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Loal DCPOs, Loal CPOsand Loal CompletionsMihael W. Mislove 1Department of MathematisTulane UniversityNew Orleans, LA 70118Extended AbstratAbstratWe use a subfamily of the Sott-losed sets of a poset to form a loal ompletionof the poset. This is simultaneously a topologial analogue of the ideal ompletionof a poset and a generalization of the sobri�ation of a topologial spae. After weshow that our onstrution is the objet level of a left adjoint to the forgetful funtorfrom the ategory of loal pos to the ategory of posets and Sott-ontinuous maps,we use this ompletion to show how loal domains an play a role in the study ofdomain-theoreti models of topologial spaes. Our main result shows that anytopologial spae that is homeomorphi to the maximal elements of a ontinuousposet that is weak at the top also is homeomorphi to the maximal elements of abounded omplete loal domain. The advantage is that ontinuous maps betweensuh spaes extend to Sott-ontinuous maps between the modeling loal domains.1 IntrodutionThe Sott topology is of fundamental importane in domain theory. It lies atthe heart of the struture of domains, and of how to de�ne the appropriatemorphisms between domains: they are exatly those maps that are ontinuouswith respet to the Sott topology. Even more, the family of Sott losedsets is one representation of the lower or Hoare power domain of a domain.Another appliation using Sott-losed sets was �rst revealed in [9℄, where itwas shown that the sobri�ation of an algebrai poset in its Sott topologyis an algebrai dpo with the same set of ompat elements. This result wasextended to ontinuous posets in [12℄. The sobri�ation of any topologial1 This work is partially supported by the National Siene Foundation and the OÆe ofNaval Researh.This is a preliminary version. The �nal version will be published inEletroni Notes in Theoretial Computer SieneURL: www.elsevier.nl/loate/ents



Mislovespae is just the set of irreduible losed subsets of the spae, and any T0-spae is homeomorphi to its image in its sobri�ation, and that image is densein the sobri�ation. One way to view these results is that the sobri�ation of aontinuous poset ompletes the poset into a ontinuous dpo whose way-belowrelation { and hene Sott topology { is ompletely determined by the originalposet; this provides a topologial generalization of the ideal ompletion of aposet into an algebrai dpo.In this paper we �nd another use for the family of Sott-losed sets. Herewe show how a generalization of the sobri�ation of a ontinuous poset formsa loal po whih again ontains the original poset densely. In fat, this isthe objet-level of the left adjoint to the forgetful funtor from the ategoryof loal pos and Sott ontinuous maps to the ategory of posets and Sottontinuous maps. This loal po { the loal ompletion of the underlyingposet { is simply the losure of the image of the poset within the family ofbounded, irreduible Sott-losed sets, where a subset is bounded if it has anupper bound in the underlying poset. The sub-po of the family of losed setsgenerated by the family of bounded Sott-losed sets of a ontinuous po was�rst investigated in [11℄, where it was shown to form the objet level of a leftadjoint to the forgetful funtor from a subategory of Sott domains to theategory of SFP objets and Sott-ontinuous maps.After we establish the adjuntion between the ategories of loal dpos andposets, we turn our attention to using our loal ompletion to model topo-logial spaes. This line of inquiry has its roots in the work of Edalat [2{4℄who found numerous appliations of domain theory to areas beyond program-ming semantis. A reurring theme of Edalat's work has been the questionof whih topologial spaes an be represented as the family of maximal ele-ments of a domain. Previous results have shown that an important propertyfor suh models is that the inherited Sott topology on the set of maximalelements agrees with the inherited weak-dual topology on the maximal ele-ments; we all ontinuous posets that satisfy this property weak at the top.In his seminal paper [7℄, Lawson haraterized the spaes that arise as themaximal elements of !-ontinuous dpos whih are weak at the top as beingexatly the Polish spaes. Lawson also showed that domains that are weakat the top are exatly those for whih the mapping into the family of Sottlosed sets preserves maximal elements. We extend this result to the ase ofontinuous posets 2 , and then use it to show that any topologial spae thatis homeomorphi to the maximal elements of a ontinuous poset that is weakat the top also an be represented as the spae of maximal elements of a loaldomain that is bounded omplete. This applies in partiular to both Lawson'smodel of Polish spaes and to the formal ball model of Edalat and Hekmann[5℄. We also show how ontinuous mappings between spaes whih an be so2 Unfortunately, our terminology, taken from [9℄, di�ers from that of [7℄. For us, a ontin-uous poset need not be direted omplete, while the posets referred to in [7℄ are what noware ommonly alled ontinuous dpos. 288



Mislovemodeled naturally extend to their loal domain models.2 Loal dpos and loal posWe begin by realling some basis about partial orders. If P is a partiallyordered set, then a subset D � P is direted if eah �nite subset of D hasan upper bound in D. P is a direted omplete partial order (dpo) if eahdireted subset of P has a least upper bound in P . P is a loal dpo if eahdireted subset of P with an upper bound has a least upper bound; it is easyto see that this implies that #x = fy 2 P j y v xg is a dpo for eah x 2 P ,but the onverse may fail (f. [9℄). A loal po is a loal dpo whih also hasa least element.If P is a partial order and x; y 2 P , then we write x� y if for eah diretedsubset D � P for whih tD exists, if y v tD, then there is some d 2 D withx v d. We let +y = fx 2 P j x � yg, and we say P is a ontinuous poset if+y is direted and y = t +y for eah y 2 P . A domain is a ontinuous po,while a loal domain is a ontinuous loal po. An element x 2 P is ompatif x� x; we let K(P ) denote the set of ompat elements of P , and we say Pis an algebrai poset if K(y) =#y \K(P ) is direted and y = tK(y) for eahy 2 P .A mapping between partial orders is Sott ontinuous if it is monotone andpreserves suprema of direted sets. More preisely, if f :P ! Q is a monotonemap between partial orders P and Q, then f is Sott ontinuous if for eahdireted subset D � P for whih tD exists in P , then f(D) has a supremumin Q and f(tD) = tf(D). Equivalently, we an de�ne a Sott-losed subsetof a partial order to be a lower set whih is losed under (existing) supremaof direted subsets. It is easy to show that the intersetion of any family ofsuh sets is another suh, as is the �nite union, so the family �(P ) of suh setsforms the losed sets of a topology. It also is easy to show that a monotonemapping f :P ! Q between partial orders is ontinuous with respet to thistopology if and only i f preserves suprema of those direted subsets of P thathave suprema.The following results are from [9,12℄:Theorem 2.1 If P is a ontinuous poset, then the family Spe�(P ) of sup-primes of the Brouwerian lattie �(P ) is a ontinuous dpo. Moreover forX; Y 2 Spe�(P ), X � Y in Spe�(P ) if and only if there are x � y 2 Pwith X �#x �#y � Y . 2This result an be raised to the level of an adjuntion:Theorem 2.2 The forgetful funtor from the ategory of ontinuous dposand Sott-ontinuous maps to the ategory of ontinuous posets and Sott-ontinuous mappings has a left adjoint. This left adjoint assoiates to a on-tinuous poset P the family Spe�(P ). This adjuntion also restrits to an289



Misloveadjuntion between the full subategories of algebrai posets and algebrai d-pos.Proof. The previous theorem shows that the set of sup-primes of the Brouw-erian lattie �(P ) is a dpo whih is ontinuous (algebrai) when P is. Sineposets are always T0 spaes in their Sott topology, we know from basi resultsthat the mapping �P :P ! Spe�(P ) by �P (x) =#x = fxg� is a homeomorphis-m onto its image. Now, eah ontinuous map f :P ! Q between ontinuousposets satis�es f�1: �(Q)! �(P ) preserves all in�ma and all �nite suprema.Hene, f�1 has a lower adjoint �(f): �(P )! �(Q) whih preserves all supre-ma and all sup-primes. It is routine to show the restrition of this map tothe set of sup-primes is then the desired extension of f , and it is uniquelydetermined sine every losed set is the supremum of elements from the imageof P in Spe�(P ). 22.1 From Posets to Loal DCPOsOur goal in this setion is to extend the results at the end of the previoussubsetion to ategories of posets and ontinuous maps.Notation: We let B�(P ) = fX 2 �(P ) j (9x 2 P ) X �#xgdenote the family of bounded Sott losed sets in the poset P . We also letBSpe(P ) = Spe�(P ) \ B�(P )to be the (sup-)prime losed subsets of P whih also are bounded.Lemma 2.3 If P is a loal dpo, and Q =#Q � P is a lower set in P , thenthe Sott topology that Q inherits from P oinides with the Sott topologyde�ned by the order on Q.Proof. If D � Q � P is direted, and if tQD and tPD both exist, thentPD v tQD. But if Q is a lower set, then tPD 2 Q, and so the twomust oinide. So, for a lower set X =#X � Q, X is Sott-losed in Q i�tQD 2 X for any D � Q direted for whih tQD exists. But tQD existsimplies tPD exists sine P is a loal dpo, and so tQD 2 X i� tPD 2 Xfor any suh D � Q, i� X = X�P \ Q. Hene the Sott-losed subsets ofQ are the intersetions of Sott-losed subsets of P with Q, whih means theintrinsially de�ned Sott topology on Q is the one it inherits from P . 2Proposition 2.4 Let P be a poset. Then(i) The Sott topology on B�(P ) is the inherited Sott topology from �(P ).(ii) The Sott topology on BSpe(P ) is the one it inherits from Spe�(P ).Moreover, if P is a ontinuous poset, then(iii) The Sott topology on Spe�(P ) is the one it inherits from �(P ).290



Mislove(iv) The Sott topology on BSpe(P ) is the inherited Sott topology fromB�(P ), whih also oinides with the inherited Sott topology from �(P ).Proof. Part (i) follows sine B�(P ) =# �P (P ) is a lower set in �(P ), soLemma 2.3 implies that its inherited Sott topology from �(P ) is the oneits order de�nes.For part (ii), BSpe(P ) is the intersetion of a lower set in �(P ) withSpe�(P ), and so this is a lower set in Spe�(P ). But it is well-known thatthe supremum of a direted set of sup-primes in a omplete lattie is anothersuh (f. [6℄), so Spe�(P ) is a dpo. Hene Lemma 2.3 one again implies theSott topology on this subset is the same as the one it inherits from Spe�(P ).Now assume that P is a ontinuous poset. Then it is easy to show thatthe family f#F j F is �nite and *x 6= ; (8x 2 F )gis a basis for �(P ). Theorem 2.1 then implies (iii) holds.Part (iv) now follows from te previous results: (ii) and (iii) imply theSott topology on BSpe(P ) is the one it inherits from �(P ), and (i) impliesthe Sott topology on B�(P ) is the one it inherits from �(P ), so the Sotttopology on BSpe(P ) is the one it inherits from B�(P ). 2We reall that a poset is bounded omplete if every subset that has anupper bound has a least upper bound. This de�nition traditionally applies todpos, but the onditional for the existene of suprema seems tailor-made forour setting of loal dpos. In any ase, if the poset is also an !-algebrai po,then it is a Sott domain.Theorem 2.5 Let P be a poset endowed with its Sott topology. Then(i) B�(P ) is a bounded omplete loal po.(ii) BSpe(P ) is a loal dpo, and if P has a least element, then it is a loalpo.Moreover, if P is ontinuous, then so are B�(P ) and BSpe(P ) and in thisase, X � Y 2 BSpe(P ) i� (9x� y 2 P ) X �#x �#y � Y:Proof. Sine the Sott topology on a poset is always T0, the mapping �P :P !�(P ) by �P (x) =# x is a homeomorphism and order isomorphism onto itsimage. Sine B�(P ) is the lower set of this image in �(P ), it follows thatB�(P ) is a bounded omplete loal po: If X � B�(P ) has an upper bound,then 9Y 2 B�(P ) with X � Y (8X 2 X ). Then (9x 2 P )Y �#x, so X �#xfor all X 2 X . It follows that t�(P )X = [X � �#x, so t�(P )X 2 B�(P ). Thisproves (i).For any poset P , the family Spe�(P ) is losed under direted suprema in�(P ), and therefore the supremum in B�(P ) of a direted subset of BSpe(P )also lies in BSpe(P ) if it exists in B�(P ). Sine the latter is a loal dpo, it291



Mislovefollows that BSpe(P ) is one as well.It is shown in [12℄ that �(P ) is a ompletely distributive (and hene on-tinuous) lattie if P is a ontinuous poset. Sine B�(P ) is a lower set in �(P ),it follows readily that B�(P ) is a ontinuous poset.Furthermore, we know from Theorem 2.1 that, for a ontinuous poset P ,the dpo Spe�(P ) is ontinuous and satis�es X � Y i� (9x � y 2 P )X �#x �#y � Y: Proposition 2.4 implies the Sott topology on BSpe(P ) is theone it inherits from Spe�(P ), and sine �P (P ) � BSpe(P ), it follows thatthis same relation holds in BSpe(P ); from this it follows that BSpe(P ) is aontinuous poset. 2Eah of the strutures BSpe(P ) and B�(P ) forms the objet level of anadjuntion, as we now demonstrate. We de�nePos - the ategory of posets and Sott ontinuous maps.Pos? - the full subategory of Pos of posets with least element.LD - the ategory of loal dpos and Sott-ontinuous maps.LC - the full subategory of LD of loal pos.BCLC - the ategory of bounded omplete loal pos and maps preserving allexisting suprema.Theorem 2.6(i) The objet map P 7! BSpe(P ) extends to a funtor BSpe:Pos ! LDwhih is a left adjoint to the forgetful funtor LD! Pos.(ii) The funtor from (i) restrits to a left adjoint BSpe?:Pos? ! LC to theforgetful funtor LC! Pos?.(iii) The objet map P 7! B�(P ) extends to a funtor B�:Pos? ! BCLCwhih is a left adjoint to the forgetful funtor BCLC! Pos?.Proof. Any ontinuous mapping f :X ! Y between topologial spaes givesrise to a mapping f�1: �(Y )! �(X) preserving all in�ma and all �nite supre-ma. Then f�1 has a lower adjoint �(f)�: �(X)! �(Y ) by �(f)�(X) = f(X),whih preserves all suprema and all sup-primes. If X = P is a poset equippedwith its Sott topology, then the fat that �(f)� preserves all suprema means�(f)� is ontinuous with respet to the Sott topology on �(P ), and sine�(f)� preserves all sup-primes, we onlude that �(f)� is the unique suhmapping, sine any losed set is the supremum of the sets #x = x� that itontains.Now, sine BSpe(P ) is a loal po whih is dense in Spe�(P ), we ansimply restrit the funtor �� to a funtor BSpe:Pos ! LD. Clearly we anfurther restrit these funtors to the subategory Pos? on the poset side, andto LC on the loal po side.Finally, the family B�(P ) of bounded Sott-losed sets is a bounded om-plete loal po, and we an just as well restrit the upper adjoint �(f)�: �(P )!�(Q) to this domain. Sine �(f)�Æ�P = �QÆf for any ontinuous map f :P !292



MisloveQ, and sine �(f)� is order-preserving, it follows easily that �(f)�(B�(P )) �B�(Q). Moreover, B�(P ) is losed in �(P ) under all existing suprema andall in�ma, so �� restrits to a funtor B�:Pos? ! BCLC. This is left ad-joint to the forgetful funtor beause all losed sets are the suprema of thepoint-losures they ontain. 22.2 From Loal DCPOs to CPOsOur next goal is to relate loal dpos to the better-known direted ompletepartial orders.Theorem 2.7(i) There is a left adjoint BSpe�: LD! DCPO to the forgetful funtor fromthe ategory DCPO of dpos and ontinuous maps to the ategory LD ofloal dpos and Sott ontinuous maps.(ii) The funtor from (i) restrits to a left adjoint BSpe�?: LC! CPO.(iii) There is a left adjoint B��: LC ! BCPO to the forgetful funtor fromthe ategory of bounded omplete pos and maps preserving all existingsuprema to the ategory of loal pos and Sott-ontinuous maps.Proof. If P is a loal dpo, then the family Spe�(P ) of sup-primes in theBrouwerian lattie of Sott-losed subsets of P is a dpo, as is true of the sup-primes of any omplete distributive lattie. Moreover, the same argumentsgiven in the proofs of Theorem 2.6 show that any Sott-ontinuous mappingf :P ! Q between loal dpos extends uniquely to a Sott-ontinuous map-ping BSpe�(f): Spe�(P )! Spe�(Q). This is all we need to guarantee thatBSpe� is left adjoint to the forgetful funtor. This proves (i), and (ii) is asimple orollary.For (iii), we note that the family Spe�(P ) of sup-primes of a loal po isa subpo of �(P ), and so its lower set,B��(P ) =#Spe�(P ) = fX 2 �(P ) j (9Y 2 Spe�(P )) X � Y galso is a po, and it is this set whih forms the objet level of our left ad-joint. Moreover, this lower set is losed under all non-empty in�ma, and soit is a bounded omplete po. One again, if f :P ! Q is a Sott-ontinuousmapping between loal pos, then the mapping �(f)�: �(P )! �(Q) preservesall suprema and all sup-primes. This means �(f)�(Spe�(P )) � Spe�(Q),and so �(f)�(X) 2# �(Q)Spe�(Q) for any X 2# �(P )Spe�(P ). That is,�(f)�(B��(P )) � B��(Q), and sine the mapping B��(f) = �(f)�jB��(P ) pre-serves existing suprema, it is the mapping we seek. Finally, this is the uniquemapping extending f :P ! Q sine sine any losed set is the supremum ofthe point losures it ontains. 2Of ourse, whenever one talks about ategories of pos, then �xed pointsof ontinuous selfmaps immediately spring to mind, as do questions of domainonstrutors and artesian losed ategories. We now onsider these issues.293



MisloveTheorem 2.8 The ategories LD of loal dpos and LC of loal pos are losedunder the following:� Produts.� Sums.� Lift.� Continuous funtion spaes.In partiular, sine the one-point loal po is a terminal objet in both theseategories, both of them are artesian losed.Proof. Only the losure under funtion spae merits omment. If P and Qare loal dpos, then the spae [P ! Q℄ of Sott-ontinuous maps is partiallyordered under the pointwise ordering. Suppose F � [P ! Q℄ is a diretedfamily of ontinuous funtions and f v g for all f 2 F , for some g 2 [P ! Q℄.For any x 2 P , ff(x) j f 2 Fg �#g(x), and sine Q is a loal dpo, #g(x) isa dpo, so there is a supremum f 0(x) := tQff(x) j f 2 Fg. Hene f 0:P ! Qwith f 0 = tF is well-de�ned.The proof that f 0 is ontinuous is the same as for ontinuous maps on d-pos: Given any direted subset D � P for whih tPD exists, then g(tPD) =tQg(D). Then gj#tPD: #tPD !#tQg(D) is ontinuous, and sine f v g for allf 2 F , it follows that eah mapping f j#tPD: #tPD !#tQg(D) is ontinuous.Sine P and Q are loal dpos, both #tPD and #tQg(D) are dpos, and sothe direted family of ff j#tPD j f 2 Fg has least upper bound f 0j#tPD whihis ontinuous. But f 0(x) = tQff(x) j f 2 Fg for eah x 2#tPD, and sof 0(tPD) = tQf 0(D), so f 0 = tF :P ! Q is ontinuous.The remarks about artesian losure now readily follow { in fat, they alsoan be gleaned from the fat that we are working within subategories of theategory of posets and monotone maps, whih itself is artesian losed. 2Proposition 2.9 A ontinuous selfmap f :P ! P of a loal po has a least�xed point if and only if there is a subpo Q � P and a ontinuous selfmapg:Q! Q suh that f(x) v g(x) for all x 2 Q.Proof. If f :P ! P has a �xed point x, then f(y) v f(x) = x for any y 2#x.Hene #x is a subpo of P and f j#x: #x!#x dominates f on #x.Conversely, suppose g:Q ! Q is a ontinuous selfmap of a subpo of Psuh that f jQ v g. Sine g is ontinuous, there is a (least) �xed point x forg. Then y v x implies f(y) v f(x) v g(x) = x, and so f(#x) �#x. That is,f j#x: #x!#x is ontinuous, and so this mapping has a least �xed point. Now,for any �xed point y of f , f(#y) �#y, so f(#x\ #y) �#x\ #y. This impliesthat f has a least �xed point on the subpo 3 #x\ #y, and this least �xedpoint must be in #x, so it oinides with the least �xed point of f j#x. That is,this is the least �xed point of f . 23 The de�nition of a loal po requires that eah direted set with an upper bound has aleast upper bound. It is this assumption that allows us to onlude that #x\ #y is a po.294



MisloveAt this point, one might begin to investigate the possibility of solvingdomain equations within the ategories LD and LC. But, we do not see asimple way to guarantee that �xed points exist for enough ontinuous mapsbetween loal pos, other than to restrit to subategories of pos, whihmeans we would not provide any new solutions to the equations one might�rst examine. However, this learly is a topi for future researh.Another worthwhile area for further researh would be to extend our resultsfrom posets to topologial spaes in general. That is, we believe the resultsdesribed above should admit a generalization that would provide the notionof a loal sobri�ation of a topologial spae. This notion may prove usefulfor studying the representation theory of non-ommutative rings, in partiularfor studying non-ommutative C�-algebras.3 Modeling Topologial SpaesOne of the most important initiatives in domain theory in reent years hasbeen the work of Abbas Edalat and the members of the Comprox group [2{4℄. This work has provided many innovative appliations of domain theory toareas where it formerly had no apparent appliation, as well as providing newmethods to attak long-standing problems in those areas [2℄. One outgrowthof this work has been interest in whih topologial spaes are homeomorphito the maximal elements of the posets that arise as models in the varying areasunder study. The de�nitive results along this line are the formal ball model ofEdalat and Hekmann [5℄, whih shows that any metri spae is homeomorphito the maximal elements of an !-ontinuous poset, and Lawson's result [7℄ thatharaterizes the maximal elements of ertain !-ontinuous domains as exatlythe Polish spaes. Other results that have emerged reently are due to Martin[8℄ who has shown any !-ontinuous poset admits a natural mapping, alled ameasurement, whih gives rise to the Sott topology, and the set of maximalelements of suh a poset is always metrizable.Several questions remain open in this area. For example, only limitedprogress has been made on relations between ategories of topologial spaesand those of domains that serve as models: in the ase of the formal ballmodel, it has only been shown that the Lipshitz ontinuous funtions anbe extended to Sott ontinuous funtions between the assoiated models. Inaddition, exatly whih spaes an arise as the maximal elements of a domainalso is unsettled.This work has foused on using domains or ontinuous posets as models fortopologial spaes. We propose to show how bounded omplete loal domainsalso provide interesting models for topologial spaes. Loal domains are loalpos that are ontinuous posets, so they satisfy all the properties of a domain,exept they are not neessarily direted omplete. As we mentioned in theintrodution, these objets have been used to give an explanation of howertain models of CSP [1℄ arise from a domain-theoreti viewpoint [9℄. But295



Misloveour interest here is on using these strutures for modeling topologial spaes.Our main result shows that any topologial spae that an be modeled in aontinuous poset that is weak at the top also an be modeled as the set ofmaximal elements of a bounded omplete loal domain { the loal domainanalogue of a Sott domain. This inludes the formal ball model of Edalatand Hekmann [5℄ and Lawson's model for Polish spaes [7℄. In addition,we show that ontinuous mappings between spaes that admit suh modelsextend to Sott-ontinuous mappings between the modeling loal domains.This resolves a problem that has arisen in the formal ball model, sine only Lip-shitz ontinuous funtions are known to extend to Sott-ontinuous mappingsbetween those models.Reall that the weakd topology on a poset P has the family f"x j x 2 Pgas a subbasis of losed sets.De�nition 3.1 A ontinuous dpo P is weak at the top if the weakd topologyand the Sott topology agree on the maximal elements Max(P ).It is shown in [5℄ how to onstrut a model for any metri spae X in an!-ontinuous poset; i.e. an !-ontinuous poset P whih is weak at the top andfor whih Max(P ) is homeomorphi to X. In [7℄, it is shown how to model anyPolish spae (i.e. omplete, separable metri spae) as the maximal elementsof an !-ontinuous po that is weak at the top, and it is proved that themaximal elements of any suh domain form a Polish spae. But the modelsthat are onstruted in both ases are arane and not well-understood. Amuh better-understood family of domains is the family of bounded ompletedomains { pos for whih any non-empty subset has an in�mum.De�nition 3.2 We say that topologial spae X has a domain-theoreti mod-el if X is homeomorphi to the maximal elements of some ontinuous posetP that is weak at the top and that has a least element.Note that the assumption about P having a least element is only a tehnialrequirement; if a spae X is homeomorphi to the maximal elements of aontinuous poset whih is weak at the top, but whih laks a least element,learly adding a least element as ompat element of the poset meets our needswithout signi�antly altering the struture of the modeling poset.Reall that the Lawson topology on poset P , denoted �(P ), is the ommonre�nement of the Sott and weakd topologies. On a ontinuous poset P , �(P )is Hausdor� and has the family of sets f*xn "F j F [ fxg � P �niteg as abasis.Proposition 3.3 If P is a ontinuous poset then the map �P :P ! BSpe(P )by �P (x) =#x is a homeomorphism with respet to the Sott topologies. More-over, the following are equivalent:(i) P is weak at the top.(ii) There is an order-preserving ontinuous injetion of (P; �(P )) into a om-296



Mislovepat pospae, i.e., into a ompat Hausdor� spae endowed with a (topo-logially) losed partial order.Proof. It follows from Theorem 2.1 that �P is a homeomorphism with respetto the Sott topologies.The �nal equivalene is shown for domains in [7℄, but the result does notrequire that the poset in question be direted omplete, but only ontinuous.2Example 3.4 For a ontinuous poset P with least element, it is not nees-sarily true that B�(P ) is weak at the top. Indeed, the following exampleessentially due to Martin [8℄ shows this may fail. LetP = fam j m � 0g [ fbm j m � 0g [ fb; xg;where fam j m � 0g [ fbg is an antihain, fbm j m � 0g is a hain (inreasingwith m) with supremum b and satisfying bm v an whenever m � n, andx v am for eah m � 0. Then eah element exept b is ompat, and #b is thehain fbm j m � 0g [ fbg. Also, #x = fxg is Sott losed, and b 62"B�(P )(#x),but eah Sott-open set ontaining #b in B�(P ) must ontain residually manyof the sets #am, eah of whih ontains x.Proposition 3.5 For a ontinuous poset P , the following are equivalent:(i) P is weak at the top.(ii) B�(P ) is weak at the top.Proof. The de�nition of B�(P ) implies that �P :P ! B�(P ) is a bijetionof Max(P ) onto Max(B�(P )). If P is ontinuous, then �P :P ! �P (P ) is ahomeomorphism with respet to the Sott topologies. It also is a homeomor-phism with respet to the weakd topologies: If #p is a maximal element ofB�(P ) and X 2 B�(P ), then #p 2"X i� X �#p i� p 2 Tx2X "x. HeneMax(P ) and Max(B�(P )) are homeomorphi in both the inherited Sott- andthe inherited weakd topologies. From this, the equivalene follows. 2Theorem 3.6 For a topologial spae X, the following are equivalent:(i) X has a domain-theoreti model.(ii) X is homeomorphi to the maximal elements of a bounded omplete loaldomain whih is weak at the top.Proof. Note that the mapping �P :P ! B�(P ) preserves maximal elements,and for P ontinuous, this mapping is a homeomorphism onto its image. Inpartiular, Max(P ) ' Max(B�(P )). Moreover, B�(P ) is bounded omplete,and if P is weak at the top, then so is B�(P ). So, if X has a domain-theoretimodel P , then B�(P ) is a domain-theoreti model for X that also is boundedomplete.The onverse is obvious. 2The reason to transfer spaes whih have a domain-theoreti model in someloal domain into a model that is bounded omplete is the ease with whih297



Misloveontinuous mappings an be extended in the latter situation.Lemma 3.7 Let f :P ! Q be a monotone mapping between loal domains.Then the mapping F :P ! Q by F (x) = tQf(+x) is the largest ontinuousmapping satisfying F (x) v f(x) for all x 2 P . 2Proposition 3.8 Let P and Q be bounded omplete loal domains and letf :Max(P ) ! Max(Q) be a ontinuous map with respet to the relative Sotttopologies. Then there is a Sott-ontinuous map F :P ! Q with F jMax(P ) = f .Proof. We de�ne F1(x) = ^f("x \Max(P )). This mapping is well-de�nedsine "x \ Max(P ) 6= ; for all x 2 P . It also is lear that the mapping F1is monotone and extends f . Then Lemma 3.7 implies F :P ! Q by F (x) =tQF1(+x) is Sott-ontinuous.We next show F jMax(P ) = f: If x 2 Max(P ), let y � w � f(x) in Q.Then x 2 f�1(*w \ Max(Q)) is open in Max(P ). So there is some z 2 Pwith z � x and *z \Max(P ) � f�1(*w \Max(Q)). This implies y v F1(z),and so y v F1(z) v tQF1(+ p) = F (p) for any p 2 P with z � p. Inpartiular, y � F (x), and sine y � f(x) is arbitrary and f(x) is maximal,F (x) = f(x): 2Corollary 3.9 Suppose that f :X ! Y is a ontinuous mapping between s-paes X and Y , and suppose �X :X ' Max(PX) and �Y :Y ' Max(PY ) arehomeomorphisms onto the maximal elements of bounded omplete loal do-mains PX and PY , respetively. Then there is a Sott-ontinuous mappingF :P ! Q whih extends the mapping �Y Æ f Æ ��1X . 2Corollary 3.10 Let f :X ! X be a ontinuous selfmap of the spae X andsuppose that x 2 X is a �xed point for f . If X has a domain-theoreti modelP whih is a bounded omplete loal domain, then the extension F of f has aleast �xed point.Proof. That F jMax(P ) = f implies F (x) = x, and so F (#x) �#x sine F ismonotone. But #x is a po sine P is a loal domain with least element, andso the ontinuous selfmap F jMax(P ) has a least �xed point on #x. It is routineto show that this is the least �xed point of F on P . 2We an apply our results to either the Edalat-Hekmann formal ball mod-el to onlude that any metri spae admits a domain-theoreti model intoa bounded omplete, !-ontinuous loal domain, or to Lawson's model forPolish spaes, so that they, too, an be modeled with bounded omplete, !-ontinuous loal domains. In eah ase, we also an onlude that ontinuousmappings between suh spaes extend to Sott-ontinuous mappings betweenthe loal domain models. It would be nie to have ategorial results here {i.e. to extend this assoiation to the level of a funtor. But it is not lear thatProposition 3.8 yields an extension proess that is ompositional on maps.Our results show that ontinuous maps between spaes that admit domain-theoreti models that are bounded omplete loal domains extend to ontin-298
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