Random Bits of Noise

Michael W. Mislove

Tulane University
New Orleans, LA

MFPS 25
Oxford, UK

Work sponsored by ONR
Channels

- Mechanism for communication
 - *Overt*: used as intended to exchange information
 - *Covert*: not intended for communication
Channels

- Mechanism for communication
 - *Overt*: used as intended to exchange information
 - *Covert*: not intended for communication
 - *Noise*: converts one symbol into another.
Channels

- Mechanism for communication
 - *Overt*: used as intended to exchange information
 - *Covert*: not intended for communication
 - *Noise*: converts one symbol into another.

For inputs $X = \{x_0, \ldots, x_{m-1}\}$ and outputs $Y = \{y_0, \ldots, y_{n-1}\}$, a *noise matrix* for a channel $C: X \rightarrow Y$ is an $m \times n$-matrix:

$$M_C = \begin{pmatrix}
P(y_0|x_0) & P(y_1|x_0) & \cdots & P(y_{n-1}|x_0) \\
\vdots & \vdots & \ddots & \vdots \\
P(y_0|x_{m-1}) & P(y_1|x_{m-1}) & \cdots & P(y_{n-1}|x_{m-1})
\end{pmatrix}$$

Note: We assume C is lossless: $\sum_i P(y_j|x_i) = 1$ ($\forall i$).
Channels

- Mechanism for communication
 - Overt: used as intended to exchange information
 - Covert: not intended for communication
 - Noise: converts one symbol into another.

For inputs \(X = \{x_0, \ldots, x_{m-1}\} \) and outputs \(Y = \{y_0, \ldots, y_{n-1}\} \), a noise matrix for a channel \(C: X \rightarrow Y \) is an \(m \times n \)-matrix:

\[
M_C = \begin{pmatrix}
P(y_0|x_0) & P(y_1|x_0) & \cdots & P(y_{n-1}|x_0) \\
\vdots & \vdots & \ddots & \vdots \\
P(y_0|x_{m-1}) & P(y_1|x_{m-1}) & \cdots & P(y_{n-1}|x_{m-1})
\end{pmatrix}
\]

Note: We assume \(C \) is lossless: \(\sum_i P(y_j|x_i) = 1 \) (\(\forall i \)).

For \(p = (p_0 \ p_1 \ \ldots \ p_{m-1}) \) probability distribution on \(X \) we get

\[
p \cdot M_C = \begin{pmatrix}
\sum_i p_i P(y_0|x_i) & \sum_i p_i P(y_1|x_i) & \cdots & \sum_i p_i P(y_{n-1}|x_i)
\end{pmatrix}
\]

corresponding distribution on \(Y \).
Stochastic Matrices

- Matrix with non-negative, real entries; each row sums to 1
- \(m \times n \)-matrix represents a channel with \(m \) inputs and \(n \) outputs.
Stochastic Matrices

- Matrix with non-negative, real entries; each row sums to 1
 - $m \times n$-matrix represents a channel with m inputs and n outputs.
- For a binary alphabet, only need first column of noise matrix

\[
\begin{pmatrix}
0 & P(0|0) & P(1|0) \\
0 & P(0|1) & P(1|1)
\end{pmatrix}
\leftrightarrow
\begin{pmatrix}
0
\end{pmatrix}
\begin{pmatrix}
P(0|0) \\
P(0|1)
\end{pmatrix}
\sim [0, 1]^2
Stochastic Matrices

- Matrix with non-negative, real entries; each row sums to 1
 - $m \times n$-matrix represents a channel with m inputs and n outputs.
- For a binary alphabet, only need first column of noise matrix

\[
\begin{pmatrix}
0 & 1 \\
0 & P(0|0) & P(1|0) \\
1 & P(0|1) & P(1|1)
\end{pmatrix}
\leftrightarrow
\begin{pmatrix}
0 \\
P(0|0) \\
P(0|1)
\end{pmatrix}
\sim [0, 1]^2
\]

More generally,

\[
M_C = \begin{pmatrix}
P(y_0|x_0) & P(y_1|x_1) & \cdots & P(y_{n-1}|x_{m-1}) \\
\vdots & \vdots & & \vdots \\
P(y_0|x_{m-1}) & P(y_1|x_{m-1}) & \cdots & P(y_{n-1}|x_{m-1})
\end{pmatrix}
\leftrightarrow ([0, 1]^{n-1})^m
\]

\[
\begin{pmatrix}
P(y_0|x_0) & P(y_1|x_1) & \cdots & P(y_{n-2}|x_0) \\
\vdots & \vdots & & \vdots \\
P(y_0|x_{m-1}) & P(y_1|x_{m-1}) & \cdots & P(y_{n-2}|x_{m-1})
\end{pmatrix}
\leftrightarrow ([0, 1]^{n-1})^m
\]
Information basics

- S sample space
Information basics

- S sample space
- $X : \{x_0, \ldots, x_{m-1}\} \rightarrow S$ random variable with probability density p
Information basics

- **S** sample space
- **X** : \(\{x_0, \ldots, x_{m-1}\} \rightarrow S\) random variable with probability density \(p\)
- **Information** in events:
 - \(p(E) = 1 \Rightarrow I(E) = 0\)
 - \(p(E) \leq p(F) \Rightarrow I(E) \geq I(F)\)
 - \(E, F\) independent
 \(\Rightarrow I(E \cap F) = I(E) + I(F)\)
Information basics

- \(S \) sample space
- \(X : \{x_0, \ldots, x_{m-1}\} \rightarrow S \) random variable with probability density \(p \)
- \textit{Information} in events:
 - \(p(E) = 1 \Rightarrow I(E) = 0 \)
 - \(p(E) \leq p(F) \Rightarrow I(E) \geq I(F) \)
 - \(E, F \) independent
 \(\Rightarrow I(E \cap F) = I(E) + I(F) \)

As a function of \(p(E) \),
\[
I(p(E)p(F)) = I(p(E)) + I(p(F))
\]
Information basics

- S sample space
- $X : \{x_0, \ldots, x_{m-1}\} \rightarrow S$ random variable with probability density p

Information in events:

- $p(E) = 1 \Rightarrow I(E) = 0$
- $p(E) \leq p(F) \Rightarrow I(E) \geq I(F)$
- E, F independent
 \[I(E \cap F) = I(E) + I(F) \]

As a function of $p(E)$,

- $I(p(E)p(F)) = I(p(E)) + I(p(F))$

- $I(X) = -\log_b(p(X))$. Take $b = 2$
Information basics

- S sample space
- \(X: \{x_0, \ldots, x_{m-1}\} \rightarrow S \) random variable with probability density \(p \)

Information in events:

- \(p(E) = 1 \Rightarrow I(E) = 0 \)
- \(p(E) \leq p(F) \Rightarrow I(E) \geq I(F) \)
- \(E, F \) independent
 \(\Rightarrow I(E \cap F) = I(E) + I(F) \)

As a function of \(p(E) \),
\[
I(p(E)p(F)) = I(p(E)) + I(p(F))
\]

- \(I(X) = -\log_b(p(X)) \). Take \(b = 2 \)

Entropy function

\[
H(X) = -\sum_i p(s_i) \log_2 p(s_i)
\]

Average information in \(X \)

Binary case:
\[
H(X) = -\sum_{i=0}^{1} p(s_i) \log_2 p(s_i)
\]
Joint and Conditional Entropy

Given: two random variables X and Y on the same space.
Joint and Conditional Entropy

Given: two random variables X and Y on the same space.

Joint Entropy

- $H(X, Y) = - \sum_i \sum_j p(s_i, s_j) \log p(s_i, s_j) = - E \log p(X, Y)$
- $p(X, Y)$ – joint probability distribution on $X \times Y$
- $= \frac{p(X|Y)}{p(X)p(Y)}$
Joint and Conditional Entropy

Given: two random variables X and Y on the same space.

Joint Entropy

- $H(X, Y) = - \sum_i \sum_j p(s_i, s_j) \log p(s_i, s_j) = -E \log p(X, Y)$
 - $p(X, Y)$ – joint probability distribution on $X \times Y$
 - $= \frac{p(X|Y)}{p(X)p(Y)}$

Conditional Entropy

- $H(X|Y) = - \sum_i \sum_j p(s_i, s_j) \log p(s_i|s_j) = -E \log p(X|Y)$
 - $= - \sum_j p(s_j) H(X|Y = s_j)$
Mutual Information

\[I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \]
\[= - \sum_j p(s_j) \log_2 p(s_j) + \sum_i p(s_i) H(Y|X = s_i) \]
Mutual Information

- \(I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \)

 \[= - \sum_j p(s_j) \log_2 p(s_j) + \sum_i p(s_i)H(Y|X = s_i) \]

Channel Capacity

- \(Cap = \sup_Y I(X; Y) \)

 \[= \sup_X H(Y) - H(Y|X) \]
From Noise Matrices to Random Variables

- $M_C = \begin{pmatrix} \frac{1-a}{b} & \frac{a}{1-b} \\ b & 1-b \end{pmatrix}$, $p = [x \ 1-x]$ distribution on inputs
From Noise Matrices to Random Variables

- $M_C = \begin{pmatrix} a & 1-a \\ b & 1-b \end{pmatrix}$, $p = [x \ 1-x]$ distribution on inputs

- Two distributions:
 - $X = p = [x \ 1-x]$ - input distribution
 - $Y = p \cdot M_C = [xa + (1-x)b, \ x(1-a) + (1-x)(1-b)]$ - output distribution
From Noise Matrices to Random Variables

- \(M_C = \begin{pmatrix} a & 1-a \\ b & 1-b \end{pmatrix} \), \(p = [x \ 1-x] \) distribution on inputs
- Two distributions:
 - \(X = p = [x \ 1-x] \) - input distribution
 - \(Y = p \cdot M_C = [xa + (1-x)b, \ x(1-a) + (1-x)(1-b)] \) - output distribution

Capacity of Channel with Noise Matrix \(M_C \)

- \(\text{Cap}(M) = \sup_p H(p \cdot M) - H(p \cdot M \mid p) \)
 \[= \sup_x H(xa + (1-x)b) - (xH(a) + (1-x)H(b)) \]
 \[(p = [x \ 1-x]; \ H(z) \equiv H([z \ 1-z]) \)
Capacity of Channel with Noise Matrix M_C

- $\text{Cap}(M_C) = \sup_x H(xa + (1-x)b) - (xH(a) + (1-x)H(b))$

$(\rho = [x \ 1-x], \ 0 \leq x \leq 1)$
Capacity of Channel with Noise Matrix M_C

- $Cap(M_C) = \sup_x H(xa + (1-x)b) - (xH(a) + (1-x)H(b))$

$(p = [x \ 1-x], \ 0 \leq x \leq 1)$

Mean Value Theorem \implies

$Cap(M_C) = H(x_0a + (1-x_0)b) - (x_0H(a) + (1-x_0)H(b))$

where $H'(x_0) = \frac{H(a)-H(b)}{a-b}$.
For

\[
M_C \leftrightarrow \begin{pmatrix}
 P(y_0|x_0) & P(y_1|x_1) & \cdots & P(y_{n-2}|x_0) \\
 \vdots & \vdots & \ddots & \vdots \\
 P(y_0|x_{m-1}) & P(y_1|x_{m-1}) & \cdots & P(y_{n-2}|x_{m-1})
\end{pmatrix} \mapsto [0, 1]^{m(n-1)}
\]

\[\text{Cap}(M_C) = H(p_0 \cdot M_C) - p_0 \cdot \langle H(M_C) \rangle, \text{ where } \nabla H(p_0 \cdot M_C) = \vec{n}_P\]
$m \times n$-matrices

For

$$M_C \leftrightarrow \begin{pmatrix}
P(y_0|x_0) & P(y_1|x_1) & \cdots & P(y_{n-2}|x_0) \\
\vdots & \vdots & \ddots & \vdots \\
P(y_0|x_{m-1}) & P(y_1|x_{m-1}) & \cdots & P(y_{n-2}|x_{m-1})
\end{pmatrix} \hookrightarrow [0, 1]^{m(n-1)}$$

$\text{Cap}(M_C) = H(p_0 \cdot M_C) - p_0 \cdot \langle H(M_C) \rangle$, where $\nabla H(p_0 \cdot M_C) = \vec{n}_P$
\(m \times n \)-matrices

For

\[
M_C \leftrightarrow \begin{pmatrix}
 P(y_0|x_0) & P(y_1|x_1) & \cdots & P(y_{n-2}|x_0) \\
 \vdots & \vdots & \ddots & \vdots \\
 P(y_0|x_{m-1}) & P(y_1|x_{m-1}) & \cdots & P(y_{n-2}|x_{m-1})
\end{pmatrix} \mapsto [0, 1]^{m(n-1)}
\]

\[\text{Cap}(M_C) = H(p_0 \cdot M_C) - p_0 \cdot \langle H(M_C) \rangle, \text{ where } \nabla H(p_0 \cdot M_C) = \vec{n}_p\]
For *m* × *n*-matrices

\[
M_C \leftrightarrow \begin{pmatrix}
P(y_0|x_0) & P(y_1|x_1) & \cdots & P(y_{n-2}|x_0) \\
\vdots & \vdots & \ddots & \vdots \\
P(y_0|x_{m-1}) & P(y_1|x_{m-1}) & \cdots & P(y_{n-2}|x_{m-1})
\end{pmatrix} \mapsto [0, 1]^{m(n-1)}
\]

\[\text{Cap}(M_C) = H(p_0 \cdot M_C) - p_0 \cdot \langle H(M_C) \rangle, \text{ where } \nabla H(p_0 \cdot M_C) = \vec{n}_P\]
The Moral of the Story

- $\mathcal{ST}_{m,n}$ – $m \times n$ stochastic matrices

$C([0, 1]^{m(n-1)})$ – compact, convex subsets of $[0, 1]^{m(n-1)}$
$m \times n$-matrices

The Moral of the Story

- $\mathcal{ST}_{m,n} - m \times n$ stochastic matrices
- $C([0, 1]^{m(n-1)})$ – compact, convex subsets of $[0, 1]^{m(n-1)}$
- $(C([0, 1]^{m(n-1)}), \supseteq)$ is a domain: $A \ll A' \iff A' \subseteq A^\circ$
$m \times n$-matrices

The Moral of the Story

- $\mathcal{S}\mathcal{T}_{m,n} - m \times n$ stochastic matrices

 $C([0, 1]^{m(n-1)})$ – compact, convex subsets of $[0, 1]^{m(n-1)}$

 - $(C([0, 1]^{m(n-1)}), \supseteq)$ is a domain: $A \ll A' \iff A' \subseteq A^\circ$

- $M \xmapsto{\phi} \langle M(1), M(2), \ldots, M(m) \rangle : \mathcal{S}\mathcal{T}_{m,n} \rightarrow C([0, 1]^{m(n-1)})$

 is continuous.
The Moral of the Story

- $\mathbb{S}\mathbb{T}_{m,n} - m \times n$ stochastic matrices

\[C([0, 1]^{m(n-1)}) \] – compact, convex subsets of $[0, 1]^{m(n-1)}$

- $(C([0, 1]^{m(n-1)}), \supseteq)$ is a domain: \(A \ll A' \iff A' \subseteq A^\circ \)

- \(M \xrightarrow{\phi} \langle M(1), M(2), \ldots, M(m) \rangle: \mathbb{S}\mathbb{T}_{m,n} \rightarrow C([0, 1]^{m(n-1)}) \)
 is continuous.

- \(\phi(M_C) = \phi(M_{C'}) \Rightarrow \operatorname{Cap}(M_C) = \operatorname{Cap}(M_{C'}) \)

Induces \(\operatorname{Cap}': (C([0, 1]^{m(n-1)}), \supseteq) \rightarrow \mathbb{R}_{\geq 0}^{op} \).
The Moral of the Story

- $\mathbb{S} \mathbb{T}_{m,n} = m \times n$ stochastic matrices

 $C([0, 1]^{m(n-1)})$ – compact, convex subsets of $[0, 1]^{m(n-1)}$
 - $(C([0, 1]^{m(n-1)}), \supseteq)$ is a domain: $A \ll A' \iff A' \subseteq A^o$

- $M \mapsto \langle M(1), M(2), \ldots, M(m) \rangle : \mathbb{S} \mathbb{T}_{m,n} \to C([0, 1]^{m(n-1)})$ is continuous.

- $\phi(M_C) = \phi(M_{C'}) \implies \text{Cap}(M_C) = \text{Cap}(M_{C'})$
 Induces $\text{Cap}' : (C([0, 1]^{m(n-1)}), \supseteq) \to \mathbb{R}^{\text{op}}_{\geq 0}$.

- [Chatzikokolakis & Martin]
 $\text{Cap}' : (C([0, 1]^{m(n-1)}), \supseteq) \to \mathbb{R}^{\text{op}}_{\geq 0}$ is measurement. It also is monotone and Lawson continuous.
The Moral of the Story

- $\mathbb{S} \mathbb{T}_{m,n} - m \times n$ stochastic matrices

 $C([0, 1]^{m(n-1)})$ – compact, convex subsets of $[0, 1]^{m(n-1)}$

- $(C([0, 1]^{m(n-1)}), \supseteq)$ is a domain: $A \ll A' \iff A' \subseteq A^\circ$

- $M \overset{\phi}{\mapsto} \langle M(1), M(2), \ldots, M(m) \rangle : \mathbb{S} \mathbb{T}_{m,n} \rightarrow C([0, 1]^{m(n-1)})$ is continuous.

- $\phi(M_C) = \phi(M_{C'}) \Rightarrow \text{Cap}(M_C) = \text{Cap}(M_{C'})$

 Induces $\text{Cap}' : (C([0, 1]^{m(n-1)}), \supseteq) \rightarrow \mathbb{R}_{\geq 0}^\text{op}$.

- [Chatzikokolakis & Martin]
 $\text{Cap}' : (C([0, 1]^{m(n-1)}), \supseteq) \rightarrow \mathbb{R}_{\geq 0}^\text{op}$ is measurement. It also is monotone and Lawson continuous.

- **Question:** What is the *optimal* map $F : (C([0, 1]^{m(n-1)}), \supseteq) \rightarrow \mathbb{R}_{\geq 0}^\text{op}$?

 $F(A) \leq F(A') \iff \text{Cap}'(A) \leq \text{Cap}'(A')$
m-dimensional stochastic matrices

- A monoid S is *affine* if S is a subset of a vector space and $x \mapsto sx, xs : S \to S$ are affine.

- *Example*: $\mathbb{ST}_m = m \times m$ stochastic matrices.
m-dimensional stochastic matrices

- A monoid S is *affine* if S is a subset of a vector space and $x \mapsto sx, xs : S \to S$ are affine.

- **Example:** $\mathcal{ST}_m - m \times m$ stochastic matrices.

- S compact implies S has a smallest two-sided, closed ideal, $M(S)$. Also affine if S affine.
m-dimensional stochastic matrices

- A monoid S is *affine* if S is a subset of a vector space and $x \mapsto sx, xs : S \to S$ are affine.

- **Example:** $\mathbb{S}T_m = m \times m$ stochastic matrices.

- S compact implies S has a smallest two-sided, closed ideal, $M(S)$. Also affine if S affine.

\[
M(\mathbb{S}T_m) = \left\{ \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1m} \\ \vdots & \vdots & \ddots & \vdots \\ x_{11} & x_{12} & \cdots & x_{1m} \end{pmatrix} \mid x_{1i} \in [0, 1], \sum_i x_{1i} = 1 \right\}
\]

consists of *[right zeroes]*: $MN = N$ ($\forall N \in M(\mathbb{S}T_m)$).
m-dimensional stochastic matrices

- A monoid S is *affine* if S is a subset of a vector space and $x \mapsto sx, xs: S \to S$ are affine.
- **Example:** $\mathbb{ST}_m - m \times m$ stochastic matrices.
- S compact implies S has a smallest two-sided, closed ideal, $M(S)$.
 Also affine if S affine.

\[
M(\mathbb{ST}_m) = \left\{ \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1m} \\ \vdots & \vdots & & \vdots \\ x_{11} & x_{12} & \cdots & x_{1m} \end{pmatrix} \mid x_{1i} \in [0, 1], \sum_i x_{1i} = 1 \right\}
\]

consists of *right zeroes*: $MN = N \ (\forall N \in M(\mathbb{ST}_m))$.

- $\phi: \mathbb{ST}_m \to C([0, 1]^{m(m-1)})$ is a closed congruence, so $\phi(\mathbb{ST}_m)$ is a compact monoid.
m-dimensional stochastic matrices

- A monoid S is *affine* if S is a subset of a vector space and $x \mapsto sx, xs: S \to S$ are affine.
- **Example:** \mathbb{ST}_m – $m \times m$ stochastic matrices.
- S compact implies S has a smallest two-sided, closed ideal, $M(S)$. Also affine if S affine.

\[
M(\mathbb{ST}_m) = \left\{ \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1m} \\ \vdots & \vdots & & \vdots \\ x_{11} & x_{12} & \cdots & x_{1m} \end{pmatrix} \mid x_{1i} \in [0, 1], \sum_i x_{1i} = 1 \right\}
\]

consists of *right zeroes*: $MN = N$ ($\forall N \in M(\mathbb{ST}_m)$).

- $\phi: \mathbb{ST}_m \to C([0, 1]^m)$ is a closed congruence, so $\phi(\mathbb{ST}_m)$ is a compact monoid.
- $\text{Cap}(M) = \text{Cap}(N)$ if $M(\mathbb{ST}_m)M = M(\mathbb{ST}_m)N \iff \phi(M) = \phi(N)$.
Binary Noise Matrices - Martin, Moskowitz & Allwein

\[\mathcal{N} = \{ \begin{pmatrix} a \\ b \end{pmatrix} \mid a \geq b \} - \text{non-negative noise matrices} \ (\det \begin{pmatrix} a \\ b \end{pmatrix} \geq 0) \]
Binary Noise Matrices - Martin, Moskowitz & Allwein

\[N = \{ \begin{pmatrix} a \\ b \end{pmatrix} \mid a \geq b \} \text{ - non-negative noise matrices (det} \begin{pmatrix} a \\ b \end{pmatrix} \geq 0) \]

\[\equiv (a \ b) \leq (c \ d) \iff (c \ d) \in N(a \ b) \]
Binary Noise Matrices - Martin, Moskowitz & Allwein

\[\mathcal{N} = \left\{ \left(\begin{array}{c} a \\ b \end{array} \right) \mid a \geq b \right\} - \text{non-negative noise matrices } (\det \left(\begin{array}{c} a \\ b \end{array} \right) \geq 0) \]

\[\equiv \left(\begin{array}{c} a \\ b \end{array} \right) \leq \left(\begin{array}{c} c \\ d \end{array} \right) \iff \left(\begin{array}{c} c \\ d \end{array} \right) \in N \left(\begin{array}{c} a \\ b \end{array} \right) \]

\[\equiv \left(\begin{array}{c} a \\ b \end{array} \right) \leq \left(\begin{array}{c} c \\ d \end{array} \right) \iff \left(\begin{array}{c} c \\ d \end{array} \right) \in \left(\begin{array}{c} a \\ b \end{array} \right) \mathcal{N} \]
Binary Noise Matrices - Martin, Moskowitz & Allwein

\[\mathcal{N} = \{ (\begin{array}{c} a \\ b \end{array}) \mid a \geq b \} - \text{non-negative noise matrices} \ (\det(\begin{array}{c} a \\ b \end{array}) \geq 0) \]

\[
\begin{align*}
(0,0) & \rightarrow (0,1) \\
(0,0) & \rightarrow (1,0) \\
(0,0) & \rightarrow (1,1)
\end{align*}
\]

\[
\begin{align*}
(0,0) & \rightarrow (a,b) \\
(1,0) & \rightarrow (a,b) \\
(1,1) & \rightarrow (a,b)
\end{align*}
\]

\[
\begin{align*}
(\begin{array}{c} a \\ b \end{array}) \cdot (\begin{array}{c} c \\ d \end{array}) & = \left(\begin{array}{c} a(c-c)+c \\ b(c-c)+c \end{array} \right) = (\begin{array}{c} c \\ c \end{array})
\end{align*}
\]

\[
(\forall M)(\exists M' \in \mathcal{N}) \ Cap(M) = Cap(M').
\]
Binary Noise Matrices - Martin, Moskowitz & Allwein

\[x = \left(\begin{array}{c} a \\ b \end{array} \right) \quad 0_x = \frac{b}{1 - \det x} \quad \left(\begin{array}{c} 0_x \\ 0_x \end{array} \right) = \lim_{n} x^n \]

One-parameter Semigroup

A *one-parameter semigroup* is a monoid homomorphism \(\phi : ([0, 1], +) \rightarrow S \) into a monoid \(S \).
Generalizing to higher dimensions

One parameter semigroups

S compact, affine, $e = e^2$, $f = f^2 \in S$, $ef = fe = e$ implies

$\{(1 - \lambda)f + \lambda e \mid 0 \leq \lambda \leq 1\}$ is a one-parameter semigroup from f to e.
Generalizing to higher dimensions

One parameter semigroups

S compact, affine, $e = e^2$, $f = f^2 \in S$, $ef = fe = e$ implies

$\{(1 - \lambda)f + \lambda e \mid 0 \leq \lambda \leq 1\}$ is a one-parameter semigroup from f to e.

One “running through” each $M \in \langle \text{Id}_m, M(\mathbb{S}^m) \rangle$.
Generalizing to higher dimensions

One parameter semigroups

S compact, affine, $e = e^2$, $f = f^2 \in S$, $ef = fe = e$ implies
$\{(1 - \lambda)f + \lambda e \mid 0 \leq \lambda \leq 1\}$ is a one-parameter semigroup from f to e.

One “running through” each $M \in \langle Id_m, M(ST_m) \rangle$.

Many elements of ST_m lie on a translate of such a semigroup.
Generalizing to higher dimensions

One parameter semigroups

S compact, affine, $e = e^2$, $f = f^2 \in S$, $ef = fe = e$ implies

$\{(1 - \lambda)f + \lambda e \mid 0 \leq \lambda \leq 1\}$ is a one-parameter semigroup from f to e.

One “running through” each $M \in \langle \text{Id}_m, M(\mathbb{ST}_m) \rangle$.

Many elements of \mathbb{ST}_m lie on a translate of such a semigroup.

Example. But:

$$\left\{ \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + (1 - \lambda) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \mid 0 \leq \lambda \leq 1 \right\}$$

goes through

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 1/2 \\ 0 & 1/2 & 1/2 \end{pmatrix}$$
The Group of Units

- A monoid S has an identity – associated to it is the group of units $G(S)$ of the monoid.
- $G(S)$ - compact group if S compact.
- $G(T_m) = S_m$ – symmetric group on m letters.
The Group of Units

- A monoid S has an identity – associated to it is the group of units $G(S)$ of the monoid.
- $G(S)$ - compact group if S compact.
- $G(\mathcal{ST}_m) = S_m$ – symmetric group on m letters.

First approximate:

$$\langle G(\mathcal{ST}_m), M(\mathcal{ST}_m) \rangle$$ monoid generated by group of units and minimal ideal.

- Compact affine monoid.
- Every element in $\langle \text{Id}_m, M(\mathcal{ST}_m) \rangle$ lies on a unique one-parameter semigroup – all straight lines.
- $\bigcup_{g \in S_m} \langle g, M(\mathcal{ST}_m) \rangle \equiv \text{Cap}$ identifies each element with some element in $M(\mathcal{ST}_m)$; i.e, with some compact, convex subset of $[0, 1]^{m(m-1)}$.

Mislove (Tulane)

Random bits...

MFPS 25
A smaller submonoid:

Doubly Stochastic Matrices

$M \in \mathcal{ST}_m$ is *doubly stochastic* if each column also sums to 1.

\mathcal{DST}_m – doubly stochastic $m \times m$ matrices.

- Again a monoid with same group of units.
- $\langle \mathcal{DST}_m \rangle$ compact monoid.
- *NOT* a group!!
A smaller submonoid:

Doubly Stochastic Matrices

$M \in ST_m$ is *doubly stochastic* if each column also sums to 1.

DST_m – doubly stochastic $m \times m$ matrices.

- Again a monoid with same group of units.
- $\langle DST_m \rangle$ compact monoid.
- *NOT* a group!!

Why not?

Theorem: Any compact affine group is a point.
A smaller submonoid:

Doubly Stochastic Matrices

$M \in \text{ST}_m$ is *doubly stochastic* if each column also sums to 1.

DST_m – doubly stochastic $m \times m$ matrices.

- Again a monoid with same group of units.
- $\langle \text{DST}_m \rangle$ compact monoid.
- *NOT* a group!!

Why not?

Theorem: Any compact affine group is a point.

Proof: [Hofmis] Suppose G is such a group. Let $x \in G$ have order n.

Then $\sum_{i \leq n} \frac{x^i}{n} = \left(\sum_{i \leq n} \frac{x^i}{n} \right)^2$ by Fubini.

So, $\sum_{i \leq n} \frac{x^1}{n} = e$; then $x^i = e$ as e is extreme. \square
A smaller submonoid:

Doubly Stochastic Matrices

\(M \in \text{ST}_m \) is *doubly stochastic* if each column also sums to 1.

\(\text{DST}_m \) – doubly stochastic \(m \times m \) matrices.

- Again a monoid with same group of units.
- \(\langle \text{DST}_m \rangle \) compact monoid.
- *NOT* a group!!

Why not?

Theorem: Any compact affine group is a point.

Theorem: [Brown] Any compact group of non-negative matrices is finite.
Doubly Stochastic Matrices

$M \in \text{ST}_m$ is *doubly stochastic* if each column also sums to 1.

DST_m – doubly stochastic $m \times m$ matrices.

- Again a monoid with same group of units.
- $\langle \text{DST}_m \rangle$ compact monoid.
- *NOT* a group!!

Why not?

Theorem: Any compact affine group is a point.

Theorem: [Brown] Any compact group of non-negative matrices is finite.

Structure of $\langle \text{DST}_m \rangle$: Compact monoid; $G(\langle \text{DST}_m \rangle) = S_m$;

$M(\langle \text{DST}_m \rangle) = \left\{ \frac{1}{n} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix} \right\}$. Each element of S_3 lies on a line to $\frac{1}{n} \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$.

Mislove (Tulane)
Universal affine semigroups:

Generalizing to Stochastic Relations

$M_C : X \rightarrow Y$ generalizes to $f : X \rightarrow \text{Prob}(Y)$.

For Y compact, T_2, so is $\text{Prob}(Y)$ in weak*-topology.
Universal affine semigroups:

Generalizing to Stochastic Relations

$M_C : X \rightarrow Y$ generalizes to $f : X \rightarrow \text{Prob}(Y)$.

For Y compact, T_2, so is $\text{Prob}(Y)$ in weak*-topology.

Here’s an explanation:

$$X \mapsto C(X, \mathbb{R}) : \text{Comp} \rightarrow \text{Ban}$$

is contravariant: $f : X \rightarrow Y \Rightarrow C(f) : C(Y, \mathbb{R}) \rightarrow C(X, \mathbb{R})$

$$C(X, \mathbb{R}) \mapsto C(C(X, \mathbb{R}), \mathbb{R}) : \text{Ban} \rightarrow \text{Ban}.$$

But $C^2(X, \mathbb{R}) \simeq \text{Meas}(X, \mathbb{R})$. Extract $\text{Prob}(X)$ by restriction.
Universal affine semigroups:

Generalizing to Stochastic Relations

\(M_C : X \rightarrow Y \) generalizes to \(f : X \rightarrow \text{Prob}(Y) \).

For \(Y \) compact, \(T_2 \), so is \(\text{Prob}(Y) \) in weak*-topology.

If \((S, \cdot)\) is a compact semigroup, then

\[
\cdot : S \times S \rightarrow S \quad \Rightarrow \quad \ast : \text{Prob}(S) \times \text{Prob}(S) \rightarrow \text{Prob}(S)
\]

by \((\mu \ast \nu)(A) = (\mu \times \nu)((x, y) \in S \times S \mid x \cdot y \in A)\).

Then \((\text{Prob}(S), \ast)\) is a compact semigroup.
Beyond finite

Universal affine semigroups:

Generalizing to Stochastic Relations

\(M_C : X \to Y \) generalizes to \(f : X \to \text{Prob}(Y) \).

For \(Y \) compact, \(T_2 \), so is \(\text{Prob}(Y) \) in weak*-topology.

Theorem \(\text{Prob}(S) \) is the universal compact affine semigroup over \(S \).
Beyond finite Universal affine semigroups:

Generalizing to Stochastic Relations

\(M_C : X \to Y \) generalizes to \(f : X \to \text{Prob}(Y) \).

For \(Y \) compact, \(T_2 \), so is \(\text{Prob}(Y) \) in weak\(^*\)-topology.

Theorem \(\text{Prob}(S) \) is the universal compact affine semigroup over \(S \).

Moreover, \(x \mapsto \delta_x : S \to \text{Prob}(S) \) sends \(S \) into the set of extreme points of \(\text{Prob}(S) \).
Universal affine semigroups:

Generalizing to Stochastic Relations

\(M_C : X \to Y \) generalizes to \(f : X \to \text{Prob}(Y) \).

For \(Y \) compact, \(T_2 \), so is \(\text{Prob}(Y) \) in weak*-topology.

Theorem \(\text{Prob}(S) \) is the universal compact affine semigroup over \(S \).

Moreover, \(x \mapsto \delta_x : S \to \text{Prob}(S) \) sends \(S \) into the set of extreme points of \(\text{Prob}(S) \).

If \(S \) is a compact monoid, then \(\langle \{ \delta_g \mid g \in G(S) \} \rangle \) corresponds to the doubly stochastic matrices.

For \(G \) a compact group, \(M(\langle \{ \delta_g \mid g \in G \} \rangle) = \{ \mu_G \} \) – Haar measure on \(G \).