definition 4.2). 2

We finally arrive at the following concrete characterization of diagrams admitting

colimits:

283

Mimram and Di Giusto

Lemma 4.6 A finite graph G ∈ Ĝ induces a diagram (8) in L which admits a

colimit if and only if it is “tree-shaped”, i.e. it is

(i) acyclic: for any vertex x, the only path x� x is the empty path,

(ii) connected: for any pair of vertices x and y there exists a path x� y or a path

y � x.

Proof Given an object n ∈ L, recall that NIn is the graph whose objects are

elements of [n] and there is an arrow i→ j if and only if i < j. Given a finite graph

G, morphisms f : G → NIn are therefore in bijection with functions f : VG → [n],

where VG denotes the set of vertices of G, such that f(x) < f(y) whenever there

exists an edge x→ y (or equivalently, there exists a non-empty path x� y).

Consider a finite graph G ∈ Ĝ, by Lemma 4.5, it induces a diagram (8) admitting

a colimit if there is a universal arrow f : G→ NIn with n ∈ L. From this it follows

that the graph is acyclic: otherwise, we would have a non-empty path x � x for

some vertex x, which would imply f(x) < f(x). Similarly, suppose that G is a graph

with vertices x and y such that there is no path x � y or y � x, and there is an

universal morphism f : G → NIn for some n ∈ L. Suppose that f(x) ≤ f(y) (the

case where f(y) ≤ f(x) is similar). We can define a morphism g : G→ NI(n+1) by

g(z) = f(z)+1 if there is a path x� z, g(y) = f(x) and g(z) = f(z) otherwise. This

morphism is easily checked to be well-defined. Since we always have f(x) ≤ f(y)

and g(x) > g(y), there is no morphism h : NIn→ NI(n+ 1) such that h ◦ f = g.

Conversely, given a finite acyclic connected graph G, the relation ≤ defined on

morphisms by x ≤ y whenever there exists a path x � y is a total order. Writing

n for the number of vertices in G, the function f : G → NIn, which to a vertex

associates the number of vertices strictly below it wrt ≤, is universal in the sense

of Lemma 4.5. 2

Proposition 4.7 The free conservative finite cocompletion P of L is equivalent to

the full subcategory of L̂ whose objects are presheaves P satisfying the conditions of

Proposition 4.3.

Proof By Lemma 4.4, the category P is equivalent to the full subcategory of L̂
whose objects are presheaves preserving limits of diagrams of the form (8) generated

by some graph G ∈ Ĝ which admits a colimit, i.e. by Lemma 4.6 the finite graphs

which are acyclic and connected. We write Gn for the graph with [n] as vertices and

edges i→ (i+ 1) for 0 ≤ i < n− 1. It can be shown that any acyclic and connected

finite graph can be obtained from the graph Gn, for some n ∈ N, by iteratively

adding an edge x→ y for some vertices x and y such that there exists a non-empty

path x � y. Namely, suppose given an acyclic and connected finite graph G. The

relation ≤ on its vertices, defined by x ≤ y whenever there exists a path x� y, is a

total order, and therefore the graph G contains Gn, where n is the number of edges

of G. An edge in G which is not in Gn is necessarily of the form x→ y with x ≤ y,

otherwise it would not be acyclic. Since by Proposition 4.3, see (7), the diagram

generated by a graph of the form

. . .

284

Mimram and Di Giusto

is preserved by presheaves in P (which corresponds to adding an edge between

vertices at the source and target of a non-empty path), it is enough to show that

presheaves in P preserve diagrams generated by graphs Gn. This follows again by

Proposition 4.3, see (6). 2

One can notice that a presheaf P ∈ P is characterized by its underlying graph

since P (0) is reduced to one element and P (n) with n > 2 is the set of paths of

length n in this underlying graph: P ∼= I∗(I
∗P). We can therefore simplify the

description of the cocompletion of L as follows:

Theorem 4.8 The free conservative finite cocompletion P of L is equivalent to the

full subcategory of the category Ĝ of graphs, whose objects are finite graphs such that

for every non-empty path x� y there exists exactly one edge x→ y. Equivalently,

it can be described as the category whose objects are finite sets equipped with a

transitive relation <, and functions respecting relations.

In this category, pushouts can be explicitly described as follows:

Proposition 4.9 With the last above description, the pushout of a diagram

(B,<B)
f←− (A,<A)

g−→ (C,<C) is B] C/ ∼ with B 3 b ∼ c ∈ C whenever there

exists a ∈ A with f(a) = b and f(a) = c, equipped with the transitive closure of the

relation inherited by <B and <C .

Lines with labels. The construction can be extended to the labeled case (i.e. L is

not necessarily a singleton). The forgetful functor L̂ → Set sending a presheaf P to

the set P (1) admits a right adjoint ! : Set→ L̂. Given n ∈ N∗ the elements of !L(n)

are words u of length n over L, with !L(sn−1
i)(u) being the word obtained from u

by removing the i-th letter. The free conservative finite cocompletion P of L is

the slice category L/!L, whose objects are pairs (P, `) consisting of a finite presheaf

P ∈ L̂ together with a labeling morphism ` : P → !L of presheaves. Alternatively,

the description of Proposition 4.8 can be straightforwardly adapted by labeling the

elements of the objects by elements of L (labels should be preserved by morphisms),

thus justifying the use of labels for the vertices in following examples.

5 Examples

In this section, we give some examples of merging (i.e. pushout) of patches.

Example 5.1 Suppose that starting from a file ab, one user inserts a line a′ at the

beginning and c in the middle, while another one inserts a line d in the middle.

After merging the two patches, the resulting file is the pushout of

a′

a

c

b

f1←−
a

b

f2−→
a

d

b

which is

a′

a

c d

b

Example 5.2 Write G1 for the graph with one vertex and no edges, and G2 for

the graph with two vertices and one edge between them. We write s, t : G1 → G2

285

Mimram and Di Giusto

for the two morphisms in P. Since P is finitely cocomplete, there is a coproduct

G1 +G1 which gives, by universal property, an arrow seq : G1 +G1 → G2:

G2

G1

s
88

//G1 +G1

seq
OO

G1
oo
t

ff
or graphically s

<<

//
seq

OO

oo

t
bb

that we call the sequentialization morphism. This morphism corresponds to the

following patch: given two possibilities for a line, a user can decide to turn them

into two consecutive lines. We also write seq′ : G1 + G1 → G2 for the morphism

obtained similarly by exchanging s and t in the above cocone. Now, the pushout of

seq←−− seq′−−→ is

which illustrates how cyclic graphs appear in P during the cocompletion of L.

Example 5.3 With the notations of the previous example, by taking the coproduct

of two copies of idG1 : G1 → G1, there is a universal morphism G1 + G1 → G1,

which illustrates how two independent lines can be merged by a patch (in order to

resolve conflicts).

id•

<<

//
merge

OO

oo

id•

bb

6 Handling deletions of lines

All the steps performed in previous sections in order to compute the free conservative

finite cocompletion of the category L+ can be adapted in order to compute the

cocompletion P of the category L as introduced in Definition 2.1, thus adding

support for deletion of lines in patches. In particular, the generalization of the

description given by Theorem 4.8 turns out to be as follows.

Theorem 6.1 The free conservative finite cocompletion P of the category L is the

category whose objects are triples (A,<, `) where A is a finite set of lines, < is a

transitive relation on A and ` : A→ L associates a label to each line, and morphisms

f : (A,<A, `A) → (B,<B, `B) are partial functions f : A → B such that for every

a, a′ ∈ A both admitting an image under f , we have `B(f(a)) = `A(a), and a <A a
′

implies f(a) <B f(a′).

Similarly, pushouts in this category can be computed as described in Proposition 4.9,

generalized in the obvious way to partial functions.

Example 6.2 Suppose that starting from a file abc, one user inserts a line d after a

and the other one deletes the line b. The merging of the two patches (in P ′) is the

pushout of
a

d

b
c

f1←−

a

b
c

f2−→

a

c

which is

a

d

c

i.e. the file adc. Notice that the morphism f2 is partial: b has no image.

286

Mimram and Di Giusto

Interestingly, a category very similar to the one we have described in Theorem 6.1

was independently proposed by Houston [3] based on a construction performed

in [2] for modeling asynchronous processes. This category is not equivalent to

ours because morphisms are reversed partial functions: it is thus not the most

general model (in the sense of being the free finite cocompletion). As a simplified

explanation for this, consider the category FinSet which is the finite cocompletion

of 1. This category is finitely complete (in addition to cocomplete), thus FinSetop

is finitely cocomplete and 1 embeds fully and faithfully in it. However, FinSetop

is not the finite cocompletion of 1. Another way to see this is that this category

does not contain the “merging” morphism of Example 5.3, but it contains a dual

morphism “duplicating” lines.

7 Concluding remarks and future works

In this paper, we have detailed how we could derive from universal constructions a

category which suitably models files resulting from conflicting modifications. It is

finitely cocomplete, thus the merging of any modifications of the file is well-defined.

We believe that the interest of our methodology lies in the fact that it adapts

easily to other more complicated base categories L than the two investigated here:

in future works, we should explain how to extend the model in order to cope with

multiple files (which can be moved, deleted, etc.), different file types (containing

text, or more structured data such as xml trees). Also, the structure of repositories

(partially ordered sets of patches) is naturally modeled by event structures labeled

by morphisms in P, which will be detailed in future works, as well as how to

model usual operations on repositories: cherry-picking (importing only one patch

from another repository), using branches, removing a patch, etc. It would also be

interesting to explore axiomatically the addition of inverses for patches, following

other works hinted at in the introduction.

Once the theoretical setting is clearly established, we plan to investigate algorith-

mic issues (in particular, how to efficiently represent and manipulate the conflicting

files, which are objects in P). This should eventually serve as a basis for the imple-

mentation of a theoretically sound and complete distributed version control system

(no unhandled corner-cases as in most current implementations of vcs).

Acknowledgment

The authors would like to thank P.-A. Melliès, E. Haucourt, T. Heindel, T.

Hirschowitz and the anonymous reviewers for their enlightening comments and sug-

gestions.

References

[1] J. Adámek and J. Rosicky. Locally presentable and accessible categories, volume 189. Cambridge Univ.
Press, 1994.

[2] R. Cockett and D. Spooner. Categories for synchrony and asynchrony. Electronic Notes in Theoretical
Computer Science, 1:66–90, 1995.

[3] R. Houston. On editing text. http://bosker.wordpress.com/2012/05/10/on-editing-text.

287

http://bosker.wordpress.com/2012/05/10/on-editing-text

Mimram and Di Giusto

[4] J. Jacobson. A formalization of darcs patch theory using inverse semigroups. Technical report, CAM
report 09-83, UCLA, 2009.

[5] M. Kelly. Basic concepts of enriched category theory, volume 64. Cambridge Univ. Press, 1982.

[6] S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics.
Springer Verlag, 1971.

[7] S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic: A first introduction to topos theory.
Springer, 1992.

[8] R. Paré. Connected components and colimits. Journal of Pure and Applied Algebra, 3(1):21–42, 1973.

[9] M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhäuser. An integrating, transformation-oriented
approach to concurrency control and undo in group editors. In Proceedings of the 1996 ACM conference
on Computer supported cooperative work, pages 288–297. ACM, 1996.

[10] D. Roundy and al. The Darcs Theory. http://darcs.net/Theory.

[11] R. Street and R. Walters. The comprehensive factorization of a functor. Bull. Amer. Math. Soc,
79(2):936–941, 1973.

288

http://darcs.net/Theory

MFPS 2013

Monads for Behaviour

Maciej Piróg1 and Jeremy Gibbons2

Department of Computer Science
University of Oxford

Abstract

The monads used to model effectful computations traditionally concentrate on the ‘destination’—the final
results of the program. However, sometimes we are also interested in the ‘journey’—the intermediate course
of a computation—especially when reasoning about non-terminating interactive systems. In this article
we claim that a necessary property of a monad for it to be able to describe the behaviour of a program
is complete iterativity. We show how an ordinary monad can be modified to disclose more about its
internal computational behaviour, by applying an associated transformer to a completely iterative monad.
To illustrate this, we introduce two new constructions: a coinductive cousin of Cenciarelli and Moggi’s
generalised resumption transformer, and States—a State-like monad that accumulates the intermediate
states.

Keywords: completely iterative monads, effects, tracing, resumptions

1 Introduction

In this article we are concerned with semantics of programs like the following Haskell

fragment:

echo :: IO ()

echo = do { x <- getChar ; putChar x ; echo }

More precisely, we are interested in programs that (1) have side-effects, and (2)

depend on a (not necessarily terminating) recursion—or a corecursion, if you will.

In the example, echo performs observable actions and then calls itself, ‘unfolding’

an infinite series of events.

Since Moggi’s groundbreaking work [20], monads have become the standard

model for computational effects. A popular choice for I/O is to employ the State

monad A 7→ (A×S)S , model the outside world as an object S, and see the program

semantics as a function transforming an initial state into a final state [7,15]. Alter-

natively, we could consider side-effects as communication with the environment, so

1 maciej.pirog@cs.ox.ac.uk
2 jeremy.gibbons@cs.ox.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:maciej.pirog@cs.ox.ac.uk
mailto:jeremy.gibbons@cs.ox.ac.uk

Piróg, Gibbons

no assumption about semantics of effects needs to be made at this point: the pro-

gram semantics is a free structure generated by the ‘effectful’ constructs (getChar

and putChar), which is then interpreted by an external handler [13,25,28].

The situation becomes much more complicated in the context of (2). For ex-

ample, the State monad does not build the final state incrementally, so in case of

non-terminating programs, such as echo, it is useless. The free structure, on the

other hand, sometimes needs to be infinite, so in general the free monad Σ∗ (for

an endofunctor Σ representing the signature) is ‘too small’. Evidently, to encom-

pass these examples we need monads that capture not only the final results of the

program, but rather its behaviour, for example in the form of execution traces. In

this article we identify this property as complete iterativity, a notion introduced

by Elgot [10] and recently brought to attention by Aczel et al. [1,18]. A monad is

completely iterative (‘is a cim’) if it is equipped with a certain corecursion scheme

that is coherent with its monadic structure (for the full definition see Section 2).

In particular, the free cim Σ∞ generated by an endofunctor Σ captures both finite

and infinite Σ-terms.

Nevertheless, we should not discard the ‘usual’ monads too hastily. For example,

if we program a divergent computation in the State monad, the intermediate states

are physically ‘put’ and ‘gotten’ somewhere in the memory of the computer, so the

internal behaviour of the computation is, in a sense, accurate. The point is to reify

it as a mathematical model. An interesting fact is that the IO monad in the Haskell

Glasgow Compiler (GHC) is implemented using the State monad [17], so whatever

its mathematical model, the two have to be related.

Our idea is to use transformers associated with the ‘usual’ monads to trace

computations. For a cim T and an adjunction F a U that gives rise to a monad M

(that is, UF = M), we use the monad UTF to trace computations in M . Clearly,

UTF supports M -computations (via the canonical monad morphism M → UTF),

but it can also store some observations about the course of the computation in the

inner cim. The choice of the monad T and the adjunction reveals different aspects of

computations in M . As our main technical result, we prove that UTF is completely

iterative.

As an example, we use the currying adjunction to derive what we call the States

monad, which behaves like State, but also gathers the intermediate states in a

stream. This way, the result of the computation is not a single, final state, but

rather a possibly infinite trace consisting of intermediate states.

Then we introduce the Coinductive Generalised Resumption transformer

M(ΣM)∞, which is a coalgebraic cousin of Cenciarelli and Moggi’s Generalised

Resumption transformer M(ΣM)∗ [9]. It allows to decompose a monadic compu-

tation into a possibly infinite number of steps interleaved with free structure. It is

also a categorical model for datatypes built around resumptions, such as Haskell

pipes (for ΣA = AI + A × O). The fact that we use the free cim is crucial, since

programming patterns for pipes rely heavily on infinite computations.

Because of space limitations we present only short outlines of proofs. For the

full proofs consult the associated technical report available online at: http://www.

cs.ox.ac.uk/people/maciej.pirog/mbext.pdf.

290

http://www.cs.ox.ac.uk/people/maciej.pirog/mbext.pdf
http://www.cs.ox.ac.uk/people/maciej.pirog/mbext.pdf

Piróg, Gibbons

2 Completely iterative monads

2.1 Initial assumptions and notations

For the entire article, we assume that we are working in a base category B with

binary coproducts and all the necessary final coalgebras. We denote the coproduct

injections by inl and inr. We use a subscript for the composition of a natural

transformation with a functor; for example, for functors H and J , if ξ : F → G is

natural, then ξH : FH → GH. If ξ is natural in two variables, by ξH,J we mean a

natural transformation ζA = ξHA,JA.

Working with infinite computations means working also with infinite data struc-

tures. To set the notation, we recall a few standard definitions. For an endofunctor

F , an F -coalgebra is a pair 〈A, f : A → FA〉. We call A the carrier of the coal-

gebra. A morphism h : A → B is an F -coalgebra homomorphism, denoted as

h : 〈A, f〉 → 〈B, g〉, if g · h = Fh · f . An F -coalgebra 〈νF, β〉 is final if for every F -

coalgebra 〈A, f〉 there exists precisely one homomorphism 〈A, f〉 → 〈νF, β〉, called

an anamorphism and denoted as [(f)].

2.2 Ideal and idealised monads

In this article we deal with monads that support corecursion: infinite computations

are described by single steps. However, a step might not produce any observable

behaviour, for example if it is a pure computation constructed with the unit, or

we want to be more selective about which monadic actions are observable. To for-

malise productive computations, we need the notion of ideals of monads. These are

analogous to ideals in a ring or a semigroup—subsets closed under the operations.

(All the definitions in this section are as given by Adámek, Milius, and Velebil [2].)

Definition 2.1 Let 〈M,η, µ〉 be a monad. For an endofunctor M , a natural trans-

formation σ : M →M with monomorphic components is called a subfunctor of M .

We call σ an ideal of M if there exists a natural transformation µ : MM →M such

that the following diagram commutes.

MM M2

M M

σM

µµ

σ

We call a pair of a monad and its ideal an idealised monad. An idealised monad

M is called an ideal monad if M = Id +M with η = inlId,M and σ = inrId,M .

Examples of ideal monads include: free monads, exceptions, interactive output,

and nonempty lists. Note that in a category with an initial object 0, every monad

M is idealised with respect to the trivial ideal FX = 0, that is a constant functor

that always returns the initial object.

We also need morphisms that respect the internal structure of idealised monads.

If Σ is an endofunctor, then a natural transformation ξ : Σ → M is ideal if its

codomain contains only productive computations. Intuitively, this means that an

291

Piróg, Gibbons

interpretation of a symbol from the signature should never yield a pure computation.

Formally:

Definition 2.2 Let 〈M,σM 〉 and 〈N, σN 〉 be idealised monads. A natural transfor-

mation ξ : Σ→M is ideal if it factors through σM .

2.3 Cims defined

For an idealised monad M , we describe a step of a computation by a morphism of

type e : X → M(A + X), called an equation morphism. The object X represents

(a set of) variables—the seeds of the corecursion. The object A represents (a set

of) parameters, which are final values of the computation. An equation morphism

is productive (is guarded) if it always produces effects (in the sense of idealised

monads) or a final value, but not a variable:

Definition 2.3 A morphism e : X → M(A + Y) is guarded if it factors through

the morphism [σA+Y , ηA+Y · inlA,Y], that is there exists a morphism j such that the

following diagram commutes.

X M(A+ Y)

M(A+ Y) +A

e

j
[σA+Y , ηA+Y · inlA,Y]

If X = Y , we call e a guarded equation morphism.

We use a guarded equation morphism e to unfold a computation e†, called

a solution. Intuitively, a solution is an infinite iteration of parameter-preserving

Kleisli-compositions of e. A monad is a cim if such a composition always exists and

is unique. Formally:

Definition 2.4 Let e : X → M(A + X) be a morphism. We call a morphism

e† : X →MA a solution of e if the following diagram commutes.

X MA

M(A+X) M2A

e†

M [ηA, e
†]

e µA

An idealised monad M is completely iterative if every guarded equation morphism

has a unique solution.

Cims make it possible to separate the corecursion guarded by invocation of effects

from a recursive structure of the base category, like order or metric enrichment. This

separation is important conceptually. Consider a server dealing with some requests:

though it is non-terminating, it probably does not require unbounded recursion in

between handling two requests.

292

Piróg, Gibbons

Conversely, in a language with unbounded recursion, M -computations consisting

of guarded steps are necessarily solutions: An infinite computation can be seen as

the colimit of the ω-chain consisting of single steps. Consider an ω-chain {fi : Xi →
MXi+1}i∈N of Kleisli morphisms that factor through σMXi+1

. In a category with

countable coproducts, we define a guarded equation morphism e = [(id0 +M ini+1) ·
fi]i∈N :

∐
i∈NXi → M(0 +

∐
i∈NXi). One can show that the family of morphisms

{e† · ini : Xi →M0}i∈N is the colimit of the chain in the Kleisli category of M .

2.4 The free cim

An example of a cim is a generalisation of the infinite term monad generated by an

endofunctor (intuitively, a signature) Σ. Its functorial part is given by a family of

final coalgebras Σ∞A = νX.A+ ΣX. Below we define the unit, η∞, and a natural

transformation emb : Σ → Σ∞ that embeds Σ in Σ∞. For an explicit definition of

the multiplication µ∞ refer to Section 5, and put Id for M in the definition of µK .

Id

Id + ΣΣ∞ ∼= Σ∞

η∞ = inlId,ΣΣ∞

Σ

Id + ΣΣ∞ ∼= Σ∞

emb = inrId,ΣΣ∞ · Ση∞

As discussed by Aczel et al. [1], Σ∞ is the free cim generated by Σ. Intuitively,

this means that every interpretation of Σ in a cim M extends in a unique way to

an interpretation of the entire (possibly infinite) term Σ∞ in M . Formally, for an

ideal natural transformation ξ : Σ → M , there exists a unique monad morphism

ι(ξ) : Σ∞ →M such that the following diagram commutes.

Σ Σ∞

M

emb

ι(ξ)
ξ

The monad morphism ι(ξ) is given by [ηM , ξ†Σ∞]. Diagrammatically:

ΣΣ∞

MΣ∞ ∼= M(Id + ΣΣ∞)

ξΣ∞

ΣΣ∞

M Id = M

ξ†Σ∞

Σ∞ ∼= Id + ΣΣ∞

M

ι(ξ) = [ηM , ξ†Σ∞]

Another example of a cim is the Exception monad A 7→ A + E. Also, every

monad is completely iterative with respect to the trivial ideal FX = 0. But, except

for those and the free cim, there are hardly any examples of cims commonly used

in programming or semantics. This paper aims to fill this void in a rather generic

fashion.

293

Piróg, Gibbons

3 Cims, adjunctions, and tracing

Let M be a monad, and let 〈F,U, η, ε〉 : B → C be a factorization of M as an

adjunction, that is M = 〈UF, η, UεF 〉. Let 〈T, ηT , µT , σT 〉 be a cim with solutions -†.

It is standard that UTF is a monad with ηUTF = UηTF ·η and µUTF = UµTF ·UTεTF ,

and that lift = UηTF : UF → UTF is a monad morphism. We prove that UTF

inherits complete iterativity from T .

Theorem 3.1 The natural transformation UσTF : UTF → UTF forms an ideal.

The monad UTF is completely iterative with respect to this ideal.

Proof. Right adjoints preserve monomorphisms, hence the components of the nat-

ural transformation UσTF are monic, and so it is a subfunctor. We define µ to be

UµTF · UTεTF . It is easy to verify that it satisfies the condition for ideals.

Let e : X → UTF (A + X) be a UσTF -guarded equation morphism. By b-c :

C[FA,B] ∼= B[A,UB] : d-e we denote the natural isomorphism associated with the

adjunction. Recall that left adjoints preserve coproducts, that is F (A+B) ∼= FA+

FB. One can calculate that dee ∼= [σT(FA+FX), η
T
(FA+FX) · inl(FA,FX)] · (εTF (A+X) +

idFA) ·Fj, which means that dee : FX → TF (A+X) ∼= T (FA+FX) is a guarded

equation morphism in T with a unique solution dee† : FX → TFA.

We define the solution of e as bdee†c. The following diagram commutes:

UFX UTFA

UTF (A+X)
∼= UT (FA+ FX) UT 2FA

X

(UTF)2A

Udee†

UT [ηTFA, dee†]

Udee UµTFA

ηX

UTεTFA

µUTF
A

UTF [ηUTF
A , Udee† · ηX]

e

bdee†c = Udee† · ηX

The inner square is the U -image of the solution diagram for dee†. The outer triangles

commute due to properties of adjunctions and the definition of µUTF .

For uniqueness, let g : X → UTFA be a solution of e. Substitute dge for dee†
in the above diagram. The outer square commutes, because bdgec = g is a solution,

and the triangles commute, because of properties of adjunctions, hence the inner

square precomposed with ηX also commutes. For all morphisms f, f ′ : FB → C, if

Uf · ηB = Uf ′ · ηB then f = f ′. Therefore, dge is a solution of dee, so dge = dee†,
hence g = bdgec = bdee†c. 2

Intuitively, T collects observations about a computation in M . Thus, we need a

new operation that allows us to actually observe the current state of the computa-

294

Piróg, Gibbons

tion, for example the current state in the State monad (this example is elaborated

in the next section). It could be given as a natural transformation olift : M → UTF

with components that factor through UσTF . It will not in general be a monad mor-

phism; on the contrary, performing two actions and then observing the effect differs

in general from observing the effect of each action individually. More formally, let

f ◦ g be a computation in the Kleisli category of M , where ◦ is the Kleisli com-

position. We can decorate it with observers in two different ways: olift · (f ◦ g) or

(olift ·f)◦(olift ·g). For example, when tracing a computation in State, we may want

to observe only ‘put’ operations, as long as we are certain that there are only finitely

many invocations of ‘get’ in between every two invocations of ‘put’. In the rest of

the paper we always define olift as Uobs for a natural transformation obs : F → TF .

For convenience, we also define a ‘save the current state of computation’ operation

save = olift · η : Id→ UTF .

Though we do not use this property directly in the rest of the article, observa-

tions should not modify the computation. This could be captured by the following

cancellation property: for all morphisms f, f ′ : A → MB and g, g′ : B → MC, if

(lift · g) ◦ saveB ◦ (lift · f) = (lift · g′) ◦ saveB ◦ (lift · f ′) then g ◦ f = g′ ◦ f ′.

4 The States monad

Our first example is a monad we call States. If the base category B is cartesian

closed, the State monad arises from the currying adjunction −×S a −S . We choose

(−× S)∞, for which we write
−→
S , to be the inner cim, and the result is the monad

A 7→ (
−→
S (A × S))S . Intuitively,

−→
S is a possibly infinite stream of states of type

S. The ‘base’ of the exponential is the trace of the computation: a stream that,

if finite, is terminated with an answer A and a current state S. The latter is used

only to compose two computations and is not stored in the stream.

We define ‘put’ and ‘get’ operations as standard liftings of ‘put’ and ‘get’ for

State. The natural transformation obs duplicates the current state and puts it in

the stream as follows, where outlA,B : A×B → A and outrA,B : A×B → B are the

left and right projections respectively.

A× S (A× S)× S −→
S (A× S)

〈〈outl, outr〉, outr〉 embA×S

For example, consider the following computation in States on Set for S = N
(using Haskell syntax):

let f = do {put 2; save; put 3; save; put 5}

g = do {x <- get; put (x+1); save; g}

in do {f; g}

For any initial state, f evaluates to the trace (2, 3, 〈?, 5〉), while the whole compu-

tation evaluates to (2, 3, 6, 7, 8, 9, . . .).

295

Piróg, Gibbons

4.1 Example: Control structures for While

Consider a generalised While language, as given by Rutten [26]:

P,Q ::= A | P ;Q | if b then P else Q | while b do P

For a monad M , the symbol A represents a set of actions (denoted as a), that is

morphisms of type 1→M1. The symbol b represents elements of a set B of Boolean

expressions, that is a set of morphisms of type 1 → M(1 + 1). We parametrise

the semantics with a ‘guard’ operation γ : 1 → M1, which allows the addition of

behaviour on every choice point of a control structure. The denotation of a program

P is given by [[P]] : 1→M1, defined as follows, where ◦ is Kleisli composition.

[[a]] = a

[[P ;Q]] = [[Q]] ◦ [[P]]

[[if b then P else Q]] = [[[P]], [[Q]]] ◦ b ◦ γ
[[while b do P]] = ([M inr1,1 · [[P]], M inl1,1 · ηM1] ◦ b ◦ γ)†

Actions denote themselves, and compositions of programs are just Kleisli compo-

sitions of morphisms. The denotation of if statements first performs the guard γ,

then b, and then the appropriate branch is chosen (we use the left component of

1 + 1 to represent ‘true’). The denotation of while first builds an equation mor-

phism by composing the guard, the condition, and the choice between returning the

left component of the coproduct (a constant, which means ‘stop the iteration’), or

performing the body, and right-injecting the result (which makes it a ‘continue the

iteration’ variable). The denotation of the entire while expression is a solution to

that morphism. The solution might not exist, or might not be unique; hence, de-

pending on the choice of M , A, B, and γ, the denotation might not be well-defined.

This semantics specialises to a couple of known cases:

If we choose the regular State monad on Dcppo (the category of pointed

directed-complete partial orders and continuous functions) for M and its unit on

1 for γ, the solution diagram simplifies to the familiar equation for denotation of

While [23, Chapter 4]. So, if we assume -† to be the least fixed point, we yield the

standard denotational semantics.

If we instantiate M with a cim, we can ensure that unique solutions always exist

by an appropriate γ-guarding of while loops. (Note that it is not sufficient to ask

for the A actions to be guarded, since while true do while false do a diverges

without invoking an action.) In case of the States monad, this means that every

iteration stores its initial state in the stream, that is γ = save. Additionally, if

we assume that ‘put’ operations are always guarded and ‘get’ are not, we obtain a

semantics trace-equivalent to Nakata and Uustalu’s trace operational semantics [22].

5 Coinductive generalised resumptions

Let 〈M,ηM , µM 〉 be a monad, and Σ be an endofunctor on the base category B.

In this section we give a monadic structure to M(ΣM)∞ and examine its basic

296

Piróg, Gibbons

properties. We proceed by first giving a monadic structure to the endofunctor

KA = νX.M(A+ ΣX),

which is isomorphic to M(ΣM)∞ through the coalgebraic version of the rolling

rule [5]:

Lemma 5.1 Let F , G be endofunctors. Then νFG ∼= FνGF .

For convenience, we define two auxiliary natural transformations. The first one,

flatA,B : M(MA+B)→M(A+B), flattens a computation that may return a value

or a new computation. The second one, unf : K2 → M(Id + ΣK2), unfolds and

flattens two levels of structure of K. Note that the final coalgebra map αA : KA→
M(A+ ΣKA) is natural in A.

M(MA+B)

M(MA+MB)

M2(A+B)

M(A+B)

M(idMA + ηMB)

M [M inlA,B,M inrA,B]

µMA+B

flatA,B = K2

M(K + ΣK2)

M(M(Id + ΣK) + ΣK2)

M(Id + ΣK + ΣK2)

αK

M(α+ idΣK2)

flatId+ΣK,ΣK2

unf =

The unit (return) ηK of the monad K is given below. The multiplication (join) is

defined as the anamorphism µKA = [(mA)] for the following natural transformation m.

Id

Id + ΣK

M(Id + ΣK) ∼= K

inlId,ΣK

ηMId+ΣK

ηK = K2

M(Id + ΣK + ΣK2)

M(Id + ΣK2)

unf

M(id + [ΣηKK , idΣK2])

m =

Theorem 5.2 The following hold:

(i) The tuple 〈K, ηK , µK〉 is a monad,

(ii) It is compatible [6, Chapter 9] with M and (ΣM)∞, which yields a monad

distributive law λ : (ΣM)∞M →M(ΣM)∞,

(iii) There exist two monad morphisms liftl : M → M(ΣM)∞ and liftr : Σ∞ →
M(ΣM)∞.

Proof outline. The statements (i) and (ii) can be proved by the structural coin-

duction provided by the finality of K. The distributive law induces two canonical

monad morphisms M → K and (ΣM)∞ → K. We compose the latter with a monad

morphism Σ∞ → (ΣM)∞ given by ι(emb · ΣηM). 2

Despite the existence of the cospan M → M(ΣM)∞ ← Σ∞, the monad

M(ΣM)∞ is in general not a coproduct of M and Σ∞ as monads. To see that,

297

Piróg, Gibbons

it is sufficient to assume that the base category is Set, M is ideal, and to recall the

construction of coproducts of ideal monads by Ghani and Uustalu [12]. In such a

setting the coproduct allows only a finite number of interleavings between M and

Σ∞, so it is distinct from K.

5.1 Complete iterativity of K

Consider the subcategory M -Fema of free Eilenberg-Moore M -algebras (that is,

algebras where the carrier is of the shape MA, and the action is defined as µMA).

It is equivalent to the Kleisli category for M . There is a standard free-underlying

adjunction F a U : B →M -Fema.

As discussed by Mulry [21], liftings of an endofunctor T on B to M -Fema

are in one-to-one correspondence with distributive laws TM → MT . Moreover, a

simple calculation shows that if T has a monadic structure and the distributive law

respects this structure, the corresponding lifting 〈T 〉 is also a monad. The monad

MT induced by the distributive law is equal to the monad U〈T 〉F .

Consider the monad (ΣM)∞. The monad distributive law λ from Theo-

rem 5.2 gives rise to a lifting 〈(ΣM)∞〉, defined on objects as 〈(ΣM)∞〉MA =

M(ΣM)∞A ∼= KA. The following theorem states that the lifting is also a free cim

(note that MΣ is an endofunctor also over M -Fema):

Theorem 5.3 The monad 〈(ΣM)∞〉 is the free cim generated by MΣ in M -Fema.

Proof outline. For an M -Fema morphism f : MX →M(A+ ΣMX) the finality

diagram for KA commutes also in M -Fema. The definition of coproducts ⊕ in

M -Fema yields M(A + Σ−) = MA ⊕MΣ−, which makes the finality diagram a

finality diagram for MA ⊕ MΣ−. This means that KA ∼= 〈(ΣM)∞〉MA is the

carrier of the final (MA ⊕ MΣ−)-coalgebra, and so, according to [18, Corollary

6.3], 〈(ΣM)∞〉 is the functorial part of the free cim generated by MΣ understood

as a functor in M -Fema. The fact that the monadic structures of the lifting and

the free cim in M -Fema are equal can be proved by a simple coinduction. 2

Theorem 3.1 and the above characterisation yield that K is completely iterative.

The guardedness condition specialises as:

X K(A+X)

MΣK(A+X) +A

e

j

[α−1
A+X ·M inrA+X,ΣK(A+X), η

K
A+X · inlA,X]

5.2 Example: Bisimulation

Let Σ = Id, so that K ∼= MM∞. Similarly to Cenciarelli and Moggi’s transformer

MM∗ [9], a K-computation can be seen as an M -computation split into a series

of suspended steps. However, in case of MM∞, the structure can be infinite, so

it can also store a divergent computation. We can see the result of each step as a

298

Piróg, Gibbons

rather robust observation about the current state of the computation. So, even if

the computation does not have a final value, we can still reason about the course of

the computation.

We define the natural transformation obs : M →MM∞ as:

M MM MM∞
MηM Memb

It builds an empty level, so that a composition with another value will not affect the

current structure. Intuitively, the outer M is the current state of the computation,

while M∞ is a kind of continuation. To acquire the second state, we can contract the

top two steps of execution using a natural transformation force defined as follows,

where flat′ is equal to flat, but with the monadic argument as the second component

of the coproduct rather than the first.

MM∞ ∼= M(Id +MM∞)

M(Id +M∞) ∼= M(Id + Id +MM∞)

M(Id +MM∞) ∼= MM∞

flat′Id,M∞

M([id, id] + idMM∞)

On Set, we can define a simple notion of bisimulation between programs as

a predicate ≈ ⊆ (MM∞A)2, such that for p, q ∈ MM∞A, it is the case that

p ≈ q precisely if M(idA+!M∞A)(p) = M(idA+!M∞A)(q) and force(p) ≈ force(q),

where !A : A → 1 is the unique morphism to the final object. In other words, we

compare the functorial structure of the outer M (the observable result of the first

step), and continue the process after performing the next step with the force natural

transformation. This means that two programs are bisimilar if for every n ∈ N, the

respective prefixes of performing the first n steps are equal.

6 Related and future work

Cims arise from completely iterative algebras. Both concepts have been exten-

sively studied by Elgot [10] and by Aczel et al. [1,18]. Milius and Moss [19] con-

sider recursive program schemes in terms of solutions in Elgot algebras [3] (that is,

Eilenberg-Moore algebras for free cims).

Cenciarelli and Moggi [9] introduced the Generalised Resumption transformer

M(ΣM)∗, which decomposes a monadic computation into a series of steps (layers

of free structure). Hyland, Plotkin, and Power [16] proved it to be the coproduct

M + Σ∗ in the category of monads. The monad M(ΣM)∞ captures also poten-

tially infinite computations. In some categories—and so programming languages

like Haskell—the limit-colimit coincidence [27] identifies M(ΣM)∗ and M(ΣM)∞,

but the explicit use of the free cim is significant in Set and in type theories with

guarded (co)recursion. Interleaving data and monadic actions is a powerful ab-

straction studied recently also by Filinski and Støvring [11], Atkey et al. [4], and

the present authors [24].

299

Piróg, Gibbons

Since the free cim is a final coalgebra [18], we can see (MΣ)∞ in M -Fema from

Theorem 5.3 as an example of Hasuo, Jacobs, and Sokolova’s generic trace seman-

tics [14], which models state-based systems as F -coalgebras in a Kleisli category

(or, equivalently, a Fema). The coalgebra represents transitions (for example, with

ΣA = A × O for labelled transitions), and the monad represents the underlying

effect (like the Powerset monad for nondeterminism or the Probability Distribution

monad for probabilistic systems).

In this paper we concentrate on the monads and tracing, and we only sketch po-

tential applications in defining semantics and reasoning about programs. The nat-

ural next step is to formalise a language like Moggi’s computational λ-calculus [20]

with recursion provided by a background cim. It is also an interesting question

whether the presented theory could be used to develop a practical framework for

reasoning about effectful programs in type theories, like those implemented by the

Coq or Agda proof systems. So far, Capretta [8] represented general recursion by

the free cim generated by the identity functor; we conjecture fruitful applications

of other cims too.

Acknowledgments

This work was supported by the UK EPSRC project Reusability and Dependent

Types (EP/G034516/1). We would like to thank Marek Materzok for his useful

notes and the anonymous reviewers for the detailed and encouraging comments.

References

[1] Peter Aczel, Jiŕı Adámek, Stefan Milius, and Jiri Velebil. Infinite trees and completely iterative theories:
a coalgebraic view. Theoretical Computer Science, 300(1-3):1–45, 2003.

[2] Jiŕı Adámek, Stefan Milius, and Jiri Velebil. On rational monads and free iterative theories. Electronic
Notes in Theoretical Computer Science, 69:23–46, 2002.

[3] Jiŕı Adámek, Stefan Milius, and Jiri Velebil. Elgot algebras. Logical Methods in Computer Science,
2(5), 2006.

[4] Robert Atkey, Neil Ghani, Bart Jacobs, and Patricia Johann. Fibrational induction meets effects.
In Lars Birkedal, editor, Foundations of Software Science and Computational Structures—15th
International Conference, FoSSaCS 2012, volume 7213 of Lecture Notes in Computer Science, pages
42–57. Springer, 2012.

[5] Roland Carl Backhouse, Marcel Bijsterveld, Rik van Geldrop, and Jaap van der Woude. Categorical
fixed point calculus. In David H. Pitt, David E. Rydeheard, and Peter Johnstone, editors, Category
Theory and Computer Science, volume 953 of Lecture Notes in Computer Science, pages 159–179.
Springer, 1995.

[6] Michael Barr and Charles F. Wells. Toposes, Triples, and Theories. Grundlehren der mathematischen
Wissenschaften. Springer-Verlag, 1985.

[7] Andrew Butterfield. Reasoning about I/O in functional programs. In Proceedings of the 4th Central
European Functional Programming School, CEFP’11, pages 93–141, Berlin, Heidelberg, 2012. Springer-
Verlag.

[8] Venanzio Capretta. General recursion via coinductive types. Logical Methods in Computer Science,
1(2), 2005.

[9] Pietro Cenciarelli and Eugenio Moggi. A syntactic approach to modularity in denotational semantics.
In Proceedings of the 5th Biennial Meeting on Category Theory and Computer Science, CTCS 93,
CWI Technical Report, Amsterdam, The Netherlands, 1993.

[10] Calvin C. Elgot. Monadic computation and iterative algebraic theories. In Logic Colloquium ’73, Proc.,
Bristol 1973, 175-230, 1975.

300

Piróg, Gibbons

[11] Andrzej Filinski and Kristian Støvring. Inductive reasoning about effectful data types. In Proceedings
of the 12th ACM SIGPLAN International Conference on Functional Programming, ICFP ’07, pages
97–110, New York, NY, USA, 2007. ACM.

[12] Neil Ghani and Tarmo Uustalu. Coproducts of ideal monads. Theoretical Informatics and Applications,
38(4):321–342, 2004.

[13] Peter Hancock and Anton Setzer. Guarded induction and weakly final coalgebras in dependent type
theory. In L. Crosilla and P. Schuster, editors, From Sets and Types to Topology and Analysis. Towards
Practicable Foundations for Constructive Mathematics, pages 115 – 134, Oxford, 2005. Clarendon Press.

[14] Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction. Logical Methods
in Computer Science, 3(4), 2007.

[15] Graham Hutton and Diana Fulger. Reasoning about effects: Seeing the wood through the trees. In
Proceedings of the Symposium on Trends in Functional Programming, Nijmegen, The Netherlands,
May 2008.

[16] Martin Hyland, Gordon D. Plotkin, and John Power. Combining effects: Sum and tensor. Theoretical
Computer Science, 357(1-3):70–99, 2006.

[17] Simon L. Peyton Jones and Philip Wadler. Imperative functional programming. In Mary S. Van Deusen
and Bernard Lang, editors, Symposium on Principles of Programming Languages, Charleston, South
Carolina, USA, pages 71–84. ACM Press, 1993.

[18] Stefan Milius. Completely iterative algebras and completely iterative monads. Information and
Computation, 196:1–41, 2005.

[19] Stefan Milius and Lawrence S. Moss. The category-theoretic solution of recursive program schemes.
Theoretical Computer Science, 366(1-2):3–59, 2006.

[20] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92,
1991.

[21] Philip S. Mulry. Lifting theorems for Kleisli categories. In Stephen D. Brookes, Michael G. Main,
Austin Melton, Michael W. Mislove, and David A. Schmidt, editors, Mathematical Foundations of
Programming Semantics, 9th International Conference, New Orleans, LA, USA, volume 802 of Lecture
Notes in Computer Science, pages 304–319. Springer, 1993.

[22] Keiko Nakata and Tarmo Uustalu. Trace-based coinductive operational semantics for While. In Stefan
Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel, editors, TPHOLs, volume 5674 of
Lecture Notes in Computer Science, pages 375–390. Springer, 2009.

[23] Hanne Riis Nielson and Flemming Nielson. Semantics with applications: a formal introduction. John
Wiley & Sons, Inc., New York, NY, USA, 1992.

[24] Maciej Piróg and Jeremy Gibbons. Tracing monadic computations and representing effects. In James
Chapman and Paul Blain Levy, editors, Proceedings Fourth Workshop on Mathematically Structured
Functional Programming, Tallinn, Estonia, 25 March 2012, volume 76 of Electronic Proceedings in
Theoretical Computer Science, pages 90–111. Open Publishing Association, 2012.

[25] Gordon D. Plotkin. Adequacy for infinitary algebraic effects (abstract). In 3rd Conference on Algebra
and Coalgebra in Computer Science, CALCO 2009, Udine, Italy, pages 1–2, 2009.

[26] Jan J. M. M. Rutten. A note on coinduction and weak bisimilarity for While programs. Theoretical
Informatics and Applications, 33(4/5):393–400, 1999.

[27] Michael B. Smyth and Gordon D. Plotkin. The category-theoretic solution of recursive domain
equations. SIAM Journal on Computing, 11(4):761–783, 1982.

[28] Wouter Swierstra and Thorsten Altenkirch. Beauty in the beast: A functional semantics of the awkward
squad. In Haskell ’07: Proceedings of the ACM SIGPLAN Workshop on Haskell, pages 25–36, 2007.

301

MFPS 2013

Automata-Theoretic Semantics of
Idealized Algol with Passive Expressions

Uday S. Reddy1

School of Computer Science
University of Birmingham

Birmingham, U.K

Abstract

Passive expressions in Algol-like languages represent computations that read the state but do not modify
it. The need for such read-only computations arises in programming logics as well as in concurrent pro-
gramming. It is also a central facet in Reynolds’s Syntactic Control of Interference. Despite its importance
and essentially basic character, capturing the notion of passivity in semantic models has proved to be diffi-
cult. In this paper, we provide a new model of passive expressions using an automata-theoretic framework
recently proposed by the author. The central idea is that the store of a program is viewed as an abstract
form of an automaton, with a representation of its states as well as state transitions. The framework allows
us to combine the strengths of conventional state-based models and the more recent event-based models
to synthesize new ”automata-based” models. Once this basic framework is set up, relational parametricity
does the job of identifying passive computations.

Keywords: Idealized Algol, Relational parametricity, Functor categories, Reflexive graphs, Algebraic
automata theory.

1 Introduction

We expect that denotational semantic models of programming languages provide

a rigorous conceptual foundation for reasoning about programs. In devising such

models, one is faced with the challenge of how best to capture the intuitions the

programmers possess in understanding computations and incorporate them in a

rigorous theoretical framework.

The traditional models for imperative programming languages, dating back to

those of Scott and Strachey, are state-based. These models envisage that programs

operate on a store which goes through states. Commands are interpreted as func-

tions from states to states, factoring out all the internal state manipulation details

carried out by them. Thus, these models may be regarded as being extensional

in their treatment of the store. Examples of such models include the original

1 Email: u.s.reddy@bham.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:u.s.reddy@bham.ac.uk

Reddy

models due to Scott and Strachey [40], the functor category models initiated by

Reynolds [29, 36, 41] and their refinements using relational parametricity [25, 26].

In more recent developments, an alternative event-based approach for modeling

computations has come to the fore. These models eschew any notion of store or

state. They view commands as processes that interact with the individual storage

variables via interaction events. The process-based view of commands exposes all

their internal state manipulation details and makes the models intensional. On

balance, however, the data abstraction and information hiding aspects of stor-

age variables are captured more directly in these models. They are also able to

model the intensional aspects of the computations such as the idea of “irreversible

state change,” leading to strong full abstraction results. Examples of such event-

based models include the process calculus models due to Milner and Hoare [16, 21],

Brookes’s trace models [8], the author’s object-based models [20, 24, 31, 32] and the

games models [2].

The difference between extensional and intensional models becomes manifest in

reasoning about program equivalences such as:

gv(x) =⇒ (x := x+ 1; x := x+ 1) ≡ (x := x+ 2) (1)

where gv(x) represents the condition that x is a “good variable” obtained by variable

allocation. Extensional models satisfy such equivalences because they capture the

net effect of commands on the state, whereas intensional models do not. 2 However,

the treatment of data abstraction (local variables) and irreversibility of state change

is problematic in extensional models.

In an effort to combine the advantages of state-based and event-based models, we

recently initiated a new approach using an automata-theoretic view of the store [33,

34]. The store is viewed as an automaton with an explicit representation of the states

as well as the state transitions. The use of states allows an extensional treatment of

commands and the use of state transitions captures some aspects of the modelling

available in event-based models. We showed that several program equivalences of

third-order types that could not be validated in the pure state-based models are

valid in this setting.

In this paper, we take a further step in the development of the automata-

theoretic model by modelling passive expressions, as per Reynolds’s original Ide-

alized Algol [36]. Passive expressions read the storage variables to compute values,

but they do not alter the store. Typical programming languages allow side-effects

in expressions for practical reasons, leaving it to the programmer to use them ju-

diciously. 3 However, passive expressions form an integral part of program rea-

soning. For instance, in Hoare Logic [15], expressions can be embedded in logical

assertions, where any side effects can lead to an entirely incoherent formalism. In

concurrent programming, passive expressions form an important tool for sharing

resources across processes. Various program reasoning systems, ownership type

2 One might find it surprising that the intensional models, e.g., games models, fail to be “extensional”
despite being fully abstract. The explanation is that full abstraction only guarantees the satisfaction of
unconditional equivalences which seem inadequate to capture extensionality of state-manipulation.
3 The evaluation order of expressions is often left unspecified or under-specified, so that an uncontrolled
use of expression side effects is not a practical proposition in any case.

303

Reddy

systems etc. incorporate explicit annotation for “read-only” or “immutable” vari-

ables, which depend on notions of passive usage [19, 22]. In particular, the use of

“fractional permissions” is an advanced mechanism to capture the passive use of

storage, currently an active area of research [6, 7, 35].

Modeling passivity in extensional models is a significant challenge because pas-

sivity appears to be an intensional phenomenon: what a computation does in-

ternally in order to produce its results. If we think of modelling expressions as

extensional functions of type State → Value, we have no handle on what such a

computation might do. It might internally calculate a new state (which means a

state change in computational terms), and do further computations within the new

state to deliver the result. The new state is eventually discarded, and the expres-

sion would have had a “temporary side effect.” This kind of a phenomenon can be

captured syntactically by a “snap back” combinator of the form:

do C result E

which means “execute the command C and return the value of expression E, dis-

carding the effects of C.” The presence of such a snap back combinator in the

semantic models breaks intuitive program equivalences. For instance, consider the

equivalence: 4

if (deref x = 0) then f(deref x) else 2 ≡
if (deref x = 0) then f(0) else 2

(2)

where f is a function procedure taking an expression argument. Since f is called

only in the case where x is 0, giving it 0 as the argument instead of (deref x) should

give equivalent results. However, in a semantic model that contains the snap back

operator, there are functions f that break this reasoning, for example:

f = λe.do x := x+ 1 result e

With this function f , the left hand side evaluates to 1 whereas the right hand side

evaluates to 0. Virtually all extensional models in the literature, with the exception

of the Tennent’s model [41], have such snap back combinators.

We get around the difficulty by viewing the store as an automaton, which has

an explicit representation of its states QX as well as its allowed state transfor-

mations TX . The expression type may then be thought of as a type constructor

parameterized by both the components of the automaton:

Exp(QX , TX) = [QX → Value]

All computations are expected to be parametric [11, 26, 30, 38], i.e., they are inter-

preted by parametrically polymorphic families of the form:

∀QX , TX . F (QX , TX)→ Exp(QX , TX)

4 Imperative programming languages usually involve an implicit coercion that allows a storage variable to
be treated as an expression that reads its contents. We represent this coercion as “deref” for clarity of
exposition. Recall also that Idealized Algol is a call-by-name typed lambda calculus. So, the argument is
passed by name in f(deref x).

304

Reddy

where F (QX , TX) represents the semantic type of the free identifiers. Since the

result type Exp(QX , TX) is independent of the TX components, parametricity says

that the family should behave the “same way,” no matter what type TX is employed

(subject to some constraints). In particular, it should produce the same results if

TX is replaced by a trivial collection of state transformations, such as the one with

just the identity transformation and its possibly diverging approximations. It then

follows that the expression computation cannot cause any state changes, not even

temporary ones. Thus passivity is captured in an intuitively satisfactory form.

The definition of this model builds on two technical innovations from our past

work (joint with B. P. Dunphy). The first is the categorical axiomatization of

relational parametricity presented in [11]. Since the overall structure is that of a

category-theoretic possible world model, as pioneered by Reynolds [36], a categorical

treatment of parametricity is needed to build the model we seek. O’Hearn and

Tennent [26] initiated the building-in of relational parametricity into categories.

However, their model does not have the requisite axioms, and snap back operators

are present in their model. Our axiomatization is based on the notion of fibrations,

well-studied in category theory [14, 18], using which strong representation results

were obtained in [11]. Its employment here gives further evidence of its power.

The second innovation is the automata-theoretic modeling of the store presented

in [33, 34]. In retrospect, this view of the store was already implicit in Reynolds’s

first functor category model [36]. However, the automata-theoretic intuitions behind

his model were not recognized and subsequently ignored in all further work on

functor category models. Our model seems to have been the first work that builds

on Reynolds’s ideas. In the present work, we generalize the automata-theoretic

model in a significant way, which parallels Tennent’s generalization of the Oles

model [41], in order to capture the seemingly intensional phenomenon of passivity.

In doing such a generalization, it is easy to go too far to the other way, i.e., to

make the model so intensional that the equivalence (1) fails. Tennent’s model, in

fact, breaks this equivalence. (Contrary to expectation, the equivalence cannot be

derived in Specification Logic.) We aim to achieve a delicate balance of intensional

effects and extensionality in the present paper.

Results

The main contribution of this paper is to provide a denotational model of Ideal-

ized Algol that satisfactorily models passivity while being extensional. In particular,

this means that passive expressions do not have side effects, not even temporary

ones. In the main body of the paper, we do this for a language without divergence,

but treat it in such a way that it generalizes to divergence. The issues of divergence

are then briefly mentioned in Sec. 5. The treatment without divergence is also novel

in that it is the first model of passivity that is able to deal with a language without

divergence. All the previous models [2, 32, 41] depend on the presence of divergence

for modeling passivity. However, intuitively, passivity is independent of the issues

of divergence. Our treatment is able to decouple the two issues.

We can explain the contribution in terms of the accuracy gained at first-order

types [24, 32]. In the absence of divergence:

• Morphisms of type com→ com should be isomorphic to natural numbers. They

305

Reddy

are all expressible by closed terms of the form λc. cn where cn means an n-fold

sequential composition c; . . . ; c. The model of [34] has this property.

• Morphisms of type com → exp[δ] should be constant functions. They are ex-

pressible by closed terms of the form λc.E for closed expression terms E. The

present model has this property.

2 Semantic Framework

The semantic framework used in this paper is that of a category-theoretic possi-

ble worlds model, as advocated by Reynolds [36]. That means that the types of

the programming language are interpreted as type constructors parameterized by

“store shapes” (formally functors). For example, Exp(X) represents the collection

of expression meanings appropriate for stores of shape X, Com(X) represents the

collection of command meanings appropriate for stores of shape X etc. The store

shapes must form a category where morphisms f : X → Y represent ways in which

a store Y may be regarded as a “future world” of X (typically by allocating addi-

tional storage locations). It might in fact be helpful to think of such a morphism

as a “function” going in the reverse direction, f] : Y → X, capturing a way of

“extracting” an X-typed store from a Y -typed one. The type functors, naturally,

must map such morphisms to functions. For example, Exp(f : X → Y) denotes

a function that allows us to convert an expression on X-typed stores to one on

Y -typed stores, which is possible because X-typed stores can be extracted from

Y -typed stores.

In addition to morphisms, we consider abstract “logical relations” between

stores, used for formulating the uniformity conditions of relational parametricity.

For every pair of stores X and X ′, we have a notion of logical relations R : X ↔ X ′

and a notion of morphisms preserving such relations, which is written diagrammat-

ically as a “square”:

X
f
> Y

X ′

R
?

6

f ′
> Y ′

S
?

6
(3)

and textually as f
[
R→ S

]
f ′. (The textual notation depends on the fact that all

the structures we consider in this paper are relational, i.e., given f , f ′, R and S,

there is at most one square of the above shape. Therefore R→ S may be regarded

as a normal set-theoretic relation between hom-sets X → Y and X ′ → Y ′.) The

type functors also map such logical relations between stores to relations between

values, e.g., Exp(R) : Exp(X)↔ Exp(X ′), and “squares” of the form (3) to relation-

preservation squares between functions.

Exp(X)
Exp(f)

> Exp(Y)

Exp(X ′)

Exp(R)
?

6

Exp(f ′)
> Exp(Y ′)

Exp(S)
?

6

Formally, the four components: store shapes, morphisms between store shapes,

306

Reddy

logical relations between store shapes and squares between them, form a reflexive

graph of categories. Further, they satisfy additional axioms laid out in [11] to form

a parametricity graph. Formal definitions describing the structure may be found in

the Appendix.

In addition to the reflexive graph of store shapes, which will described in the

remainder of this section, we also make use of the reflexive graph Set, whose objects

and morphisms are sets and functions, “logical relations” are set-theoretic relations

R ⊆ A × A′ and “squares” f
[
R→ S

]
f ′ represent the facts ∀a, a′. a

[
R
]
a′ =⇒

f(a)
[
S
]
f ′(a′). This reflexive graph also satisfies the additional requirements of

parametricity graphs.

Reynolds monoids

We choose to model stores as an abstract form of automata similar to those

studied in algebraic automata theory [12, 17]. Each such automaton has: 5

• a set of states QX ,

• a monoid of allowed state transformations TX ⊆ [QX → QX] (containing the

identity transformation, written as 1X , and closed under sequential composition

a · b), and

• an operation readX : (QX → TX)→ TX defined by readX p = λx. p x x.

A structure of this form is called a Reynolds monoid.

The readX operation was proposed by Reynolds [36], who called it “diagonal-

ization.” To see the motivation for it, consider interpreting a command of the form

if p then c1 else c2. This command reads the state to compute the boolean ex-

pression p and, depending on the result, executes either c1 or c2, which are both

expected to denote allowed transformations. The overall transformation must in

turn be an allowed transformation. Since the command chooses one among several

allowed transformations based on the current state, we expect that all such choices

should be allowed transformations. The existence of the readX operation ensures

this property. If a given automaton (QX , TX) does not have a readX operation,

additional transformations can be added to TX to obtain a Reynolds monoid. We

call it the “read-closure” of the original automaton.

As examples of Reynolds monoids, consider a store Z with

QZ = Int TZ = { a : Int → Int | a(z) ≥ z }

This store contains a single integer variable and allows it to be increased during

computations (but not decreased). A “passive” store W has some state set, but

only the do-nothing transformation TW = {1W }. For every store X, there is a

corresponding passive store of X, denoted X0, which has the same state set as that

of X and the trivial state transformations TX = {1X}.
The automata used in [33, 34, 36], called Reynolds transformation monoids, have

an additional element of structure:

• a monoid action of type αX : TX → (QX → QX) which represents a way of

5 For reasons of exposition, we will ignore the issues of divergence in the main body of the paper. However,
see Sec. 5 for the extensions needed for divergence.

307

Reddy

“running” a transformation on the states.

Here, we drop this operation, obtaining generality in the structures as well as the

corresponding morphisms and logical relations. The justification for the generaliza-

tion is that states in imperative programs are “abstract,” available for inspection

only by other commands but not by external interfaces. By requiring that logical

relations only preserve the read operation, and not the monoid action, we obtain

more relations, which gives a stronger parametricity criterion. This generalization

is used in our intuitive argument in the Introduction. In order to replace a state

transformation component TX by a trivial one, we need to allow for the possibility

that the new transformations have a different effect on the state than the ones we

are replacing. This generalization is crucial for modelling passivity.

A logical relation of Reynolds monoids R : X ↔ X ′ is a pair (Rq, Rt) where

• Rq : QX ↔ QX′ is a normal relation of sets, and

• Rt : TX ↔ TX′ is a monoid relation (compatible with identity transformation and

composition),

such that readX
[
(Rq → Rt)→ Rt

]
readX′ . The identity logical relation of a

Reynolds monoid X is IX = (∆QX , ∆TX) consisting of the diagonal relations on

both the state sets and the transformations.

A morphism of Reynolds monoids f : X → Y , representing a way of expanding

a “current world” X to a “future world” Y , is a pair (fq, ft):

fq : QX ← QY ft : TX → TY

where fq is a set-theoretic function and ft is a monoid morphism satisfying

ft(readX(p)) = readY (ft ◦ p ◦ fq). The condition on read can also be written using

relational notation as readX
[
〈fq → ft〉 → 〈ft〉

]
readY . The mutually opposite di-

rection of the two functions fq and ft may be understood by thinking of morphisms

f : X → Y as ways of extracting X-typed stores from Y -typed stores (i.e., the “cur-

rent world” from the “future world”). To do such extraction, it should be possible

to interpret all Y -typed states as X-typed states, which is done by the function fq.

The transformations of the stores, on the other hand, are invoked by the computa-

tional environment in which the store is embedded. If the environment requests a

transformation a on the X-typed store, the simulation must interpret it as a trans-

formation ft(a) of the Y -typed store. This kind of bidirectional information flow is

now well familiar from games semantics.

A square of Reynolds monoids is defined as a pair of relation-preservation squares

(for sets and monoids, respectively):

X
f

> Y

X ′

R
?

6

f ′
> Y ′

S
?

6
⇐⇒

QY
fq
> QX

QY ′

Sq
?

6

f ′q
> QX′

Rq
?

6
∧

TX
ft
> TY

TX′

Rt
?

6

f ′t > TY ′

St
?

6

308

Reddy

Note that the squares on the right (in Set and Mon) have their standard meaning:

∀y ∈ QY , y′ ∈ QY ′ . y
[
Sq
]
y′ =⇒ fq(y)

[
Rq
]
f ′q(y

′)

∀a ∈ TY , a′ ∈ TY ′ . a
[
Rt
]
a′ =⇒ ft(a)

[
St
]
f ′t(a

′)

This data constitutes a reflexive graph category RM of Reynolds monoids.

Parametricity graphs

The so-called “parametricity graphs” are reflexive graphs of categories satis-

fying certain axioms, proposed in [11] for modelling relational parametricity. A

parametricity graph is a reflexive graph that is:

• relational, i.e., there is at most one square of a given shape,

• fibred with chosen cleavage, and

• satisfies the identity condition, i.e., whenever f
[
IA → IB

]
g, we have f = g.

The “relational” condition essentially simplifies the theory. The “identity condi-

tion” gives semantics to the identity logical relations. The “fibred” condition is a

categorical treatment of inverse images of relations. (See Appendix for full defi-

nitions.) Given f , f ′ and S as in the square on the left below, there must be a

pre-image 〈f, f ′〉∗ S that can fill the dotted line in a universal way:

A
f
> B

A′

〈f, f ′〉∗ S
?

6
.........

f ′
> B′

S
?

6

A
f

> B

A′

R
?

6

f ′
> B′

〈f, f ′〉!R
?

6
.........

Squares of this form are called cartesian squares. The dual form of squares, co-

cartesian squares, give “direct images” 〈f, f ′〉!R. The reflexive graph Set has both

pre-images and direct images, given by:

〈f, f ′〉∗ S = { (x, x′) | f(x)
[
S
]
f ′(x′) }

〈f, f ′〉!R = { (f(x), f ′(x′)) | x
[
R
]
x′ }

The reflexive graph RM is a parametricity graph. It satisfies the identity condi-

tion because it is obtained by putting together Set and Mon, both of which satisfy

the identity condition. It is fibred with chosen cleavage:

〈f, f ′〉∗ S = (〈fq, f ′q〉! Sq, 〈ft, f ′t〉∗ St)

Diagrammatically:

QX <
fq QY

QX′

〈fq, f ′q〉! Sq
?

6
.........

<
f ′q
QY ′

Sq
?

6

TX
ft
> TY

TX′

〈ft, f ′t〉∗ St
?

6
.........

f ′t
> TY ′

St
?

6

RM is not cofibred in general, but it does have some useful co-cartesian squares

which will be put to use in the next section.

309

Reddy

Com(X) = TX Com(R) = Rt
Expδ(X) = [QX → [[δ]]] Expδ(R) = [Rq → ∆[[δ]]]

Varδ(X) = Expδ(X)× [[[δ]]→ Com(X)] Varδ(R) = Expδ(R)× [∆[[δ]] → Com(R)]

(F ×G)(X) = F (X)×G(X) (F ×G)(R) = F (R)×G(R)

(F ⇒ G)(X) = ∀h:Z←X [F (Z)→ G(Z)] (F ⇒ G)(R) = ∀S←R [F (S)→ G(S)]

Fig. 1. Interpretation of Idealized Algol types

Type functors

To interpret the types of Idealized Algol we use functors of appropriate kind

from RM to Set, as shown in Fig. 1. This formalizes the intuition mentioned in

Introduction that types are interpreted as “type constructors” parameterized by the

store automaton.

A reflexive graph-functor (RG-functor) F : G → H between reflexive graphs

maps all four components of the reflexive graph (objects, morphisms, logical rela-

tions and squares) preserving their structure. A PG-functor is a reflexive graph-

functor that also preserves the cartesian squares and, in particular, the chosen

cleavage:

F (〈f, f ′〉∗S) = 〈Ff, Ff ′〉∗(FS)

We also insist that the functors used for interpreting Idealized Algol preserve all the

co-cartesian squares that exist in RM. The category of PG-functors of this kind is

denoted P(RM).

The morphisms in P(RM) are transformations that preserve all morphisms

(naturality) as well as all relations (parametricity). However, under the conditions

of parametricity graphs, parametricity implies naturality [11, 30]. So, we simply

call them parametric transformations.

Theorem 2.1 If C is a parametricity graph, the category P(C) of PG-functors

C→ Set preserving co-cartesian squares is cartesian closed.

Products are given pointwise: (F ×G)(X) = F (X)×G(X) and (F ×G)(R) =

F (R) × G(R). Exponents are given as in presheaf categories: (F ⇒ G)(X) =

∀h:Z←X [F (Z) → G(Z)], where ∀ denotes the “parametric limit” (in Set) indexed

by morphisms h originating from X [11]. Explicitly, the parametric limit consists

of families of the form

〈th ∈ [F (Z)→ G(Z)]〉h:X→Z

that are parametric in the sense that

h
[
IX → S

]
h′ ⇒ th

[
F (S)→ G(S)

]
th′

Since F and G are PG-functors, such families are automatically natural [11]. The

relation ∀S←R[F (S) → G(S)] relates two families 〈th〉h:X→Z and 〈t′h′〉h′:X′→Z′ iff,

310

Reddy

for all logical relations S : Z ↔ Z ′ and all h, h′ of appropriate types:

h
[
R→ S

]
h′ =⇒ th

[
F (S)→ G(S)

]
t′h′

2

This result is a mild generalization of that in [11]. It establishes that the carte-

sian closed structure is present even for functors that preserve co-cartesian squares.

3 Modeling Passivity

Intuitively, a computation is passive if it reads the state but carries out no state

changes. Since our stores X = (QX , TX) have a state set component and a state

transformation component, this means that passive computations should only de-

pend on the QX components and be independent of the TX components.

We use relational parametricity to formalize these concepts. Call a logical rela-

tion R : X ↔ X ′ a transformer relation if its state set component is the diagonal

relation: Rq = ∆QX . There are no constraints on the transformation component of

the logical relation (except those imposed by Reynolds monoids).

Definition 3.1 Given a PG-functor F in P(RM) and a store X, a value d ∈ FX
is said to be passive if, for all transformer relations R : X ↔ X, d is related to

itself by FR, i.e., d
[
FR
]
d.

This accords with our intuition. Since transformer relations keep the state set

components of worlds fixed but allow the transformation components to vary, if

a value is related to itself under all such variations, it must be independent of the

transformation components. It is easy to see that all values e ∈ Exp(X) are passive,

as one would expect. On the other hand, in Com(X), a value a is passive if and

only if a
[
Rt
]
a for all transformer relations R. This is only possible if a = 1X ,

the do-nothing state transformation. (When we consider divergence, the passive

command values include all approximations of 1X .)

A PG-functor itself may be regarded as a passive functor if all its values are

passive (for all stores X). We require this uniformly for all stores X.

Definition 3.2 A PG-functor F is said to be passive if, for all transformer rela-

tions R : X ↔ X, FR = ∆FX .

Note that Exp is a passive functor, and Com is not. However, Com has a passive

subfunctor, denoted ℘Com, which includes 1X at every store shape X. We examine

how to characterize the passive subfunctors.

Passivity monomorphism

Recall that, for every store X, there is a corresponding passive store X0, which

has the same state set as X but has only trivial state transformations TX0 = {1X}.
Since X0 allows no state changes, we expect that all values d ∈ FX0 are passive

(for all PG-functors F).

There is a passivity monomorphism pX : X0 � X given by the identity on

state sets and the injection TX0 ↪→ TX . We will argue that this monomorphism is

preserved by all PG-functors.

311

Reddy

Definition 3.3 A morphism m : A → B in a parametricity graph is a cartesian

monomorphism if the following square is cartesian:

A
m
> B

A

IA
?

6
.......... m

> B

IB
?

6

In other words, IA = 〈m,m〉∗ IB.

Cartesian monomorphisms are monomorphisms. Moreover, since PG-functors

preserve all cartesian squares, they preserve cartesian monomorphisms as well.

It is easy to see that the passivity monomorphisms pX : X0 � X are cartesian.

Hence, for all PG-functors F , their images FpX are (cartesian) monomorphisms.

This means that FX0 is always a subobject of FX. Under the assumption that F

preserves co-cartesian squares in addition to cartesian squares, we can show that all

passive values of FX are contained within the image of FX0 under FpX .

Lemma 3.4 If F is a PG-functor that preserves co-cartesian squares, then a value

d ∈ FX is passive if and only if there exists d0 ∈ FX0 such that FpX(d0) = d.

The “only if” direction is based on the fact that every transformer relation R

has the square shown on the left below:

X0
pX
> X

X0

IX0

?

6

pX
> X

R
?

6

FX0
FpX

> FX

FX0

IFX0

?

6

FpX
> FX

FR
?

6

As the PG-functor F maps it to the square on the right, all the values in the image

under FpX : FX0 → FX are related to themselves by FR. Hence all such values

are passive. For the “if” direction, we use the co-cartesian square shown on the left

below:

X0
pX
> X

X0

IX0

?

6

pX
> X

%X
?

6
..........

FX0
FpX

> FX

FX0

IFX0

?

6

FpX
> FX

F%X
?

6
..........

where %X : X ↔ X is given by (%X)q = ∆QX and (%X)t = {(1X , 1X)}. Since

F preserves co-cartesian squares, this implies that all passive values of FX are

contained within the image of FpX .

Passivity retractions

The passivity monomorphisms have retractions, i.e., morphisms rX : X → X0

such that pX ; rX = idX . They are defined by (rX)q = idQX and (rX)t = λa. 1X . The

reverse composite$X = rX ; pX : X → X is then idempotent (a “split” idempotent).

We can characterize passive values and passive functors in terms of the retractions

as follows:

312

Reddy

Lemma 3.5 An element d ∈ FX is passive if and only if F$X(d) = d.

Lemma 3.6 A PG-functor F in P(RM) is passive if and only if F$X = idFX .

These properties were used to define passivity by O’Hearn et al. [23]. While the

split idempotents $X lead to elegant theory of bireflective subcategories [13, 23],

they do not generalize to divergence. So, we also consider a relational variant of

$X and state our results in terms of it. The logical relation ξX : X ↔ X is given by

(ξX)q = ∆QX and (ξX)t = { (a, 1X) | a ∈ TX }. This relation satisfies an important

property:

Lemma 3.7 For all Algol type functors F , the relation FξX : FX ↔ FX has, as

its domain, the entire set FX, and, as its range, the passive subset of FX.

Passive subfunctors

If F is a PG-functor in P(RM), there is a passive PG-functor ℘F in P(RM)

defined by
(℘F)X = the range of FpX
(℘F)f = the restriction of Ff to (℘F)X

This definition is based on the following property.

Lemma 3.8 If F is a PG-functor in P(RM) and f : X → Y a morphism in RM

then Ff : FX → FY sends passive values in FX to passive values in FY .

Using Lemma 3.7, we can show the following result, establishing that passive

functors form a reflective subcategory.

Theorem 3.9 If F and P are Algol functors in P(RM) where P is passive, there

is a bijection between the parametric transformations F → P and parametric trans-

formations ℘F → P .

Par(F, P) ∼= Par(℘F, P)

Proof. If t : F → P is a parametric transformation, the corresponding t0 : ℘F → P

has components (t0)X that are just the restriction of components tX to passive

values. We show that t0 uniquely determines t. Since t preserves all logical relations,

in particular the transformer relation ξX : X ↔ X, we have a relation-preservation

square (in Set):

FX
tX

> PX

FX

FξX
?

6

tX
> PX

PξX
?

6

Since ξX is a transformer relation, PξX = ∆PX . So, the above square means:

∀d, d0 ∈ FX. d
[
FξX

]
d0 =⇒ tX(d) = tX(d0)

Since the range of FξX consists of only passive values (by Lemma 3.7), this means

that tX is uniquely determined by its action on passive values.

Conversely, given a parametric transformation t0 : ℘F → P , we obtain a para-

metric transformation t = t0 ◦ Fr : F → P . Applying the construction above and

313

Reddy

noting that ξX = 〈$X〉 = 〈pX ◦ rX〉, we conclude that t uniquely determines t0.

FX

(℘F)X

rFX
∨ (t0)X

> PX

tX

>

2

Theorem 3.10 The passive subfunctor operator ℘ is in turn a functor ℘ :

P(RM)→ P(RM). It enjoys the isomorphisms:

℘P ∼= P for passive functors P

℘Com ∼= 1

℘(F ×G) ∼= ℘F × ℘G
F ⇒ P ∼= ℘F ⇒ P for passive functors P

Proof. If t : F → G is a parametric transformation, ℘t : ℘F → ℘G is just the

restriction t0 of t that acts on passive values. The first isomorphism is, in fact, an

equality ℘P = P , and follows from the fact that the passive subset of PX is the

entire PX. For Com, 1X is the only passive value in Com(X). So, ℘Com(X) is a

singleton. For F×G, note that (F×G)pX = FpX×GpX : FX0×GX0 → FX×GX.

So, (d, e) is in the range of (F × G)pX iff d is in the range of FpX and e is in the

range of GpX . The last isomorphism follows from the definition (F ⇒ P)(X) =

∀h:Z←X [FZ → PZ]. Since [FZ → PZ] is isomorphic to [(℘F)Z → PZ], we have

the isomorphism. 2

4 Applications

In this section, we examine the consequences of the theory developed in the previous

sections.

Interpretation of Idealized Algol

Idealized Algol [36] is a simply typed lambda calculus (with call-by-name pa-

rameter passing) with basic types that support imperative computations.

The interpretation of types exp[δ], com, var[δ], θ1 × θ2 and θ1 → θ2 is as PG-

functors in P(RM), shown in Figure 1. For readability, we have used notation such

as Expδ for [[exp[δ]]] etc.

The interpretation of a term M with typing:

x1 : θ1, . . . , xn : θn `M : θ

is a parametric transformation of type

[[M]] : (
∏
xi

[[θi]])→ [[θ]]

This means that, for each store shape X, [[M]]X is a function of type (
∏
xi

[[θi]](X))→
[[θ]](X) such that all relations are preserved, i.e., for any relation R : X ↔ X ′, we

314

Reddy

equal : Expδ ×Expδ → Expbool equalX(e1, e2) = λs. e1(s) = e2(s)

condE : Expbool ×Expδ ×Expδ → Expδ condEX(e, e1, e2) = λs. e(s)→ e1(s); e2(s)

skip : 1→ Com skipX(∗) = 1X
seq : Com× Com→ Com seqX(a, b) = a · b
condC : Expbool × Com× Com→ Com condCX(e, a, b) = readX λs. e(s)→ a; b

for : Expint × Com→ Com forX(e, a) = readX λs. ae(s)

deref : Varδ → Expδ derefX(d, a) = d

assign : Varδ ×Expδ → Com assignX((d, a), e) = readX λs. a(e(s))

newvar : (Varδ ⇒ Com)→ Com newvarX(p) = (λs. (s, initδ)) · p[ι1](mkvar↑X?VV) · (λ(s, n). s)

where V = ([[δ]], T ([[δ]])) mkvar = (λn. n, λk. λn. k)

Fig. 2. Primitive operators of Idealized Algol

have [[M]]X

[
(
∏
xi

[[θi]](R))→ [[θ]](R)
]

[[M]]X′ . To the extent that Idealized Algol is

a simply typed lambda calculus, this interpretation is standard [11, 26].

[[x]]X(u) = u(x)

[[λx : θ.M]]X(u) = Λh : Z ← X.λd : [[θ]](Z). [[M]]Z(u↑ZX [x 7→ d])

[[MN]]X(u) = [[M]]X(u)[idX : X → X]([[N]]X(u))

The parameter u may be thought of as an “environment” that provides values for

the free identifiers, specifically in the given world X. The meaning of a lambda

abstraction of type θ → θ′ is in ([[θ]]⇒ [[θ′]])(X), which consists of families of the

form 〈th〉h:Z←X . Here, we are using notation “Λh : Z ← X” borrowed from the

polymorphic lambda calculus to express the parameterization by h. Note that

the body of the abstraction λx : θ.M is interpreted in the future world Z and

the environment u is “upgraded” to this world. We use the mnemonic short-hand

notation a↑ZX for the value [[θ]](f)(a) when f : X → Z is the morphism available in

the context and θ is the type of a. Parametricity in Z is crucial for capturing the

fact that [[M]]Z does not directly access any information of the future world. In the

interpretation of function application terms, we are again using the polymorphic

lambda calculus notation to pass in the h argument, which is idX : X → X.

The imperative operations can be defined as a set of primitive constants, a

sample of which are shown in Fig. 2. Their interpretations should be mostly self-

explanatory. We are using the notation p→ v1; v2 to denote conditional expressions

in semantic meta-language. Note that Reynolds’s read operation is used in inter-

preting conditional commands as well as assignment, both of which use the current

state information to construct a state transformation. Variable are represented as

pairs of operations: an expression-typed operation that dereferences the variable

and an “acceptor” that, given a value, stores it in the variable. The “newvar” prim-

itive allocates a new variable in the context of a store X. It defines a new piece of

store V with the state set [[δ]] and all state-transformations on it, denoted T ([[δ]]).

The “mkvar” construction provides the dereference-acceptor pair on this store. To

add the store V to the existing store X, we use a tensor product on stores denoted

315

Reddy

? [34]. The store X ? Y is defined as the Reynolds monoid:

QX?Y = QX ×QY
TX?Y = read-closure of { a× b | a ∈ TX , b ∈ TY }

This store has evident injections ι1 : X → X ? Y and ι2 : Y → X ? Y .

Examples

In the first place, let us note that the snap back combinator (do C result E) is

ruled out. To interpret it we would need a parametric transformation of the form:

do : Com× Exp→ Exp

doX(a, e) = λs. e(a(s))

We can see that it is not parametric. For example, the preservation of the relation

ξX : X ↔ X requires

Com(X) × Exp(X)
doX

> Exp(X)

Com(X)

Com(ξX)
?

6

× Exp(X)

Exp(ξX)
?

6

doX
> Exp(X)

Exp(ξX)
?

6

which says e(a(s)) = e(1X(s)) for all a ∈ Com(X), e ∈ Exp(X) and states s ∈ QX .

(Note that a
[
Com(ξX)

]
1X and e

[
Exp(ξX)

]
e.) Since 1X(s) = s, we are requiring

e(a(s)) = e(s). The condition would be violated, for example, if X has at least two

states, say {0, 1}, and a causes a state change, perhaps by sending 0 to 1, and e

returns the integer in the current state.

Consider the equivalence stated in the Introduction:

if (deref x = 0) then f(deref x) else 2 ≡ if (deref x = 0) then f(0) else 2

This requires that, for all worlds X, values (e, a) ∈ Var(X) and f ∈ (Exp ⇒
Exp)(X):(

λs. (e s) = 0 −→ f [idX] e s; 2
)

=
(
λs. (e s) = 0 −→ f [idX] 0 s; 2

)
Consider a relation given by

Rq = { (s, s) | e s = 0 } Rt = {(1X , 1X)}

Since e
[
Exp(R)

]
0, we must have, for all states s such that e s = 0,

f [idX] e s
[
∆Int

]
f [idX] 0 s

Noting that ∆Int is nothing but the equality relation, we have a proof of the equiv-

alence.

A more interesting variant of the above equivalence is:

if (deref x = deref y) then f(x) else 2 ≡
if (deref x = deref y) then f(y) else 2

316

Reddy

where f : var → exp. The difference from the previous example is that we are

passing the function procedure f the entire variable (x or y) rather than just an

expression dereferencing it. So, one might wonder if there is a possibility of f

changing the given variable. We argue abstractly, using the results of Theorem 3.10.

Var⇒ Exp ∼= ℘Var⇒ Exp

= ℘(Exp× (Int → Com))⇒ Exp
∼= ℘Exp× ℘(Int → Com))⇒ Exp
∼= Exp× (Int → ℘Com)⇒ Exp
∼= Exp× (Int → 1)⇒ Exp
∼= Exp× 1⇒ Exp
∼= Exp⇒ Exp

For the third step, regard Int → Com as a product
∏
i∈Int Com and use an infini-

tary version of the product isomorphism. The calculation shows that a function

procedure that receives a variable argument only has the ability to use its deref

operation.

5 Handling divergence

For modeling divergence, we use a strict function model similar to that described

in [25, Sec. 6]. Define a parametricity graph of Reynolds monoids with divergence,

denoted RM⊥, where “state sets” QX are flat cpo’s and transformations are com-

plete ordered submonoids of the strict function space [QX −◦ QX], equipped with a

readX operation. The functions involved in morphisms are required to be strict and

continuous, and the relations are required to be complete (pointed and directed-

complete). These properties are inherited from CPO⊥ which is itself a parametric-

ity graph [11]. The semantic category is that of functors (RM⊥)op → DCPO that

factor through CPO⊥. It is a result of Oles [28, 24] that such a category is cartesian

closed.

The passive store X0 of a store X has the same cpo of states as X but, as

transformations, all approximations of the do-nothing transformation:

TX0 = { a | a v 1X }

(The intermediate approximations are included by read-closure.) The passivity

monomorphism pX : X0 � X involves the obvious injection of the complete ordered

monoid TX0 ↪→ TX .

However, unlike in RM, the passivity monomorphisms do not have retractions.

Lemma 5.1 There is no morphism rX : X → X0 such that pX ; rX = idX0.

The technical reason for the failure is that sequential composition of transfor-

mations is not preserved in going from X to X0. It is possible for a composite

transformation a · b to appear “passive” even if a and b are not passive. The solu-

tion adopted by Tennent [41] for this situation is that such a transformation a · b

317

Reddy

should diverge in X0. However, this solution loses extensionality. The way in which

the passive computation is expressed becomes significant.

Since we employ relational parametricity rather than naturality, we offer another

solution. The relation ξX : X ↔ X mentioned under Passivity retractions can be

adapted to deal with divergence as follows:

(ξX)q = ∆QX
(ξX)t = { (a, a′) | a u 1X w a′ }

It may be verified that (ξX)t is a monoid relation and ξX itself is a Reynolds monoid

relation. Lemma 3.7 continues to hold for this relation ξX . Consequently, we can

obtain a weaker version of Theorem 3.9, which is adequate for semantic reasoning.

Theorem 5.2 If F and P are Algol functors in P(RM⊥) where P is passive,

every parametric transformation t : F → P is uniquely determined by its restriction

t0 : ℘F → P , giving a natural monomorphism:

Par(F, P) � Par(℘F, P)

The proof is the same as the first half of Theorem 3.9 because it is proved

using the relation ξ. This means that computations of type F → P are uniquely

determined by their restrictions to ℘F → P . Hence, they cannot have side effects,

not even temporary ones.

6 Related work

The model of Specification Logic, due to Tennent [41], was the first one to model

passivity. The passivity aspects were further studied in [13, 23]. Tennent’s model

does not employ relational parametricity, relying on morphisms instead of relations

to capture the uniformity conditions. Passivity and other intensional properties

are modelled through a form of “what if” modeling. Morphisms in the category of

stores include, not only those needed for interpreting the programming language,

but additional ones that are used in the logical analysis (including the left inverses

of passivity monomorphisms). It is decided whether a computation is passive by

asking the question what would happen to it under a morphism that prohibits all

state changes. If it remains the same, then it is regarded as passive; otherwise

not. While intuitively appealing, this model has the unfortunate effect of becoming

intensional (despite working in an extensional framework). Two program terms are

equivalent only if they behave identically under all possible state change constraints.

For example, the equivalence (1) is not valid in the model, for the reason that the left

hand side of the equivalence would be undefined if state changes were constrained to

those that preserve the even-ness of x, whereas the right hand side would continue

to be defined.

O’Hearn and Reynolds [25] provide an account of irreversible state change for

the command type and active expressions via a syntactic translation to the poly-

morphic linear lambda calculus. While the explanation of state change via a linearly

used state object is intuitively appealing, it has no way to allow for passive expres-

sions. O’Hearn and Reynolds do not provide any treatment of passive expressions

318

Reddy

in their paper, and it is generally believed that it is not possible to do so in a purely

linear setting. See, for example, Wadler [43] where an extension of linear lambda

calculus is proposed for modeling “read-only” uses. At a semantic level, O’Hearn

and Reynolds use strict functions on pointed cpo’s to model state change, as pre-

viously recommended by the present author. This modeling eliminates snap back

effects at the command type in the presence of divergence. It is adopted here in the

same manner. However, our modeling of irreversible state change works even in the

absence of divergence and, so, linearity and strictness are not central to it.

As remarked in Introduction, event-based models are able to model passivity

with relative ease. However, all such models are intensional and do not satisfy

extensional equivalences like (1). The “Passivity and Independence” model of the

author [31] was historically the first one where the reflective subcategory structure of

passive types was discovered. These ideas were later incorporated in the coherent

space model [32] and the games model [2]. These models represent passivity by

“fiat.” Out of all possible events, certain event are designated as “passive,” and

the reflective subcategory structure is imposed via an axiom. In other words, these

models state what is passive (rather correctly, it turns out), but do not explain

what it means for a computation to be passive. The criticism that such a treatment

lacks explanatory force, offered to the author by P. W. O’Hearn, P. Panangaden and

others, formed the main driver for further investigation, culminating in the present

results.

The Yoneda embedding of the coherent space model in a functor category shown

in [24] bears a close intuitive resemblance to the present model. In that work,

“object spaces,” a form of comonoids of coherent spaces, were used for modelling

stores. This was the first instance of sophisticated mathematical objects being used

to model stores and provided inspiration for other models such as the one proposed

here. Beyond this, it is hard to draw any firm conclusions about a correspondence

between the two because the model of [24] is event-based and stateless, whereas

representing states is an important objective of the present model.

In recent work, Ahmed, Dreyer and colleagues [3, 10] have applied the ideas of

possible worlds (similar to functor categories) and automata-theoretic reasoning in

the setting of operational reasoning. While the ideas seem intuitively similar, it

is difficult to make a formal comparison at the present stage because the starting

points of denotational and operational approaches are quite different. Some remarks

regarding the comparison may be found in [34]. It is also worth remarking that these

researchers have not yet tackled the issues of passivity in their approaches.

In another line of work, Benton et al. [5] have proposed a semantic characteriza-

tion of effect systems in a global store model using relation-preservation properties.

They were led to analyze “observable read-only effects” (i.e., observable passivity)

as well as its dual “observable write-only effects,” and their characterization turns

out to be quite similar to ours, viz., passive computations are those that preserve

the identity relations on states. These ideas have been extended to dynamic alloca-

tion of stores using Kripke logical relations (similar to our functor category models)

in subsequent work [4, 42]. The key difference between their work and ours is that

they model effect systems, which may be thought of as Curry-style properties of

computations, whereas we model type systems in the Church-style using semantic

319

Reddy

structures. The delicate balance of intensional and extensional effects does not seem

to arise in this line of work.

7 Conclusion

We have defined a conceptually-based semantic model for imperative programs

that captures the notion of “passivity”. This is done using a recently developed

automata-theoretic denotational framework, where stores are modelled as an ab-

stract form of automata, with explicit representation of states as well as state tran-

sitions. Relational parametricity of the type and term interpretations then ensures

that the properties of passive expressions are respected.

This approach contrasts with the intensional models such as the event-based and

games models [2, 32] where passivity is modelled by “fiat,” by designating certain

events or moves as passive ones. While such models have strong definability and

full abstraction properties, they however lack an explanation of what it means for

a computation to be passive. In our extensional framework, on the other hand, a

computation is passive if it is independent of the state transformations that might be

possible in the store. We believe this gives a clear answer to the semantic question

of what passivity means.

One might wonder if the model presented here is fully abstract. We have not

investigated the question in detail and it will perhaps involve considerable work to

settle the question because functor categories are quite extensive and not enough

is not known about what is definable in them. However, we are able to calculate

explicit representation results for simple first order types such as Com⇒ Com and

Com⇒ Exp, which are accurate. We leave a full exploration of the full abstraction

question to future work.

Other questions that this work might enable is a semantic understanding of the

various notions of passivity present in specification and verification frameworks,

e.g., program specification systems [19], ownership type systems [22] and fractional

permission-based methods [7, 35]. Secondly, the successful modeling of passivity

takes us one step closer to modeling program logics such as Syntactic Control of

Interference [23], Specification Logic [37, 41] and Separation Logic [35, 39]. We

envisage that the model presented here will be helpful to streamline the semantic

treatment of such programming logics.

Acknowledgements

We are grateful to anonymous referees whose comments led to various improvements

in the paper. Discussions with Claudio Hermida, Neil Ghani and Patricia Johann

are warmly acknowledged.

References
[1] S. Abramsky and G. McCusker. Linearity, sharing and state. In Linear Logic 96 Tokyo Meeting,

volume 3 of Elect. Notes in Theor. Comput. Sci., pages 2–14. Elsevier, 1996. (Also as Chapter 20 of
[27]).

[2] S. Abramsky and G. McCusker. Full abstraction for Idealized Algol with passive expressions. Theo-
retical Comput. Sci., 227(1-2):3–42, 1999.

320

Reddy

[3] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation independence. In Thirty Sixth
Ann. ACM Symp. on Princ. of Program. Lang. ACM, 2009.

[4] N. Benton, A. Kennedy, L. Beringer, and M. Hofmann. Relational semantics for effect-based program
transformations with dynamic allocation. In 9th ACM SIGPLAN Intl. Conf. on Princ. and Practice
of Declarative Program., pages 87–96. ACM, 2007.

[5] N. Benton, A. Kennedy, M. Hofmann, and L. Beringer. Reading, writing and relations. In N. Kobayashi,
editor, APLAS ’06, pages 114–130. Springer, 2006.

[6] R. Bornat, C. Calcagno, P.W. O’Hearn, and M. Parkinson. Permission accounting in Separation Logic.
In ACM Symp. on Princ. of Program. Lang., pages 59–70. ACM Press, 2005.

[7] J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static Analysis:
10th Intern. Symp., volume 2694 of LNCS, pages 55–72. Springer, 2003.

[8] S. D. Brookes. A semantics for Concurrent Separation Logic. Theoretical Comput. Sci., 375(1-3):227–
270, Apr 2007.

[9] S. D. Brookes, M. Main, A. Melton, and M. Mislove, editors. Math. Found. of Programm. Semantics:
Eleventh Ann. Conference, volume 1 of Elect. Notes in Theor. Comput. Sci. Elsevier, 1995.

[10] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and control effects on local
relational reasoning. In ICFP, 2010.

[11] B. P. Dunphy and U. S. Reddy. Parametric limits. In Proc. 19th Ann. IEEE Symp. on Logic in Comp.
Sci., pages 242–253. IEEE, July 2004.

[12] S. Eilenberg. Automata, Languages, and Machines. Academic Press, 1974. (Volumes A and B).

[13] P. J. Freyd, P. W. O’Hearn, A. J. Power, M. Takeyama, and R. D. Tennent. Bireflectivity. In Brookes
et al. [9], pages 199–213.

[14] C. Hermida. Fibrations, logical predicates and indeterminantes. Ph.D. thesis and Technical Report
ECS-LFCS-93-277, University of Edinburgh, 1993.

[15] C. A. R. Hoare. An axiomatic basis for computer programming. Comm. ACM, 12:576–583, 1969.

[16] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International, London, 1985.

[17] W. M. L. Holcombe. Algebraic Automata Theory. Cambridge Studies in Advanced Mathematics.
Cambridge Univ. Press, Cambridge, 1982.

[18] B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic and the Foundations
of Mathematics. Elsevier, 1999.

[19] K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In LPAR-16, volume
6355 of LNCS, pages 348–370. Springer-Verlag, 2010.

[20] G. McCusker. A fully abstract relational model of syntactic control of interference. In Computer
Science Logic (CSL) 2002, volume 2471 of LNCS, pages 247–261. Springer-Verlag, 2002.

[21] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[22] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In E. Jul, editor, ECOOP’98 - Object-
oriented Programming, volume 1445 of LNCS, pages 158–185. Springer-Verlag, 1988.

[23] P. W. O’Hearn, A. J. Power, M. Takeyama, and R. D. Tennent. Syntactic control of interference
revisited. In Brookes et al. [9], pages 447–486. (Reprinted as Chapter 18 of [27]).

[24] P. W. O’Hearn and U. S. Reddy. Objects, interference and the Yoneda embedding. Theoretical
Computer Science, 228(1):211–252, 1999.

[25] P. W. O’Hearn and J. C. Reynolds. From Algol to polymorphic linear lambda-calculus. J. ACM,
47(1):167–223, Jan 2000.

[26] P. W. O’Hearn and R. D. Tennent. Parametricity and local variables. J. ACM, 42(3):658–709, 1995.
(Reprinted as Chapter 16 of [27]).

[27] P. W. O’Hearn and R. D. Tennent. Algol-like Languages (Two volumes). Birkhäuser, Boston, 1997.

[28] F. J. Oles. A Category-Theoretic Approach to the Semantics of Programming Languages. PhD thesis,
Syracuse University, 1982.

[29] F. J. Oles. Functor categories and store shapes. In Algol-like Languages [27], chapter 11, pages 3–12.

[30] G. Plotkin and M. Abadi. A logic for parametric polymorphism. In Typed Lambda Calculi and
Applications - TLCA ’93, LNCS, pages 361–375. Springer-Verlag, 1993.

[31] U. S. Reddy. Passivity and independence. In Proc. Ninth Ann. IEEE Symp. on Logic in Comp. Sci.,
pages 342–352. IEEE, July 1994.

[32] U. S. Reddy. Global state considered unnecessary: An introduction to object-based semantics. J. Lisp
and Symbolic Computation, 9:7–76, 1996. (Reprinted as Chapter 19 of [27]).

[33] U. S. Reddy and B. P. Dunphy. An automata-theoretic model of objects. In E. Zucca, editor, 2011
Intl. Workshop on Foundations of Object-Oriented Languages, pages 1–15. electronic proceedings at
http://www.disi.unige.it/person/ZuccaE/FOOL2011/, 2011.

[34] U. S. Reddy and B. P. Dunphy. An automata-theoretic model of Idealized Algol. In Automata,
Languages and Programming (ICALP 2012), volume 7392 of LNCS, pages 337–350. Springer-Verlag,
2012.

[35] U. S. Reddy and J. C. Reynolds. Syntactic control of interference for Separation Logic. In Thirty
Ninth Ann. ACM Symp. on Princ. of Program. Lang., pages 323–336. ACM, 2012. (ACM SIGPLAN
Notices, 47:1:323-336).

321

Reddy

[36] J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J. C. van Vliet, editors, Algorithmic
Languages, pages 345–372. North-Holland, 1981. (Reprinted as Chapter 3 of [27]).

[37] J. C. Reynolds. Idealized Algol and its specification logic. In D. Neel, editor, Tools and Notions for
Program Construction, pages 121–161. Cambridge Univ. Press, 1982. (Reprinted as Chapter 6 of [27]).

[38] J. C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A. Mason, editor, Infor-
mation Processing ’83, pages 513–523. North-Holland, Amsterdam, 1983.

[39] J.C. Reynolds. Separation Logic: A logic for shared mutable data structures. In LICS, pages 55–74,
2002.

[40] D. S. Scott and C. Strachey. Towards a mathematical semantics for computer languages. In J. Fox,
editor, Proc. of Symp. on Computers and Automata, pages 19–46. Polytech Institute of Brooklyn
Press, 1971. (original Tech. Report Oxford PRG-6.).

[41] R. D. Tennent. Semantical analysis of specification logic. Inf. Comput., 85(2):135–162, 1990. (Reprinted
as Chapter 13 of [27]).

[42] J. Thamsborg and L. Birkedal. A Kripke logical relation for effect-based program transformations.
SIGPLAN Not., 46(9):445–456, September 2011.

[43] P. Wadler. Linear types can change the world! In M. Broy and C. B. Jones, editors, Program.
Concepts and Methods. North-Holland, Amsterdam, 1990. (Proc. IFIP TC 2 Working Conf., Sea of
Galilee, Israel).

Appendix

Definitions

In this section, we give a brief overview of the framework of reflexive graphs [26,

Sec. 7] and parametricity graphs [11].

Formally, we are considering reflexive graph objects in CAT, the category of all

(small) categories.

Unpacking the definition, we note that a reflexive graph G consists of two cat-

egories Gv and Ge (the “vertex” category and the “edge” category, respectively),

and three functors between them ∂9, ∂1 : Ge → Gv and I : Gv → Ge such that

∂i ◦ I = IdGv . The functors ∂0 and ∂1 pick out the “source” and the “target” for

the edges and their morphisms, whereas I assigns to each vertex X an “identity”

edge IX . The notation R : X ↔ X ′ is used to denote the situation that ∂0(R) = X

and ∂1(R) = X ′. The definition also generalize to edges of arbitrary arity in place

of binary edges.

Reflexive graphs represent a special case of indexed categories. Hence, they

form a 2-category with 1-cells being called “RG-functors” and 2-cells being called

“parametric natural transformations”.

Intuitively, this data means that we use two-dimensional categorical structures,

where morphisms occupy one dimension and edges (modelling “relations”) between

categorical objects occupy the second dimension, as in the diagram below:

X
f
> Y

X ′

R
?

6

f ′
> Y ′

S
?

6

A diagram of this form, called a square, is the shape of a morphism in Ge (of type

R → S with its “source” and “target” being f and f ′). It represents the property

that the morphisms f and f ′ map R-related arguments to S-related results. The

textual notation for the property is f
[
R→ S

]
f ′.

322

Reddy

A reflexive graph is called relational if there is at most one edge morphism of any

given shape. In that case, the hom-set Ge[R,S] is a set-theoretic relation between

Gv[X,Y] and Gv[X
′, Y ′].

The reflexive graphs we work with are called parametricity graphs [11]. They

incorporate additional axioms to capture the idea that relations in the vertical

dimension indeed behave like “relations” in the intuitive sense. A parametricity

graph is a reflexive graph that (i) is relational (ii) satisfies the identity condition:

f
[
IX → IY

]
f ′ =⇒ f = f ′ and (iii) has a cloven fibration 〈∂0, ∂1〉 : Ge → Gv×Gv.

The last of these conditions, which is an established part of category theory [18],

means the following. The right square f
[
R→ S

]
f ′ in the diagram below is called

a cartesian square if every square of the form of the outer square uniquely factors

through it:

X
g
> A

f
> B

X

P
?

6

g′
> A′

R
?

6
.........

f ′
> B′

S
?

6

The reflexive graph is fibred if, for all f , f ′ and S of matching types, there is an edge

R that fills the dotted arrow making it a cartesian square. The edge R is unique up

to isomorphism. A particular choice of such edges 〈f, f ′〉∗ S = R is called a cleavage

and the fibration is said to be cloven. Parametricity graphs are given with a chosen

cleavage (even though in most of our examples, the cleavage is unique).

A parametricity graph-functor (PG-functor) is an RG-functor that preserves

the chosen cleavage. A 2-cell between such functors (a parametric natural transfor-

mation) only needs to satisfy the parametricity condition; naturality follows from

parametricity [11]. This is because parametricity graphs have a subsumption map

〈−〉 that sends morphisms g : X → X ′ to edges 〈g〉 : X ↔ X ′ with the property

that a square of shape on the left below exists iff the square of morphisms on the

right commutes:

X
f
> Y

X ′

〈g〉
?

6

f ′
> Y ′

〈h〉
?

6
⇐⇒

X
f
> Y

X ′

g
∨ f ′

> Y ′

h
∨

The subsumption map is given by 〈g〉 = 〈g, idX′〉∗ IX′ .

Dually, co-cartesian squares are of the form of the left inner square in the dia-

gram:

A
f
> B

g
> X

A

R
?

6

f ′
> B′

S
?

6
.........

g′
> X ′

T
?

6

so that all outer squares factor through them. An RG-functor is cofibred if it maps

all co-cartesian squares that exist in its source graph to co-cartesian squares in the

target graph. We make use of PG-functors that are cofibred. However, we do not

require that the source graph itself should be cofibred, i.e., not all R, f and f ′ are

required to have corresponding S relations.

323

MFPS 2013

Linearization of Automatic Arrays and Weave
Specifications

David Sprunger1

Department of Mathematics
Indiana University

Bloomington, Indiana

Abstract

Grabmayer, Endrullis, Hendriks, Klop, and Moss [6] developed a method for defining automatic sequences
in terms of ‘zip specifications’ and proved that a sequence is automatic [2] iff it has a zip specification
where all zip terms have the same arity. An open question at the end of that work regards what kinds of
sequences are given by zip specifications where the zip terms do not have a constant arity and whether it
can be decided if two such specifications have the same solution.

This paper begins by investigating a similar definitional scheme for the higher-dimensional counterpart of
automatic sequences, automatic arrays. In the course of establishing the results required for this machinery,
we find an isomorphism between a final coalgebra for arrays and the standard final coalgebra for sequences
which is closely related to the z-order curve [8]. This isomorphism preserves automaticity properties: an
array is k, l-automatic iff its corresponding sequence is kl-automatic. The former notion of automaticity
(k, l-automatic, note the comma) is defined for arrays as in [2], and the latter notion is the standard notion of
automaticity for sequences. It also provides a convenient way to translate between stream zip specifications
and array zip specifications. Finally, we provide an example application of automatic arrays to provide
a partial answer (in the affirmative) to the question of decidability of mixed zip specifications. If a zip
specification with zip terms of different arities satisfies a particular condition, we will create an automaton
to generate the solution to this zip-specification as an automatic array. Then we will use our earlier work
to check whether two arrays generated for two of these special zip-mix specifications are equal.

Keywords: automatic sequence, automatic array, coalgebra, final coalgebra, z-order curve, zip
specification

1 Introduction

The automatic sequences are a class of sequences arising naturally in both com-

puter science and many different fields of mathematics [2]. A well-known automatic

sequence, the Prouhet-Thue-Morse sequence, has been rediscovered over and over

again by its appearances in combinatorics, algebra, number theory, differential ge-

ometry, and combinatorial game theory. 2

As an example, sequences are interesting to algebraists as the expansions of

numbers in particular bases. A number is rational, for example, iff its represen-

1 Email: dasprung@indiana.edu
2 See [1] for more details on the appearances of the PTM sequence.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:dasprung@indiana.edu

Sprunger

tation in base k is an eventually periodic sequence of digits. Sequences which are

eventually periodic are highly regular; at the other end of the spectrum are the

totally random sequences, the investigation of which relies primarily on probabilis-

tic methods and/or information-theoretic methods. Automatic sequences form a

class of sequences “more random” than the eventually periodic sequences and yet

with enough structure that their properties can be investigated without needing

probabilistic methods. Numbers whose base k expansion are automatic sequences

are useful concrete examples in the study of transcendental numbers. Automatic

sequences also play a crucial role in determining transcendence of power series over

function fields—this is the content of Christol’s theorem [3].

While the identities and properties of particular automatic sequences are often

encountered and used in mathematics, their definition and the method by which

they are generated lies more naturally in the realm of theoretical computer science.

Automatic sequences list the outputs of a simple class of automata on representa-

tions of the natural numbers. This class of automata is a slight generalization of

the better known deterministic finite automata (DFA), which is the preferred model

in formal language theory for recognizing the regular languages. As a consequence

of this similarity, the methodologies used for regular languages and automatic se-

quences have strong resemblances to each other, but also have some important

differences.

Regular languages enjoy a well developed notational system for defining lan-

guages and language operations, namely regular expressions. Commonly juxtaposi-

tion or · indicate language concatenation, L∗ denotes the Kleene closure of L, and

∪ or + commonly indicates the union of languages. Since the words in regular lan-

guages are finite, this definitional scheme is able to compactly describe languages

while simultaneously hinting at the structure of their elements.

On the other hand, the class of automatic sequences has necessarily infinite

objects, so schemes giving a finite definition of even one element of this space require

some thought. Given two finite presentations of infinite objects like sequences, it

can be quite difficult to determine whether the two generated objects are even

equal. To reason about infinite objects, principles of coinduction and corecursion

arising from coalgebra are often employed, as introduced by Rutten [10]. Though

the coalgebraic approach is not the original automata theory approach to regular

languages, the theory of regular languages and DFAs has been recast in those terms

by Rutten [9].

The standard finite scheme to define an automatic sequence is to give a

finite automaton which generates that sequence. This scheme is useful when

computing entries in the sequence, but suffers from some ambiguities involving

input representation. [6] proposed an alternate definitional scheme which gives

a sequence as the result interleaving the entries of other sequences. This work

showed the collection of automatic sequences exactly coincides with the sequences

that can be defined with zip specifications.

In this paper we first by summarize the main techniques used in [6] to define

zip-specifications for automatic sequences. Then we begin to investigate a similar

scheme for automatic arrays, which are a two-dimensional generalization of auto-

325

Sprunger

matic sequences. This investigation will uncover an interesting isomorphism be-

tween automatic arrays and sequences, which we will go on to use to give a partial

answer to an open question regarding zip specifications.

2 A brief introduction to automatic sequences, coalge-
bras, and zip specifications

We begin by outlining the primary techniques used in the study of automatic se-

quences and coalgebras. For readers seeking more details on the former topic there

is a standard book by Allouche and Shallit [2]. For the latter, there are many papers

by Rutten and many others expositing coalgebraic methods most notably [10], see

also [7] particularly for coalgebraic methods applied to sequences of symbols. With

some understanding of these techniques, we then turn to how these techniques are

used to construct zip-specifications and check for equality of solutions.

2.1 Automata with output and automatic sequences

We now describe in greater detail the process of generating a sequence from an

automaton [2,4]. A DFAO (Deterministic Finite Automaton with Output) is an

automaton with the following components: an input alphabet (A), a finite set of

states (Q), a designated start state (q0 ∈ Q), a transition map taking the current

state and an input symbol and returning the next state (δ : Q×A→ Q), an output

alphabet (∆) and an output map (f : Q→ ∆). These generalize their better known

cousin, the DFA, in that a DFA’s output alphabet is necessarily ∆ = {accept,

reject}.
We can extend a DFAO’s transition function from single letters in A to all words

in A∗ with the following recursive scheme:

δ(q, w) =

{
q if w = ε

δ(δ(q, a), w′) if w = aw′

for w,w′ ∈ A∗, a ∈ A and ε being the empty word in A∗. As we are about to note,

this is not the only possible nor the only common way to extend the transition

function to all of A∗. We will indicate that a DFAO uses this convention for its

extended transition function by saying the DFAO “reads its input in left-to-right

order” or “uses the frontwards order”.

We could alternatively extend a DFAO’s transition function to all of A∗ with a

slightly different recursive scheme:

δ(q, w) =

{
q if w = ε

δ(δ(q, a), w′) if w = w′a

In this case, we say the DFAO reads its input in the right-to-left order or the

backwards order.

In either case, we say the DFAO outputs d ∈ ∆ on input w ∈ A∗ if d =

f(δ(q0, w)). We say a DFAO is a k-DFAO if |A| = k ∈ ω and in this case assume

326

Sprunger

A = {0, 1, 2, . . . , k−1} = N<k. Note that each integer n is naturally associated to a

string in A∗: its standard base-k representation which we denote by [n]k ∈ N∗<k. We

say a k-DFAO generates the sequence σ = σ0σ1σ2 . . . σn . . . if σn = f(δ(q0, [n]k)).

That is, the DFAO outputs σn on the input [n]k.
3 If σ is a sequence generated by

a k-DFAO, we say it is k-automatic.

At this point, there are a few good and well-answered questions to point out.

How is the collection of sequences generated by k-DFAOs using the frontwards order

related to the collection of sequences generated by k-DFAOs using the backwards

order? Is it always possible to modify a k-DFAO to allow the representation [n]k to

have leading 0’s without affecting the stream it generates? It turns out the collection

of automatic sequences is exactly the same under each of these input conventions,

and indeed the functions taking a DFAO with one input convention to the others

are computable [2, p. 159].

Though it is more common in the general literature on automatic sequences to

encounter the frontwards order input convention, when using coalgebraic techniques

there are some reasons to prefer the backwards order convention. As a result, we

will assume for the rest of the paper that all our automata read their input in the

backwards order.

2.2 Coalgebras, finality and bisimulation

The next critical component in this machinery is the notion of coalgebras for a

functor [10]. In this paper we will be considering the Set endofunctor F : X 7→
∆×Xk where the functor acts on arrows by sending the Set morphism f : X → Y

to Ff : ∆ × Xk → ∆ × Y k defined by Ff = 〈id∆, f, f, . . . , f〉. A coalgebra for

this functor is a set C together with a function c : C → FC = ∆× Ck.
The map c is usually called the structure map for the coalgebra, while C is its

carrier. We will often need to talk about the different components of the structure

map, c = 〈o, c0, c1, . . . , ck−1〉, where o : C → ∆ and ci : C → C. o is often called the

observation component of the structure, while the ci are called the transitions

for the structure.

We define the category of F -coalgebras as follows: objects in the category are F -

coalgebras like (C, c) and a morphism of coalgebras ϕ : (C, c)→ (D, d) is a function

ϕ : C → D such that the following diagram commutes:

C c //

ϕ

��

∆× Ck

Fϕ
��

D
d
//∆×Dk

We say an F -coalgebra is final if it is a final object in the category of F -

coalgebras. Final coalgebras are particularly important in the theory of coalgebras

because there is a powerful technique for establishing the equality of two elements

of a final coalgebra: bisimulation.

A bisimulation on an F -coalgebra (C, c) is a relation R ⊆ C ×C such that for

3 Note the DFAO is not a Mealy/Moore machine or other kind of simple transducer, so it is not generating
this sequence in a single run. Each run of the DFAO produces a single output and by listing these individual
results of each of the runs for these particular inputs we get a sequence.

327

Sprunger

all (x, y) ∈ R we have o(x) = o(y) and for all 0 ≤ i < k we have (ci(x), ci(y)) ∈ R.

A standard theorem of coalgebra is that every bisimulation on a final coalgebra is

a subset of the identity relation [10,11]. That is, if R is a bisimulation on a final

coalgebra and (x, y) ∈ R, then x = y.

2.3 DFAOs and the set of sequences as coalgebras

Coalgebras and bisimulations are commonly used in the analysis of state transition

systems and other process calculi. DFAs and DFAOs are simple examples of state

transition systems and so they form a natural example of coalgebras and thereby

a place to do bisimulations. Less readily apparent is the fact that there is also a

coalgebra structure on the set of sequences themselves. 4

A k-DFAO generating an automatic sequence naturally gives an F -coalgebra

via the structure map Q→ ∆×Qk given by 〈f, δ(·, 0), δ(·, 1), . . . , δ(·, k − 1)〉. As a

result of the so-called input robustness results mentioned in section 2.1, we can also

assume without loss of generality that our DFAOs (which read in the backwards

order) ignore leading zeroes. That is, we have f ◦ δ(·, 0) = f . This property, as will

be discussed later, is called zero-consistency.

An important object in the study of automatic sequences is the so-called kernel of

a sequence. To define this, we first define projection maps on the set of sequences in

∆. The projection πi,k : ∆ω → ∆ω is given by πi,k(σ) = σiσi+kσi+2k . . . σi+nk . . . =

{σi+nk}n. The k-kernel of the sequence σ is the set of all sequences which can be

reached by repeatedly applying the maps π0,k, π1,k, . . . , πk−1,k to σ. A well-known

theorem states that a sequence is k-automatic iff its k-kernel is finite [2, p. 185].

Now, it is a fact due to [7] and [6] independently that ∆ω is the carrier for a coal-

gebra (∆ω, 〈hd, π0,k, π1,k, . . . , πk−1,k〉) which is final for zero-consistent F -coalgebras,

which form a subcategory of the F -coalgebras. Therefore there is a unique map,

seq, such that the following diagram commutes:

Q
〈f,δ(·,0),δ(·,1),...,δ(·,k−1)〉 //

seq

��

∆×Qk

F seq
��

∆ω
〈hd,π0,k,π1,k,...,πk−1,k〉

//∆× (∆ω)k

The seq map takes a state q to the automatic sequence generated by the DFAO

when using q as the start state.

2.4 The zipk function and zip-specifications

Now that we understand automatic sequences as coalgebras and can decide when two

elements of a final coalgebra are equal, we are ready to discuss zip-specifications,

as treated in [6]. The zipk function takes k sequences and merges them into a

single sequence by alternating through their terms. For example, zip2(σ, τ) =

zip2(σ0σ1σ2 . . . , τ0τ1τ2 . . .) = σ0τ0σ1τ1σ2τ2 The zipk function in some sense

inverts the action of the k-kernel maps: πi,k(zipk(σ0, σ1, . . . , σk−1)) = σi and con-

versely zipk(π0,k(σ), π1,k(σ), . . . , πk−1,k(σ)) = σ.

4 For more details on the coalgebraic structure of DFAs and their final coalgebra, see [9].

328

Sprunger

Using the zip function, we can set up systems of equations to define streams.

For example, the system


m = 0 : x

x = 1 : zip(x, y)

y = 0 : zip(y, x)

(1)

has the Thue-Morse sequence as the solution for m.

To be exact, a zip specification in an alphabet A is a set of variables, S,

along with a zip term for each variable, where a zip term is generated by the BNF

grammar

T ::= s | a : T | zipk(T, T, . . . , T)

where s ∈ S, a ∈ A, and k zip terms are provided as the argument for a term using

the zipk rule. For example, zip2(1 : x, zip3(0 : y, x, 1 : 0 : z)) is a zip term in the

alphabet {0, 1} with variables {x, y, z}. A zip specification gives a zip term for each

variable in the set.

Grabmayer et al. [6] gave conditions for the existence and uniqueness of solutions

to these zip specifications. Roughly stated, there is a solution to the specification if

each variable is defined by exactly one zip term, and there is a unique solution if for

each variable the first symbol of that variable’s term can be determined. They then

proved that solutions to zip specifications where all terms using the zip function

have arity k are k-automatic. This tells us that all solutions for the variables in

specification (1) are 2-automatic, for example.

Generating an automaton for (1) is fairly straightforward. We start with the

root (first) variable and apply the πi,2 maps just as if we’re generating the 2-kernel

of a sequence, but we get state names instead. For example, π0,2(m) = π0,2(0 :

x) = π0,2(01 : zip(x, y)) = 0 : π0,2(zip(x, y)) = 0 : x, so after reading 0, our

automaton will transition from a state labelled m to a state labelled 0 : x. Similarly,

π1,2(0 : x) = π1,2(01 : zip(x, y)) = 1 : y so the 1 transition out of 0 : x goes to 1 : y

and so on. The full 2-DFAO for this specification is given below:

m

0
start

0 : x

0

1 : y

1

0

1

0

1

0

1

329

Sprunger

Now given a second zip specification, such as
n = 0 : zip(1 : w, 1 : u)

u = 1 : zip(v, u)

v = 0 : zip(v, 1 : u)

w = zip(n, v)

(2)

it is fairly straightforward to check that the first few entries in the solution for n

match the first few entries for the solution of m, but is a nearly impossible game

of index bookkeeping to check that they have the same values at all entries. To

aid our understanding and to simplify matters we use the machinery of coalgebras.

First we generate a 2-DFAO for this specification in the same manner as the one

before it:

n

0
start

01 : u

0

1 : w

1

1 : v

1

0

1

0

1

0

1

0

1

Next we find attempt to find a bisimulation from the first DFAO to the second

relating m to n. R = {(m,n), (0 : x, 01 : u), (0 : x, n), (1 : y, 1 : w), (1 : y, 1 : v)} is

such a bisimulation. Then if we apply the seq map to this bisimulation it remains a

bisimulation in ∆ω. In particular, (seq(m), seq(n)) ∈ seq(R), which is a bisimulation

in a final coalgebra, so seq(m) = seq(n). This allows us to conclude the sequence

generated in the first DFAO starting from m is the same as the sequence generated

from the second DFAO starting from state n.

2.5 Automatic arrays

Automatic arrays are a generalization of automatic sequences to two dimensions.

[2, Ch. 14]

Let’s imagine we have a DFAO with input alphabet N<k ×N<l. (We will some-

times abbreviate this situation with the term k, l-DFAO.) We can encode a pair

(m,n) ∈ N × N as a word in this alphabet in a standard way: we find the base-k

representation of m, [m]k, and the base-l representation of n, [n]l, and pad whichever

has fewer digits with leading zeroes until they are the same length. Then the stan-

dard k, l-encoding of (m,n) is the sequence of pairs of these digits starting with the

most significant digits.

For example, the standard 2,5-encoding for (13, 82) is formed by taking [13]2 =

1101 and [82]5 = 312 = 0312 and then forming pairs: (1, 0)(1, 3)(0, 1)(1, 2).

Now imagine a quarter infinite grid with positions indexed by N × N with the

symbol at position (m,n) being the output of the DFAO when given the standard

330

Sprunger

encoding for (m,n) in N<k ×N<l. Such an infinite array is called a k, l-automatic

array in analogy to the definition of automatic sequences. When the bases k and

l can be inferred from context, we may abbreviate and use the term “automatic

array”.

As an example consider the following automaton and the automatic array it

generates below. 5 Note that this automaton has input alphabet N<2 × N<2.

q0

0
start

q1

1

(0, 1)

(1, 0)

(0, 0)

(1, 1) (0, 1)

(1, 0)

(0, 0)

(1, 1)

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 The bold zero on this line is at (13, 8).
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 This gets encoded as (1,1)(1,0)(0,0)(1,0).
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 You can check to see that this is the right
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 output using the automaton.
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

2.6 Previously known results on automatic arrays

At this point the same kinds of questions that are natural for automatic sequences

can be asked for automatic arrays. Does the collection of automatic arrays change

if we make our k, l-DFAOs read in backwards order vs. frontwards order? Can

we allow leading (0, 0) characters for these DFAOs without changing the notion of

which arrays are k, l-automatic? These standard input robustness results work out

the same way for automatic arrays as they do for sequences: changing the direction

of the input and adding leading zeroes does not change the collection of automatic

arrays [2, p. 408].

Indeed, very many of the results for automatic sequences have a corresponding

result for automatic arrays. One important example of this phenomenon regards

the kernel of an array. We define π i
k
, j
l

to take an array a with entries am,n for all

5 This automaton is intentionally similar to the minimal automaton that generates the Thue-Morse se-
quence. The array it generates is also intimately related to the Thue-Morse sequence. Every row and
every column is the Thue-Morse sequence or the Thue-Morse sequence with 0 and 1 swapped. The array’s
2,2-linearization is also the Thue-Morse sequence. See 3.2.

331

Sprunger

n,m ≥ 0 to the array with entries akm+i,ln+j for all n,m ≥ 0. Then the k, l-kernel

of the array a is the set of all arrays which can be reached from a by repeatedly

applying the functions π i
k
, j
l

for i ∈ N<k and j ∈ N<l. It turns out the k, l-kernel of

an array is finite iff the array is k, l-automatic [2, p. 409].

3 Weave specifications for automatic arrays

To establish results for zip specifications for sequences, several steps were needed.

First, one must give conditions for existence and uniqueness of solutions to zip

specifications. Then, for zip specifications fulfilling these criteria, one shows there

is a natural way to produce a DFAO which generates the sequence which solves

the zip specification. Lastly, using a final coalgebra one has a basis for determining

equality of solutions to different zip specifications. We begin by developing this last

step for automatic arrays.

3.1 Final coalgebras for automatic arrays

Denote by Ar∆ = ∆ω2
the set of all quarter-infinite arrays with symbols in ∆. Let

c : Ar∆ → ∆ be the function taking an array to its corner entry. That is, c(g) = g0,0.

We will be showing that Ar∆ with the transition structure given by the function c

and the array projections π defined above make it into a final coalgebra.

Suppose we have a functor FX = ∆ × Xkl and (G, s : G → ∆ × Gkl) is a

coalgebra for that functor. Then we name the kl + 1 components of the structure:

s = 〈o, s(0,0), s(0,1), . . . , s(0,l−1), s(1,0), . . . , s(k−1,l−1)〉

where o : G → ∆ and s(i,j) : G → G. As before, o is the observation component

of the structure, while the other components are the transition components of the

structure. We say a coalgebra for this structure is zero− consistent when o =

o◦s(0,0), which is to say applying the zero-transition doesn’t change the observation.

For general coalgebras, the zero-consistency condition is a restrictive requirement,

but for automatic sequences, where we know we can always modify our DFAOs to

accept input with leading zeroes, zero-consistency is not a strong requirement [7].

We will also employ a notation for writing out the composition of many tran-

sitions in these coalgebras. Rather than writing s3 ◦ s2 ◦ s3 ◦ s1, we will write

s(3)(2)(3)(1), where the subscript is a word in the available transition subscripts. So,

for example, we might write (π 0
2
, 0
2
◦ π 1

2
, 0
2
◦ π 0

2
, 1
2
)(x) = π(0

2
, 0
2

)(1
2
, 0
2

)(0
2
, 1
2

)(x).

Before proving that Ar∆ is a final coalgebra, we prove two simple facts.

Lemma 3.1 Let (m,n)k,l be the standard k, l-encoding of the pair (m,n). Let i ∈
N<k and j ∈ N<l. Then (m,n)k,l(i, j), the encoding of (m,n) followed by the symbol

(i, j), is the k, l-encoding of (mk + i, nl + j)

Proof. Consider (mk + i, nl + j)k,l. It is clear that [mk + i]k = [m]ki and also

that [nl + j]l = [n]lj. Then the last pair in the standard k, l-encoding will be

(i, j), and the preceding symbols will just be the k, l-encoding of (m,n). That is,

(mk + i, nl + j)k,l = (m,n)k,l(i, j), as desired 2

Lemma 3.2 For all a ∈ Ar∆, (c ◦ π(m,n)k,l)(a) = am,n.

332

Sprunger

Proof. We show this by induction on the length of the k, l-coding for (m,n). If

the encoding is empty, then m = n = 0 so we have c(a) = a0,0, which is true by the

definition of c.

Now suppose this statement is true for all encodings of length ≤ d and suppose

the length of (m,n)k,l is d + 1. Further let m = q1k + i and n = q2l + j where

i ∈ N<k and j ∈ N<l by the division algorithm. There is at least one symbol

in our encoding, so we write (m,n)k,l = w(i, j) where (i, j) is a single symbol in

N<l × N<k and w = (q1, q2)k,l is the remainder of the coding by Lemma 3.1. Then

we are considering (c◦π(m,n)k,l)(a) = (c◦πw ◦π i
k
, j
l
)(a) by definition of the structure

subscripts. Note that w has length d, so the induction hypothesis kicks in and

tells us c ◦ πw finds the (q1, q2) element of its argument, so the above reduces to

(π i
k
, j
l
(a))q1,q2 . Now the definition of π i

k
, j
l
(a) above tells us the q1, q2 entry in this

array is the (kq1 + i, lq2 + j) = (m,n) entry of a, as desired. 2

We are now ready to prove the promised result regarding the finality of the

coalgebra of Ar∆ with c and the π i
k
, j
l
.

Proposition 3.3 The coalgebra 〈c, π ·
k
, ·
l
〉 : Ar∆ → ∆ × (Ar∆)kl is final for the

zero-consistent coalgebras of the functor FX = ∆×Xkl.

Proof. Suppose 〈o, p(·,·)〉 : A→ ∆×Akl is a zero-consistent F -coalgebra. We define

a map ϕ : A → Ar∆ by the following: a ∈ A gets mapped to the ∆-array whose

(m,n) entry is given by ϕ(a)m,n = o(p(m,n)k,l(a)).

We must show that this is an F -coalgebra morphism. For this we verify the

observation and transition parts separately.

A
〈o,p(·,·)〉 //

ϕ

��

∆×Akl

id∆×ϕkl

��
Ar∆ 〈c,π ·

k
, ·
l
〉
//∆× (Ar∆)kl

(Observation component)

We must show o(a) = c(ϕ(a)). We know c(ϕ(a)) = ϕ(a)0,0 = o(p(0,0)(a)) by our

definition of ϕ. Further, o(p(0,0)(a)) = o(a) since A is a zero-consistent F -coalgebra.

Hence we have c(ϕ(a)) = o(a), as desired.

(Transition components)

We must show ϕ ◦ p(i,j) = π i
k
, j
l
◦ ϕ for all i ∈ N<k and j ∈ N<l.

We first claim that c ◦ ϕ ◦ p(m,n)k,l = c ◦ π(m,n)k,l ◦ ϕ for all m,n ≥ 0. Note that

ϕ(a)m,n = (o ◦ p(m,n)k,l)(a) by our definition of ϕ. We also know from Lemma 3.2

that c◦π(m,n)k,l finds the (m,n) element of an array, so ϕ(a)m,n = (c◦π(m,n)k,l◦ϕ)(a).

Therefore o ◦ p(m,n)k,l = c ◦ π(m,n)k,l ◦ϕ. Now from the observation result above, we

know c ◦ϕ = o, so we get c ◦ϕ ◦ p(m,n)k,l = c ◦ π(m,n)k,l ◦ϕ, and our claim is proven.

Now we return to proving ϕ◦p(i,j) = π i
k
, j
l
◦ϕ. Let a ∈ A and m,n ∈ N. Then we

must show (ϕ◦p(i,j))(a)m,n = (π i
k
, j
l
◦ϕ)(a)m,n for all such a,m, n. Since c◦π(m,n)k,l

333

Sprunger

selects the (m,n) entry of a grid by Lemma 3.2, we rewrite this as

(c ◦ π(m,n)k,l ◦ ϕ ◦ p(i,j))(a) = (c ◦ π(m,n)k,l ◦ π i
k
, j
l
◦ ϕ)(a)

= (c ◦ π(mk+i,nl+j)k,l ◦ ϕ)(a)

where the equality is by Lemma 3.1. Now using the claim we just proved we can

rewrite the left hand side as

(c ◦ π(m,n)k,l ◦ ϕ ◦ p(i,j))(a) = (c ◦ ϕ ◦ p(m,n)k,l(i,j))(a) = (c ◦ ϕ ◦ p(mk+i,nl+j)k,l)(a)

which is again by Lemma 3.1. This shows ϕ is a coalgebra map.

To show ϕ is the final coalgebra map, we must also show it is the unique map

with these properties. This is a straightforward induction argument where most of

the hard work is done by our previous lemmas. Since we do not need the details

later, we omit them. 2

3.2 Array linearization with final stream coalgebras

In the last section we showed that the set of arrays in ∆, Ar∆, carries a final

coalgebra structure for the zero-consistent coalgebras of the functor FX = ∆×Xkl.

We also know the stream coalgebra (∆ω, 〈hd,Nkl〉) = (∆ω, 〈hd, π0,kl, . . . πkl−1,kl〉) is

a final coalgebra for the zero-consistent coalgebras of F . [6] Consequently, these

two coalgebras must be isomorphic. We shall next make this isomorphism explicit.

The coalgebra (∆ω, 〈hd,Nkl〉) has the structure maps hd(σ) = σ0 and πj,kl(σn) =

{σnkl+j}n being the stream kernel maps with 0 ≤ j < kl. Now fortunately, our result

above gives the explicit construction of the final coalgebra map from this coalgebra

into the Ar∆ coalgebra. Let ϕ : ∆ω → Ar∆ be this final map. Then the array

coalgebra maps, when listed out, are

〈c, π 0
k
, 0
l
, π 0

k
, 1
l
, . . . , π 0

k
, l−1

l
, π 1

k
, 0
l
, . . . , π k−1

k
, l−1

l
〉

while the stream coalgebra maps are

〈hd, π0,kl, π1,kl, . . . , πkl−1,kl〉

so taking the corner of an array corresponds exactly to taking the head of the related

stream, and the array projection π i
k
, j
l

corresponds exactly to the stream projection

πil+j,kl. Now if we’re given a stream σ and want to find the array ϕ(σ), we’ll try to

find the element of the array at position (m,n) for all m,n ∈ N. Lemma 3.2 tells

us that to find the element in the array at this position we should take the (m,n)k,l
encoding of (m,n) and follow those array projections. Since ϕ is an isomorphism,

we know that following these projections on ϕ(σ) corresponds exactly to taking the

related stream projections on σ and then taking the head of the resulting stream.

For simplicity, let’s consider the case where k = l = 2 and σ =

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .), and figure out what ϕ(σ) looks like. Working

through the calculation outlined above many times shows that ϕ(σ) begins like

334

Sprunger

42 43 46 47 58 59 62 63

40 41 44 45 56 57 60 61

34 35 38 39 50 51 54 55

32 33 36 37 48 49 52 53

10 11 14 15 26 27 30 31

8 9 12 13 24 25 28 29

2 3 6 7 18 19 22 23

0 1 4 5 16 17 20 21

Now since ∆ω with the hd and πi,4 stream projections is also a final coalgebra

for the functor FX = ∆ × X4, we know the coalgebra morphism ϕ must be an

isomorphism. In particular, ϕ−1 takes an array and transforms it into a stream.

Having figured out what ϕ does to a stream, we can easily invert it to see how ϕ−1

linearizes an array.

//

��

//

��

//

��

//

//

__

//

__

//

__

//

__

//

��

//

jj

//

��

//

jj

//

__

//

__

//

__

//

__

//

��

//

��

//

��

//

mm

//

__

//

__

//

__

//

__

//

��

//

jj

//

��

//

jj

//

__

//

__

//

__

//

__

Fig. 1. The start of lin2,2

This is already known to computer scientists as the “z-order curve” as introduced

by G. Morton [8]. It has an important property which makes it easy for machines

working with binary representations to use: the entry at (m,n) in the array gets

mapped to the element in the stream at the position which is formed by zipping the

digits of [m]2 and [n]2. We see this on the diagram below, which is ϕ(σ) as above

but with everything translated into binary and with row and column labels. 6

6 We have colored all the column-related digits red, so grayscale copies of this document may appear to
have a lighter shade for these digits.

335

Sprunger

111 101010 101011 101110 101111 111010 111011 111110 111111

110 101000 101001 101100 101101 111000 111001 111100 111101

101 100010 100011 100110 100111 110010 110011 110110 110111

100 100000 100001 100100 100101 110000 110001 110100 010101

011 001010 001011 001110 001111 011010 011011 011110 011111

010 001000 001001 001100 001101 011000 011001 011100 011101

001 000010 000011 000110 000111 010010 010011 010110 010111

000 000000 000001 000100 000101 010000 010001 010100 010101

000 001 010 011 100 101 110 111

Indeed we might have guessed this from our definition of the automata operating

on pairs of digit representations. If we look at the pairs of red and black digits,

they give the pairs in the encoding of that position in the array. At the position

(2, 3)2,2 = (1, 1)(0, 1) = (0, 0)(1, 1)(0, 1), highlighted in bold, we indeed get the

thirteenth element of the stream and 001101 = [13]2.

With this operation in mind, it is easy to describe what ϕ does as well. Given an

element in a sequence, we take its position and write that position in binary, padding

with leading zeroes to make the representation have an even number of digits. Then

every other digit starting with the first forms the representation for the row in the

array, and every other digit starting with the second forms the representation of

the column in the array. For example, the 28th element of the stream gets mapped

by ϕ to the (2, 6) element of the array since [28]2 = 11100 = 011100 = 011100 and

010 = [2]2 and 110 = [6]2.

3.3 Connections between sequences and arrays using linearization

To avoid confusion between ϕ and ϕ−1, we’ll call ϕ = ord since it takes a sequence

and z-orders it into a grid and we’ll call ϕ−1 = lin since it linearizes an array. Each

of these should be subscripted with k and l when the grid coalgebra they refer to is

unclear from context.

As an example application of this isomorphism, consider the following proposi-

tion.

Proposition 3.4 Suppose σ ∈ ∆ω is a sequence and g ∈ Ar∆ is a grid. g is

k, l-automatic iff link,l(g) is kl-automatic, and σ is kl-automatic iff ordk,l(σ) is

k, l-automatic.

Proof. We prove the first statement, regarding g and lin(g). This will then give

the second part by taking g = ord(σ) and noting that lin(ord(σ)) = σ.

The fact that lin : Ar∆ → ∆ω is a coalgebra morphism immediately gives

πil+j,kl ◦ lin = lin ◦ π i
k
, j
l

for all i ∈ N<k and j ∈ N<l. Then every unique image of

g under repeated application of the π i
k
, j
l

corresponds to a unique image of lin(g)

under repeated application of the πm,kl. Therefore, the k, l-kernel of g is in 1-1

336

Sprunger

correspondence with the kl-kernel of lin(g). Since an array is k, l-automatic iff its

k, l-kernel is finite, and a sequence is kl-automatic iff its kl-kernel is finite, we have

g is k, l-automatic iff lin(g) is kl-automatic. 2

A further illustration of the usefulness of this isomorphism is to extend the work

of [6] in automatic sequences and zip specifications to automatic arrays. First we

must define the analog of the zip function for automatic arrays.

Definition 3.5 Let the function wvk,l : Arkl∆ → Ar∆ (read “weave”) be defined by

wvk,l(g0, g1, . . . , gkl−1) = ordk,l(zip(link,l(g0), link,l(g1), . . . , link,l(gkl−1))).

Take the 2x2 weave as an example. Suppose

A =



...
...

...
...

a20 a21 a22 . . .

a10 a11 a12 . . .

a00 a01 a02 . . .

 ,

and B, C and D are similar. Then

wv2,2(A,B,C,D) = wv2,2

C D

A B

 =



...
...

...
...

...

c10 d10 c11 d11 . . .

a10 b10 a11 b11 . . .

c00 d00 c01 d01 . . .

a00 b00 a01 b01 . . .


Note this is the block-wise weave of these grids in the pattern suggested by the

second argument style. wv is similar in spirit to zip since it inverts the action of

the k, l-kernel maps. That is,

π i
k
, j
l

wv


gk−1,0 . . . gk−1,l−1

...
...

g0,0 . . . g0,l−1


 = gi,j

and conversely

wv


π k−1

k
, 0
l
(g) . . . π k−1

k
, l−1

l
(g)

...
...

π 0
k
, 0
l
(g) . . . π 0

k
, l−1

l
(g)

 = g.

Now we are ready to develop a notion of a weave specification for arrays. Let S

be a finite set of variables. We define a weave term in S by the BNF grammar

W ::= s | a : W | wvk,l(W, . . . ,W)

where s is a variable from S, a ∈ ∆, k, l ∈ N≥2 and there are kl weave terms

337

Sprunger

provided as the argument to wvk,l. A weave specification is a pairing of each

variable in S to a weave term in S.

We have described how to interpret wvk,l(W, . . . ,W). a : W is to be interpreted

as the grid ord(a : lin(W)). As a result of these definitions and the fact that they

have isomorphic generating grammars, every weave term is the z-ordering of a zip

term. This means weave specifications will have the same existence and uniqueness

conditions on their solutions as their related zip specifications.

For example, the weave specification:

m = 0 : x

x = 1 : wv

 x y

1 : y 0 : x


y = 0 : wv

 y x

0 : x 1 : y


has the unique solution given by the 2,2-automatic array from section 2.5. As a re-

sult of the fact that all weave terms are the z-ordering of a zip term, we can translate

between the two formats easily. This gives the following theorem immediately.

Proposition 3.6 For grids g ∈ Ar∆ the following are equivalent:

(i) g is k, l-automatic.

(ii) g can be defined by a wvk,l specification.

(iii) g has a finite k, l-kernel

Proof. We have already noted the equivalence of (i) and (iii) is known in the

literature [2]. Every wvk,l specification is the z-ordering of a zipkl specification,

and similarly every zipkl specification can be written as the linearization of a wvk,l
specification. Our earlier proposition shows that a grid is k, l-automatic iff its

linearization is kl-automatic. Therefore, the equivalence of (i) and (ii) is the same

as the equivalence of a sequence being kl-automatic and having a zipkl specification.

The latter equivalence is proven in [6], so our result follows. 2

4 Zip-mix specifications

The results from the previous section suggest that a large portion of the theory of

automatic sequences can be lifted directly to statements about automatic arrays by

means of the z-ordering isomorphism. This, in turn, may suggest that the theory

of automatic arrays may be only a reflection of the theory of automatic sequences,

unremarkable in its own right. In this section we attempt to dispel this notion by

using automatic arrays to solve a problem for which automatic sequences do not

immediately suffice.

4.1 A subclass of zip-mix specifications

In this section we will briefly study a very restricted subclass of zip-mix specifica-

tions. The question of whether there was a general algorithm for deciding whether

338

Sprunger

two sequences defined by zip-mix specifications remained open at the end of [6] and

progress was recently made in [5]. We pursue this example primarily to illustrate

how automatic arrays can be used in a place where automatic sequences are lim-

ited. As a step towards resolving the question of [6], it probably does not represent

serious progress.

To be exact, we consider zip-mix specifications with three properties: 1) the set

of variables for the specification is partitioned into two pieces V = Vk + Vl, 2) if

x ∈ Vk then the term for x in the specification (i.e. Tx so that x = Tx is in the

specification) is a zip-k term and the variables used in that term all come from Vl,

and 3) similarly the term for y ∈ Vl must be a zip-l term mentioning only variables

from Vk. As an example, consider the following:{
x = 0 : zip3(y, y, y)

y = 1 : zip2(x, x)

In this case, {x} = V3 and {y} = V2, which partitions the set of variables. The

term defining x is a zip-3 term which only mentions variables from V2 and similarly

the term defining y is a zip-2 term which only mentions variables from V3, so this

specification has all three properties required. We call such a zip-specification a

zip-mix specification of alternating arity, but so as not to have to repeat this

name too often, we assume all zip-specifications in this section have these properties

unless specified otherwise.

If we were to apply the procedure from section 2.4 to create a DFAO for this

specification, we would want to use the 3-kernel maps when looking at the state x

and the 2-kernel maps when looking at the state y. That would mean we would

need to have three different transitions out of the state labelled x and two different

transitions out of the state labelled y. Ordinary DFAOs do not allow this, so we must

alter our definition of DFAO slightly to accommodate. We define a k,l-alternating

DFAO to be a DFAO with the following modifications: A = N<k + N<l, Q =

Qk + Ql, q0 ∈ Ql and δ : (Qk × N<k) + (Ql × N<l) → Q must have the property

that δ(Qk×N<k) ⊆ Ql and conversely δ(Ql×N<l) ⊆ Qk. The intuition here is that

we’ve partitioned the set of states into two disjoint pieces, Qk and Ql, analogous to

requirement (1) on our zip-specifications. While in Qk we read a digit from base k

(i.e. from N<k) and then transition to a state in Ql and then vice versa, analogous

to requirements (2) and (3) on our zip-specifications.

Now we can create a 2,3-alternating DFAO from the zip-mix specification given

above using the process described in section 2.4:

339

Sprunger

x

0
start

0 : y

1

0 : x

0

y

1

1 : x

1

1 : y

1

0

1, 2

1

0

0, 1

0

1

2

0, 1

2

0
1

Now one way to build up the machinery needed to give an algorithm for deciding

whether the solutions to two zip-mix specifications of alternating arity are equal

would be to follow the general outline from [6] which we used for weave specifications

earlier. First we would have to figure out how to represent this type of machine as

the coalgebra of a functor, and then we would have to find a final coalgebra for that

functor. This is already enough of a task, but a further demerit of this approach

is that at the end we will only be able to tell whether two k, l-alternating DFAOs

generate the same sequence. We would not be able to use the result, for example,

to decide whether a k, l-alternating DFAO and an l, k-alternating DFAO generate

the same sequence. Instead, our approach will leverage the input flexibility of k, l-

DFAOs (the automata used to generate automatic arrays) along with our previous

results about k, l-DFAOs.

4.2 k, l-alternating DFAOs and k, l-DFAOs

For every finite input string σ = σ1 . . . σn−1σn to a k, l-alternating DFAO, we can

form an input to a k, l-DFAO by making the length of σ even by possibly adding a

leading 0 and then pairing digits. We say a k, l-alternating DFAO and a k, l-DFAO

“have the same output on input σ” if the two machines have the same output when

the k, l-alternating DFAO is given σ and the k, l-DFAO is given the paired version

of σ. We say these two machines of these types “have the same behavior” if they

have the same output on every valid input string.

Proposition 4.1 For every zero-consistent 7 k, l-alternating DFAO there is a k, l-

DFAO which has the same behavior.

Proof. Suppose (N<k + N<l, Qk +Ql, q0, δ, ∆, f) is a k, l-alternating DFAO. We

take the alphabet for our k, l-DFAO to be N<k × N<l, the set of states to be Ql
with the same start state, the output alphabet remains ∆ and the final output map

is just the restriction of the original output map to our set of states, f |Ql
. The

7 As noted before, insisting on zero-consistency for DFAOs is not a strong requirement.

340

Sprunger

interesting part is the transition map for our k, l-DFAO:

δ′(q, (i, j)) = δ(δ(q, j), i)

With this definition it is easy to check that the extended transition functions

of these DFAOs coincide for all even-length inputs to the k, l-alternating DFAO. 8

For odd input lengths we must use the zero-consistency property of the alternating

DFAO since the input to the k, l-DFAO was padded with an extra leading 0. 2

If we apply this process to the 2,3-alternating DFAO given above, we get the

following 2,3-DFAO

x

0
start

0 : x

0

1 : x

1

(0,
0)

(1, 1), (1, 2)

(0, 1), (0, 2), (1, 0)

(0, 0), (0, 1)

(1,
2)

(0, 2), (1, 0), (1, 1)

(0, 0), (0, 2), (1, 0), (1, 1)

(0, 1)

(1, 2)

Now we can use our earlier results for automatic arrays. Since the array gen-

erated by the 2,3-DFAO is by definition an automatic array, its linearization is

6-automatic by Proposition 3.4. In fact, we can get the 6-DFAO by just taking

the transitions labels above and finding the corresponding transition in the 6-kernel

maps. This yields the following 6-DFAO:

Z

0
start

0 : Z

0

1 : Z

1

04, 5

1, 2, 3

0, 1

5

2, 3, 4

0, 2, 3, 4

1

5

This DFAO generates the sequence which is the solution for x in the zip specification

above. Now imagine we had another zip specification of alternating arity. We

could create a DFAO from that specification using the same steps and then to

8 Here it is particularly important for this proof that our automata read in the backwards order, but the
proof can be adapted to other input conventions.

341

Sprunger

check whether they generated the same stream we would just have to check for a

bisimulation.

Proposition 4.2 There is an algorithm which decides whether two zip-mix specifi-

cations of alternating arity have the same solution, provided the product of the two

arities is the same.

Proof. For each zip-mix specification of alternating arity, generate a k, l-alternating

DFAO using the procedure in section 2.4. From the k, l-alternating DFAO we can

create a k, l-DFAO with the same behavior by the recipe in Proposition 4.1. Note

the solution to the zip-mix specification is the linearization of the array produced by

the k, l-DFAO. From these k, l-DFAOs we can create the kl-DFAO which generates

the linearization of the array by Proposition 3.4, so it suffices to check whether these

two kl-DFAOs generate the same sequence. Since the product of the two arities of

the zip-mix specifications is the same, we have two kl-DFAOs. These generate the

same sequence iff they can be put in bisimulation with one another, for which there

is also an algorithm. 2

Remark 4.3 Please note that one could have zip-mix specifications of alternating

arity where the arities are completely different numbers. This proposition only

requires the product of the arities to be the same. For example, given a zip-mix

specification where the arities are 2 and 6 and another zip-mix specification where

the arities are 3 and 4, the above steps produce two 12-DFAOs which generate the

solution to each specification separately. These solutions are equal iff the 12-DFAOs

can be put in a bisimulation including the start states.

As an example of this procedure, consider the following zip-mix specification:{
u = 01 : zip2(w,w)

w = 1 : zip3(u, u, u)

We claim this specification has the same solution (for u) as the specification listed

earlier in this section (for x). We first find the 3,2-alternating DFAO for this spec-

ification:

u

0
start

0 : w

0

1 : w

1

0 : u

0

1 : u

1

01 : w

0

11 : w

1

0

1

0

1

2

0, 1

2 0

1

0

1 0

1, 2

0, 1, 2

Then we can construct the related 3,2-DFAO as described in the above propo-

sition.

342

Sprunger

u

0
start

0 : u

0

1 : u

1

(0,
0)

(2, 0), (2, 1)

(1, 0), (0, 1), (1, 1)

(0, 0), (0, 1)

(2,
1)

(1, 0), (1, 1), (2, 0)

(0, 0), (1, 0), (1, 1), (2, 0)

(0, 1)

(2, 1)

When we create the related 6-DFAO from this 3,2-DFAO, we actually get the

same 6-DFAO as we got for the other specification! Since we certainly have a bisim-

ulation between these two machines, we can conclude that the sequence generated

by them is the same and therefore the solutions to the specifications are the same.

5 Summary

We have presented a natural final coalgebra for arrays, for which automatic arrays

are the rational part. This coalgebra is final for a functor also commonly used in

the study of automatic sequences and hence gives rise to an isomorphism between

the array coalgebra and sequence coalgebra preserving many important automatic-

ity properties. We then lifted several results about automatic sequences to facts

about automatic arrays, including the zip specification scheme of [6] to the case of

automatic arrays. Finally, using the additional flexibility of automatic arrays we

gave a partial answer to an open problem regarding zip specifications of mixed arity.

There are a few natural avenues for investigation to proceed from here, which we

summarize briefly.

m-partitions and other variadic zip specifications We assumed in section

4.1 that we had a bipartition of the terms in the specification. If we have a tripar-

tition or, more generally, a partition of the variables into m sets with the property

that everything in the same class has the same zip-arity and all variables mentioned

in the terms in that set come from another class of the partition, a similar theory

using an automatic complex of dimension m should yield decidability. We would

like some exploration on what automata naturally emerge from relaxing this re-

striction on the variables and perhaps answering the decidability question for zip

specifications where the base determination is made by a DFA. (See [6,5] for more

details on this set up.)

Other space filling curves We found the z-order/Morton curve as an isomor-

phism between array coalgebras and sequence coalgebras. There are many other

space filling curves (such as the Hilbert curve or the Peano curve), so we wonder

whether there are coalgebras which naturally give rise to these curves as isomor-

phism between arrays and sequences.

343

Sprunger

Acknowledgement

I owe many thanks to Larry Moss for his invaluable advice, comments, and patience

reading much rougher drafts.

References

[1] J.-P. Allouche and J. Shallit. The ubiquitous Prouhet-Thue-Morse sequence. In T. Helleseth C. Ding
and H. Niederreiter, editors, Sequences and their applications, Proceedings of SETA’98, pages 1–16.
Springer Verlag, 1999.

[2] J.-P. Allouche and J. Shallit. Automatic Sequences. Cambridge University Press, 2003.

[3] G. Christol. Ensembles presque periodiques k-reconnaissables. Theoret. Comput. Sci., 9(1):141–145,
1979.

[4] Alan Cobham. Uniform tag sequences. Theory of Computing Systems, 6(1):164–192, 1972.

[5] J. Endrullis, C. Grabmayer, and D. Hendriks. Mix-automatic sequences. In Language and Automata
Theory and Applications (LATA 2013), pages 262–274. Springer, 2013.

[6] C. Grabmayer, J. Endrullis, D. Hendriks, J.W. Klop, and L.S. Moss. Automatic sequences and zip-
specifications. In Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer
Science, pages 335–344. IEEE Computer Society, 2012.

[7] C. Kupke and J.J.M.M. Rutten. On the final coalgebra of automatic sequences. In Logic and Program
Semantics, pages 149–164. Springer, 2012.

[8] G.M. Morton. A computer oriented geodetic data base and a new technique in file sequencing.
International Business Machines Company, 1966.

[9] J. J. M. M. Rutten. Automata and coinduction (an exercise in coalgebra). In CONCUR’98: concurrency
theory (Nice), volume 1466 of Lecture Notes in Comput. Sci., pages 194–218. Springer, Berlin, 1998.

[10] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoret. Comput. Sci., 249(1):3–80,
2000. Modern algebra and its applications (Nashville, TN, 1996).

[11] J. J. M. M. Rutten and D. Turi. On the foundations of final semantics: nonstandard sets, metric spaces,
partial orders. In Semantics: foundations and applications (Beekbergen, 1992), volume 666 of Lecture
Notes in Comput. Sci., pages 477–530. Springer, Berlin, 1993.

344

MFPS 2013

Bicategorical Semantics for
Nondeterministic Computation

Mike Stay1

Department of Computer Science, University of Auckland, New Zealand
Biosimilarity LLC, Seattle, USA

Jamie Vicary2

Centre for Quantum Technologies, National University of Singapore, Singapore
Department of Computer Science, University of Oxford, UK

Abstract

We present a topological bicategorical syntax for the interaction between public and private information in classical
information theory. This allows high-level graphical definitions of encrypted communication and secret sharing,
including a characterization of their security properties. This analysis shows that these protocols have an identical
abstract form to the quantum teleportation and dense coding procedures, giving a concrete mathematical analogy
between quantum and classical computing. Specific implementations of these protocols as nondeterministic classical
procedures are recovered by applying our formalism in a symmetric monoidal bicategory of matrices of relations.

Keywords: Categories, security, geometry

1 Introduction

1.1 Overview

This paper describes a bicategorical language for reasoning about cryptographic processes

in classical computation. Bicategories can be thought of as generalizations of monoidal

categories, mathematical structures which have already found significant application to

quantum computation [1,12]. In this work, we describe a monoidal bicategory 2Rel, and

describe how its different layers of structure can be used to describe public information,

private information and nondeterministic classical processes in a natural way.

Bicategories have a well-known sound and complete graphical calculus [6,11] involving

points, lines and regions, which we make use of almost exclusively for presenting our

formalism and proving our results. The reason is that the basic axioms we impose have a

1 Email: msta039@aucklanduni.ac.nz
2 Email: jamie.vicary@cs.ox.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:msta039@aucklanduni.ac.nz
mailto:jamie.vicary@cs.ox.ac.uk

Stay and Vicary

direct topological interpretation which are cumbersome from an algebraic perspective, but

which the graphical calculus naturally absorbs and makes trivial. Why this should be is

far from clear; it provides evidence of a deep relationship between topological structures

and the theory of information [2] which deserves to be explored further.

A diagram in our calculus can he interpreted as a history of computational events,

in which time flows from bottom to top. To use the terminology of physics, they are

‘spacetime diagrams’ for our computation. As an example of our notation, the following

diagram represents an encrypted communication protocol making use of a one-time pad:

Alice Bob

D

E =

Alice Bob

(1)

A full description of the components of these diagrams must wait for Section 3, but we

can summarize the basic features here. The shaded regions represent public information,

and the vertices represent computational processes. Lines represent computational systems

which carry information: if the line borders a shaded region then the associated system

carries a copy of the associated public information, but otherwise it carries private

information. The dashed vertical lines, which are not a part of the mathematical formalism,

imply a separation of the components involved between Alice and Bob which is convenient

for our interpretation.

In the left-hand diagram, the bottom-left line indicates a system held by Alice which

stores some private information. This information is the plaintext that we will encrypt. The

bowl-shaped curve represents the first nontrivial process—the nondeterministic creation of

a one time-pad—which is shared between the two parties. The next vertex E represents

encryption, a process which takes as input the plaintext and a copy of the one-time pad,

and produces public information. A copy of that public information is then transferred

to Bob, and is fed into the decryption process D along with a copy of the one-time pad.

The line emerging at the top-right represents the decrypted plaintext. The result of this

entire composite procedure is given by the right-hand diagram: the original plaintext

is simply transmitted unaltered, and the public information is disconnected, meaning it

is uncorrelated with the plaintext. The equality between these two sides says that the

encryption-decryption process is successful.

In this description, and throughout this paper, we freely interpret the underlying

mathematical structures in a way which is intended to make our formalism easier to

understand at an intuitive level. However, this interpretation it is secondary to the basic

mathematical content of our theory, which is crisp and unambiguous. The motivating

result is Theorem 4.1, which states that solutions to equation (1) in 2Rel such that E

is kernel-free correspond exactly to implementations of classical encrypted communication

via a one-time pad. A variety of security properties of this procedure are also provable

using our techniques.

The form of equation (1) corresponds exactly to the equation for quantum teleportation,

346

Stay and Vicary

as described in the bicategorical approach to quantum information [12]. One of the most

important procedures in quantum theory, and yet uncovered only relatively recently [3],

quantum teleportation is a procedure whereby two parties who share pre-existing quantum

entanglement can transmit quantum information between them, by communicating only

classical information. A strong analogy to classical encrypted communication can be

drawn: two parties who share a pre-agreed secret key can transmit secret information

between them, by communicating only public information. This analogy has already been

recognized by several authors [5,8], and our work provides a new formal mathematical basis

for it.

The monoidal bicategory 2Rel which forms the basis for our constructions is described

in Section 2. In Section 3 we gives the details of our graphical formalism, and Section 4

contains an application of our techniques to encrypted communication and secret sharing

procedures, including an analysis of their security properties.

2 The Bicategory of Matrices of Relations

2.1 Introduction

Bicategories, also known as weak 2-categories, are algebraic structures akin to higher-

dimensional directed graphs, and play an important role in modern mathematics. They

are built from vertices, edges going between vertices, and surfaces going between edges,

which are called 0-cells, 1-cells and 2-cells respectively. They also carry algebraic structure,

allowing edges to be composed along a common vertex, and surfaces to be composed along

a common edge. These composition operations are required to be unital and associative in

a suitable fashion. Though elegant, the full definition is lengthy and we omit it here; see

[4] for a good introduction.

In this section we describe the bicategory 2Rel which will be the target for our

constructions. It can be presented quite simply in terms of finite sets and partitions:

0-cells are finite sets, 1-cells are finite sets partitioned by their source and target sets, and

2-cells are relations getting along with the partitioning. All the structure of a bicategory

can be defined quite naturally on these structures. We give a careful definition below,

although for must purposes an intuitive understanding of the structure is quite adequate.

2.2 Construction

The n-cells of 2Rel are defined in the following way. 0-cells are finite sets, denoted

S, T, A 1-cell A : S → T is a family of finite sets At,s indexed by s ∈ S and t ∈ T . For

1-cells A,B : S → T , a 2-cell ρ : A⇒ B is a family of relations ρt,s : At,s → Bt,s indexed

by s ∈ S and t ∈ T .

To demonstrate that these form a bicategory we first observe that for each pair of

0-cells S and T , the 1-cells S → T and the 2-cells between them form a category in

a straightforward way, under ordinary relational composition of 2-cells. Identity 1-cells

idS : S → S are chosen as the family δs,s′ , which is defined as the 1-element set if s = s′

and the 0-element set otherwise. Horizontal composition is a family of functors

◦ : Hom(S, T)×Hom(T,U)→ Hom(S,U) (2)

for each ordered triple S, T, U of 0-cells. On 1-cells A : S → T and B : T → U , we define

347

Stay and Vicary

this as

(B ◦A)u,s =
∐
t∈T

Bu,t ×At,s. (3)

This extends to 2-cells in a natural way.

The final pieces of structure are the structural 2-cells of the bicategory. For each family

of composable 1-cells A : S → T , B : T → U and C : U → V we require an invertible 2-cell

φA,B,C : (C ◦B) ◦A⇒ C ◦ (B ◦A). (4)

Writing out the source and target using definition (3), we see that φ is built from a family

of isomorphisms
∐

t

(
(
∐

uCv,u×Bu,t)×At,s

)
'
∐

u

(
Cv,u× (

∐
tBu,t×At,s)

)
, each of which

can be constructed canonically. Unit 2-cells can be straightforwardly defined, and it is then

straightforward to show that the required pentagon and triangle equations commute.

In fact, 2Rel can be given the structure of a symmetric monoidal bicategory, for which

the tensor product of two 0-cells is their cartesian product as sets. For full details see [10],

in which an equivalent bicategory Mat(Rel) is described. According to this structure, the

monoidal unit 0-cell is the 1-element set.

Endomorphisms in 2Rel have the following property, which will useful later.

Lemma 2.1 In 2Rel, if 2-cells σ and τ are endomorphisms, then σ ◦ τ = id implies

τ ◦ σ = id.

Proof. Suppose at first that σ and τ are relations on a finite set S. Then if σ ◦ τ = idS ,

there must be at least one y ∈ S such that (x, y) ∈ σ and (y, x) ∈ τ . But then there must

be exactly one such y, otherwise we could not ensure that x 6= z ∈ S implies 6 ∃y ∈ S with

(x, y) ∈ σ and (y, x) ∈ τ . It follows that σ and τ are graphs of mutually inverse bijections,

and so in particular τ ◦ σ = idS also. The hypothesis follows immediately. 2

3 Private and Public Information

3.1 Private information

We assume that a single, isolated computational system is located at any moment at a

single point in space, so that over time its history traces out a line in spacetime. In the

absence of shaded regions, our diagrams are simple representations of such a scenario, with

vertices representing points at which multiple systems interact. This part of our graphical

formalism is the standard notation for morphisms in symmetric monoidal category [9].

Our string diagrams are valued in Rel, the symmetric monoidal category of finite sets and

relations. This forms the endomorphisms of the 1-element set considered as a 0-cell of 2Rel.

In this way the ordinary string diagram calculus for Rel embeds into our surface diagram

calculus for 2Rel in a natural fashion. We will interpret an object of Rel as representing

a classical computational system, with a particular finite set of internal states. Morphisms

are arbitrary nondeterministic computational dynamics, transforming states of the domain

into states of the codomain.

Using this formalism, we call a system self-dualizable if it can be equipped with a unit

348

Stay and Vicary

morphism and a counit morphism

(5)

satisfying the following equations, called the snake equations:

= = (6)

The unit morphism represents a way to create two systems together, and the counit

morphism represents a way to eliminate two systems together. In essence, the snake

equations say that we can choose these structures in a way that represents the topology of

a string.

We say that the unit and counit morphisms witness the self-duality. In Rel every

object A is self-dualizable, with the unit morphism η : 1 → A × A given canonically by

η =
⋃

a∈A
(
•, (a, a)

)
, and with the counit given by the converse of this relation. Every unit

and counit map is of this form, up to isomorphism. The unit morphism η represents a

nondeterministic processes whereby a pair of systems are prepared, each in the same state

a ∈ A, such that any pair (a, a) can arise in this way. We can interpret this computationally

as a one-time pad distribution procedure. It is deeply interesting that this should arise solely

from the requirements of the snake equations (6).

For a set A there is a unique relation of type A → 1 which is total, meaning that

every element of A× 1 is in the relation. It can be characterized abstractly as the unique

morphism of this type with zero kernel [7], and is interpreted as eliminating the system A

without halting the computation. It has a converse relation, which represents the process

of creating the system A in an arbitrary state. We denote these morphisms graphically in

the following way:

(7)

These are related by the unit and counit morphisms (5) witnessing self-dualizability via

the following equations:

= = = = (8)

Each of these has a natural interpretation in Rel terms of nondeterministic classical

computation: the first set of equalities (8) say that if you nondeterministically create

shared keys and then delete one of the keys, the remaining key is uniformly random; while

the second set say that if you have a given key, it is always possible that another key

produced nondeterministically might match it.

349

Stay and Vicary

3.2 Public information

Public information is represented in our formalism by regions. The intuitive idea is that

public information is stored by a family of systems, each strongly correlated with their

neighbours. Each individual system sweeps out a line through time, so the family sweeps

out an entire region:

; (9)

We shade this region in blue to indicate its special interpretation. The interpretation as

public information derives entirely from the fact that the information is now available

at many locations, each of which store an identical copy. So public information is more

accessible than private information, but as a consequence less mutable, since to change

its value every representative would have to be modified. This mathematical model gives

a reasonable abstraction for real-world public data services, such as the Domain Name

Service, which stores public information redundantly on many independent computers.

As mentioned in the introduction, we are making use here of the standard graphical

calculus for monoidal bicategories. Shaded regions correspond to 0-cells of the bicategory,

and unshaded regions correspond to the monoidal unit 0-cell.

Manipulations of our public data are described by a small number of basic components.

Copying and comparing public data are represented as follows:

(10)

In the first of these one region splits into two, each carrying a copy of the original public

information. In the second two regions fuse to become one, which carries the same

information as the initial regions in the event that the data in both initial regions is the

same. Otherwise, the computation halts; in this sense, this second vertex can be interpreted

as the assertion that two data values compare successfully.

We can also represent deletion and uniform creation of public information:

(11)

In the first of these, a single region is eliminated, deleting the information it stores. In the

second, a single region is created, which we interpret as holding any possible value of the

public information in a nondeterministic sense.

As with the bicategorical syntax for quantum information [12], in order to support

their interpretations, we require these copying, deleting, comparison and uniform creation

components to satisfy certain equations. They are topological, in that they amount to

350

Stay and Vicary

saying that any composite diagram built from them is determined only by its connectivity.

= = (12)

= = (13)

= = (14)

= (15)

Each of these equations is consistent with the interpretation we give to the basic

components (10)–(11). For example, the first equality labelled (12) asserts that copying

public information and then deleting the new copy results in the identity; the first equality

labelled (14) represents the fact that exchanging public information and then comparing

gives the same result as simply comparing; and equation (15) states that copying public

information and then immediately comparing yields the identity. In terms of higher

category theory, equations (12)–(13) state that the region boundaries are ambidextrous

adjoints [6], and equations (14)–(15) state that the associated Frobenius algebra is special

and commutative.

The following theorem demonstrates that these structures are easy to work with in

2Rel.

Theorem 3.1 Every 0-cell in 2Rel carries structures (10)–(11) satisfying equations (12)–

(15) in an essentially unique way.

Proof sketch. A 1-cell A : 1 → S is determined by an S-indexed family of finite sets

As, and its isomorphism class is determined by the cardinalities of those sets. Every such

1-cell has an ambidextrous adjoint, meaning precisely that essentially unique values can be

given for structures (10)–(11) that satisfy equations (12)–(13). The result is a Frobenius

algebra structure [6], which will be commutative exactly when each of the finite sets As

has cardinality 1, which satisfies the equations labelled (14). The resulting structures

automatically satisfy equation (15). 2

3.3 Interacting private and public data

Interesting phenomena arise when we study interactions between public and private

information. There are three basic forms that such an interaction can take: converting

351

Stay and Vicary

private data to public data; converting public data to private data; and using public data

to modify private data.

Conversion processes between public and private data take the following forms:

P S (16)

Here P is a publication process converting private data into public data, and S is a sampling

process converting public data into private data. Their interpretation rests entirely on their

types; there are no equations which we require them to satisfy. These processes need not

be deterministic, or invertible, in general. However, it will later be convenient to require

them to be kernel-free, meaning that they do not halt on any input.

The final type of process we introduce is the controlled computation, which performs

an operation on private data in a way which depends on the value of some public data:

C (17)

Such an operation can modify the private data, but not the public data.

Lemma 3.2 A controlled computation cannot modify public data.

Proof. We can use the topological behaviour of public information to rewrite our

controlled computation vertex C in the following way:

C = C (18)

In this form it is clear that the public data is not modified, since it is explicitly copied

before C is implemented. 2

This result fits well with our intuition about public data as a being carried by a large,

correlated family of systems. To change the value of the public data would require

modifying all of these systems, but the process C only has access to a restricted subset, as

made explicit by the open boundary on the left-hand side of the diagram. If the proof given

here seems too slick to have any real content, that is because this is really a lemma about

our interpretation of these mathematical structures, rather than about those structures

themselves.

352

Stay and Vicary

4 Modelling Cryptographic Procedures

4.1 Encrypted communication

Suppose Alice is sending an encrypted message to Bob. We use a 2-cell E to represent

Alice’s encryption process, which relates the private plaintext P and the private key K

to the public ciphertext C. Bob’s decryption process is a 2-cell D that relates the public

ciphertext and private key to the same ciphertext and a private plaintext. We represent

these 2-cells graphically in the following way:

C C

P K

E

P

K

C

C

D (19)

While encryption and decryption are deterministic, key generation is not. We represent

key generation as a special 2-cell, the curried identity relation on the set of keys K:

K K

This is the unit morphism for a self-duality on K, as described in Section 3.

Using our topological language, we can express correctness of encrypted communication

in the following way:

Alice Bob

D

E =

Alice Bob

(20)

This is the same 2-dimensional equation as that used in [12] to describe quantum

teleportation. The encryption step takes the place of the measurement operation, and

the decryption step takes the place of the controlled unitary correction. The ciphertext

takes the place of the classical bits transmitted from Alice to Bob. This provides an

intuition for why no faster-than-light communication is possible with entangled particles:

Alice and Bob merely share a quantum variant of a one-time pad, and the actual encoded

message must still be sent at some finite speed.

The following theorem is the motivation for our entire theory.

Theorem 4.1 Solutions to (20) in 2Rel for which E is kernel-free correspond exactly to

implementations of classical possibilistic encrypted communication by a one-time pad.

353

Stay and Vicary

Proof sketch. The result is established by construction. From a description of a space of

messages, a family of one-time pads, and encryption and decryption procedures, a solution

to (20) can be directly constructed, and the inverse procedure is also possible. 2

We illustrate our proof sketch with the simplest nontrivial implementation of the

protocol: the encrypted communication of a single bit. We can describe concretely the

values of E, D and the key creation step η as 2-cells in 2Rel which correspond to this

scenario. We choose C = P = K to be the 2-element set, and we define the 2-cells as

follows:

E =

((
1 0 0 1

0 1 1 0

))
D =

((
1 0

0 1

) (
0 1

1 0

))
η =




1

0

0

1


 (21)

Here E is a matrix containing a single relation from a 4-element set to a 2-element set,

which is exactly the multiplication operation for the group Z2; D is matrix of invertible

single-bit operations to apply depending on which bit is published at the encryption step;

and η is a matrix with a single entry, the relation representing nondeterministic creation

of the pair of keys (0, 0) or (1, 1). Using the definition of the bicategory 2Rel, it can be

checked that these values satisfy equation (20).

4.2 Security properties

Our formalism allows us to prove results about the protocol based on only its abstract

form, and hence draw conclusions which will apply for any implementation. Many of these

results can be naturally interpreted as describing security properties. The generality of our

results means that we can presume an attacker with arbitrary computational abilities, as

long as their actions are constrained to those that can be described using our formalism

(i.e. arbitrary nondeterministic processes.)

To focus on its algebraic properties, we simplify equation (20) topologically in the

following way:

D

E = (22)

The first property we will examine can be considered the primary security property for

encrypted communication:

E
= (23)

This says that if we encrypt a message using one copy of a one-time pad, and then delete

the other copy of the one-time pad, this is equivalent to deleting our original message

354

Stay and Vicary

and producing a random ciphertext. So the ciphertext carries no information about the

plaintext in the absence of the private key.

We can use our formalism to derive from this security property a strong constraint on

the encryption operation E.

Theorem 4.2 If the encryption step in classical encrypted communication satisfies

property (23), then encryption is not invertible unless the space of messages is trivial.

Proof. Suppose encryption is invertible. Then composing both sides of (23) with E−1

gives the following graphical expression:

=

E−1

(24)

Hence the identity process on the set of messages factors through the one-element set. 2

This is a desirable property: if encryption were invertible, then both the plaintext and the

secret key would be derivable in principle from the ciphertext.

We can draw a very different conclusion for the decryption process D.

Theorem 4.3 In classical encrypted communication, the decryption step is invertible.

Proof. From equation (22) representing correctness of encrypted communication, we apply

the topological properties of public information to obtain the following equivalent equation:

D

E = (25)

This says that D has a right inverse given by E with its top-left and bottom-right legs

twisted in the manner indicated. However, by Theorem 2.1, if an endomorphism is a

left inverse then it must also be a right inverse, and hence our theorem follows, with the

following expression for D−1:

D−1 = E (26)

2

It follows that we can reconstruct E from the knowledge of D and its inverse.

355

Stay and Vicary

Theorem 4.4 For an implementation of classical encrypted communication, we have

E = D−1 (27)

Proof. We apply the topological properties of public information to expression (26) to

obtain the following:

D−1 = E (28)

The right-hand side of this expression evaluates to E, by the topological properties (12) of

2-dimensional regions and the snake equations (6). 2

While property (23) is primary, there are other security properties of the encryption

process that we could consider. The first states that if we encode with a random key, this

is equivalent to deleting the original message and producing random ciphertext:

E
= (29)

Secondly, we could encode a random message with a specified key:

E
= (30)

This property says that this is the same as deleting the key, and producing a random

ciphertext.

We can also consider security properties for the decryption process.

D
= (31)

356

Stay and Vicary

This says that if an attacker chooses nondeterministically from the space of all possible

keys, every possible message can be produced, regardless of the ciphertext. So if an attacker

has no knowledge of the key, they cannot extract information from the ciphertext.

In fact, we can use our formalism to show that all of these security properties follow

from the primary security property (23).

Theorem 4.5 In classical encrypted communication, (23) implies (29), (30) and (31).

Proof. The implication (23) ⇒ (29) follows from the topological property (8) of the

deletion map. For the other implications, we compose expression (26) for D−1 with the

deletion map at the top-right leg, obtaining the following:

D−1 = E = = (32)

Every invertible 2-cell in Rel is a family of bijections, and hence its converse is its inverse.

Taking the converse is a functorial operation, and so taking the converse of of the first and

last diagram here, we obtain property (31). For the final property (30), we postcompose

this expression with the 2-cell D−1, obtaining the following expression:

=
D−1

(33)

We can use this to prove security property (30), where we also make use of expression (27)

giving E in terms of D−1:

E = D−1 = = (34)

This completes the proof. 2

357

Stay and Vicary

4.3 Secret sharing

We can represent correctness of a secret sharing procedure in the following way:

E

D = (35)

On the left, we begin with some pre-existing public information. This is the information to

be communicated by the procedure. We prepare two correlated systems using a one-time

pad, and then manipulate the first copy by a procedure D that depends on the value of

the classical data. The result is a pair of ciphertexts. Both are then consumed together by

a process E, producing public information. This is successful when the result is to copy

the original public information.

The important security property of a secret sharing procedure is that if only one

ciphertext is available, then no information about the original message can be regained.

A strong, constructive way to phrase this is to say that if one of the ciphertexts is erased,

the other becomes uniformly random, and independent of the original message. This gives

two conditions, with the following graphical representations:

D = D = (36)

Equation (35) has an identical structure to the quantum dense coding equation given in [12],

and the security properties (36) are equivalent to properties (31) and (33) of the encrypted

communication protocol.

References

[1] Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science, pages 415–425, 2004. IEEE Computer Science Press.

[2] John Baez and Michael Stay. Physics, Topology, Logic, and Computation: A Rosetta Stone, volume 813, pages
95–172. Springer, 2011.

[3] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters.
Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical
Review Letters, 70(13):1895–1899, 1993.

[4] Francis Borceux. Handbook of Categorical Algebra: Volume 1. CUP, 1994.

[5] Daniel Collins and Sandu Popescu. A classical analogue of entanglement. Physical Review A, 65(3), 2001.

[6] Aaron D. Lauda. Frobenius algebras and ambidextrous adjunctions. Theory and Applications of Categories,
16(4):84–122, 2006.

[7] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1997. 2nd edition.

[8] Jonathan Oppenheim, Rob Spekkens, and Andreas Winter. A classical analogue of negative information. 2005.

358

Stay and Vicary

[9] Peter Selinger. New Structures for Physics, chapter A Survey of Graphical Languages for Monoidal Categories,
pages 289–355. Springer, 2011.

[10] Mike Stay. Compact closed bicategories. 2013. arXiv:1301.1053.

[11] Ross Street. Low-dimensional topology and higher-order categories. In Proceedings of Category Theory 2005,
1995.

[12] Jamie Vicary. Higher semantics of quantum protocols. Proceedings of the 27th Annual IEEE Symposium on
Logic in Computer Science, 2012.

359

MFPS 2013

A Stream Calculus of Bottomed Sequences for
Real Number Computation

Kei Terayama1 Hideki Tsuiki2

Graduate School of Human and Environmental Studies
Kyoto University
Kyoto, Japan

Abstract

A calculus XPCF of 1⊥-sequences, which are infinite sequences of {0, 1,⊥} with at most one copy of bottom,
is proposed and investigated. It has applications in real number computation in that the unit interval I is
topologically embedded in the set Σω

⊥,1 of 1⊥-sequences and a real function on I can be written as a program

which inputs and outputs 1⊥-sequences. In XPCF, one defines a function on Σω
⊥,1 only by specifying its

behaviors for the cases that the first digit is 0 and 1. Then, its value for a sequence starting with a bottom
is calculated by taking the meet of the values for the sequences obtained by filling the bottom with 0 and 1.
The validity of the reduction rule of this calculus is justified by the adequacy theorem to a domain-theoretic
semantics. Some example programs including addition and multiplication are shown. Expressive powers of
XPCF and related languages are also investigated.

Keywords: Bottom, stream, real number computation, domain model, PCF, adequacy, parallel or

1 Introduction

Streams are a useful data structure used for expressing infinite sequences and

one can implement real number computation with streams through signed digit

expansion[1,2] or other expansions of real numbers[6]. However, since a stream can

only be accessed one-way from left to right, if there is a bottom, i.e., a term whose

evaluation does not terminate, in a stream, then a program get stuck when it tries

to read in the value of the bottom cell and cannot input the rest of the sequence

though it may contain valuable data.

Usually, a bottom is considered as a kind of programming error which should be

avoided in a correct program. However, it is known that infinite sequences which

may contain bottoms are useful in representing continuous topological spaces like

R. Here, we call an infinite sequence of Σ∪{⊥} which may contain at most one copy

of bottom a 1⊥-sequence. It is shown in [8] and [15] that R and I = [0, 1] can be

1 Email: terayama@i.h.kyoto-u.ac.jp
2 Email: tsuiki@i.h.kyoto-u.ac.jp

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:myuserid@mydept.myinst.myedu
mailto:couserid@codept.coinst.coedu

Terayama and Tsuiki

topologically embedded in the space Σω
⊥,1 of 1⊥-sequences of Σ for Σ = {0, 1} and

this embedding is called the Gray embedding in [15]. The signed-digit expansion and

other admissible representations of R turn out to be redundant in the sense that

infinitely many reals each satisfy the property of being represented by infinitely

many codes[4,17]. On the other hand, with the Gray embedding, a unique code

can be assigned to each real number by extending the code space with at most one

copy of ⊥. This embedding result is extended in [16] to other topological spaces

and it is shown that any n-dimensional separable metric space can be topologically

embedded in the space Σω
⊥,n of n⊥-sequences.

[8] expressed a 1⊥-sequence as a function from N⊥ to {−1, 1,⊥} and used the

parallel if operator pif to access 1⊥-sequences and showed that real number algo-

rithms can be expressed in PCF + pif. In order to evaluate pif L M N , one need to

evaluate L, M , and N in parallel. Therefore, pif operator causes explosion of par-

allel computations and it seems difficult to implement it efficiently. Martin Escardó

proposed Real PCF[6] which is an extension of PCF with real numbers. It is based

on interval domains and a kind of parallel conditional operator is used.

On the other hand, [15] restricted the number of ⊥ to one and introduced an

IM2-machine (Indeterministic Multiheads Type2 Machine) which enables extended

stream access to 1⊥-sequences. However, the behavior of an IM2-machine needs to

be specified through a set of overlapping rules and therefore functions expressible

with IM2-machines are multi-valued functions in general. Moreover, a program of

an IM2-machine is complicated because one needs to express its behaviors for inputs

from extra heads.

In this paper, we introduce a calculus XPCF of 1⊥-sequences with which one can

express extended stream accesses to them. It is an extension of PCF with a datatype

S of 1⊥-sequences and is based on the algebraic domain BD of 1⊥-sequences[16].

The datatype S has, in addition to the constructors 0 : S → S and 1 : S → S to

prepend a digit to a sequence, constructors 0 : S → S and 1 : S → S to insert a

digit as the second element of a sequence. However, a function on S is defined by

expressing its behaviors only for cases the argument has the form 0N and 1N with

the expression 〈0x→M0; 1x→M1〉. It means a function on Σω
⊥,1 to apply [[λx.M0]] to

s if the argument is 0s, to apply [[λx.M1]] to s if the argument is 1s, and apply both

of them to s and take the meet of the results if the argument is ⊥s. We designed

a reduction rule and proved that this calculus has the computational adequacy

property with respect to its domain-theoretic model. XPCF can be considered as

an algebraic domain variant of Real PCF.

We give some example programs of XPCF including addition and multiplication

on I through the Gray embedding. We also studied the expressive power of this

language and showed that XPCF has the same expressive power as PCF + pif on

types which do not contain S, all computable elements of BD are expressible on

type S, and that if we extend XPCF with the ∃ operator, then all the computable

elements in the semantic domains are expressible.

As [7] showed, any real number calculus which is adequate to the interval do-

main model and in which the average function can be represented, does not have

a sequential reduction system. Their proof also applies to our model with some

modifications and thus any sequential reduction system of this calculus is not ade-

361

Terayama and Tsuiki

1

2

3

4
5

0.0 0.5 1.0

The Binary expansion

1

2

3

4
5

0.0 0.5 1.0

The Gray expansion

Fig. 1. The Binary and Gray expansion of I

quate. We designed a sequential reduction strategy of XPCF and implemented it

with Haskell. Though it is not adequate and some of the terms cannot be reduced

to their denotations, it sequentially evaluates many of the terms like addition and

multiplication.

In the next section, we start with explaining the Gray embedding of I in Σω
⊥,1 and

introducing the domain BD of 1⊥-sequences. In Section 3, we define the syntax and

semantics of XPCF and, in Section 4, we show how real functions can be expressed

in XPCF with some program examples. Then, we give reduction rules of XPCF

in Section 5 and show the adequacy property in Section 6. In section 7, we study

expressive powers of XPCF.

Notations: Recall that we fix Σ = {0, 1}. We denote by Γ∗ the set of finite

sequences of a character set Γ and by Γω the set of infinite sequences of Γ. We

define Γ∞ = Γ∗∪Γω, which is a Scott domain, i.e., a bounded complete ω-algebraic

dcpo. Let Σ⊥ = Σ ∪ {⊥}, and Σω
⊥ be the set of infinite sequences of Σ⊥. Σ⊥ has

the order generated by ⊥ v 0 and ⊥ v 1. On Σω
⊥, we define the order v as s v t

if s(n) v t(n) for every n. (Σω
⊥,v) is a Scott domain. We define Σω

⊥,1 = {s ∈
Σω
⊥ | s contains at most one ⊥}.

2 Real number computation and 1⊥-sequences
2.1 Gray embedding

The Gray expansion is an expansion of I as infinite sequences of Σ which is different

from the ordinary binary expansion [15]. It is based on Gray code[10], which is a

coding of natural numbers with Σ different from the binary code. Figure 1 shows

the binary and Gray expansion of I. In the binary expansion of x, the head h of

the expansion indicates whether x is in [0, 1/2] or in [1/2, 1] and the tail is the

expansion of f(x, h) for f the function defined as

f(x, h) =

 2x (if h = 0)

2x− 1 (if h = 1)
.

Thus, with the binary expansion, the tail of the expansion of 1/2 depends on the

choice of the head character h and 1/2 has two expansions 1000... and 0111.... On

362

Terayama and Tsuiki

the other hand, the head of the Gray expansion is the same as that of the binary

expansion, whereas the tail is the expansion of t(x) for t the so-called tent function:

t(x) =

 2x (0 ≤ x ≤ 1/2)

2(1− x) (1/2 < x ≤ 1)
.

Note that t(x) is continuous on x = 1/2 and therefore the tail of the expansion

does not depend on the choice of the first digit. Actually, the two expansions of 1/2

are 01000... and 11000... which coincide from the second character. It means that

the value is half not depending on the first character. Therefore, we leave the first

character undefined (⊥) and define a new expansion of 1/2 as ⊥1000 It is also

the case for expansions of dyadic numbers (rational numbers of the form m/2k) and

therefore we assign codes of the form p⊥1000 . . . for p ∈ {0, 1}∗ to those numbers.

In this way, we have a mapping ϕ : I→ Σω
⊥,1 called the Gray-embedding as follows.

Definition 2.1 [[15]] Let P : I→ Σ⊥ be the map

P (x) =


0 (x < 1/2)

⊥ (x = 1/2)

1 (x > 1/2)

.

the Gray embedding ϕ is a function from I to Σω
⊥,1 defined as ϕ(x)(n) = P (tn(x))

(n = 0, 1, . . .).

An embedding of R in {−1, 1}ω⊥,1 is defined in [8] independently by Gianantonio,

and the Gray embedding is essentially the same as the restriction of his embedding

to I. We call the 1⊥-sequence ϕ(x) the modified Gray expansion of x. The Gray

embedding ϕ is actually a topological embedding with the topology of Σω
⊥,1 the

subspace topology of the Scott topology of Σω
⊥.

2.2 Domains of 1⊥-sequences

We explain the domain BD in which terms of the type S of 1⊥-sequences are

interpreted [16]. Let Σ∗⊥,1 be the set of finite 1⊥-sequences of Σ. Here, p ∈ Σ⊥
∗

is a finite 1⊥-sequence of Σ if ⊥ appears at most once in p and ⊥ is not the final

character of p. We have Σ∗⊥,1 = {ε, 0, 1,⊥0,⊥1, ...} with ε the empty sequence. We

can regard Σ∗⊥,1 as a subset of Σω
⊥ by identifying p ∈ Σ∗⊥,1 with p⊥ω ∈ Σω

⊥. We

define BD = Σ∗⊥,1∪Σω
⊥,1, which is a Scott subdomain of Σω

⊥ as Figure 2 shows. For

c ∈ Σ, we also denote by c the continuous function from BD to BD to prepend c

and denote by c the continuous function from BD to BD to insert c as the second

character, where c(ε) is defined as ⊥c. We have the equation b◦c = c◦b for b, c ∈ Σ.

We consider that each finite sequence s = d0d1 . . . dn−1 of {0, 1, 0, 1} represents

the element d0(d1(. . . (dn−1(ε)))) of Σ∗⊥,1 and each infinite sequence s = d0d1 . . . of

{0, 1, 0, 1} represents the limit of the infinite increasing sequence (sn)n=0,1,... in BD

for sn = d0(d1(. . . (dn−1(ε)))). Note that this limit exists in Σω
⊥,1. In particular,

the sequence b0b1 . . . bm−1c0c1 . . . cn−1 represents b0b1 . . . bm−1⊥c0c1 . . . cn−1 ∈ Σ∗⊥,1

363

Terayama and Tsuiki

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

・・・・・・・・・・・・・・・・・

Fig. 2. The domain BD

・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

ω

ωω

ωω

ω ω

ω ω

Fig. 3. The domain RD

(or b0b1 . . . bm−1 if n = 0), and the infinite sequence b0b1 . . . bm−1c0c1 . . . represents

b0b1 . . . bm−1⊥c0c1 . . . ∈ Σω
⊥,1.

Since BD is a Scott domain, the meet (i.e., the greatest lower bound) exists for

any subset of BD. We show it explicitly, because it plays an important role in the

semantics of XPCF. First, the meet on Σ⊥ = {0, 1,⊥} is obviously defined. It is

naturally extended to the meet s uΣω
⊥
t in Σω

⊥ as (s uΣω
⊥
t)(n) = s(n) u t(n). Let

trunc be the function from Σω
⊥ to BD to truncate the sequence after the second ⊥

to form a finite 1⊥-sequence if it contains more than one copies of ⊥, and returns

itself if it does not.

Proposition 2.2 The meet s u t of s, t ∈ BD is equal to trunc(s uΣω
⊥
t).

We define the subdomain RD of BD which is used for expressing I through the

Gray representation. We define

RD = {p⊥10n : p ∈ Σ∗, n ∈ {0, 1, . . . , ω}} ∪ Σ∞.

It is a Scott domain. Let LRD be the subset {p⊥10ω : p ∈ Σ∗}∪Σω of Σω
⊥,1. LRD

is the set of limit (i.e., non-compact) elements of RD as Figure 3 shows. LRD

consists of ϕ(I) and those sequences obtained by filling a bottom of s ∈ ϕ(I) with

0 and 1. One can see that I is a retract of LRD and I is homeomorphic to the

set of minimal elements of LRD with the retract map δ : LRD → I defined as

δ(s) = x if ϕ(x) v s. One can see that the triple (RD,LRD, δ) is a retract domain

representation of I in the sense of [3] and we call the map δ : LRD → I the Gray

representation.

We can consider two codings of I based on the Gray embedding. The first one is

obtained by identifying x with ϕ(x) through the embedding and the other one is the

Gray representation δ. For example, for 1/2 ∈ I there are three codes ⊥10ω, 010ω

and 110ω with respect to δ. On the other hand, ⊥10ω is the unique codes for 1/2

with ϕ. Based on these codings, we have two notions that a function on BD realize

a function on I.

Definition 2.3 Let F be a function from BDn to BD and f be a (partial) real

function from In to I.

364

Terayama and Tsuiki

(1) F exactly realizes f if, for every (x1, . . . , xn) ∈ dom(f),

F (ϕ(x1), . . . , ϕ(xn)) = ϕ(f(x1, . . . , xn)).

(2) F realizes f if, for every (p1, . . . , pn) ∈ (δn)−1(dom(f)),

δ(F (p1, . . . , pn)) = f(δ(p1), . . . , δ(pn)).

3 Syntax and denotational semantics of XPCF

Throughout this paper, we write types and constants of syntactic entities in Sans-
serif font and elements in domains in Roman font. Program names and the names

of semantic domains are written in Bold font.

3.1 PCF

For the reader’s convenience we review the syntax, the semantics, and the reduction

rules of the language PCF in Table 1. See [11] or some textbooks like [14] for the

details of PCF. For a term M , FV (M) denotes the free variables of M and M

is closed if FV (M) is empty. A program is a closed term of a ground type. An

environment ρ is a type-respecting map from the set of variables to
⋃
{Dσ|σ type}

and, for a ∈ Dσ, ρ[a/xσ] is the environment which maps xσ to a and any other

variable yσ to ρ(yσ). If M is a closed term, then [[M]](ρ) does not depend on ρ and

we write [[M]] for [[M]](ρ).

The operational semantics of PCF is given by the immediate reduction relation

in Table 1. Evaluation of a program M is a constant c defined as

Eval(M) = c iff M .∗ c.

The following theorem is often referred to as the Adequacy Property of PCF. It

asserts that the operational and denotational semantics coincide.

Theorem 3.1 ([11, Theorem 3.1]). For any PCF program M and constant c,

Eval(M) = c iff [[M]] = [[c]].

3.2 Syntax and semantics of XPCF

The syntax and denotational semantics of XPCF is listed in Table 2. We list only

the differences compared with the PCF specification. It has a ground type S such

that DS = BD with constants 0, 1, 0, 1 of type S → S which denote the functions

0, 1, 0, 1, respectively. For a variable of type S, we omit the type and write x for xS,

for simplicity. We have function terms 〈0x→M0; 1x→M1〉 and 〈〈0x→M0; 1x→M1〉〉
of type S→ σ for M0 and M1 terms of type σ. The variable x is a bound variable

of 〈0x→M0; 1x→M1〉 and 〈〈0x→M0; 1x→M1〉〉.
We call 〈0x→M0; 1x→M1〉 and 〈〈0x→M0; 1x→M1〉〉 extended conditional

terms. For the two functions f0 = [[λx.M0]] and f1 = [[λx.M1]] from DS to Dσ, the

function f = [[〈0xS→M0; 1xS→M1〉]] : DS → Dσ returns f0(s) if the argument is

365

Terayama and Tsuiki

Syntax of PCF

Types: σ ::= B |N |σ → σ
Variables(of type σ): xσ ::= xσ, yσ, zσ, ...
Constants: c ::= tt,ff, ifσ,Yτ , kn, inc, dec, zero (σ:ground type, τ :type, n ∈ N)
Terms: M ::= xτ | c | (MM) | (λxσ.M)
Typing Rules:

xσ : σ tt : B ff : B kn : N inc : N→ N
dec : N→ N zero : N→ B ifσ : B→ σ → σ → σ

Yσ : (σ → σ)→ σ
M : τ

λxσ.M : σ → τ
M : σ → τ N : σ

MN : τ

Denotational semantics of PCF

Domains: DB :the flat domain {⊥B, tt, ff} of truth values.
DN :the flat domain {⊥N, 0, 1, ...} of natural numbers.
Dσ→τ := [Dσ → Dτ].

Interpretation of constants:
[[tt]] = tt [[ff]] = ff [[kn]] = n

[[inc]] = λn ∈ DN.

{
n+ 1 (n 6= ⊥N)

⊥N (n = ⊥N)
[[dec]] = λn ∈ DN.

{
n− 1 (n ≥ 1)

⊥N (n ∈ {⊥N, 0})

[[zero]] = λn ∈ DN.


tt (n = 0)

ff (n > 0)

⊥B (n = ⊥N)

[[Yσ]] = λF ∈ Dσ→σ.
⊔
n∈N F

n(⊥σ)

[[ifσ]] = λb ∈ DB.λx ∈ Dσ.λy ∈ Dσ.


x (b = tt)

y (b = ff)

⊥σ (b = ⊥B)

Denotational semantics:
(i) [[xσ]](ρ) = ρ(xσ) (ii) [[c]](ρ) = [[c]]
(iii) [[MN]](ρ) = [[M]](ρ)([[N]](ρ)) (iv) [[λxσ.M]](ρ) = λa ∈ Dσ.[[M]](ρ[a/xσ])

Operational semantics of PCF

Reduction rules:
(λxσ.M)N .M [N/xσ] YσM .M(YσM) inc kn . kn+1 dec kn+1 . kn
zero k0 . tt zero kn+1 . ff ifσ ttM N .M ifσ ff M N .N

(APP-L)
M .M ′

M N .M ′N
N . N ′

M N .M N ′
(if M is ifσ, inc, dec or zero)

Table 1
Syntax and semantics of PCF

0s and f1(s) if the argument is 1s. For the case the argument starts with ⊥, we

define f(⊥s) = f0(s) u f1(s), which is the meet of f0(s) and f1(s) in Dσ. Here,

meets on DN and DB are obviously defined, meets on DS are explained in Section

2.2, and the meet of two functions g, h ∈ Dσ→τ is the pointwise meet function

(guh)(x) = g(x)uh(x). We define f(ε) = ⊥σ. Thus, f is a strict function. It means

that we adopt call by value semantics to an application of 〈0xS→M0; 1xS→M1〉.
The meaning of the term 〈〈0xS→M0; 1xS→M1〉〉 is different from that of 〈0xS→

366

Terayama and Tsuiki

Syntax of XPCF Syntax of PCF extended with the followings.

Types: S

Constants: 0, 1, 0, 1

Terms: 〈0xS→M ; 1xS→M〉 | 〈〈0xS→M ; 1xS→M〉〉
Typing Rules:

0 : S→ S 1 : S→ S 0 : S→ S 1 : S→ S
M0 : σ M1 : σ

〈0xS→M0; 1xS→M1〉 : S→ σ

M0 : σ M1 : σ

〈〈0xS→M0; 1xS→M1〉〉 : S→ σ

Denotational semantics of XPCF Semantics of PCF extended with

the followings.

Domains: DS = Σ∞⊥,1
Interpretation of constants:

[[0]] = 0 ∈ DS→S (where 0(s) = 0s for s ∈ DS)

[[1]] = 1 ∈ DS→S (where 1(s) = 1s for s ∈ DS)

[[0]] = 0 ∈ DS→S (where 0(as) = a0s for as ∈ DS, 0(ε) = ⊥0)

[[1]] = 1 ∈ DS→S (where 1(as) = a1s for as ∈ DS, 1(ε) = ⊥1)

Denotational semantics:
(v) [[〈0xS→M0; 1xS→M1〉]](ρ) =

λs ∈ DS.


⊥σ (if s = ε)

[[M0]](ρ[s′/xS]) (if s = 0s′)

[[M1]](ρ[s′/xS]) (if s = 1s′)

[[M0]](ρ[s′/xS]) u [[M1]](ρ[s′/xS]) (if s = ⊥s′)
(vi) [[〈〈0xS→M0; 1xS→M1〉〉]](ρ) =

λs ∈ DS.


[[M0]](ρ[ε/xS]) u [[M1]](ρ[ε/xS]) (if s = ε)

[[M0]](ρ[s′/xS]) (if s = 0s′)

[[M1]](ρ[s′/xS]) (if s = 1s′)

[[M0]](ρ[s′/xS]) u [[M1]](ρ[s′/xS]) (if s = ⊥s′)

Table 2
Syntax and denotational semantics of XPCF

M0; 1xS→M1〉 only for the case of ε, and [[〈〈0xS→M0; 1xS→M1〉〉]] is not a strict

function. Note that if we identify ε and ⊥ω and match ⊥s′ with ⊥ω, then the

last case of the semantics of 〈〈0xS→M0; 1xS→M1〉〉 subsumes the first case. Note

that both functions [[〈0xS → M0; 1xS → M1〉]] and [[〈〈0xS → M0; 1xS → M1〉〉]] are

continuous. Our intention in introducing two kinds of extended conditional terms is

that 〈0xS→M0; 1xS→M1〉 is used in writing a program and 〈〈0xS→M0; 1xS→M1〉〉
is used only in reduction steps, which we explain in Section 5. We call a closed

ground type term a program if it does not contain extended conditional terms of

the form 〈〈0xS→M0; 1xS→M1〉〉 as subterms.

4 Program examples of XPCF

The function nh to invert the first digit is written as

367

Terayama and Tsuiki

nh = 〈0x→1x; 1x→0x〉.

Note that [[nh]](⊥s) = 0s u 1s = ⊥s for s ∈ Σω.

The function ns to invert the second digit is written as

ns = 〈0x→0(nh x); 1x→1(nh x)〉.

The following terms head : S → B and tail : S → S are the head and the tail

function on DS.

head = 〈0x→ff; 1x→tt〉,
tail = 〈0x→x; 1x→x〉.

Here, we identify 0, 1,⊥ ∈ Σ⊥ with ff , tt ,⊥B ∈ DB, respectively. Note that there

is no cons function: B → S → S because if we prepend ⊥ to a 1⊥-sequence, then

the result may not be a 1⊥-sequence. The function inv to invert all the digits is

written as

inv = YS→S(λfS→S.〈0x→1(f x); 1x→0(f x)〉).

For simplicity, we use the recursive definition notation to abbreviate a term

defined with the Y operator. For example, inv is written as

inv = 〈0x→1(inv x); 1x→0(inv x)〉.

We show how real numbers and real functions are expressed in XPCF. Since

ϕ(0) = 0ω, ϕ(1) = 10ω and ϕ(1/2) = ⊥10ω, we can express these numbers as

0 = YS 0,
1 = 1(YS 0),

1/2 = 1(YS 0).

In Section 2.1, we defined notions that a function on BD (exactly) realizes a

function on I. We say that a closed XPCF term (exactly) realizes a real function if

it denotes a function which (exactly) realizes the function. The program

div2 = λxS.0x.

realizes the function div2(x) = x/2 but does not exactly realize it because

[[div2]](10ω) = 010ω whereas ϕ(1/2) = ⊥10ω. There is also a program which exactly

realizes div2, which is given later. Since the complement function comp(x) = 1− x
is realized by the function to invert the first digit, comp is exactly realized by the

program nh. The tent function t is exactly realized by tail.

Programs of addition (average) av, subtraction sub, multiplication mult and

div2b which exactly realizes div2 can be written as follows.

av = 〈0x→〈0y→0(av x y); 1y→1(ns(av x (nh y)))〉;
1x→〈0y→1(ns(av (nhx) y)); 1y→1(av x y)〉〉

sub = 〈0x→〈0y→0(subx y); 1y→YS0〉;
1x→〈0y→nh(av x y); 1y→0(sub y x)〉〉

mult = 〈0x→〈0y→0(0(multx y)); 1y→0(multx (1y))〉;
1x→〈0y→0(mult (1x) y);

1y→av (nh(av x y)) (1(nh(mult (nhx) (nh y))))〉〉

368

Terayama and Tsuiki

Reduction rule of XPCF

In addition to the reduction rule of PCF, we have the following rules.

(COND 0) 〈0x→M0; 1x→M1〉(0N) . M0[N/x]

〈〈0x→M0; 1x→M1〉〉(0N) . M0[N/x]

(COND 1) 〈0x→M0; 1x→M1〉(1N) . M1[N/x]

〈〈0x→M0; 1x→M1〉〉(1N) . M1[N/x]

(COND 0) 〈0x→M0; 1x→M1〉(0N) . 〈〈0x→M0[0x/x]; 1x→M1[0x/x]〉〉N
〈〈0x→M0; 1x→M1〉〉(0N) . 〈〈0x→M0[0x/x]; 1x→M1[0x/x]〉〉N

(COND 1) 〈0x→M0; 1x→M1〉(1N) . 〈〈0x→M0[1x/x]; 1x→M1[1x/x]〉〉N
〈〈0x→M0; 1x→M1〉〉(1N) . 〈〈0x→M0[1x/x]; 1x→M1[1x/x]〉〉N

(OUT 1) 〈〈0x→dM0; 1x→dM1〉〉N . d(〈〈0x→M0; 1x→M1〉〉N) (d ∈ {0, 1, 0, 1})
(OUT 2) 〈〈0x→b(cM0); 1x→b′(cM1)〉〉N . c(〈〈0x→bM0; 1x→b′M1〉〉N) (b 6= b′)

(OUT 3) 〈〈0x→bM0; 1x→c(bM1)〉〉N . b(〈〈0x→M0; 1x→cM1〉〉N) (b, c ∈ {0, 1})
(OUT 4) 〈〈0x→c(bM0); 1x→bM1〉〉N . b(〈〈0x→cM0; 1x→M1〉〉N) (b, c ∈ {0, 1})
(OUT 5) 〈〈0x→c; 1x→c〉〉 . c (c ∈ {tt,ff, kn})
(BAR) b(cM) . c(bM) (b, c ∈ {0, 1})
(PERM) 〈0x→M0; 1x→M1〉NL . 〈0x→M0L; 1x→M1L〉N

〈〈0x→M0; 1x→M1〉〉NL . 〈〈0x→M0L; 1x→M1L〉〉N
(If x ∈ FV (L), then rename the bound variable x to avoid variable collision.)

(LEFT)
M0 . M

′
0

〈〈0x→M0; 1x→M1〉〉 . 〈〈0x→M ′0; 1x→M1〉〉

(RIGHT)
M1 . M

′
1

〈〈0x→M0; 1x→M1〉〉 . 〈〈0x→M0; 1x→M ′1〉〉
(APP-R)

N . N ′

MN .MN ′
(if M is 0, 1, 0, 1, 〈0x→M0; 1x→M1〉 or 〈〈0x→M0; 1x→M1〉〉)

Table 3
Operational semantics of XPCF

div2b = 〈0x→0(0x); 1x→1(fx)〉
f = 〈0x→0(fx); 1x→0(1x)〉

Here, [[f]] is a function which satisfies [[f]](0ω) = ⊥0ω and [[f]](x) = 0x if x contains

the character 1.

5 Operational semantics of XPCF

5.1 Operational semantics of XPCF

Table 3 shows the reduction rule of XPCF. For d ∈ {0, 1, 0, 1}, we say that a term

M of type S outputs d if M is reduced to dM ′.

We explain how the reduction of a term 〈0x → M0; 1x → M1〉 N proceeds.

The first lines of rules (COND 0), (COND 1), (COND 0), and (COND 1) are for

the reduction of an application term 〈0x→M0; 1x→M1〉 N . Note that a closed

369

Terayama and Tsuiki

term N is reduced by (APP-R) to one of these four forms if [[N]] is not ⊥ by

the adequacy theorem in the next section. If N has the form 0N ′, (COND 0) is

applied and then we have a term M0[0x/x] and M1[1x/x]. After that, M0 and

M1 are evaluated by (LEFT) and (RIGHT) only with the additional information

that the first character of x is 0. Note that if M0 contains x, then M0[0x/x] also

contains x and therefore it is expected that this evaluation terminates when it

requires the value of x. Then, (BAR) rule is used to arrange outputs of M0[0x/x]

and M1[0x/x] to the form b0b1 . . . bkc0c1 . . . cj for bi, ci ∈ {0, 1}. After that, if

they coincide on the first or the second digit, then it makes an output with rules

(OUT 1) to (OUT 5) and repeat it until no more output is possible. Thus, we

obtain a term of the form d0d1 . . . di(〈〈0x→M ′0; 1x→M ′1〉〉 N ′) and we can continue

this process to the subterm 〈〈0x→M ′0; 1x→M ′1〉〉 N ′ with (APP-R) since all the

rules applicable to 〈0x→M0; 1x→M1〉 N are also applicable to terms of the form

〈〈0x→M0; 1x→M1〉〉 N .

One can see that the above reduction procedure fails to reduce

〈0x→M0; 1x→M1〉N L because the output of L cannot be fed to function terms M0

and M1. For the evaluation of this term, we need the (PERM) rule. Suppose that

〈0x→M0; 1x→M1〉 : S → S → S and M0 and M1 are extended conditional terms

of the form 〈0y→ ...; 1y→ ...〉. We first reduce the term 〈0x→M0; 1x→M1〉 N L

to 〈0x→(M0 L); 1x→(M1 L)〉 N with the (PERM) rule and then reduce it as we

explained. The (PERM) rule corresponds to reducing the lambda term (λx.M) N L

to (λx.(M L)) N , and it is similar to the permutative conversion rule used for proof

normalization in proof theory [12].

One may wonder why we distinguish 〈0x→M0; 1x→M1〉 with 〈〈0x→M0; 1x→
M1〉〉 because we can make the same reduction if we replace the former with the

latter. However, strictness of 〈0x→M0; 1x→M1〉 plays an important role in writing

recursively defined functions. Many of the functions on S are defined with the Y
operator as F = YS→S(λf.M) with M = 〈0x→M0; 1x→M1〉 and it is reduced to

M [YS→S(λf.M)/f] which cannot be reduced any more. IfM = 〈〈0x→M0; 1x→M1〉〉
instead, then copies of YS→S(λf.M) in M0 and M1 can be reduced and therefore it

causes an infinite computation even if no argument is given to the function.

5.2 A sequential strategy of XPCF

Though one needs to evaluate M0, M1, and N in parallel for the evaluation of M =

〈〈0x→M0; 1x→M1〉〉 N , the procedure we mentioned above is almost sequential in

that the evaluations of M0 and M1 are expected to terminate because they contain

the free vaiable x in many cases. There are some cases that the evaluation ofM0 does

not terminate and it outputs infinitely many digits. However, if M0 has the form

d0d1M
′, then, from the forms of (OUT 1) to (OUT 4), one can consider that M0 has

enough outputs for M to make an output and terminate its reduction and proceed to

M1. We also need to take care of the case M0 has the form 〈〈0y→M00; 1y→M11〉〉 L.

In this case, if we reduce M according to the procedure we mentioned above, and L

is reduced to 0L1.
∗0

2
L2.

∗ · · ·.∗0nLn, for examle, then one repeats the application of

(COND 0) and the outputs of N are not instantiated to x. However, we can handle

many of the cases by defining that 〈〈0y→M00; 1y→M11〉〉 L cannot be reduced if

M00 and M11 cannot be reduced and all the appearances of y in M00 and M11 have

370

Terayama and Tsuiki

the form c0c1 . . . cky for k > 1 and ci ∈ {0, 1}. In this case, further digits of y do

not change the situation that M00 cannot be reduced. In this way, we designed a

sequential reduction strategy of XPCF. We implemented it with Haskell. As it is

proved in [7], in an interval domain model, an adequate real number calculus in

which average function is definable does not have a sequential reduction system. It

is also the case in our model and this sequential strategy is not adequate. Therefore,

it does not evaluate all the terms to their denotations. However, we observed that

applications of terms in Section 4 are reduced with our implementation and we

expect that it evaluates many of the ”meaningful” terms to their semantics.

6 Computational adequacy of XPCF

We show the soundness and completeness properties of XPCF and we first show

that two kinds of substitutions in the reduction rule of XPCF preserve meanings.

Lemma 6.1 (i) For terms M : τ and N : σ, a variable xσ, and an environment

ρ, [[M [N/xσ]]](ρ) = [[M]](ρ[[[N]]/xσ]).

(ii) For a term M and b ∈ {0, 1, 0, 1}, [[M [bx/x]]](ρ) = [[M]](ρ[[[b]]ρ(x)/x]).

Proof. By structural induction on M . 2

From Lemma 6.1, the following proposition holds.

Proposition 6.2 For XPCF terms M,N and an environment ρ, if M . N then

[[M]](ρ) = [[N]](ρ).

Proof. It is proved by showing that the denotational semantics of the left side and

the right side coincide for every reduction rule. 2

In XPCF, we consider non-terminating computations which output digits in

{0, 1, 0, 1} as M d0(d1 · · · (dn−1M
′)) Note that the sequence d0, d1, · · ·

is not determined uniquely by M . For example, the term M = 〈〈0x→0(Y0); 1x→
1(Y0)〉〉(1ΩS) for ΩS = YS→S(λxS.xS) is reduced to 10nM ′ for every n and also to

0
n
N ′ for every n. However, from Proposition 6.2, if M .∗ d0(d1 · · · (dn−1M

′)), then

we have d0(d1...(dn−1ε)) v d0(d1...(dn−1[[M ′]])) = [[M]]. Therefore, the outputs are

bounded by the denotation [[M]] of M and thus compatible. We define the evaluation

Eval(M) of an XPCF program M of type S as follows in addition to the definitions

of Eval to programs of type B and N in Section 3.1.

Definition 6.3 (1) For a term M : S, we define

ev(M) = {d0(d1...(dn−1(ε))) | M .∗ d0(d1 · · · (dn−1M
′)) for someM ′}.

Here, di ∈ {0, 1, 0, 1} and di = [[di]] for 0 ≤ i < n.

(2) For an XPCF program M of type S, we define Eval(M) =
⊔

ev(M).

The soundness of XPCF is derived from Proposition 6.2 immediately.

Theorem 6.4 (Soundness of XPCF) For a program M , Eval(M) v [[M]].

371

Terayama and Tsuiki

To show the completeness, we use the computability method (see [11]). That is,

define the set Compσ of computable terms of type σ for each type σ and then show

that all the XPCF terms are computable.

Definition 6.5 We define the predicate Compσ for each type σ by induction on

types.

(i) Let σ be B or N. A program M : σ has property Compσ if [[M]] = [[c]] implies

Eval(M) = c.

(ii) A program M : S has property CompS if [[M]] v Eval(M). That is, for any

p ∈ Σ∗⊥,1 with p v [[M]], p v Eval(M) holds.

(iii) A closed term M : σ → τ has property Compσ→τ if whenever N : σ is a closed

term with property Compσ then MN is a term with property Compτ .

(iv) An open term M : σ with free variables xσ11 , ..., xσnn has property Compσ
if M [N1/x

σ1
1] · · · [Nn/x

σn
n] has property Compσ whenever N1, ..., Nn are closed

terms having properties Compσ1 ,...,Compσn respectively.

We say that a term of type σ is computable if it has property Compσ.

It is immediate to show the followings. (1) If M : σ → τ and N : σ are closed

computable terms, so is MN . (2) For a ground type t, a term M : σ1 → · · · → σn →
τ is computable if and only if M̃N1 · · ·Nn is computable for all closed computable

terms N1 : σ1, ..., Nn : σn and closed instantiation M̃ of M by computable terms.

For s ∈ Σ∗⊥,1, we define the context s[X] as follows,

s[X] =

{
b0(b1 · · · (bn−1X)) if s = b0b1 · · · bn−1,

b0(b1 · · · bn−1(c0(c1 · · · (cm−1X)))) if s = b0b1 · · · bn−1⊥c0c1 · · · cm−1.

Here, bi, cj ∈ {0, 1}, bi = [[bi]], and cj = [[cj]] for 0 ≤ i < n and 0 ≤ j < m. We

say that a term M of type S outputs s ∈ Σ∗⊥,1 if there is a reduction M .∗ s[M ′] for

some M ′.

Lemma 6.6 Let M : S be a computable term such that x is the only free variable

and let s ∈ Σ∗. For any p v [[M]](ρ[s/x]) with p ∈ Σ∗⊥,1, M [s[x]/x] outputs s′ ∈ Σ∗⊥,1
such that p v s′

Proof. We have [[M]](ρ[ε/x]) = [[M [ΩS/x]]] by structural induction on M . From

the equation [[s[ΩS]]] = s and Lemma 6.1 (i), we have

[[M]](ρ[s/x]) = [[M]](ρ[[[s[ΩS]]]/x]) = [[M [s[ΩS]/x]]].

Since M and s[ΩS] are computable, M [s[ΩS]/x] is computable. Therefore, for any

p ∈ Σ∗⊥,1 with p v [[M]](ρ[s/x]), there exists a reduction M [s[ΩS]/x] .∗ s′[M ′] with

s′ ∈ Σ∗⊥,1 such that p v s′. If there is a reduction sequence M [s[ΩS]/x] .∗ s′[M ′],

then there is a reduction sequence M [s[x]/x] .∗ s′[M ′] by ignoring the reductions

related to ΩS. Therefore, M [s[x]/x] outputs s′ such that p v s′. 2

Proposition 6.7 Every XPCF term is computable.

Proof. We prove it by structural induction on terms.

372

Terayama and Tsuiki

In order to prove the computability of Yσ for an XPCF type σ, we use an

extension of the syntactic information order in [11], which we omit here. We only

explain the proof of the cases 0, 1, 0, 1, 〈0x→M0; 1x→M1〉 and 〈〈0x→M0; 1x→M1〉〉.
The case d ∈ {0, 1, 0, 1}. We show that for any computable term M of type

S, dM is computable. Because the function [[d]] : DS → DS is continuous, for any

p ∈ Σ∗⊥,1 with p v [[dM]] = [[d]]([[M]]), there exists q ∈ Σ∗⊥,1 with q v [[M]] such that

p v [[d]](q). Since M is computable, M outputs s ∈ Σ∗⊥,1 such that q v s. Therefore,

dM outputs [[d]](s) which satisfies p v [[d]](q) v [[d]](s) and thus d is computable.

We show that if terms M0 and M1 of type σ are computable, so is the term 〈0x→
M0; 1x→M1〉. It is enough to show that the term 〈0x→M̃0; 1x→M̃1〉N1N2 · · ·Nn

of type a ground type τ is computable when N1 : S, N2, ..., Nn are closed computable

terms and M̃0 and M̃1 are instantiations of all free variables, except x, of M0 and

M1 by closed computable terms, respectively. We only show the case τ = S.

Case [[N1]] = ε. From the reduction rule, we have the following equation:

[[〈0x→M̃0; 1x→M̃1〉N1N2 · · ·Nn]]

= [[〈0x→M̃0; 1x→M̃1〉]](ε)([[N2]]) · · · ([[Nn]])

= ⊥σ([[N2]]) · · · ([[Nn]]) = ⊥S.

Therefore, 〈0x→M̃0; 1x→M̃1〉N1N2 · · ·Nn is computable.

Case [[N1]] = 0s. For any p ∈ Σ∗⊥,1 such that p v [[〈0x → M̃0; 1x →
M̃1〉N1 · · ·Nn]] = [[M̃0]]([[N2]]) · · · ([[Nn]])ρ([s/x]), from the continuity, there ex-

ists s′ ∈ Σ∗⊥,1 such that p v [[M̃0([[N2]]) · · · ([[Nn]])ρ([s′/x])]] and 0s′ v [[N1]].

From the computability of N1, there exists 0s′′ ∈ Σ∗⊥,1 such that N1 outputs

0s′′ and 0s′ v 0s′′. Then, p v [[M̃0([[N2]]) · · · ([[Nn]])]]ρ([s′′/x]) holds. Since we

have [[M̃0[s′′[ΩS]/x]N2 · · ·Nn]] = [[M̃0]]([[N2]]) · · · ([[Nn]])ρ([s′′/x]) and s′′[ΩS] is com-

putable, M̃0[s′′[ΩS]/x]N2 · · ·Nn is also computable and outputs t ∈ Σ∗⊥,1 such that

p v t. Therefore, we have a reduction sequence 〈0x→ M̃0; 1x→ M̃1〉N1 · · ·Nn .
∗

〈0x→M̃0; 1x→M̃1〉0s′′[N ′1] · · ·Nn .
∗ t[M ′′] such that p v t.

Case [[N1]] = 1s. The proof is similar to the case [[N1]] = 0s.

Case [[N1]] = ⊥u with u ∈ Σ∞\{ε}. From the reduction rule, we have the

following equation:

[[〈0x→M̃0; 1x→M̃1〉N1 · · ·Nn]]

= [[〈0x→M̃0N2 · · ·Nn; 1x→M̃1N2 · · ·Nn〉N1]]

= [[〈0x→M̃0N2 · · ·Nn; 1x→M̃1N2 · · ·Nn〉]](⊥u)

= [[M̃0N2 · · ·Nn]](ρ[u/x]) u [[M̃1N2 · · ·Nn]](ρ[u/x]).

Because of the continuity of [[M̃0N2 · · ·Nn]] and [[M̃1N2 · · ·Nn]], for any p ∈ Σ∗⊥,1
with p v [[〈0x→ M̃0; 1x→ M̃1〉N1 · · ·Nn]], there is s ∈ Σ∗ such that s v u, p v
[[M̃0N2 · · ·Nn]](ρ[s/x]), and p v [[M̃1N2 · · ·Nn]](ρ[s/x]). Since N1 is computable,

N1 outputs ⊥s. By Lemma 6.6, (M̃0N2 · · ·Nn)[s[x]/x] outputs q0 ∈ Σ∗⊥,1 such that

p v q0 and (M̃1N2 · · ·Nn)[s[x]/x] outputs q1 ∈ Σ∗⊥,1 such that p v q1. Therefore,

373

Terayama and Tsuiki

〈0x→M̃0; 1x→M̃1〉N1 · · ·Nn has the following reduction:

〈0x→M̃0; 1x→M̃1〉N1 · · ·Nn

.∗ 〈0x→M̃0N2 · · ·Nn; 1x→M̃1N2 · · ·Nn〉⊥s[N ′1]

.∗ 〈〈0x→(M̃0N2 · · ·Nn)[s[x]/x]; 1x→(M̃1N2 · · ·Nn)[s[x]/x]〉〉N ′1

.∗ 〈〈0x→q0[M ′0]; 1x→q1[M ′1]〉〉N ′1

.∗ q[M ′]

for some q ∈ Σ∗⊥,1 such that p v q v (q0 u q1).

The computability proof of 〈〈0x→M̃0; 1x→M̃1〉〉 is that of 〈0x→M0; 1x→M1〉
without the case [[N1]] = ε and without ristricting in the final case to u 6∈ ε. 2

Therefore, the completeness of XPCF holds.

Theorem 6.8 (Completeness of XPCF) For a program M , Eval(M) w [[M]].

Combining the soundness and completeness of XPCF, we have the computa-

tional adequacy of XPCF. That is, Eval(M) = [[M]] for every program M .

7 Expressive power of XPCF

In this section, we often omit the type and write x for xσ when no confusion can

arise.

We compare expressive powers of XPCF and PCF+. Here, PCF+ is the calculus

PCF extended with the parallel conditional pifσ : B → σ → σ → σ as a constant

for each σ ∈ {B,N}. The interpretation of pifσ is given as follows

[[pifσ]] = λb ∈ DB.λx ∈ Dσ.λy ∈ Dσ.


x (b = tt)

y (b = ff)

x (b = ⊥B and x = y)

⊥σ (otherwise).

The operational semantics of PCF + is the operational semantics of PCF together

with:

pifσM cc . c, pifσ ttM N .M pifσ ff M N .N

M .M ′

pifσM . pifσM
′

N . N ′

pifσM N . pifσM N ′
L . L′

pifσM N L . pifσM N L′.

Consider the following XPCF term pif ′σ of type B→ σ → σ → σ for σ ∈ {B,N}.

pif ′σ = λuB.λyσ.λzσ.〈〈0x→y; 1x→z〉〉(ifS u (0ΩS) (1ΩS)).

It satisfies [[pif ′]] = [[pif]] and therefore it expresses the pifσ operator. Note that one

can also express it as as XPCF program

λuB.λyσ.λzσ.〈0x→y; 1x→z〉0(ifS u (0ΩS) (1ΩS))

without using 〈〈...〉〉. Thus, PCF + terms can be translated into XPCF terms by

replacing pifσ with pif ′σ.

374

Terayama and Tsuiki

Theorem 7.1 For a PCF + term M : σ and a PCF environment ρ, there exists an

XPCF term M ′ : σ such that [[M]](ρ) = [[M ′]](ρ′). Here, ρ′ is any extension of ρ to

an XPCF environment.

On the other hand, there is an embedding-projection pair (e-p pair in short)

(e, p) between the domains DS = BD and DN→B
∼= Σω

⊥ where the projection p is

the function trunc in Section 2.2. Here, a pair of continuous functions e : X → Y

and p : Y → X is an e-p pair if they satisfy p ◦ e = idX and e ◦ p v idY . Terms

e : S → (N → B) and p : (N → B) → S such that [[e]] = e and [[p]] = p can be

written in XPCF as follows,

e : = YS→(N→B)(λf
S→N→B.λgS.λnN.if (zeron) (head g) (f (tail g) (decn)))

p : = YN→(N→B)→S(λgN→(N→B)→S.λnN.λfN→B.〈0x→0(g (incn) f); 1x→1(g (incn) f)〉
0(if(f n)(0ΩS)(1ΩS)))k0

where tail = 〈0x→x; 1x→x〉 and head = 〈0x→tt; 1x→ff〉.
We can extend the e-p pair (e, p) to higher order types. We inductively define

σt for every XPCF type σ as follows

Bt = B,Nt = N,St = N→ B, and (σ → τ)t = σt → τ t.

We inductively define eσ : σ → σt and pσ : σt → σ for every XPCF type σ as

follows,

eN = pN = λxN.x, eB = pB = λxB.x, eS = e, pS = p,

eσ→τ = λfσ→τ .λxσ
t
.eτ (f(pσ(x))),

pσ→τ = λfσ
t→τ t .λxσ.pτ (f(eσ(x))).

It is immediate to show that ([[eσ]], [[pσ]]) is e-p pair for every type σ.

We define a syntactical translation (−)t from XPCF terms to PCF + terms so

that M t : σt for M : σ. Before that, we define a function r : DN→B → DN→B as

r = e ◦ p and rσ : Dσt → Dσt as rσ = eσ ◦ pσ. The function r satisfies

r(f)(n) =


tt if f(n) = tt and ⊥ appears at most once in f(0), · · · , f(n− 1)

ff if f(n) = ff and ⊥ appears at most once in f(0), · · · , f(n− 1)

⊥ otherwise.

for f : DN → DB and n ∈ DN. Let r be any PCF + term such that [[r]] = r. We

inductively define a PCF + term rσ : σt → σt which satisfies [[rσ]] = rσ for every

XPCF type σ as follows

rB = λxB.xB, rN := λxN.xN, rS := r, and rσ→τ = λfσ
t→τ t .λx(σt).rτ (f(rσx)).

375

Terayama and Tsuiki

For an XPCF term M , we inductively define M t : σt as follows,

(xσ)t = rσx
(σt), ct = c, iftσ = ifσ, Ytσ = λfσ

t→σt
.Yσt(rσ→σf),

(λxσ.M)t = λx(σt).M : t[rσ(x(σt))/xσ], (MN)t = (M tN t),

0t = λfN→B.λxN.if (zerox) tt ((rS f) (decx))

1t = λfN→B.λxN.if (zerox) ff ((rS f) (decx))

0
t

= λfN→B.λxN.if (zerox) ((rS f) k0)

(if (zero (decx)) tt ((rS f) (decx)))

1
t

= λfN→B.λxN.if (zerox) ((rS f) k0)

(if (zero (decx)) ff ((rS f) (decx)))

〈〈0x→M0; 1x→M1〉〉t = λfN→B.pif ((rS f) k0)M t
0[λyN.(rS f)(inc y)/xN→B]

M t
1[λyN.(rS f)(inc y)/xN→B],

〈0x→M0; 1x→M1〉t = λfN→B.if(pif (if ((rS f) k0) tt tt) tt (if ((rS f) k1) tt tt))

(pif ((rS f) k0)M t
0[λyN.(rS f)(inc y)/xN→B]

M t
1[λyN.(rS f)(inc y)/xN→B]) Ωσ

where c is a constant other than 0, 1, 0, 1, ifσ or Yσ and the types of terms M0 and

M1 are both σ. Here, we assume that the same XPCF variable does not appear in

different types to prevent conflictions in the translation to PCF + terms.

We define a translation (-)t of environments as ρt(xσ
t
) = eσ(ρ(xσ)).

Proposition 7.2 For any term M : σ in XPCF and environment ρ, eσ([[M]](ρ)) =

[[M t]](ρt) holds.

Proof. By structual induction on M . 2

Theorem 7.3 (i) XPCF and PCF + have the same expressive power on PCF

types.

(ii) All computable elements of DS are definable in XPCF.

(iii) The function exist is not definable in XPCF. Here, exist is the function

DN→B → DB which satisfies

exist = λf ∈ DN→B.


ff f(⊥) = ff

tt ∃n ∈ N.f(n) = tt

⊥ otherwise.

Proof. (i) Since eσ is the identity function if σ does not contain S, Theorem 7.1

and Proposition 7.2 show that XPCF and PCF + have the same expressive power

on PCF types.

(ii) For any computable element x ∈ DS, eS(x) ∈ DN→B is a computable element

because eS is a computable function. Therefore, eS(x) is definable in PCF + [11].

Since pS is definable in XPCF, pS(eS(x)) = x is definable in XPCF.

(iii) Suppose that there exists a closed XPCF term M : (N→ B)→ B such that

[[M]] = exist. By the translation, we have e(N→B)→B([[M]]) = [[M t]]. However, exist

376

Terayama and Tsuiki

is not definable in PCF + [11] and this is a contradiction. Therefore, exist is not

definable in XPCF. 2

In [11], Plotkin introduced the language PCF ++ which is an extension of PCF
+ by adding the existential quantifier ∃ : (N → B) → B as a constant such that

[[∃]] = exist. [5] showed that Real PCF extended with ∃ is universal, based on

a technique due to Thomas Streicher [13] to establish that PCF extended with

recursive types, parallel-or and ∃ is universal. We define a calculus XPCF ∃, which

is the extension of XPCF with the ∃ operator. XPCF ∃ is universal in the following

sense.

Theorem 7.4 For every XPCF type σ, all computable elements of Dσ are definable

in XPCF ∃.

Proof. For any XPCF type σ and computable element x ∈ Dσ, eσ(x) ∈ Dσt is

a computable element because eσ is a computable function. Therefore, eσ(x) is

definable in PCF ++ by [11]. Since pσ is definable in XPCF, pσ(eσ(x)) = x is

definable in XPCF ∃. 2

Acknowledgements. The authors would like to thank to Takashi Sakuragawa for

valuable comments. This work was partly supported by JSPS KAKENHI Grant

Number 22500014.

References

[1] Berger, U., and Hou, T., Coinduction for Exact Real Number Computation. Theory of Computing
Systems. 43 (2008), 394-409.

[2] Boehm, H.J., Cartwright, R., Riggle, M., and O’Donnell, M.J., “Exact real arithmetic: a case study in
higher order programming”, ACM Symposium on Lisp and Functional Programming, ACM, New York,
1986.

[3] Blanck, J., Domain representations of topological spaces. Theoritical Computer Science. 247 (2000),
229–255.

[4] Brattka, V., and Hertling, P., Topological properties of real number representations. Theoretical
Computer Science. 284 (2002), 241-257.

[5] Escardó, M.H., Real PCF extended with ∃ is universal. Advances in Theory and Formal Methods of
Computing:Proceedings of the Third Imperial Collage Workshop. (1996), 13-24.

[6] Escardó, M.H., PCF extended with real numbers. Theoretical Computer Science. 162 (1996), 79-115.

[7] Escardó, M.H., Hofmann, M., and Streicher, T., On the non-sequential nature of the interval-domain
model of real-number computation, Math. Struct. in Comp. Science. 14(6) (2004), 803-814.

[8] Di Gianantonio, P., An abstract data type for real numbers. Theoretical Computer Science. 221 (1999),
295-326.

[9] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., and Scott, D.S., “Continuous Lattices
and Domains”, Cambridge University Press, 2003.

[10] Gray, F., “Pulse code communication”, March 17, 1953 (filed Nov. 1947). U.S. Patent 2,632,058.

[11] Plotkin, G., LCF considered as a programming language, Theoretical Computer Science. 5 (1977),
223-255.

[12] Schwichtenberg, H., and Wainer, S.S., Proofs and Computations, Cambridge University Press, 2012.

[13] Streicher, T., A universality theorem for PCF with recursive types, parallel-or and ∃. Mathematical
Structures for Computing Science. 4(1) (1994), 111-115.

377

Terayama and Tsuiki

[14] Streicher, T., “Domain-Theoretic Foundations of Functional Programming”, World Scientific, 2006.

[15] Tsuiki, H., Real number computation through gray code embedding. Theoretical Computer Science.
284(2) (2002), 467-485.

[16] Tsuiki, H., Compact metric spaces as minimal-limit sets in domains of bottomed sequences. Math.
Struct. in Comp. Science. 14 (2004), 853-878.

[17] Weihrauch, K., “An Introduction to Computable Analysis”, Springer, Berlin, 2000.

378

MFPS 2013

Distributed Probabilistic Strategies

Glynn Winskel 1

University of Cambridge Computer Laboratory, England

Abstract

Building on a new definition and characterization of probabilistic event structures, a general definition
of distributed probabilistic strategies is proposed. Probabilistic strategies are shown to compose, with
probabilistic copy-cat strategies as identities. A higher-order probabilistic process language reminiscent
of Milner’s CCS is interpreted within probabilistic strategies. W.r.t. a new definition of quantum event
structure, it is shown how consistent parts of a quantum event structure are automatically probabilistic
event structures, and so possess a probability measure. This gives a non-traditional take on the consistent-
histories approach to quantum theory. It leads to an extension to quantum strategies. Probabilistic games
extend to games with payoff, symmetry and games of imperfect information.

1 Introduction

Concurrent strategies [12] are being investigated as a possible foundation for a gen-

eralized domain theory, in which concurrent games and strategies take over the roles

of domains and continuous functions. One motivation is to broaden the range of

applicability of denotational semantics. Hence it is important to see how concurrent

strategies can be adapted to quantitative semantics, to probabilistic and quantum

strategies.

Just as event structures can be thought of as models of distributed computa-

tion so are probabilistic event structures models of probabilistic distributed pro-

cesses. Existing definitions of probabilistic event structures [1,8,13] are not general

enough to ascribe probabilities to the results of the sometimes partial interaction

between strategies. This paper first provides a new workable definition of probabilis-

tic event structures, extending existing definitions. Probabilistic event structures

are characterized as event structures with a continuous valuation on their domain

of configurations. Probabilistic event structures possess a probabilistic measure on

their configurations. Technically, probabilistic event structures are defined via ‘drop

functions’ expressing the probability drops across general intervals of configurations

of the event structure; ‘drop functions’ provide a useful mathematical handle on

probabilistic event structures and strategies.

1 Email: Glynn.Winskel@cl.cam.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:myuserid@mydept.myinst.myedu

Winskel

This prepares the ground for a general definition of distributed probabilistic

strategies, based on event structures. A probabilistic strategy for Player is a con-

current strategy whose behaviour is described by a probabilistic event structure

when projected to just the Player moves. Probabilistic strategies are shown to

compose—here ‘drop functions’ come into their own—with probabilistic copy-cat

strategies as identities. The result of a play between Player and Opponent in a

game will be a probabilistic event structure.

As an illustration of their expressive power, probabilistic strategies are shown

to interpret a higher-order probabilistic process language reminiscent of Milner’s

CCS. Probabilistic strategies are easily extended to games with payoff and games

of imperfect information. Their definition has been partly inspired by the work of

Danos and Harmer on probabilistic HO games [3], and in an informal sense the

definition here extends theirs from the sequential setting. (A formal connection

must await the relation between concurrent games and HO games, being developed

within concurrent games with symmetry [2].)

A novel application is to a new definition of quantum event structures and

strategies. A quantum event structure is an event structure in which the events are

interpreted as projection or unitary operators on a Hilbert space, so that concur-

rent events are associated with commuting operators; a configuration of the event

structure is thought of as a partial-order history of the observations of a quantum

experiment. Interestingly order-compatible families of configurations of a quantum

event structure automatically determine a probabilistic event structures, and so pos-

sess probability distributions. This gives a non-traditional take on the consistent-

histories approach to quantum theory, which provides consistency conditions on

histories to pick out those subfamilies of histories over which it is meaningful to

place a probability distribution. The approach via quantum event structures by-

passes the consistency conditions usually invoked [6]—those conditions appear to

be too sensitive to what one considers the initial and final events of a finite history.

In a quantum game Player and Opponent interact to jointly create a probabilistic

distributed experiment on a quantum system. Accordingly a quantum strategy

is taken to be a distributed probabilistic strategy on a quantum event structure,

according with work on quantum games [5]. There are similarities with the work of

Delbecque [4], itself based on probabilistic HO games [3]. Full proofs can be found

in [16].

2 Event structures

2.1 Event structures and configurations

An event structure comprises (E,≤,Con), consisting of a set E, of events which are

partially ordered by ≤, the causal dependency relation, and a nonempty consistency

relation Con consisting of finite subsets of E, which satisfy

380

Winskel

{e′ ∣ e′ ≤ e} is finite for all e ∈ E,

{e} ∈ Con for all e ∈ E,

Y ⊆X ∈ Con Ô⇒ Y ∈ Con, and

X ∈ Con & e ≤ e′ ∈X Ô⇒ X ∪ {e} ∈ Con.

The configurations, C∞(E), of an event structure E consist of those subsets x ⊆ E

which are (Consistent) ∀X ⊆ x. X is finite⇒X ∈ Con and (Down-closed) ∀e, e′. e′ ≤
e ∈ x Ô⇒ e′ ∈ x. Often we shall be concerned with just the finite configurations,

C(E).

We say an event structure is elementary when the consistency relation consists

of all finite subsets of events. Two events e, e′ which are both consistent and incom-

parable w.r.t. causal dependency in an event structure are regarded as concurrent,

written e co e′. In games the relation of immediate dependency e _ e′, meaning e

and e′ are distinct with e ≤ e′ and no event in between, will play an important role.

For X ⊆ E we write [X] for {e ∈ E ∣ ∃e′ ∈X. e ≤ e′}, the down-closure of X; note if

X ∈ Con, then [X] ∈ Con is a configuration.

Notation 1 Let E be an event structure. We use x−⊂y to mean y covers x in

C∞(E), i.e. x ⊊ y inC∞(E) with nothing in between, and x
e

−Ð⊂ y to mean x∪{e} = y

for x, y ∈ C∞(E) and event e ∉ x. We use x
e

−Ð⊂ , expressing that event e is enabled

at configuration x, when x
e

−Ð⊂ y for some y.

2.2 Maps and operations on event structures

Let E and E′ be event structures. A map of event structures f ∶ E → E′ is a

partial function on events f ∶ E ⇀ E′ such that for all x ∈ C∞(E) its direct image

fx ∈ C∞(E′) and

e1, e2 ∈ x & f(e1) = f(e2) (with both defined) Ô⇒ e1 = e2.

Maps of event structures compose as partial functions, with identity maps given by

identity functions. We will say the map is total if the function f is total. A total

map of event structures which preserves causal dependency is called rigid.

2.2.1 Products

The category of event structures with maps has products A×B with projections π1

to A and π2 to B. It introduces arbitrary synchronisations between events of A and

events of B in the manner of process algebra.

2.2.2 Pullbacks

Synchronized compositions of event structures A and B are obtained as restrictions

A ×B ↾R. The restriction of an event structure E to a subset of events R, written

E↾R, is the event structure with events E′ = {e ∈ E ∣ [e] ⊆ R} and causal dependency

and consistency induced by E. We obtain pullbacks as a special case. Let f ∶

A → C and g ∶ B → C be maps of event structures. Defining P =def A × B ↾

{p ∈ A ×B ∣ fπ1(p) = gπ2(p)} we obtain a pullback P,π1, π2 in the category of event

381

Winskel

structures. When f and g are total the same construction gives the pullback in the

category of event structures with total maps.

2.2.3 Projection

Let (E,≤,Con) be an event structure. Let V ⊆ E be a subset of ‘visible’ events.

Define the projection of E on V , to be E↓V =def (V,≤V ,ConV), where v ≤V v
′ iff v ≤

v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V . A partial map f ∶ E → E′ of event

structures factors into a composition of a partial and total map E → E ↓ V → E′

where: V =def {e ∈ E ∣ f(e) is defined} is the domain of definition of f ; the partial

map E → E ↓V acts as identity on V as is undefined otherwise; and the total map

E ↓V → E′ acts as f .

2.2.4 Prefixes and sums

The category of event structures has coproducts given as sums; a coproduct ∑i∈I Ei
is obtained as the disjoint juxtaposition of an indexed collection of event structures,

making events in distinct components inconsistent. In practice, components of a

sum are often prefixed by an event. The prefix of an event structure A, written

●.A, comprises the event structure in which all the events of A are made to causally

depend on an event ●.

3 Probabilistic event structures

A probabilistic event structure comprises an event structure (E,≤,Con) with a con-

tinuous valuation on its Scott open sets of configurations. 2 Continuous valuations

play the role of elements in probabilistic powerdomains [7]. Continuous valuations

are determined by their restrictions to basic open sets x̂ =def {y ∈ C∞(E) ∣ x ⊆ y},

for x a finite configuration. This leads to an equivalent, more workable definition

that we develop now. The description of a probabilistic event structure here extends

the definitions mentioned in [13].

3.1 General intervals and drop functions

Throughout this section assume E is an event structure and v ∶ C(E) → R. Extend

C(E) to a lattice C(E)⊺ by adjoining an extra top element ⊺. Write its order as

x ⊑ y and its finite join operations as x∨ y and ⋁i∈I xi. Extend v to v⊺ ∶ C(E)⊺ → R
by taking v⊺(⊺) = 0.

We are concerned with drops in value across general intervals [y;x1,⋯, xn],

where y, x1,⋯, xn ∈ C(E)⊺ with y ⊑ x1,⋯, xn in C(E)⊺. The interval is thought

of as specifying the set of configurations ŷ ∖ (x̂1 ∪ ⋯ ∪ x̂n). As such the intervals

form a basis of the Lawson topology on C∞(E)⊺.

2 Viz. a function w from the Scott-open subsets of C∞(E) to [0,1] which is (normalized) w(C∞(E)) = 1;
(strict) w(∅) = 0; (monotone) U ⊆ V Ô⇒ w(U) ≤ w(V); (modular) w(U ∪V)+w(U ∩V) = w(U)+w(V);
and (continuous) w(⋃i∈I Ui) = supi∈Iw(Ui), for directed unions. The idea: w(U) is the probability of a
result in open set U .

382

Winskel

Define the drop functions d
(n)
v [y;x1,⋯, xn] ∈ R for y, x1,⋯, xn ∈ C(E)⊺ with

y ⊑ x1,⋯, xn in C(E)⊺, by taking d
(0)
v [y;] =def v

⊺(y) and

d(n)v [y;x1,⋯, xn] =def d
(n−1)
v [y;x1,⋯, xn−1] − d

(n−1)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn] .

Proposition 3.1 Let n ∈ ω. For y, x1,⋯, xn ∈ C(E)⊺ with y ⊑ x1,⋯, xn,

d(n)v [y;x1,⋯, xn] = v(y) − ∑
∅≠I⊆{1,⋯,n}

(−1)∣I ∣+1v(⋁
i∈I
xi) .

It will be important that drops across general intervals can be reduced to sums

of drops across intervals based on coverings, as explained next.

Lemma 3.2 Let y, x1,⋯, xn, x
′
n ∈ C(E)⊺ with y ⊑ x1,⋯, xn and xn ⊑ x′n, Then,

d
(n)
v [y;x1,⋯, x

′
n] = d

(n)
v [y;x1,⋯, xn] + d

(n)
v [xn;x1 ∨ xn,⋯, xn−1 ∨ xn, x

′
n] .

Corollary 3.3 Let y ⊆ x1,⋯, xn in C(E). Then, d
(n)
v [y;x1,⋯, xn] is expressible as

a sum of terms d
(k)
v [u;w1,⋯,wk] where y ⊆ u−⊂wi in C(E) and wi ⊆ x1 ∪⋯∪xn, for

all i with 1 ≤ i ≤ k. (x1 ∪⋯ ∪ xn need not be in C(E).)

3.2 Probabilistic event structures

A probabilistic event structure is an event structure associated with a [0,1]-

valuation on configurations such that no general interval has a negative drop.

Definition 3.4 Let E be an event structure. A configuration-valuation on E is

function v ∶ C(E) → [0,1] such that v(∅) = 1 and which satisfies the “drop condition”

d(n)v [y;x1,⋯, xn] ≥ 0

for all n ≥ 1 and y, x1,⋯, xn ∈ C(E) with y ⊆ x1,⋯, xn. A probabilistic event

structure comprises an event structure E together with a configuration-valuation

v ∶ C(E) → [0,1].

By Corollary 3.3, in showing we have a probabilistic event structure it suffices

to verify the “drop condition” only for covering intervals.

Theorem 3.5 A configuration-valuation v on an event structure E extends

uniquely to a continuous valuation wv on the open sets of C∞(E) (so v(x) = wv(x̂),

for all x ∈ C(E)). Conversely, a continuous valuation on the open sets of C∞(E)

restricts to a configuration-valuation on E.

The above theorem holds (with the same proof) in greater generality, for Scott

domains. Now, by [9], Corollary 4.3:

Theorem 3.6 For a configuration-valuation v on E there is a unique probability

measure µv on the Borel subsets of C∞(E) extending wv.

Example 3.7 In general, for v a configuration-valuation on E,

µv({y}) = inf{d(n)v [y;x1,⋯, xn] ∣ n ∈ ω & y ⊊ x1,⋯, xn ∈ C(E)}

383

Winskel

for any y ∈ C(E). When v(y) > 0 and µv({y}) = 0 we can understand y as being

a transient configuration on the way to a final result. In particular, consider the

event structure comprising two concurrent events a and b. It has configurations and

configuration valuation v as shown:

{a, b} 1/4

1/2 {a}

, �

{b} 1/4

R2

∅

, �R2

1

The probability µv({{a, b}}) of ending at the configuration {a, b} is 1/4; that of

terminating at {a} the drop 1/2 − 1/4 = 1/4; that of terminating at {b} the drop

1/4−1/4 = 0 showing that {b} is only a transient configuration; while the probability

of terminating at ∅ is the drop 1 − 1/2 − 1/4 + 1/4 = 1/2. ◻

Remark. In the definition of probabilistic event structures there are two different

ways to say, for example, that events e1 and e2 do not occur together at a finite

configuration y where y
e1
−Ð⊂x1 and y

e2
−Ð⊂x2: either through {e1, e2} ∉ Con; or via the

configuration-valuation v through v(x1∪x2) = 0. However, this seeming redundancy

is exploited later in probabilistic strategies and quantum event structures, when we

mix probability with nondeterminism and shall make use of both consistency and

the valuation.

4 Probabilistic strategies

We show how concurrent strategies can be extended with probabilities, first review-

ing the needed results from [12].

4.1 Strategies

4.1.1 Event structures with polarity

Both games and strategies in a game are represented in terms of event structures

with polarity, which comprise (E,pol) where E is an event structure with a polarity

function pol ∶ E → {+,−} ascribing a polarity + (Player) or − (Opponent) to its

events. The events correspond to (occurrences of) moves. Maps of event structures

with polarity are maps of event structures which preserve polarities.

The dual, E⊥, of an event structure with polarity E comprises the same under-

lying event structure E but with a reversal of polarities. Let A and B be event

structures with polarity. The operation A∥B, of simple parallel composition, juxta-

poses disjoint copies of A and B, maintaining their causal dependency and specifying

a finite subset of events as consistent if it restricts to consistent subsets of A and

B. Polarities are unchanged. The empty game ∅ is the unit of ∥.

4.1.2 Pre-strategies

Let A be an event structure with polarity, thought of as a game; its events stand for

the possible occurrences of moves of Player and Opponent and its causal dependency

384

Winskel

and consistency relations the constraints imposed by the game. A pre-strategy in

A represents a nondeterministic play of the game and is defined to be a total map

σ ∶ S → A of event structures with polarity.

A map between pre-strategies, from σ ∶ S → A and τ ∶ T → A, is a map f ∶ S → T

such that σ = τf . Accordingly, σ ≅ τ when there is an isomorphism θ ∶ S ≅ T such

that σ = τθ.

Let A and B be event structures with polarity. A pre-strategy from A to B is

a pre-strategy in A⊥∥B. Write σ ∶ A + //B to express that σ is a pre-strategy from

A to B. Note that a pre-strategy σ in a game A, e.g. σ ∶ S → A, coincides with a

pre-strategy from the empty game ∅ to the game A, i.e. σ ∶ ∅ + //A.

Strategies are defined to be those pre-strategies for which copy-cat behaves as

identity w.r.t composition, as we now explain.

4.1.3 Composing pre-strategies

We can present the composition of pre-strategies via pullbacks. Given two pre-

strategies σ ∶ S → A⊥∥B and τ ∶ T → B⊥∥C, ignoring polarities we can consider

the maps on the underlying event structures, viz. σ ∶ S → A∥B and τ ∶ T → B∥C.

Viewed this way we can form the pullback in the category of event structures as

shown
P

π1

yy
π2

%%
S∥C

σ∥idC %%

A∥T

idA∥τyy
A∥B∥C

��
A∥C ,

where the map A∥B∥C → A∥C is undefined on B and acts as identity on A and

C. The partial map from P to A∥C given by the diagram above (either way round

the pullback square) factors as the composition of the partial map P → P ↓ V ,

where V is the set of events of P at which the map P → A∥C is defined, and

a total map P ↓ V → A∥C. The resulting total map gives us the composition

τ⊙σ ∶ T⊙S =def P ↓V → A⊥∥C once we reinstate polarities.

In T⊙S we have hidden the synchronization events over B due to the instanti-

ation of Opponent moves of T in B by Player moves of S, and vice versa. Later

we shall also be concerned with the event structure P , composition before hiding,

which we shall denote more descriptively by T∗S.

4.1.4 Concurrent copy-cat

The copy-cat strategy from A to A is an instance of a pre-strategy, so a total map

γA ∶ CCA → A⊥∥A. It is based on the idea that Player moves, of +ve polarity,

always copy previous corresponding moves of Opponent, of −ve polarity. For c ∈

A⊥∥A we use c to mean the corresponding copy of c, of opposite polarity, in the

alternative component. Define CCA to comprise the event structure with polarity

A⊥∥A together with the extra causal dependencies generated by c ≤CCA c for all

events c with polA⊥∥A(c) = +. The copy-cat pre-strategy γA ∶ A + //A is defined to be

the map γA ∶ CCA → A⊥∥A where γA is the identity on the common set of events.

385

Winskel

4.1.5 Strategies

The main result of [12] is that two conditions on pre-strategies, receptivity and

innocence, are necessary and sufficient for copy-cat to behave as identity w.r.t. the

composition of pre-strategies. Receptivity ensures an openness to all possible moves

of Opponent. Innocence restricts the behaviour of Player; Player may only introduce

new relations of immediate causality of the form ⊖ _ ⊕ beyond those imposed

by the game. A pre-strategy σ is receptive iff σx
a

−Ð⊂ & polA(a) = − ⇒ ∃!s ∈

S. x
s

−Ð⊂ & σ(s) = a . It is innocent iff s _ s′ & (pol(s) = + or pol(s′) = −) implies

σ(s) _ σ(s′). The main result of [12] is that γB⊙σ⊙γA ≅ σ iff σ is receptive and

innocent. Copy-cats γA ∶ A + //A are receptive and innocent.

A strategy is a pre-strategy which is receptive and innocent. We obtain a bicate-

gory in which the objects are event structures with polarity—the games, the arrows

from A to B are strategies σ ∶ A + //B and 2-cells are total maps of pre-strategies with

vertical composition the usual composition of such maps. Horizontal composition

is given by the composition of strategies ⊙.

An event structure with polarityS is deterministic iff any down-closed set of

moves is consistent when its subset of Opponent moves is consistent. Say a strat-

egy σ ∶ S → A is deterministic if S is deterministic. Copy-cat strategies γA are

deterministic iff the game A is

race-free: for all x ∈ C(A) such that x
a

−Ð⊂ and x
a′

−Ð⊂ with pol(a) = − and pol(a′) =
+, we have x ∪ {a, a′} ∈ C(A).

We obtain a sub-bicategory of deterministic strategies between race-free games—in

fact equivalent to an order-enriched category [12].

Strategies inherit a duality from pre-strategies. A pre-strategy σ ∶ A + //B corre-

sponds to a dual pre-strategy σ⊥ ∶ B⊥ + //A⊥, arising from the correspondence between

pre-strategies σ ∶ S → A⊥∥B and σ⊥ ∶ S → (B⊥)⊥∥A⊥.

4.2 Probabilistic strategies

Without information about the stochastic rates of Player and Opponent we cannot

hope to ascribe probabilities to outcomes of play in the presence of races, i.e. im-

mediate conficts between moves of opposite polarities. Our results on probabilistic

strategies depend on restricting to games which are race-free.

It will be convenient to define a probabilistic event structure in which some

events are distinguished as Opponent events (where the other events may be Player

events or “neutral” events due to synchronizations between Player and Opponent

moves). Events which are not Opponent events we shall call p-events. For config-

urations x, y we shall write x ⊆p y if x ⊆ y and y ∖ x contains no Opponent events;

we write x−⊂py when x−⊂y and x ⊆p y; we similarly write e.g. x ⊆− y, respectively

x ⊆+ y, if x ⊆ y and y∖x comprises solely Opponent, respectively Player, events. We

can now extend the notion of configuration-valuation to the situation where events

carry polarities.

Definition 4.1 Let E be an event structure in which a specified subset of events

are Opponent events. A configuration-valuation on E is a function v ∶ C(E) → [0,1]

386

Winskel

for which v(∅) = 1,

x ⊆− y Ô⇒ v(x) = v(y) (1)

for all x, y ∈ C(E), and satisfies the “drop condition”

d(n)v [y;x1,⋯, xn] ≥ 0 (2)

for all n ∈ ω and y, x1,⋯, xn ∈ C(E) with y ⊆p x1,⋯, xn.

A probabilistic event structure with polarity comprises E an event structure with

polarity together with a configuration-valuation v ∶ C(E) → [0,1].

As earlier, by Corollary 3.3, it suffices to verify the “drop condition” for p-

covering intervals.

Definition 4.2 Let A be a race-free event structure with polarity. A probabilistic

strategy v, σ in A comprises S, v, a probabilistic event structure with polarity, and

a strategy σ ∶ S → A. [It follows that S will also be race-free.]

Let A and B be a race-free event structures with polarity. A probabilistic strategy

from A to B is a probabilistic strategy in A⊥∥B.

We extend the usual composition of strategies to probabilistic strategies. Assume

probabilistic strategies σ ∶ S → A⊥∥B, with configuration-valuation vS ∶ C(S) →

[0,1], and τ ∶ T → B⊥∥C with configuration-valuation vT ∶ C(T) → [0,1]. We first

define their composition before hiding, as the probabilistic event structure T ∗S, v,

tentatively taking v ∶ C(T∗S) → [0,1] to be v(x) = vS(π1x)×vT (π2x) for x ∈C(T∗S).

This is a configuration-valuation because:

Lemma 4.3 Let v ∶ C(T∗S) → [0,1] be defined as above. Then, v(∅) = 0. If x ⊆− y
in C(T∗S) then v(x) = v(y). Let y, x1,⋯, xn ∈ C(T∗S) with y−⊂px1,⋯, xn. Assume

that π1y−⊂
+π1xi when 1 ≤ i ≤ m and π2y−⊂

+π2xi when m + 1 ≤ i ≤ n. Then in

C(T∗S), v,

d(n)v [y;x1,⋯, xn] = d
(m)
vS

[π1y;π1x1,⋯, π1xm] × d(n−m)
vT

[π2y;π2xm+1,⋯, π2xn] .

Hence the drop function for v being non-negative is reduced to the drop functions

for vS and vT being non-negative.

Corollary 4.4 The assignment v(x) = vS(π1x) × vT (π2x) to x ∈ C(T∗S) yields a

configuration-valuation on T∗S, so a probabilistic event structure T ∗ S, v.

We can now complete the definition of the composition of probabilistic strategies.

Note that for x ∈ C(T⊙S) its down-closure [x] ∈ C(T∗S).

Lemma 4.5 Let A, B and C be race-free event structure with polarity. Let σ ∶

S → A⊥∥B, with configuration-valuation vS ∶ C(S) → [0,1], and τ ∶ T → B⊥∥C
with configuration-valuation vT ∶ C(T) → [0,1] be probabilistic strategies. Assigning

vS(π1[x]) × vT (π2[x]) to x ∈ C(T⊙S) yields a configuration-valuation which with

τ⊙σ ∶ T⊙S → A⊥∥C forms a probabilistic strategy from A to C.

The assumption that games are race-free is needed for Corollary 4.4 and Lem-

mas 4.3, 4.5. Recall that race-freedom of a game A ensures CCA is deterministic [12]

387

Winskel

and hence its copy-cat strategy is easily turned into a probabilistic strategy, as is

any deterministic strategy:

Lemma 4.6 Let S be a deterministic event structure with polarity. Defining vS ∶

C(S) → [0,1] to satisfy vS(x) = 1 for all x ∈ C(S), we obtain a probabilistic event

structure with polarity.

Corollary 4.7 Let A be a race-free game. The copy-cat strategy from A to A

comprising γA ∶ CCA → A⊥∥A with configuration-valuation vCCA ∶ C(CCA) → [0,1]

satisfying vCCA(x) = 1, for all x ∈ C(CCA), forms a probabilistic strategy.

Combining the results of this section:

Theorem 4.8 Race-free games with probabilistic strategies with composition and

copy-cat defined as in Lemma 4.5 and Corollary 4.7 inherit the structure of a bicat-

egory from that of games with strategies.

5 A language of probabilistic strategies

As an indication of the expressivity of probabilistic strategies we show how they

straightforwardly include a simple language of probabilistic processes, reminiscent

of a higher-order CCS. For this section only, write σ ∶ A to mean σ is a proba-

bilistic strategy in game A. Probabilistic strategies are closed under the following

operations.

Composition τ⊙σ ∶ A∥C, if σ ∶ A∥B and τ ∶ B⊥∥C. Hiding is automatic in a

synchronized composition directly based on the composition of strategies.

Simple parallel composition σ∥τ ∶ A∥B, if σ ∶ A and τ ∶ B—a special case of syn-

chronized composition via the identification of σ∥τ with τ⊙σ, in which σ ∶ A⊥ + //∅
and τ ∶ ∅ + //B.

Input prefixing ∑i∈I ⊖.σi ∶ ∑i∈I ⊖.Ai, if σi ∶ Ai, for i ∈ I, where I is countable.

Output prefixing ∑i∈I pi ⊕ .σi ∶ ∑i∈I ⊕.Ai, if σi ∶ Ai, for i ∈ I, where I is countable,

and pi ∈ [0,1] for i ∈ I with ∑i∈I pi ≤ 1. If ∑i∈I pi < 1, there is non-zero probability

of terminating without any action. By design (∑i∈I ⊕.Ai)
⊥ = ∑i∈I ⊖.A

⊥
i .

Relabelling, the composition fσ ∶ B, if σ ∶ A and f ∶ A → B is itself a strategy,

i.e. total, receptive and innocent.

Pullback f∗σ ∶ A, if σ ∶ B and f ∶ A→ B is a map of event structures which preserves

+-conflict, i.e. is defined on all +ve events and satisfies

x
a1
−Ð⊂x1 & x

a2
−Ð⊂x2 & pol(a1) = pol(a2) = + & x1 � x2 Ô⇒ fx1 � fx2 .

The strategy f∗σ is got by the pullback S′

f∗σ
��

f ′ //S

σ
��

A
f
//B .

Then, the map f ′ also preserves +-conflict. The configuration valuation vS′ of S′ is

defined from that vS of S by taking vS(x) = vS(f
′x), for x ∈ C(f∗S). If σ ∶ S → B is

a strategy then so is f∗σ ∶ S′ → A. Pullback along f ∶ A → B may introduce causal

links, present in A but not in B.

388

Winskel

Abstraction λx ∶ A.σ ∶ A ⊸ B. Because probabilistic strategies form a monoidal-

closed bicategory, with tensor A∥B and function space A ⊸ B =def A
⊥∥B, they

support an (affine) λ-calculus with λ-abstractions, which in this context permits

process-passing as in [11].

Recursive probabilistic processes can be dealt with along standard lines [14].

The types as they stand are somewhat inflexible. These limitations can be

remedied by introducing monads T and new types of the form T (A), though doing

this in sufficient generality would involve the introduction of symmetry to games—

see Section 7.

6 Quantum strategies

A more novel application is to a definition of quantum event structures and strate-

gies. Throughout let H be a separable Hilbert space over the complex numbers.

For operators A,B on H we write [A,B] =def AB −BA.

6.1 Quantum event structures

Definition 6.1 A quantum event structure (over H) comprises an event structure

(E,≤,Con) together with an assignment Qe of projection or unitary operators on

H to events e ∈ E such that for all e1, e2 ∈ E,

e1 co e2 Ô⇒ [Qe1 ,Qe2] = 0 .

Given a finite configuration, x ∈ C(E), define the operator Ax to be the compo-

sition QenQen−1⋯Qe2Qe1 for some covering chain

∅
e1
−Ð⊂x1

e2
−Ð⊂x2⋯

en
−Ð⊂xn = x

in C(E). This is well-defined as for any two covering chains up to x the sequences

of events are Mazurkiewicz trace equivalent, i.e. obtainable, one from the other,

by successively interchanging concurrent events. In particular A∅ is the identity

operator on H.

An initial state is given by a density operator ρ on H.

We regard w ∈ C∞(E) as a partial quantum experiment—it is ‘partial’ in the

sense that it might extend to w′ ⊇ w in C∞(E). An experiment w specifies which

unitary operators (events of preparation) and projection operators (elementary posi-

tive tests) to apply and in which order. The order being partial permits commuting

operators to be applied concurrently, independently of each other, perhaps in a

distributed fashion.

Consider a quantum event structure with initial state ρ. While it does not

make sense to attribute a probability distribution globally, over the whole space of

configurations C∞(E), the next theorem says that with respect to any experiment

w there is a probability distribution qw over its possible outcomes. (Below, by an

unnormalized density operator we mean a positive, self-adjoint operator with trace

less than or equal to one.)

389

Winskel

Theorem 6.2 Let E,Q be a quantum event structure with initial state ρ. Each

configuration x ∈ C(E) is associated with an unnormalized density operator ρx =def

AxρA
†
x and a value in [0,1] given by v(x) =def Tr(ρx) = Tr(A†

xAxρ). For any w ∈

C∞(E), the function v restricts to a configuration-valuation vw on the elementary

event structure w (viz. the event structure with events w, and causal dependency and

(trivial) consistency inherited from E); hence vw extends to a probability measure

qw on Fw =def {x ∈ C∞(E) ∣ x ⊆ w}.

6.2 Quantum strategies

A quantum game comprises A,pol ,Q, ρ where A,pol is a race-free event structure

with polarity, A,Q is a quantum event structure with initial state ρ. A strategy in

the quantum game comprises a probabilistic strategy in A, so a strategy σ ∶ S → A

together with configuration-valuation v on S.

Given a strategy vS , σ ∶ S → A and counter-strategy vT , τ ∶ T → A⊥ in a quantum

game A,Q, ρ we obtain as their composition before hiding the probabilistic event

structure T ∗ S with configuration-valuation v(x) =def vSπ1(x) × vTπ2(x) on x ∈

C(T ∗S)—see Corollary 4.4. The event structure T ∗S is obtained as a pullback—

Section 4.1.3—and is associated with a map f =def σπ1 = τπ2 ∶ T ∗ S → A. We

can interpret f ∶ T ∗ S → A as the probabilistic experiment which results from the

interaction of the strategy σ and the counter-strategy τ . The event structure T ∗S

carries a probability measure µv. The probability that the play-off of σ against τ

produces a result in a Borel subset U of of C∞(A), is given by the Lebesgue integral

∫ qw(U ∩Fw)dµvf
−1(w) .

Strategies in quantum games inherit the types and language of probabilistic

strategies, though additional constructs will be needed to introduce entanglement

beyond that already present in a given start state.

7 Extensions

As they stand the games here are games of perfect information. In games of imperfect

information some moves are masked, or inaccessible, and strategies with dependen-

cies on unseen moves are ruled out. It is straightforward to extend concurrent games

to games with imperfect information in way that respects the operations of the bi-

category of games [17] and does not disturb the addition of probability. A fixed

preorder of levels (Λ,⪯) is pre-supposed. The levels are to be thought of as levels of

access, or permission. A Λ-game comprises a game A with a level function l ∶ A→ Λ

such that if a ≤A a′ then l(a) ⪯ l(a′) for all a, a′ ∈ A. A probabilistic Λ-strategy

in the Λ-game is a probabilistic strategy vS , σ ∶ S → A for which if s ≤S s′ then

lσ(s) ⪯ lσ(s′) for all s, s′ ∈ S. One interpretation of Λ, pertinent to the treatment

of quantum strategies, is as space-time with λ ⪯ λ′ meaning there is a causal curve

from λ to λ′.

We can add payoff to a game A as a Borel measurable function X ∶ C∞(A) → R.

Given a probabilistic strategy vS , σ ∶ S → A and counter-strategy vT , τ ∶ T → A⊥

we obtain their composition before hiding as their pullback T ∗S,π1, π2, associated

390

Winskel

with the map f =def σπ1 = τπ2 ∶ T ∗ S → A. The event structure T ∗ S comes

equipped with a configuration-valuation v(x) = vS(π1x)×vT (π2x), for x ∈ C(T ∗S).

The expected payoff is obtained as the Lebesgue integral

Eσ,τ(X) = ∫ X(fx) dµσ,τ(x) .

In particular, Blackwell games [10] become a special case of probabilistic Λ-

games with payoff. For Blackwell games an appropriate choice of Λ is the infinite

elementary event structure:

⊕ � ,,2

� ��%

⊕ � ,,2

� ��%

⊕ ⋯ ⊕ � ,,2

� ��%

⊕ ⋯

⊖ � ,,2

> 99D

⊖ � ,,2

> 99D

⊖ ⋯ ⊖ � ,,2

> 99D

⊖ ⋯

A Blackwell game is given by A, a race-free concurrent game with payoff X, for

which there is a (necessarily unique) polarity-preserving rigid map from A to Λ—this

map becomes the level function. Moves in A occur in rounds comprising a choice of

move for Opponent and a choice of move for Player made concurrently. The existing

literature is often concerned with total strategies which always progress, which we

can express in our general context by insisting non ⊆+-maximal finite configurations

of the strategy are transient—cf. Example 3.7. Traditionally, in Blackwell games a

strategy (for Player) is a total Λ-strategy in such a Λ-game—strategies are restricted

to those assigning total probability distributions at each round.

There are several reasons to consider symmetry in games, situations where dis-

tinct plays are essentially similar to one another. Symmetry can help in the analysis

of games, by for instance reducing the number of cases to consider. Symmetry can

also help compensate for the overly-concrete nature of event structures in represent-

ing games; many useful operations on games which are not monads or comonads

w.r.t. strategies become so up to symmetry [15,2] and this leads, for example, to

richer type systems. Symmetry on an event structure can be captured through

an isomorphism family which expresses when one finite configuration of the event

structure is essentially the same as another [15]. It is a straightforward matter to en-

sure that configuration-valuations, attributing probability, respect the isomorphism

family. The addition of symmetry to games meshes well with the introduction of

probability. This should enable a formal connection with the probabilistic games of

Danos and Harmer [3] which are based on HO games—allowing copying, so whose

relation with concurrent games requires suitable (co)monads to exist, so symmetry.

Acknowledgments Discussion with Samson Abramsky, Nathan Bowler, Peter

Hines, Ohad Kammar, Mike Mislove and Prakash Panangaden has been helpful.

Daniele Varacca deserves special thanks for our earlier work on probabilistic event

structures. I gratefully acknowledge the ERC Grant ECSYM.

References

[1] Samy Abbes and Albert Benveniste. True-concurrency probabilistic models: Branching cells and
distributed probabilities for event structures. Inf. Comput., 204(2):231–274, 2006.

391

Winskel

[2] Simon Castellan, Pierre Clairambault, and Glynn Winskel. Symmetry in concurrent games. Submitted,
2013.

[3] Vincent Danos and Russell Harmer. Probabilistic game semantics. In LICS’00. IEEE Computer Society,
2000.

[4] Yannick Delbecque. Game semantics for quantum data. QPL/DCM 2008, Electr. Notes Theor.
Comput. Sci., 2008.

[5] J.O. Grabbe. An introduction to quantum game theory. arXiv preprint quant-ph/0506219, 2005.

[6] Robert B. Griffiths. Consistent quantum theory. CUP, 2002.

[7] Claire Jones and Gordon Plotkin. A probabilistic powerdomain of valuations. In LICS ’89. IEEE
Computer Society, 1989.

[8] Joost-Pieter Katoen. Quantitative and Qualitative Extensions of Event Structures. PhD Thesis,
University of Twente, 1996.

[9] N Saheb-Djahromi M Alvarez-Manilla, A Edalat. An extension result for continuous valuations. Journal
of the London Mathematical Society, 61(2):629–640, 2000.

[10] Donald Martin. The determinacy of Blackwell games. Journal of Symbolic Logic, 63(4):1565–1581,
1998.

[11] Mikkel Nygaard and Glynn Winskel. Linearity in process languages. In LICS’02. IEEE Computer
Society, 2002.

[12] Silvain Rideau and Glynn Winskel. Concurrent strategies. In LICS 2011. IEEE Computer Society,
2011.

[13] Daniele Varacca, Hagen Völzer, and Glynn Winskel. Probabilistic event structures and domains. Theor.
Comput. Sci. 358(2-3): 173-199, 2006.

[14] Glynn Winskel. Event structure semantics for CCS and related languages. In ICALP’82, volume 140
of LNCS. Springer, 1982.

[15] Glynn Winskel. Event structures with symmetry. Electr. Notes Theor. Comput. Sci. 172: 611-652,
2007.

[16] Glynn Winskel. Event structures, stable families and games. Lecture Notes, Cambridge University
Computer Laboratory: http://www.cl.cam.ac.uk/∼gw104/EvStrsStFamGames.pdf, 2012.

[17] Glynn Winskel. Winning, losing and drawing in concurrent games with perfect or imperfect information.
In Festschrift for Dexter Kozen, volume 7230 of LNCS. Springer, 2012.

392

MFPS 2013

Approximating Bisimilarity for Markov
Processes 1

Chunlai Zhou2

Computer Science Department
School of Information

Renmin University of China
Beijing, CHINA

Abstract

In this paper we investigate bisimilarity for general Markov processes through the correspondence between
sub-σ-algebras and equivalence relations. In particular, we study bisimulations from the perspective of fixed-
point theory. Given a Markov process M = 〈Ω,Σ, τ〉, we characterize its state bisimilarity as the greatest
fixed point of a composition of two natural set operators between equivalence relations on Ω and sub-σ-
algebras of Σ. Moreover, we employ a Smith-Volterra-Cantor-set-construction to obtain an example to show
that state bisimilarity is beyond ω iterations of these two operators alternately from event bisimilarity and
hence the composite operator is not continuous. This process of iteration illustrates the gap between event
bisimilarity (or logical equivalence) and state bisimilarity, and hence provides insights about the Hennessy-
Milner property for general Markov processes. At the end of this paper, we also study approximation of
Markov processes related to filtration.

Keywords: Markov processes, state bisimilarity, event bisimilarity, fixed point, Hennessy-Milner logic

1 Introduction

Markov processes with continuous state spaces are important mathematical models

in different physical sciences such as physics, biology, finance and computer sciences.

The dynamics of the processes is governed by the present state rather than by the

past history of the processes. With the ever-growing computer technology, we need

to develop a theory of computational grip of this kind of important structures. If one

is interested in computing them, we must build a machinery to approximate Markov

processes with continuous state space and also make sure that the approximating

processes preserve all the essential properties especially the dynamic aspects of the

original processes.

1 I want to thank Professor Ernst-Erich Doberkat, Ingo Battenfeld, Yuan Feng and Pedro Sánchez Terraf for
helpful discussions at different stages of this research. This work is partly supported by NSF of China (Grant
Number: 60905036), by the Key Project for basic research from the Ministry of Science and Technology of
China (Grant Number: 2012CB316205), by the Basic Research Funds in Renmin University from the Central
Government (Grant No. 201230005) and by German Academic Exchange Service (DAAD Codenumber:
A/10/00803).
2 Email: chunlai.zhou@gmail.com

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.com/locate/entcs

mailto:myuserid@mydept.myinst.myedu

Zhou

The limit of the approximating processes is usually not the original approximated

process but instead the quotient process with respect to some bisimilarity. There are

two totally different notions of bisimilarities for Markov processes in the literature.

The first one is called state bisimilarity. Intuitively, two states are state bisimilar

in the process if they match transition probabilities for the same moves. And

the other one is called event bisimilarity. Two states are event bisimilar if they

are indistinguishable by any sub-σ-algebra of events that respects the dynamics

in the process. For any general Markov process, event bisimilarity coincides with

logical equivalence and is a superset of state bisimilarity [4]. For Markov processes

on analytical spaces or Polish spaces [5][7], these three kinds of equivalences are

the same, which is the well-known Hennessy-Milner property. However, a general

Markov process does not necessarily satisfy the Hennessy-Milner property [12].

Conceptually, there is a mismatch between approximating Markov processes and

bisimilarities in the literature. Most approaches to approximate Markov processes

[6][15][3][13] employ similar syntactic machineries. The limit of the approximating

Markov processes is the quotient Markov process with respect to event bisimilarity

(or logical equivalence). However, it is the quotient Markov process with respect to

state bisimilarity that preserves the dynamics of the original Markov process.

In order to understand better the approximation of Markov processes, we study

in this paper approximating bisimilarity for general Markov processes. There are

two approaches for approximating bisimilaries: bottom-up and top-down. The ap-

proximation according to the bottom-up approach is essentially syntactic and con-

sists of a sequence of n-bisimilarities, which corresponds to logical equivalence up

to depth n. So this approach is about event bisimilarity and is in spirit closely

related to those of approximating Markov process in the literature. The second and

top-down approach is semantical and studies state bisimilarity from the perspective

of fixed-point theory. Given a Markov process M = 〈Ω,Σ, τ〉, we characterize its

state bisimilarity as the greatest fixed point of a composition O of two natural set

operators between equivalence relations on Ω and sub-σ-algebras of Σ (Section 4).

Not only may state bisimilarity be obtained from the universal relation on Ω by

iterating α times the composite operator O for some ordinal α, but also it can be

reached top-down from event bisimilarity by iterating β times O for some ordinal

β. This top-down approach is actually reflected in many algorithms of computing

bisimilarity in the literature [5] [6]. In this paper, we employ the above ordinal

β to measure the gap from event bisimilarity to state bisimilarity. Sánchez Terraf

[12] constructed an example and showed that the gap there is at least one. In this

paper, we employ a Smith-Volterra-Cantor set (so-called fat Cantor set) to build

an example and show that the gap is beyond the limit ordinal ω. This implies that

the operator O is not continuous and the gap between state and event bisimilarities

is very big. Also the example illustrates the gap between the above two approaches

for approximating bisimilarities: bottom-up and top-down.

At the end of the paper, we present a general theory about filtration as an ap-

proach of approximating Markov processes and discuss its relations to the above

approaches to approximate bisimilarities. In particular we provide another charac-

terization of the Hennessy-Milner property through filtration. Essentially, a filtra-

tion of a Markov process M ′ through a sublanguage L′ of the whole language L

394

Zhou

for Markov processes is its quotient that respects the satisfiability of all formulas

in L′. We show (Theorem 5.4) that a Markov process satisfies the Hennessy-Milner

property iff it has only one filtration through the language L.

2 Preliminaries

Let A be a (Boolean) algebra on a set X, i.e. a non-empty collection of subsets

of X closed under complements and binary unions. A is a σ-algebra if it is also

closed under countable unions. If A is a σ-algebra, then X = 〈X,A〉 is a measurable

space and the elements of A are usually called events or measurable subsets of X.

We write σ(A0) for the smallest σ-algebra containing a given set A0 of subsets

of A. When σ(A0) = A, we usually say that A0 generates A. A measurable

function f : 〈X,A〉 → 〈X ′,A′〉 is a function f : X → X ′ such that, for any

A′ ∈ A′, f−1(A′) ∈ A where 〈X ′,A′〉 is also a measurable space. A set function

µ : A → [0,∞] on A in X is finitely additive if µ(A1∪A2) = µ(A1)+µ(A2) whenever

A1 and A2 are disjoint elements of A. µ is called a (countably additive)measure if

it satisfies the following conditions:

(i) µ(∅) = 0;

(ii) µ(
⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai) where {Ai}∞i=1 is a pairwise disjoint sequence of

events of A.

The second property is usually called the countable additivity. The measure µ is

finite or infinite as µ(X) < ∞ or µ(X) = ∞. If µ(X) ≤ 1, then µ is called a

subprobability measure. If µ(X) = 1, then µ is called a probability measure. A

metric space 〈X, ρ〉 is complete if any Cauchy sequence has a limit in X, and ρ is

called a complete metric. A topological space 〈X, τ〉 is called separable if it has

a countable dense subset. A Polish space 〈X, τ〉 is a separable topological space

which is metrizable through a complete metric. The Borel σ-algebra B(X, τ) for

the topology τ is the smallest σ-algebra that contains τ . An analytical space is

the image of a Polish space under a continuous function from one Polish space to

another. The interested reader may refer to [1] for the basics about measure theory.

A transition (sub)probability function T on a measurable space X = 〈X,A〉 is a

function from X ×A to [0, 1] satisfying the following two conditions:

• for each x ∈ X, T (x, ·) is a (sub)probability measure, and

• for each A ∈ A, T (·, A) is a measurable function.

T is also called a Markov kernel. A Markov process M is a structure 〈X,A, T 〉,
where 〈X,A〉 is measurable space and T is a subprobability transition function.

A function f : 〈X,A, T 〉 → 〈X ′,A′, T ′〉 is a zigzag morphism if it is surjective,

measurable, and the following equality holds:

T (x, f−1(A′)) = T ′(f(x), A′), for any x ∈ X,A′ ∈ A′.

The two Markov processes 〈X,A, T 〉 and 〈X ′,A′, T ′〉 are probabilistically bisimilar

if there is a Markov process 〈X ′′,A′′, T ′′〉 with two surjective zigzag morphisms

h′ : X ′′ → X ′, and h : X ′′ → X.

395

Zhou

One important result about Markov processes is that there is a Hennessy-Milner

logic to characterize the above probabilistic bisimulation. A formula φ of the logic

is formed by the following sytax:

φ := > | ¬φ | φ1 ∧ φ2 | Lrφ(r ∈ Q ∩ [0, 1])

where Q is the field of rationals. L denotes the language of this simple syntax. The

depth dp(φ) of formulas φ is defined inductively as in modal logic. Ln denotes the

sublanguage of L of formulas of depeth ≤ n (n = 0, 1, 2, · · ·). The interpretation

of formulas in the Markov process M = 〈S,A, T 〉 is straightforward except the

following crucial clause:

M,w |= Lrφ iff T (w)([[φ]]M) ≥ r, where [[φ]]M := {w ∈ S : M,w |= φ}.

A formula φ is called satisfied at w in M if M,w |= φ. Two states in S are called

logical equivalent if they satisfy the same set of formulas in L. The following is the

well-known theorem about the Hennessy-Milner property or expressivity of Markov

processes [5][7][8].

Theorem 2.1 Let 〈S,A, T 〉 be a Markov process in which S is a Polish space and

A is a Borel σ-algebra. Two states are probabilistically bisimilar iff they satisfy the

same set of formulas of L.

Before moving to the main part, we first fix some notations. Let 〈Ω,Σ〉 be a

measurable space and R be an equivalence relation on Ω. For E ⊆ Ω, E/R denotes

the set {[s]R : s ∈ E} and, for Σ′ ⊆ Σ, Σ′/R = {E′/R : E′ ∈ Σ′}. It is easy to see

that 〈Ω/R,Σ/R〉 is also a measurable space. Conversely, for B ⊆ Ω/R, B∪ denotes⋃
B and, for Σ′′ ⊆ Σ/R, Σ′′∪ denotes the set {B∪ : B ∈ Σ′′}. In particular, 2

Ω/R
∪

denotes the set {A ∈ 2Ω : A =
⋃
C for some C ∈ 2Ω/R} 3 . For the equivalence

relation R on Ω, elements of Σ are called R-closed if they are also unions of R-

equivalence classes. Σ(R) denotes the sub-σ-algebra of R-closed events in Σ, i.e.,

Σ ∩ 2
Ω/R
∪ . Let Σ(·) denote this mapping from equivalence relations on Ω to sub-

σ-algebras of Σ. Conversely, for any sub-σ-algebra Σ′ of Σ, R(Σ′) denotes the

equivalence relation:

sR(Σ′)s′ if, for any A′ ∈ Σ′ (s ∈ A′ ⇔ s′ ∈ A′).

Let R(·) denote this mapping from sub-σ-algebras of Σ to equivalence relations on

Ω. It is easy to check that, given the space (Ω,Σ), these two maps Σ(·) and R(·)
form a Galois connection [4]:

(i) for any sub-σ-algebra B of Σ, B ⊆ Σ(R(B));

(ii) for any equivalence relation R′ on S, R′ ⊆ R(Σ(R′)).

For a Markov process M = 〈Ω,Σ, τ〉 on 〈Ω,Σ〉, we define a relation RT (M) as

follows: any s and t in Ω,

(s, t) ∈ RT (M) whenever τ(s, E) = τ(t, E) for all E ∈ Σ.

Whenever τ is clear, we also write RT (M) as RT (Σ). Let RT (·) denote this mapping

from sub-σ–algebras of Σ to equivalence relations on Ω. RT (·) and Σ(·) don’t

3 In topology, it is usualy denoted as (Ω/R)∪.

396

Zhou

generally form a Galois connection (Example ??). Let Σ′ be a sub-σ-algebra of Σ.

We say that Σ′ is stable with respect to M = 〈Ω,Σ, τ〉 if, for all E ∈ Σ′, r ∈ [0, 1],

{w ∈ Ω : τ(w,E) > r} ∈ Σ′.

It is easy to see that Σ′ is stable iff τ(·, E) is Σ′-measurable for each E ∈ Σ′,i.e.,

〈Ω,Σ′, τ〉 is a Markov process [4].

Lemma 2.2 Let R be an equivalence relation on Ω and Σ′ be a sub-σ-algebra of Σ

such that Σ′ is stable.

(i) 〈Ω,Σ(R), τ〉 is a Markov process if and only if τ(·, E) is constant on R-classes

for all E ∈ Σ(R).

(ii) R(Σ′) ⊆ RT (Σ′).

Note that, generally, Part 2 does not hold if Σ′ is not stable.

Lemma 2.3 Let 〈Ω,Σ, τ〉 be a Markov process, Σ1 and Σ2 be two sub-σ-algebras of

Σ, and R1 and R2 be two equivalence relations on Ω.

(i) If Σ2 ⊆ Σ1, then RT (Σ2) ⊇ RT (Σ1) and R(Σ2) ⊇ R(Σ1).

(ii) If R1 ⊆ R2, then Σ(R1) ⊇ Σ(R2).

(iii) If Σ2 ⊆ Σ1, then Σ(RT (Σ2)) ⊆ Σ(RT (Σ1)).

(iv) If R1 ⊆ R2 , then RT (Σ(R1)) ⊆ RT (Σ(R2)).

3 Fixed-point characterization of state bisimilarity

In the following sections, we consider a given Markov process M = 〈S,A, τ〉 and

study relationships between sub-σ-algebras of A and equivalence relations on S.

Definition 3.1 An equivalence relation R on Markov process M := 〈S,A, τ〉 is

called a state bisimulation if R ⊆ RT (A(R)), namely,

for any s, t ∈ S, sRt implies that τ(s, E) = τ(t, E) for every E ∈ A(R).

In other words, R is a state bisimulation if it is a post-fixpoint of the composite

operator RT (A(·)). From Part (1) of Lemma 2.2, we know that R is a state bisimu-

lation iff 〈S,A(R), τ〉 is a Markov process. Two sates s and t in S are state bisimilar

if there is a state bisimulation R such that (s, t) ∈ R. An equivalence relation R′

on M is called an event bisimulation if it is defined through a Markov process with

a sub-σ-algebra A′ in the sense that

• R′ = R(A′), i.e., for any s, t ∈ S, sR′t iff s and t are indistinguishable in A′;
• 〈S,A′, τ〉 is a Markov process.

Two states s and t are event bisimilar if there is an event bisimulation R′ such that

(s, t) ∈ R′.

The classes of both state and event bisimulations are closed under the following

operation: for arbitrary index set I,

•
∨
i∈I Ri := (

⋃
i∈I Ri)

∗ where (
⋃
i∈I Ri)

∗ denotes the transitive closure of the rela-

tion
⋃
i∈I Ri.

397

Zhou

Thus state bisimilarity is the union of all state bisimulations, and event bisimilarity

that of state bisimulations. ≈M and ∼M denote state and event bisimilarities on

M , respectively. When the context is clear, we usually drop the subscript M .

Originally, Danos et. al. [4] would like to present event bisimulation as a weak-

ening of state bisimulation. However, from the following example (adapted from

Example 4.11 in [4]), we know that a state bisimulation R is not in general an event

bisimulation although a closely-related bigger state bisimulation R(A(R)) is indeed

an event bisimulation (part 4 of the following proposition, which is from [4]).

Proposition 3.2 Let R be a state bisimulation.

(i) R ⊆ R(A(R));

(ii) If Λ is a sub-σ-algebra of A, R(Λ) = R(A(R(Λ))) and Λ ⊆ A(R(Λ));

(iii) R is an event bisimulation iff R = R(A(R));

(iv) R(A(R)) is both a state bisimulation and an event bisimulation.

In the remainder of this section, we will investigate state (event) bisimulation

from the perspective of fixed-point theory. From the above Proposition 3.2, we know

that, if an equivalence relation R on S is both a state bisimulation and an event

bisimulation, it is a fixed point of the operator R(A(·)) on the class of equivalence

relations on S.

Theorem 3.3 Both state bisimilarity and event bisimilarity are fixed points of the

composite operator R(A(·)). So state bisimilarity ≈ is also an event bisimulation

and hence ≈ ⊆ ∼.

Proof. From Proposition 3.2, we know that ≈ ⊆ R(A(≈)) and R(A(≈)) is a state

bisimulation. Since ≈ is the union of all state bisimulations, ≈ = R(A(≈)). The

proof for event bisimilarity is similar. 2

However, event bisimilarity ∼ is not the greatest fixed point of the operator,

since the universal relation S × S is also a fixed point. In the next section, we will

show that generally the above containment in Theorem 3.3 is strict.

Theorem 3.4 The state bisimilarity ≈ is the greatest fixed point of the composite

operator RT (A(·)).

Proof. We know from Theorem 3.3 that, for state bisimilarity ≈, ≈ = R(A(≈)).

Since 〈S,A(≈), τ〉 is a Markov process, ≈= R(A(≈)) ⊆ RT (A(≈)) (according to

Lemma 3.2). Let R′ denote RT (A(≈)). It follows that A(R′) ⊆ A(≈) and hence

τ(·, E) is constant on R′-classes for all E ∈ A(≈) and hence is constant on R′-

classes for all E ∈ A(R′). It follows from Lemma 2.2 that R′ is a state bisimulation.

Since we have shown ≈⊆ R′ and ≈ is the greatest state bisimulation, the state

bisimilarity ≈ is the same as R′. In other wors, ≈ is also the fixed point of the

operator RT (A(·)). It is also the greatest fixed point. Indeed, each fixed point R of

RT (A(·)) is also a state bisimulation and hence is contained in the state bisimilarity

≈.

2

398

Zhou

One may also appeal directly to the well-known Tarski-Knaster Theorem (Chap-

ter 1 of [11]) to show that state bisimilarity is the greatest fixed point of the compos-

ite operator RT (A(·)). Desharnais et.al. [6] also studied state bisimilarity from the

perspective of fixed point but did not consider its relationship with other bisimilar-

ities. The main purpose of our above presentation of state bisimilarity by detouring

to transition bisimilarity is to characterize both the relationships among different

bisimulations and the gaps among them through the operator RT (A(·)).

4 Gap between state and event bisimilarities

For simplicity, we use O to denote the composite operator RT (A(·)). For a relation

R, we construct by transfinite induction a chain of equivalence relations on M =

〈S,A, τ〉 as follows:

• Oα+1(R) = O(Oα(R));

• Oλ(R) =
⋃
α<λ Oα(R) if λ is a limit ordinal.

According to Lemma 2.3, O is monotonic.

Theorem 4.1 For the above operator O,

(i) The greatest fixed point exists and is Oα(Ru) for some ordinal α. So state

bisimilarity can be obtained by iterating the operator O α times from the uni-

versal relation Ru for some ordinal α whose cardinality is no larger than that

of S.

(ii) state bisimilarity ≈ can be obtained from event bisimilarity ∼ by iterating α

times O for some ordinal α; in other words, ≈ = Oα(∼).

Proof. The first part follows trivially from Tarski-Knaster’s fixed point Theorem

and the second from Theorem 3.4 and Lemma 2.3. 2

The above theorem tells us that the ordinal α in the equation ≈ = Oα(∼) may

be employed to “measure” the gap between state bisimilarity and event bisimilar-

ity. In the following, we employ a Smith-Volterra-Cantor set (or simply SVC set)

to construct an example to show that state bisimilarity can not be obtained by

iterating ω times the operator O from event bisimilaity. This example illustrates

the gaps between these two bisimilarities and further between the two approaches

for approximating bisimilarity: top-down and bottom-up. Also this example shows

that O is not downward continuous (Corollary 4.7). But, if 〈S,A〉 is analytical or

discrete, then state bisimilarity and event bisimilarity coincide and the operator O

is continuous ([4] and [9]).

Example 4.2 (SVC-set-construction) We define a sequence of partitions Πi(i ≥
0) and corresponding equivalence relations Ri(i ≥ 0) of S = [0, 1] inductively as

follows. For an interval I of S, let B(I) denote the σ-algebra of Borel sets in I,

C(I) the countable subclass that generates the σ-algebra and M(I) the Lebesgue

completion. There is a non-Lebesgue-measurable subset E0 of [1
2 , 1]. Let B0 denote

σ(C[1
2 , 1]) ∪ {[0, 1

2], E0}). The construction will proceed in steps. At the first step,

let I1,1 denote the open interval (1
2 ·

3
8 ,

1
2 ·

5
8). Thus I1,1 is the open middle of the

interval I0 := [0, 1
2] of length 1

2 ·
1

22·1 . The second step involves performing the first

399

Zhou

step on each of the two remaining closed intervals of I0 \ I1,1. That is, we produce

two open intervals I2,1 and I2,2, each being the open middle with length 1
2 ·

1
22·2 of

one of the two intervals compromising I0 \ I1,1. At the i-th step we produce 2i−1

open intervals, Ii,1, Ii,2, · · · , Ii,2i−1 , each of length 1
2 ·

1
22i

. The (i+1)-th step consists

of producing open middles of length 1
2 ·

1
22(i+1) of each of the intervals of

I0 \
⋃i
j=1

⋃2j−1

k=1 Ij,k.

D0 denotes [0, 1
2]. For any natural number i, letDi denote the set I0\

⋃i
j=1

⋃2j−1

k=1 Ij,k.

With Dω denoting the SVC set with respect to [0, 1
2], we define its complement by

I0 \Dω =
⋃∞
j=1

⋃2j−1

k=1 Ij,k

D0
0 1

2
E0

D1

E0I1,1

D2

I2,1 I2,2 E0

D3

E0

I3,1 I3,2 I3,3 I3,4

· · · · · ·

Dω
E0

There are some facts about this SVC set Dω that we need for the following

construction.

(i) Dω is a closed set and has a positive measure 1
4 . In fact, the total sum of the

lengths of the deleted open intervals is
∑∞

i=1
1
2

1
2i+1 = 1

4 .

(ii) Dω contains a non-Lebesgue-measurable subset Dω+1, since Dω has a positive

measure.

(iii) Dω is totally disconnected,i.e., all connected components are singletons. That

is to say, each connected component in Dω is a singleton.

Set R0 := {(x, x) : x ∈ (1
2 , 1]} ∪ {(x, y) : x, y ∈ [0, 1

2]}. Next we define another

equivalence relation R1 on [0, 1] which refines R0 by simulating the trisection process

in the construction of the SVC set Dω.

R1 : = {(x, x) : x ∈ (
1

2
, 1]}

∪{(x, y) : x, y ∈ I1,1}
∪{(x, y) : x, y ∈ I0 \ I1,1}

More generally, we define, for i ≥ 1,

400

Zhou

Ri : = {(x, x) : x ∈ (
1

2
, 1]}

∪
i⋃

j=1

{(x, y) : x, y ∈
2j−1⋃
k=1

Ij,k}

∪{(x, y) : x, y ∈ I0 \
i⋃

j=1

2j−1⋃
k=1

Ij,k}

Rω denotes the intersection of all Ri’s, i.e., Rω =
⋂
iRi. Actually Rω can be

expressed as follows:

Rω = {(x, x) : x ∈ (
1

2
, 1]}

∪
∞⋃
j=1

{(x, y) : x, y ∈
2j−1⋃
k=1

Ij,k}

∪{(x, y) : x, y ∈ I0 \
∞⋃
j=1

2j−1⋃
k=1

Ij,k}

Note that I0 \
⋃∞
j=1

⋃2j−1

k=1 Ij,k is precisely the SVC set Dω with respect to [0, 1
2].

Define Bn := σ(C[1
2 , 1] ∪ {[0, 1

2], E0} ∪ {Dj : j � n}) for n � ω + 1 where � is the

ordinal relation.

Let Cω+1 denote C[1
2 , 1] ∪ {[0, 1

2], E0} ∪ {Di : i = 1, 2, · · · } ∪ {Dω+1}, B−i the

σ-algebra σ(Cω+1 \{Di})(i = 1, 2, · · ·) and B−(ω+1) the σ-algebra σ(Cω+1 \{Dω+1}).
Note that all the events in Cω+1 are Lebesgue-measurable except Dω+1 and E0. So

Bω+1 = σ(Cω+1) and is countably generated. The following Extension Theorem is

the most important “weapon” that we will use to construct our Markov kernel τ .

Proposition 4.3 (Theorem 1.12.14 in [2]) Assume that

(i) µ is a finite nonnegative measure on the measurable space 〈Ω,Σ〉; and

(ii) A is a subset of Ω such that µ∗(A) < µ∗(A) where µ∗ and µ∗ are the inner and

outer measures of µ, respectively.

Then, for any r such that µ∗(A) ≤ r ≤ µ∗(A), there is a countably additive

measure µ′ on the σ-algebra σ(Σ ∪ {A}) such that µ′(A) = r and µ′ = µ on Σ.

By appealing to the above theorem, we obtain a measure λω on Bω such that

λω is an extension of the Lebesgue measure on the sub-σ-algebra generated by

C \ {E0, Dω+1}. It is easy to see that, since Dω+1 is a non-Lebesgue-measurable

subset of [0, 1
2], (λω)∗(Dω+1) < (λω)∗(Dω+1). According to the above Extension

Theorem, for any r such that (λω)∗(Dω+1) ≤ r ≤ (λω)∗(Dω+1), there is a countably

additive extension λrω+1 such that λrω+1 = λω on Bω and λrω+1(Dω+1) = r. Let

Iω+1 = {r : (λω)∗(Dω+1) ≤ r ≤ (λω)∗(Dω+1)}. There is an injective and increasing

f from C to the set Iω+1. For each x ∈ C, if f(x) = r, then we also use λ
f(x)
ω+1 to

denote λrω+1. Especially, we simply use λω+1 to denote the “last” such extension

λ
f(1

2
)

ω+1 . Note that λ
f(x)
ω+1 is a measure on Bω+1 for all x ∈ C.

It is easy to check that, for each Di(i = 1, 2, · · ·),

401

Zhou

(λω+1 �B−i)∗(Di) = λ(Di+1) < λ(Di−1) = (λω+1 �B−i)
∗(Di)

Similarly, according to Theorem 4.3, there is a measure λ−i on Bω+1 such that

λ−i(Di) 6= λω+1(Di) and λ−i = λω+1 on B−i.
Now we define a Markov kernel on the measurable space 〈S,Bω+1〉.

τ(x,E) =


x · λω+1(E) if x ∈ [1

2 , 1],

1
2 · λ

f(x)
ω+1(E) if x ∈ C \ {1

2},
1
2 · λ−i(E) if x ∈

⋃2i−1

k=1 Ii,k

Lemma 4.4 The above defined M := 〈S,Bω+1, τ〉 is a Markov process.

Proof. The crucial part is to show that τ(·, Dω+1) is Bω+1-measurable. This follows

from the fact that f is injective and increasing. 2

Lemma 4.5 [[L]]M := {[[φ]]M : φ ∈ L} ⊆ {E : E = E1∪ [0, 1
2] for some E1 ∈ B[1

2 , 1]}.
And the logical equivalence or event bisimilarity ∼M is

R0 = {(x, x) : x ∈ (1
2 , 1]} ∪ {(x, y) : x, y ∈ [0, 1

2]}

Theorem 4.6 (Main Theorem) For simplicity, let A denote the reference σ-algebra

Bω+1. For the above sequences of σ-algebra Bi and of equivalence relations Ri, they

satisfy the interrelations illustrated as follows:

Bω+1) σ(∪iBi)

RT (·)
��

· · ·) B1

RT (·)
��

) B0

RT (·)
��

R(·)

((

) σ([[L]]M

RT (·)
��

· · · ⊆ Rω

A(·)

hh

· · · (R2

A(·)

gg

(R1

A(·)

gg

(R0(=∼M)

A(·)

hh

Corollary 4.7 A(Rω) = Bω+1 and RT (Bω+1) Rω. So
⋂
i O(Ri)) O(

⋂
iRi) and

hence O is not downward continuous.

Proof. The first part is straightforward. The second one follows from the fact

RT (Bω+1) = {(x, x) : x ∈ [1
2 , 1] ∪ C} ∪

⋃∞
j=1

⋃2j−1

k=1 Ij,k

and hence RT (Bω+1) (Rω. 2

5 Filtration and Hennessy-Milner property

In this section, we simulate Goldblatt’s work in [10] to develop a general theory

about the relationship among bisimilarity, filtration and Hennessy-Milner property

by providing another characterization of the Hennessy-Milner property through fil-

tration (Theorem 5.4). The following proposition from [4] tells us that event bisim-

ilarity is characterized by the simple logic L.

Theorem 5.1 For the Markov process M = 〈S,A, τ〉,

(i) 〈S, σ([[L]]M), τ〉 is a Markov process;

(ii) R(A(∼)) =∼;

(iii) σ([[L]]M) is the smallest stable sub-σ-algebra A′ that defines ∼, i.e., R(A′) =∼.

402

Zhou

From the above proposition, we know that A(∼) is the biggest σ-algebra that

defines ∼ but is generally not the biggest stable σ-algebra that defines ∼ because

otherwise ∼ = ≈ (Theorem 5.4).

However, the biggest stable σ-algebra that defines ∼ always exists. Let F = {B :

A(∼) ⊇ B ⊇ σ([[L]]M), 〈S,B, τ〉 is a Markov process }. F is a complete lattice under

the following lattice operations: for (Bi)i∈I ⊆ F,

•
∧
i Bi =

⋂
i Bi;

•
∨
i Bi =

⋂
{B ∈ F : B ⊇ Bi for all i ∈ I}.

Let F denote
⋃

F. It follows immediately that 〈S,F , τ〉 is a Markov process and

is the biggest stable sub-σ-algebra that is contained in A(∼) and defines event

bisimilarity ∼.

In the following, we give a general definition of filtration. Essentially, a filtration

of a Markov process M ′ through a sublanguage L′ is its quotient that respects the

satisfiability of all formulas in L′. Let L′ be a subset of language of L which is

closed under subformulas. In other words,

• > ∈ L′;
• if Lrφ ∈ L′, φ ∈ L′;
• if φ ∧ ψ ∈ L′, φ ∈ L′ and ψ ∈ L′.

L′ defines an equivalence relation ∼L′ on S: s ∼L′ t if they satisfy the same set of

formulas in L′. Any Markov processes M∼L′ = 〈S/∼L′ ,A
′, τA

′
∼L′ 〉 on the set S/∼L′

of equivalence classes where A′ ⊆ A/∼L′ is called a filtration of M through the

sub-language L′ if it satisfies the following property: for any s ∈ S and φ ∈ L′,

M, s |= φ if and only if M∼L′ , [s]L′ |= φ

When the context is clear, we simply call M∼L′ a filtration. For the measurable

space 〈S/∼L′ , σ([[L]]M)/∼L′ 〉, let τ
σ([[L]]M)/∼L′∼L′ ([s]L′ , E) := τ(s′,

⋃
E) for some s′ ∈

[s]L′ and E ∈ σ([[L]]M)/∼L′ . From Proposition 2.2, we know σ([[L]]M)/∼L′ is stable.

Theorem 5.2 〈S/∼L′ , σ([[L]]M)/∼L′ , τ
σ([[L]]M)/∼L′∼L′ 〉 is a fitration.

It is clear that, for any filtration M∼L′ = 〈S/∼L′ ,A
′, τ∼L′ 〉, A

′ ⊇ σ([[L′]]M∼L′) and

〈S/∼L′ , σ([[L′]]M∼L′), τ∼L′ 〉 is a filtration.

In the following, we employ the idea of averaging in [3] to show that, for any

σ-algebra A′ such that A/∼L′ ⊇ A
′ ⊇ σ([[L′]]M∼L′), there is always a filtration

〈S/∼L′ ,A
′, τ∼L′ 〉 with A′ as its σ-algebra of events. The main task is to find a

Markov kernel τ∼L′ such that 〈S/∼L′ ,A
′, τ∼L′ 〉 is a Markov process.

In order to apply averaging here, we assume that there is a prior probability

measure P on the measure space 〈S,A〉. Note that any ∼L′-equivalence class [s]∼L′

is A-measurable. We define a mapping τA
′
∼L′ : S∼′L ×A

′ → [0, 1] as follows: for any

[s]L′ ∈ S∼′L and A′ ∈ A′,

τA
′
∼L′ ([s]L′ , A

′) :=

∫
[s]L′

τ(s,
⋃
A′)dP (s)

P ([s]L′)
.

403

Zhou

From [3] and Proposition 2.2, we know that

Theorem 5.3 For such defined τA
′
∼L′ ,

(i) 〈S/∼L′ ,A
′, τA

′
∼L′ 〉 is a Markov process and hence is a filtration of M through the

sub-language L′.
(ii) 〈S,A′∪, τ〉 is a Markov process if and only if the natural mapping from M

to 〈S/∼L ,A′, τA∼∼ 〉 is a zigzag morphism, i.e., for any s ∈ S and A′ ∈ A′,
τA
′
∼L′ ([s]∼L′ , A

′) = τ(s,
⋃
A′).

For the language L′, 〈S/∼L′ , σ([[L]]M)/∼L′ , τ
σ([[L′]]M)/∼L′∼L′ 〉 is called the smallest filtra-

tion and 〈S/∼L′ ,A/∼L′ , τ
A/∼L′∼L′ 〉 the greatest filtration on S/∼L′ . Note that gen-

erally the natural mapping from M to 〈S/∼L′ ,A
′, τA

′
∼L′ 〉 is not a zigzag morphim

because τA
′
∼L′ may be different from τ . That is to say, generally we don’t have

τA
′
∼L′ ([s]∼L′ , A

′) = τ(s,
⋃
A′) for s ∈ S and A′ ∈ A′. But, for A′ ∈ σ([[L]]ML), we

always have that, for any s ∈ S, τA
′
∼L′ ([s]∼L′ , A

′) = τ(s,
⋃
A′).

In [15], we provides a sequence of filtrations through a sequence of finite lan-

guages (Li)∞i=1, which are closed under subformulas, to approximate the original

Markov process M . This is a kind of approximation based on the so-called bottom-

up approximating (event) bisimilarity.

The following theorem is a generalization of Theorem 15 in [10] and provides

another characterization of the Hennessy-Milner property through filtration.

Theorem 5.4 For the whole language L,

(i) the natural mapping from M to 〈S/∼L ,A/∼, τ
A(∼)
∼ 〉 is a zigzag morphism if and

only if A(≈) = A(∼) or equivalently ≈ = ∼, i.e., M satisfies the Hennessy-

Milner property.

(ii) A(∼) = σ([[L]]M) iff there is only one filtration through the language L iff ≈ =

∼.

Proof. For the second part, we note that there is only one filtration through the

language L iff, for each A′ ∈ A(∼), τ(·, A′) is constant on [s]∼L for every s ∈ S. 2

The following is about the position of filtration in a general picture of interre-

lationships among different σ-algebras and equivalence relations.

filtration → A/∼ ⊇ F/∼ ⊇ σ([[L]])/∼

A

R(·)
��

⊇ A≈
R(·)

��

⊇ A∼
R(·)

((

(·)/∼

OO

⊇ F
R(·)

��

(·)/∼

OO

⊇ σ([[L]])

R(·)
uu

(·)/∼

OO

RA

A(·)

OO

⊆ ≈

A(·)

OO

⊆ ∼
A(·)

hh

404

Zhou

6 Conclusion

In this paper, we study the difference between event and state bisimilarities from

the perspective of fixed point theory. We quantify this difference by counting the

iteration times of the operator O from event bisimilarity to state bisimilarity. Our

work provides insights about the Hennessy-Milner property for general Markov pro-

cesses. At the end of this paper, we provide another characterization of this prop-

erty through filtration. Approximate bisimilarity [14] is another important notion

to reason about approximate equivalence of processes. It is a subject for future work

to study approximating bisimilarity for Markov processes from the perspective of

approximate bisimilarity.

References

[1] P. Billingsley. Measure and Probability. John Wiley & Sons, Inc., third edition, 1995. Wiley Series in
Probability and Mathematical Statistics.

[2] V.I. Bogachev. Measure Theory. Springer-Verlag Berlin Heidelberg, 2007.

[3] P. Chaput, V. Danos, P . Panangaden, and G. D. Plotkin. Approximating markov processes by
averaging. In ICALP (2), pages 127–138, 2009.

[4] V. Danos, Josee Desharnais, François Laviolette, and Prakash Panangaden. Bisimulation and
cocongruence for probabilistic systems. Inf. Comput., 204(4):503–523, 2006.

[5] J Desharnais, A. Edalat, and Panangaden P. Bisimulation for labeled markov processes. Inf. and
Compt., 179:163–193, 2002.

[6] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating labeled markov processes.
Inf. and Comp., 184:160–200, 2003.

[7] E. E Doberkat. Stochastic relations: congruence, bisimulations and the hennessy-milner theorem. SIAM
J. Computing, 35(3):590–626, 2006.

[8] E. E Doberkat. Stochastic Coalgebraic Logic. EATCS Mongraphs in Theoretical Computer Sciences.
Springer, 2010.

[9] E. E Doberkat. Lattice properties of congruences for stochastic relations. Ann. Pure Appl. Logic,
163(8):1016–1029, 2012.

[10] R. Goldblatt. Saturation and the hennessy-milner property. In M. de Rijke A. Ponse and Y. Venema,
editors, Modal Logic and Process Algebra, pages 107–129. CSLI Publications, Stanford, CA, 1995.

[11] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Foundation of Computing Series. MIT Press,
Cambridge, 2000.

[12] P. Terraf. Unprovability of the logical characterization of bisimulation. Inf. Comput., 209(7):1048–
1056, 2011.

[13] F. van Breugel and Worrell J. Approximating and computing behavioural distances in probabilistic
transition systems. Theor. Comput. Sci., 360(1-3):373–385, 2006.

[14] M. Ying and M. Wirsing. Approximate bisimilarity. In AMAST, pages 309–322, 2000.

[15] C. Zhou and M. Ying. Approximation of markov processes through filtration. Theoretical Comput.
Sci., 446:75–97, 2012.

405

	abstracts.pdf
	References

	root_entcs.pdf
	Introduction
	Preliminaries
	Setting the scene
	Equations and coequations
	Free and cofree automata
	Varieties and covarieties
	Transition monoids
	References

	MFPS-preproceding.pdf
	Introduction
	Preliminaries on cpos
	The high-level language
	Syntax and informal semantics
	Denotational semantics
	Operational semantics
	Implementation relations and equivalences

	The low-level language
	Syntax and informal semantics
	Denotational semantics
	Operational semantics
	Implementation relations and equivalences

	High and low
	Conclusion
	References

	mfps2013-final.pdf
	Introduction
	The essence of normalization by evaluation
	Components of denotational semantics
	Contributions

	A programming language with algebraic effects
	Algebraic effects
	Extending algebraic effects to a call-by-value language with higher types
	Equational theory
	Denotational semantics

	Normalization by evaluation
	Normal forms
	A model of set theory with identifiers
	Reification and reflection
	Summary of the normalization algorithm
	A note on implementation

	Correctness of the algorithm
	Relating values and producers with their denotations
	Proof of Theorem 4.1(iii)

	Equations and effects
	Equations on effects
	Normalization of effects

	Remarks on extensions to the language
	Summary
	References

	mfps13.pdf
	Introduction
	Preliminaries
	Event structures
	Concurrent strategies

	Concurrent games with payoff
	The value theorem
	Constructions on strategies
	Values of these constructions
	Value theorem

	Compositionality of optimal strategies
	Conclusion
	References
	Preliminaries: stable families and composition
	Constructions on strategies
	Results of these constructions
	Proof of the value theorem
	Proofs on compositionality of optimal strategies

	paper.pdf
	Introduction
	The Meta-Theory of NLC Terms without Abstraction
	NLC Typed Expressions and Equational Theories
	A Sound Categorical Semantics
	A Complete Categorical Semantics
	Category Theory/Type Theory Correspondence
	Solutions, Open Questions, and Further Work
	References
	Inductive Definition of Type System and Equations
	A Results Road Map
	Substitution and -Equivalence
	Basic Properties of FM-cccs
	Example Proofs

	dialogue.pdf
	Introduction
	Proof in Martin-Löf type theory in Agda notation
	Agda preliminaries
	Dialogues and continuity
	Gödel's system T extended with an oracle
	The dialogue interpretation of system T
	Relating the two models
	Experiments

	Informal, rigorous proof
	Discussion, questions and conjectures
	References

	mfps2013rev.pdf
	Introduction
	Theories
	Statement of the main result
	Free -continuous idempotent grove theories
	Proof of the main result
	Axiomatization
	References

	FahrenbergL13.pdf
	Introduction
	Higher-Dimensional Automata
	Path Objects, Open Maps and Bisimilarity
	Homotopies and Unfoldings
	History-Preserving Bisimilarity
	Labels
	Conclusion
	References

	mfps.pdf
	Models of concurrent computation
	Labelled transition systems with independence
	Asynchronous transition systems

	Persistent sets in asynchronous transition systems
	Comparing POR and categories of future components
	Conclusion
	References

	predcoindMFPSExtended.pdf
	Introduction
	Coinductive Predicates and Their Construction, Conventionally
	Final Sequences in a Fibration
	Summary and Future Work

	Coinductive Predicates as Final Coalgebras
	Final Sequences in a Fibration
	Size Restrictions on a Fibration
	Final Sequences in a Fibration

	A Fibration of Invariants
	Examples of Fibrations
	Examples at Large
	Concrete Examples

	References
	Appendix: Preliminaries
	Theory of Coalgebra
	Locally Finitely Presentable Categories
	Fibrations

	Appendix: Omitted Proofs
	Proof of Lem. 3.6
	Proof of Thm. 3.7
	Proof of Prop. 3.11
	Proof of Prop. 4.1
	Proof of Prop. 4.2
	Proof of Lem. 5.4
	Proof of Lem. 5.2
	Proof of Lem. 5.6
	Proof of Lem. 5.9
	Proof of Cor. 5.10

	hkmfps29b.pdf
	Introduction
	Preliminaries
	Order theoretical notions
	Compact and supercompact sets
	The Upper Powerspace
	Irreducible Sets

	Rudin's Lemma and its topological variants
	A topological variant of Rudin's Lemma
	Rudin's Lemma
	Another variant of Rudin's Lemma
	The Dcpo Case
	The Sober Case

	Quasicontinuous domains
	The way-below relation on finite subsets
	Quasi-continuous dcpos
	Abstract characterization of the domains QX for quasicontinuous X

	References

	ratopmodel.pdf
	Introduction
	Preliminaries
	Operational model and behaviour on free -algebras
	Finite dependency
	A rule format for operations on regular languages
	Conclusions and future work
	References

	mfps13.pdf
	Introduction
	Categories of files and patches
	Towards a category of conflicting files
	A cocompletion of files and insertions of lines
	Examples
	Handling deletions of lines
	Concluding remarks and future works
	References

	monadsforbehaviour.pdf
	Introduction
	Completely iterative monads
	Initial assumptions and notations
	Ideal and idealised monads
	Cims defined
	The free cim

	Cims, adjunctions, and tracing
	The States monad
	Example: Control structures for While

	Coinductive generalised resumptions
	Complete iterativity of K
	Example: Bisimulation

	Related and future work
	References

	paper-mfps.pdf
	Introduction
	Semantic Framework
	Modeling Passivity
	Applications
	Handling divergence
	Related work
	Conclusion

	automatic_arrays_v3.pdf
	Introduction
	A brief introduction to automatic sequences, coalgebras, and zip specifications
	Automata with output and automatic sequences
	Coalgebras, finality and bisimulation
	DFAOs and the set of sequences as coalgebras
	The zipk function and zip-specifications
	Automatic arrays
	Previously known results on automatic arrays

	Weave specifications for automatic arrays
	Final coalgebras for automatic arrays
	Array linearization with final stream coalgebras
	Connections between sequences and arrays using linearization

	Zip-mix specifications
	A subclass of zip-mix specifications
	k,l-alternating DFAOs and k,l-DFAOs

	Summary
	References

	mfps.pdf
	Introduction
	Overview

	The Bicategory of Matrices of Relations
	Introduction
	Construction

	Private and Public Information
	Private information
	Public information
	Interacting private and public data

	Modelling Cryptographic Procedures
	Encrypted communication
	Security properties
	Secret sharing

	References

	mfps2013_5_20.pdf
	Introduction
	Real number computation and 1-sequences
	Gray embedding
	Domains of 1-sequences

	Syntax and denotational semantics of XPCF
	PCF
	Syntax and semantics of XPCF

	Program examples of XPCF
	Operational semantics of XPCF
	Operational semantics of XPCF
	A sequential strategy of XPCF

	Computational adequacy of XPCF
	Expressive power of XPCF
	References

	ProbStrats-short.pdf
	Introduction
	Event structures
	Event structures and configurations
	Maps and operations on event structures

	Probabilistic event structures
	General intervals and drop functions
	Probabilistic event structures

	Probabilistic strategies
	Strategies
	Probabilistic strategies

	A language of probabilistic strategies
	Quantum strategies
	Quantum event structures
	Quantum strategies

	Extensions
	References

	ApproximatingBisimilarity.pdf
	Introduction
	Preliminaries
	Fixed-point characterization of state bisimilarity
	Gap between state and event bisimilarities
	Filtration and Hennessy-Milner property
	Conclusion
	References

	abstracts.pdf
	References

	block-structure.pdf
	Introduction
	Block structures
	Blocks and predicates
	Copower block structure on C*-algebras
	Matrix block structure on C*-algebras
	Examples and discussion
	Superdense coding
	Teleportation

	References

	ratopmodel.pdf
	Introduction
	Preliminaries
	Operational model and behaviour on free -algebras
	Finite dependency
	A rule format for operations on regular languages
	Conclusions and future work
	References

	mfps13.pdf
	Introduction
	Categories of files and patches
	Towards a category of conflicting files
	A cocompletion of files and insertions of lines
	Examples
	Handling deletions of lines
	Concluding remarks and future works
	References

	monadsforbehaviour.pdf
	Introduction
	Completely iterative monads
	Initial assumptions and notations
	Ideal and idealised monads
	Cims defined
	The free cim

	Cims, adjunctions, and tracing
	The States monad
	Example: Control structures for While

	Coinductive generalised resumptions
	Complete iterativity of K
	Example: Bisimulation

	Related and future work
	References

	paper-mfps.pdf
	Introduction
	Semantic Framework
	Modeling Passivity
	Applications
	Handling divergence
	Related work
	Conclusion

	automatic_arrays_v3.pdf
	Introduction
	A brief introduction to automatic sequences, coalgebras, and zip specifications
	Automata with output and automatic sequences
	Coalgebras, finality and bisimulation
	DFAOs and the set of sequences as coalgebras
	The zipk function and zip-specifications
	Automatic arrays
	Previously known results on automatic arrays

	Weave specifications for automatic arrays
	Final coalgebras for automatic arrays
	Array linearization with final stream coalgebras
	Connections between sequences and arrays using linearization

	Zip-mix specifications
	A subclass of zip-mix specifications
	k,l-alternating DFAOs and k,l-DFAOs

	Summary
	References

	mfps.pdf
	Introduction
	Overview

	The Bicategory of Matrices of Relations
	Introduction
	Construction

	Private and Public Information
	Private information
	Public information
	Interacting private and public data

	Modelling Cryptographic Procedures
	Encrypted communication
	Security properties
	Secret sharing

	References

	mfps2013_5_20.pdf
	Introduction
	Real number computation and 1-sequences
	Gray embedding
	Domains of 1-sequences

	Syntax and denotational semantics of XPCF
	PCF
	Syntax and semantics of XPCF

	Program examples of XPCF
	Operational semantics of XPCF
	Operational semantics of XPCF
	A sequential strategy of XPCF

	Computational adequacy of XPCF
	Expressive power of XPCF
	References

	ProbStrats-short.pdf
	Introduction
	Event structures
	Event structures and configurations
	Maps and operations on event structures

	Probabilistic event structures
	General intervals and drop functions
	Probabilistic event structures

	Probabilistic strategies
	Strategies
	Probabilistic strategies

	A language of probabilistic strategies
	Quantum strategies
	Quantum event structures
	Quantum strategies

	Extensions
	References

	ApproximatingBisimilarity.pdf
	Introduction
	Preliminaries
	Fixed-point characterization of state bisimilarity
	Gap between state and event bisimilarities
	Filtration and Hennessy-Milner property
	Conclusion
	References

