
MFPS XV Preliminary Version
Lo
al DCPOs, Lo
al CPOsand Lo
al CompletionsMi
hael W. Mislove 1Department of Mathemati
sTulane UniversityNew Orleans, LA 70118Extended Abstra
tAbstra
tWe use a subfamily of the S
ott-
losed sets of a poset to form a lo
al 
ompletionof the poset. This is simultaneously a topologi
al analogue of the ideal 
ompletionof a poset and a generalization of the sobri�
ation of a topologi
al spa
e. After weshow that our 
onstru
tion is the obje
t level of a left adjoint to the forgetful fun
torfrom the 
ategory of lo
al 
pos to the 
ategory of posets and S
ott-
ontinuous maps,we use this 
ompletion to show how lo
al domains 
an play a role in the study ofdomain-theoreti
 models of topologi
al spa
es. Our main result shows that anytopologi
al spa
e that is homeomorphi
 to the maximal elements of a 
ontinuousposet that is weak at the top also is homeomorphi
 to the maximal elements of abounded 
omplete lo
al domain. The advantage is that 
ontinuous maps betweensu
h spa
es extend to S
ott-
ontinuous maps between the modeling lo
al domains.1 Introdu
tionThe S
ott topology is of fundamental importan
e in domain theory. It lies atthe heart of the stru
ture of domains, and of how to de�ne the appropriatemorphisms between domains: they are exa
tly those maps that are 
ontinuouswith respe
t to the S
ott topology. Even more, the family of S
ott 
losedsets is one representation of the lower or Hoare power domain of a domain.Another appli
ation using S
ott-
losed sets was �rst revealed in [9℄, where itwas shown that the sobri�
ation of an algebrai
 poset in its S
ott topologyis an algebrai
 d
po with the same set of 
ompa
t elements. This result wasextended to 
ontinuous posets in [12℄. The sobri�
ation of any topologi
al1 This work is partially supported by the National S
ien
e Foundation and the OÆ
e ofNaval Resear
h.This is a preliminary version. The �nal version will be published inEle
troni
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Mislovespa
e is just the set of irredu
ible 
losed subsets of the spa
e, and any T0-spa
e is homeomorphi
 to its image in its sobri�
ation, and that image is densein the sobri�
ation. One way to view these results is that the sobri�
ation of a
ontinuous poset 
ompletes the poset into a 
ontinuous d
po whose way-belowrelation { and hen
e S
ott topology { is 
ompletely determined by the originalposet; this provides a topologi
al generalization of the ideal 
ompletion of aposet into an algebrai
 d
po.In this paper we �nd another use for the family of S
ott-
losed sets. Herewe show how a generalization of the sobri�
ation of a 
ontinuous poset formsa lo
al 
po whi
h again 
ontains the original poset densely. In fa
t, this isthe obje
t-level of the left adjoint to the forgetful fun
tor from the 
ategoryof lo
al 
pos and S
ott 
ontinuous maps to the 
ategory of posets and S
ott
ontinuous maps. This lo
al 
po { the lo
al 
ompletion of the underlyingposet { is simply the 
losure of the image of the poset within the family ofbounded, irredu
ible S
ott-
losed sets, where a subset is bounded if it has anupper bound in the underlying poset. The sub-
po of the family of 
losed setsgenerated by the family of bounded S
ott-
losed sets of a 
ontinuous 
po was�rst investigated in [11℄, where it was shown to form the obje
t level of a leftadjoint to the forgetful fun
tor from a sub
ategory of S
ott domains to the
ategory of SFP obje
ts and S
ott-
ontinuous maps.After we establish the adjun
tion between the 
ategories of lo
al d
pos andposets, we turn our attention to using our lo
al 
ompletion to model topo-logi
al spa
es. This line of inquiry has its roots in the work of Edalat [2{4℄who found numerous appli
ations of domain theory to areas beyond program-ming semanti
s. A re
urring theme of Edalat's work has been the questionof whi
h topologi
al spa
es 
an be represented as the family of maximal ele-ments of a domain. Previous results have shown that an important propertyfor su
h models is that the inherited S
ott topology on the set of maximalelements agrees with the inherited weak-dual topology on the maximal ele-ments; we 
all 
ontinuous posets that satisfy this property weak at the top.In his seminal paper [7℄, Lawson 
hara
terized the spa
es that arise as themaximal elements of !-
ontinuous d
pos whi
h are weak at the top as beingexa
tly the Polish spa
es. Lawson also showed that domains that are weakat the top are exa
tly those for whi
h the mapping into the family of S
ott
losed sets preserves maximal elements. We extend this result to the 
ase of
ontinuous posets 2 , and then use it to show that any topologi
al spa
e thatis homeomorphi
 to the maximal elements of a 
ontinuous poset that is weakat the top also 
an be represented as the spa
e of maximal elements of a lo
aldomain that is bounded 
omplete. This applies in parti
ular to both Lawson'smodel of Polish spa
es and to the formal ball model of Edalat and He
kmann[5℄. We also show how 
ontinuous mappings between spa
es whi
h 
an be so2 Unfortunately, our terminology, taken from [9℄, di�ers from that of [7℄. For us, a 
ontin-uous poset need not be dire
ted 
omplete, while the posets referred to in [7℄ are what noware 
ommonly 
alled 
ontinuous d
pos. 288



Mislovemodeled naturally extend to their lo
al domain models.2 Lo
al d
pos and lo
al 
posWe begin by re
alling some basi
s about partial orders. If P is a partiallyordered set, then a subset D � P is dire
ted if ea
h �nite subset of D hasan upper bound in D. P is a dire
ted 
omplete partial order (d
po) if ea
hdire
ted subset of P has a least upper bound in P . P is a lo
al d
po if ea
hdire
ted subset of P with an upper bound has a least upper bound; it is easyto see that this implies that #x = fy 2 P j y v xg is a d
po for ea
h x 2 P ,but the 
onverse may fail (
f. [9℄). A lo
al 
po is a lo
al d
po whi
h also hasa least element.If P is a partial order and x; y 2 P , then we write x� y if for ea
h dire
tedsubset D � P for whi
h tD exists, if y v tD, then there is some d 2 D withx v d. We let +y = fx 2 P j x � yg, and we say P is a 
ontinuous poset if+y is dire
ted and y = t +y for ea
h y 2 P . A domain is a 
ontinuous 
po,while a lo
al domain is a 
ontinuous lo
al 
po. An element x 2 P is 
ompa
tif x� x; we let K(P ) denote the set of 
ompa
t elements of P , and we say Pis an algebrai
 poset if K(y) =#y \K(P ) is dire
ted and y = tK(y) for ea
hy 2 P .A mapping between partial orders is S
ott 
ontinuous if it is monotone andpreserves suprema of dire
ted sets. More pre
isely, if f :P ! Q is a monotonemap between partial orders P and Q, then f is S
ott 
ontinuous if for ea
hdire
ted subset D � P for whi
h tD exists in P , then f(D) has a supremumin Q and f(tD) = tf(D). Equivalently, we 
an de�ne a S
ott-
losed subsetof a partial order to be a lower set whi
h is 
losed under (existing) supremaof dire
ted subsets. It is easy to show that the interse
tion of any family ofsu
h sets is another su
h, as is the �nite union, so the family �(P ) of su
h setsforms the 
losed sets of a topology. It also is easy to show that a monotonemapping f :P ! Q between partial orders is 
ontinuous with respe
t to thistopology if and only i f preserves suprema of those dire
ted subsets of P thathave suprema.The following results are from [9,12℄:Theorem 2.1 If P is a 
ontinuous poset, then the family Spe
�(P ) of sup-primes of the Brouwerian latti
e �(P ) is a 
ontinuous d
po. Moreover forX; Y 2 Spe
�(P ), X � Y in Spe
�(P ) if and only if there are x � y 2 Pwith X �#x �#y � Y . 2This result 
an be raised to the level of an adjun
tion:Theorem 2.2 The forgetful fun
tor from the 
ategory of 
ontinuous d
posand S
ott-
ontinuous maps to the 
ategory of 
ontinuous posets and S
ott-
ontinuous mappings has a left adjoint. This left adjoint asso
iates to a 
on-tinuous poset P the family Spe
�(P ). This adjun
tion also restri
ts to an289



Misloveadjun
tion between the full sub
ategories of algebrai
 posets and algebrai
 d
-pos.Proof. The previous theorem shows that the set of sup-primes of the Brouw-erian latti
e �(P ) is a d
po whi
h is 
ontinuous (algebrai
) when P is. Sin
eposets are always T0 spa
es in their S
ott topology, we know from basi
 resultsthat the mapping �P :P ! Spe
�(P ) by �P (x) =#x = fxg� is a homeomorphis-m onto its image. Now, ea
h 
ontinuous map f :P ! Q between 
ontinuousposets satis�es f�1: �(Q)! �(P ) preserves all in�ma and all �nite suprema.Hen
e, f�1 has a lower adjoint �(f): �(P )! �(Q) whi
h preserves all supre-ma and all sup-primes. It is routine to show the restri
tion of this map tothe set of sup-primes is then the desired extension of f , and it is uniquelydetermined sin
e every 
losed set is the supremum of elements from the imageof P in Spe
�(P ). 22.1 From Posets to Lo
al DCPOsOur goal in this se
tion is to extend the results at the end of the previoussubse
tion to 
ategories of posets and 
ontinuous maps.Notation: We let B�(P ) = fX 2 �(P ) j (9x 2 P ) X �#xgdenote the family of bounded S
ott 
losed sets in the poset P . We also letBSpe
(P ) = Spe
�(P ) \ B�(P )to be the (sup-)prime 
losed subsets of P whi
h also are bounded.Lemma 2.3 If P is a lo
al d
po, and Q =#Q � P is a lower set in P , thenthe S
ott topology that Q inherits from P 
oin
ides with the S
ott topologyde�ned by the order on Q.Proof. If D � Q � P is dire
ted, and if tQD and tPD both exist, thentPD v tQD. But if Q is a lower set, then tPD 2 Q, and so the twomust 
oin
ide. So, for a lower set X =#X � Q, X is S
ott-
losed in Q i�tQD 2 X for any D � Q dire
ted for whi
h tQD exists. But tQD existsimplies tPD exists sin
e P is a lo
al d
po, and so tQD 2 X i� tPD 2 Xfor any su
h D � Q, i� X = X�P \ Q. Hen
e the S
ott-
losed subsets ofQ are the interse
tions of S
ott-
losed subsets of P with Q, whi
h means theintrinsi
ally de�ned S
ott topology on Q is the one it inherits from P . 2Proposition 2.4 Let P be a poset. Then(i) The S
ott topology on B�(P ) is the inherited S
ott topology from �(P ).(ii) The S
ott topology on BSpe
(P ) is the one it inherits from Spe
�(P ).Moreover, if P is a 
ontinuous poset, then(iii) The S
ott topology on Spe
�(P ) is the one it inherits from �(P ).290



Mislove(iv) The S
ott topology on BSpe
(P ) is the inherited S
ott topology fromB�(P ), whi
h also 
oin
ides with the inherited S
ott topology from �(P ).Proof. Part (i) follows sin
e B�(P ) =# �P (P ) is a lower set in �(P ), soLemma 2.3 implies that its inherited S
ott topology from �(P ) is the oneits order de�nes.For part (ii), BSpe
(P ) is the interse
tion of a lower set in �(P ) withSpe
�(P ), and so this is a lower set in Spe
�(P ). But it is well-known thatthe supremum of a dire
ted set of sup-primes in a 
omplete latti
e is anothersu
h (
f. [6℄), so Spe
�(P ) is a d
po. Hen
e Lemma 2.3 on
e again implies theS
ott topology on this subset is the same as the one it inherits from Spe
�(P ).Now assume that P is a 
ontinuous poset. Then it is easy to show thatthe family f#F j F is �nite and *x 6= ; (8x 2 F )gis a basis for �(P ). Theorem 2.1 then implies (iii) holds.Part (iv) now follows from te previous results: (ii) and (iii) imply theS
ott topology on BSpe
(P ) is the one it inherits from �(P ), and (i) impliesthe S
ott topology on B�(P ) is the one it inherits from �(P ), so the S
otttopology on BSpe
(P ) is the one it inherits from B�(P ). 2We re
all that a poset is bounded 
omplete if every subset that has anupper bound has a least upper bound. This de�nition traditionally applies tod
pos, but the 
onditional for the existen
e of suprema seems tailor-made forour setting of lo
al d
pos. In any 
ase, if the poset is also an !-algebrai
 
po,then it is a S
ott domain.Theorem 2.5 Let P be a poset endowed with its S
ott topology. Then(i) B�(P ) is a bounded 
omplete lo
al 
po.(ii) BSpe
(P ) is a lo
al d
po, and if P has a least element, then it is a lo
al
po.Moreover, if P is 
ontinuous, then so are B�(P ) and BSpe
(P ) and in this
ase, X � Y 2 BSpe
(P ) i� (9x� y 2 P ) X �#x �#y � Y:Proof. Sin
e the S
ott topology on a poset is always T0, the mapping �P :P !�(P ) by �P (x) =# x is a homeomorphism and order isomorphism onto itsimage. Sin
e B�(P ) is the lower set of this image in �(P ), it follows thatB�(P ) is a bounded 
omplete lo
al 
po: If X � B�(P ) has an upper bound,then 9Y 2 B�(P ) with X � Y (8X 2 X ). Then (9x 2 P )Y �#x, so X �#xfor all X 2 X . It follows that t�(P )X = [X � �#x, so t�(P )X 2 B�(P ). Thisproves (i).For any poset P , the family Spe
�(P ) is 
losed under dire
ted suprema in�(P ), and therefore the supremum in B�(P ) of a dire
ted subset of BSpe
(P )also lies in BSpe
(P ) if it exists in B�(P ). Sin
e the latter is a lo
al d
po, it291



Mislovefollows that BSpe
(P ) is one as well.It is shown in [12℄ that �(P ) is a 
ompletely distributive (and hen
e 
on-tinuous) latti
e if P is a 
ontinuous poset. Sin
e B�(P ) is a lower set in �(P ),it follows readily that B�(P ) is a 
ontinuous poset.Furthermore, we know from Theorem 2.1 that, for a 
ontinuous poset P ,the d
po Spe
�(P ) is 
ontinuous and satis�es X � Y i� (9x � y 2 P )X �#x �#y � Y: Proposition 2.4 implies the S
ott topology on BSpe
(P ) is theone it inherits from Spe
�(P ), and sin
e �P (P ) � BSpe
(P ), it follows thatthis same relation holds in BSpe
(P ); from this it follows that BSpe
(P ) is a
ontinuous poset. 2Ea
h of the stru
tures BSpe
(P ) and B�(P ) forms the obje
t level of anadjun
tion, as we now demonstrate. We de�nePos - the 
ategory of posets and S
ott 
ontinuous maps.Pos? - the full sub
ategory of Pos of posets with least element.LD - the 
ategory of lo
al d
pos and S
ott-
ontinuous maps.LC - the full sub
ategory of LD of lo
al 
pos.BCLC - the 
ategory of bounded 
omplete lo
al 
pos and maps preserving allexisting suprema.Theorem 2.6(i) The obje
t map P 7! BSpe
(P ) extends to a fun
tor BSpe
:Pos ! LDwhi
h is a left adjoint to the forgetful fun
tor LD! Pos.(ii) The fun
tor from (i) restri
ts to a left adjoint BSpe
?:Pos? ! LC to theforgetful fun
tor LC! Pos?.(iii) The obje
t map P 7! B�(P ) extends to a fun
tor B�:Pos? ! BCLCwhi
h is a left adjoint to the forgetful fun
tor BCLC! Pos?.Proof. Any 
ontinuous mapping f :X ! Y between topologi
al spa
es givesrise to a mapping f�1: �(Y )! �(X) preserving all in�ma and all �nite supre-ma. Then f�1 has a lower adjoint �(f)�: �(X)! �(Y ) by �(f)�(X) = f(X),whi
h preserves all suprema and all sup-primes. If X = P is a poset equippedwith its S
ott topology, then the fa
t that �(f)� preserves all suprema means�(f)� is 
ontinuous with respe
t to the S
ott topology on �(P ), and sin
e�(f)� preserves all sup-primes, we 
on
lude that �(f)� is the unique su
hmapping, sin
e any 
losed set is the supremum of the sets #x = x� that it
ontains.Now, sin
e BSpe
(P ) is a lo
al 
po whi
h is dense in Spe
�(P ), we 
ansimply restri
t the fun
tor �� to a fun
tor BSpe
:Pos ! LD. Clearly we 
anfurther restri
t these fun
tors to the sub
ategory Pos? on the poset side, andto LC on the lo
al 
po side.Finally, the family B�(P ) of bounded S
ott-
losed sets is a bounded 
om-plete lo
al 
po, and we 
an just as well restri
t the upper adjoint �(f)�: �(P )!�(Q) to this domain. Sin
e �(f)�Æ�P = �QÆf for any 
ontinuous map f :P !292



MisloveQ, and sin
e �(f)� is order-preserving, it follows easily that �(f)�(B�(P )) �B�(Q). Moreover, B�(P ) is 
losed in �(P ) under all existing suprema andall in�ma, so �� restri
ts to a fun
tor B�:Pos? ! BCLC. This is left ad-joint to the forgetful fun
tor be
ause all 
losed sets are the suprema of thepoint-
losures they 
ontain. 22.2 From Lo
al DCPOs to CPOsOur next goal is to relate lo
al d
pos to the better-known dire
ted 
ompletepartial orders.Theorem 2.7(i) There is a left adjoint BSpe
�: LD! DCPO to the forgetful fun
tor fromthe 
ategory DCPO of d
pos and 
ontinuous maps to the 
ategory LD oflo
al d
pos and S
ott 
ontinuous maps.(ii) The fun
tor from (i) restri
ts to a left adjoint BSpe
�?: LC! CPO.(iii) There is a left adjoint B��: LC ! BCPO to the forgetful fun
tor fromthe 
ategory of bounded 
omplete 
pos and maps preserving all existingsuprema to the 
ategory of lo
al 
pos and S
ott-
ontinuous maps.Proof. If P is a lo
al d
po, then the family Spe
�(P ) of sup-primes in theBrouwerian latti
e of S
ott-
losed subsets of P is a d
po, as is true of the sup-primes of any 
omplete distributive latti
e. Moreover, the same argumentsgiven in the proofs of Theorem 2.6 show that any S
ott-
ontinuous mappingf :P ! Q between lo
al d
pos extends uniquely to a S
ott-
ontinuous map-ping BSpe
�(f): Spe
�(P )! Spe
�(Q). This is all we need to guarantee thatBSpe
� is left adjoint to the forgetful fun
tor. This proves (i), and (ii) is asimple 
orollary.For (iii), we note that the family Spe
�(P ) of sup-primes of a lo
al 
po isa sub
po of �(P ), and so its lower set,B��(P ) =#Spe
�(P ) = fX 2 �(P ) j (9Y 2 Spe
�(P )) X � Y galso is a 
po, and it is this set whi
h forms the obje
t level of our left ad-joint. Moreover, this lower set is 
losed under all non-empty in�ma, and soit is a bounded 
omplete 
po. On
e again, if f :P ! Q is a S
ott-
ontinuousmapping between lo
al 
pos, then the mapping �(f)�: �(P )! �(Q) preservesall suprema and all sup-primes. This means �(f)�(Spe
�(P )) � Spe
�(Q),and so �(f)�(X) 2# �(Q)Spe
�(Q) for any X 2# �(P )Spe
�(P ). That is,�(f)�(B��(P )) � B��(Q), and sin
e the mapping B��(f) = �(f)�jB��(P ) pre-serves existing suprema, it is the mapping we seek. Finally, this is the uniquemapping extending f :P ! Q sin
e sin
e any 
losed set is the supremum ofthe point 
losures it 
ontains. 2Of 
ourse, whenever one talks about 
ategories of 
pos, then �xed pointsof 
ontinuous selfmaps immediately spring to mind, as do questions of domain
onstru
tors and 
artesian 
losed 
ategories. We now 
onsider these issues.293



MisloveTheorem 2.8 The 
ategories LD of lo
al d
pos and LC of lo
al 
pos are 
losedunder the following:� Produ
ts.� Sums.� Lift.� Continuous fun
tion spa
es.In parti
ular, sin
e the one-point lo
al 
po is a terminal obje
t in both these
ategories, both of them are 
artesian 
losed.Proof. Only the 
losure under fun
tion spa
e merits 
omment. If P and Qare lo
al d
pos, then the spa
e [P ! Q℄ of S
ott-
ontinuous maps is partiallyordered under the pointwise ordering. Suppose F � [P ! Q℄ is a dire
tedfamily of 
ontinuous fun
tions and f v g for all f 2 F , for some g 2 [P ! Q℄.For any x 2 P , ff(x) j f 2 Fg �#g(x), and sin
e Q is a lo
al d
po, #g(x) isa d
po, so there is a supremum f 0(x) := tQff(x) j f 2 Fg. Hen
e f 0:P ! Qwith f 0 = tF is well-de�ned.The proof that f 0 is 
ontinuous is the same as for 
ontinuous maps on d
-pos: Given any dire
ted subset D � P for whi
h tPD exists, then g(tPD) =tQg(D). Then gj#tPD: #tPD !#tQg(D) is 
ontinuous, and sin
e f v g for allf 2 F , it follows that ea
h mapping f j#tPD: #tPD !#tQg(D) is 
ontinuous.Sin
e P and Q are lo
al d
pos, both #tPD and #tQg(D) are d
pos, and sothe dire
ted family of ff j#tPD j f 2 Fg has least upper bound f 0j#tPD whi
his 
ontinuous. But f 0(x) = tQff(x) j f 2 Fg for ea
h x 2#tPD, and sof 0(tPD) = tQf 0(D), so f 0 = tF :P ! Q is 
ontinuous.The remarks about 
artesian 
losure now readily follow { in fa
t, they also
an be gleaned from the fa
t that we are working within sub
ategories of the
ategory of posets and monotone maps, whi
h itself is 
artesian 
losed. 2Proposition 2.9 A 
ontinuous selfmap f :P ! P of a lo
al 
po has a least�xed point if and only if there is a sub
po Q � P and a 
ontinuous selfmapg:Q! Q su
h that f(x) v g(x) for all x 2 Q.Proof. If f :P ! P has a �xed point x, then f(y) v f(x) = x for any y 2#x.Hen
e #x is a sub
po of P and f j#x: #x!#x dominates f on #x.Conversely, suppose g:Q ! Q is a 
ontinuous selfmap of a sub
po of Psu
h that f jQ v g. Sin
e g is 
ontinuous, there is a (least) �xed point x forg. Then y v x implies f(y) v f(x) v g(x) = x, and so f(#x) �#x. That is,f j#x: #x!#x is 
ontinuous, and so this mapping has a least �xed point. Now,for any �xed point y of f , f(#y) �#y, so f(#x\ #y) �#x\ #y. This impliesthat f has a least �xed point on the sub
po 3 #x\ #y, and this least �xedpoint must be in #x, so it 
oin
ides with the least �xed point of f j#x. That is,this is the least �xed point of f . 23 The de�nition of a lo
al 
po requires that ea
h dire
ted set with an upper bound has aleast upper bound. It is this assumption that allows us to 
on
lude that #x\ #y is a 
po.294



MisloveAt this point, one might begin to investigate the possibility of solvingdomain equations within the 
ategories LD and LC. But, we do not see asimple way to guarantee that �xed points exist for enough 
ontinuous mapsbetween lo
al 
pos, other than to restri
t to sub
ategories of 
pos, whi
hmeans we would not provide any new solutions to the equations one might�rst examine. However, this 
learly is a topi
 for future resear
h.Another worthwhile area for further resear
h would be to extend our resultsfrom posets to topologi
al spa
es in general. That is, we believe the resultsdes
ribed above should admit a generalization that would provide the notionof a lo
al sobri�
ation of a topologi
al spa
e. This notion may prove usefulfor studying the representation theory of non-
ommutative rings, in parti
ularfor studying non-
ommutative C�-algebras.3 Modeling Topologi
al Spa
esOne of the most important initiatives in domain theory in re
ent years hasbeen the work of Abbas Edalat and the members of the Comprox group [2{4℄. This work has provided many innovative appli
ations of domain theory toareas where it formerly had no apparent appli
ation, as well as providing newmethods to atta
k long-standing problems in those areas [2℄. One outgrowthof this work has been interest in whi
h topologi
al spa
es are homeomorphi
to the maximal elements of the posets that arise as models in the varying areasunder study. The de�nitive results along this line are the formal ball model ofEdalat and He
kmann [5℄, whi
h shows that any metri
 spa
e is homeomorphi
to the maximal elements of an !-
ontinuous poset, and Lawson's result [7℄ that
hara
terizes the maximal elements of 
ertain !-
ontinuous domains as exa
tlythe Polish spa
es. Other results that have emerged re
ently are due to Martin[8℄ who has shown any !-
ontinuous poset admits a natural mapping, 
alled ameasurement, whi
h gives rise to the S
ott topology, and the set of maximalelements of su
h a poset is always metrizable.Several questions remain open in this area. For example, only limitedprogress has been made on relations between 
ategories of topologi
al spa
esand those of domains that serve as models: in the 
ase of the formal ballmodel, it has only been shown that the Lips
hitz 
ontinuous fun
tions 
anbe extended to S
ott 
ontinuous fun
tions between the asso
iated models. Inaddition, exa
tly whi
h spa
es 
an arise as the maximal elements of a domainalso is unsettled.This work has fo
used on using domains or 
ontinuous posets as models fortopologi
al spa
es. We propose to show how bounded 
omplete lo
al domainsalso provide interesting models for topologi
al spa
es. Lo
al domains are lo
al
pos that are 
ontinuous posets, so they satisfy all the properties of a domain,ex
ept they are not ne
essarily dire
ted 
omplete. As we mentioned in theintrodu
tion, these obje
ts have been used to give an explanation of how
ertain models of CSP [1℄ arise from a domain-theoreti
 viewpoint [9℄. But295



Misloveour interest here is on using these stru
tures for modeling topologi
al spa
es.Our main result shows that any topologi
al spa
e that 
an be modeled in a
ontinuous poset that is weak at the top also 
an be modeled as the set ofmaximal elements of a bounded 
omplete lo
al domain { the lo
al domainanalogue of a S
ott domain. This in
ludes the formal ball model of Edalatand He
kmann [5℄ and Lawson's model for Polish spa
es [7℄. In addition,we show that 
ontinuous mappings between spa
es that admit su
h modelsextend to S
ott-
ontinuous mappings between the modeling lo
al domains.This resolves a problem that has arisen in the formal ball model, sin
e only Lip-s
hitz 
ontinuous fun
tions are known to extend to S
ott-
ontinuous mappingsbetween those models.Re
all that the weakd topology on a poset P has the family f"x j x 2 Pgas a subbasis of 
losed sets.De�nition 3.1 A 
ontinuous d
po P is weak at the top if the weakd topologyand the S
ott topology agree on the maximal elements Max(P ).It is shown in [5℄ how to 
onstru
t a model for any metri
 spa
e X in an!-
ontinuous poset; i.e. an !-
ontinuous poset P whi
h is weak at the top andfor whi
h Max(P ) is homeomorphi
 to X. In [7℄, it is shown how to model anyPolish spa
e (i.e. 
omplete, separable metri
 spa
e) as the maximal elementsof an !-
ontinuous 
po that is weak at the top, and it is proved that themaximal elements of any su
h domain form a Polish spa
e. But the modelsthat are 
onstru
ted in both 
ases are ar
ane and not well-understood. Amu
h better-understood family of domains is the family of bounded 
ompletedomains { 
pos for whi
h any non-empty subset has an in�mum.De�nition 3.2 We say that topologi
al spa
e X has a domain-theoreti
 mod-el if X is homeomorphi
 to the maximal elements of some 
ontinuous posetP that is weak at the top and that has a least element.Note that the assumption about P having a least element is only a te
hni
alrequirement; if a spa
e X is homeomorphi
 to the maximal elements of a
ontinuous poset whi
h is weak at the top, but whi
h la
ks a least element,
learly adding a least element as 
ompa
t element of the poset meets our needswithout signi�
antly altering the stru
ture of the modeling poset.Re
all that the Lawson topology on poset P , denoted �(P ), is the 
ommonre�nement of the S
ott and weakd topologies. On a 
ontinuous poset P , �(P )is Hausdor� and has the family of sets f*xn "F j F [ fxg � P �niteg as abasis.Proposition 3.3 If P is a 
ontinuous poset then the map �P :P ! BSpe
(P )by �P (x) =#x is a homeomorphism with respe
t to the S
ott topologies. More-over, the following are equivalent:(i) P is weak at the top.(ii) There is an order-preserving 
ontinuous inje
tion of (P; �(P )) into a 
om-296



Mislovepa
t pospa
e, i.e., into a 
ompa
t Hausdor� spa
e endowed with a (topo-logi
ally) 
losed partial order.Proof. It follows from Theorem 2.1 that �P is a homeomorphism with respe
tto the S
ott topologies.The �nal equivalen
e is shown for domains in [7℄, but the result does notrequire that the poset in question be dire
ted 
omplete, but only 
ontinuous.2Example 3.4 For a 
ontinuous poset P with least element, it is not ne
es-sarily true that B�(P ) is weak at the top. Indeed, the following exampleessentially due to Martin [8℄ shows this may fail. LetP = fam j m � 0g [ fbm j m � 0g [ fb; xg;where fam j m � 0g [ fbg is an anti
hain, fbm j m � 0g is a 
hain (in
reasingwith m) with supremum b and satisfying bm v an whenever m � n, andx v am for ea
h m � 0. Then ea
h element ex
ept b is 
ompa
t, and #b is the
hain fbm j m � 0g [ fbg. Also, #x = fxg is S
ott 
losed, and b 62"B�(P )(#x),but ea
h S
ott-open set 
ontaining #b in B�(P ) must 
ontain residually manyof the sets #am, ea
h of whi
h 
ontains x.Proposition 3.5 For a 
ontinuous poset P , the following are equivalent:(i) P is weak at the top.(ii) B�(P ) is weak at the top.Proof. The de�nition of B�(P ) implies that �P :P ! B�(P ) is a bije
tionof Max(P ) onto Max(B�(P )). If P is 
ontinuous, then �P :P ! �P (P ) is ahomeomorphism with respe
t to the S
ott topologies. It also is a homeomor-phism with respe
t to the weakd topologies: If #p is a maximal element ofB�(P ) and X 2 B�(P ), then #p 2"X i� X �#p i� p 2 Tx2X "x. Hen
eMax(P ) and Max(B�(P )) are homeomorphi
 in both the inherited S
ott- andthe inherited weakd topologies. From this, the equivalen
e follows. 2Theorem 3.6 For a topologi
al spa
e X, the following are equivalent:(i) X has a domain-theoreti
 model.(ii) X is homeomorphi
 to the maximal elements of a bounded 
omplete lo
aldomain whi
h is weak at the top.Proof. Note that the mapping �P :P ! B�(P ) preserves maximal elements,and for P 
ontinuous, this mapping is a homeomorphism onto its image. Inparti
ular, Max(P ) ' Max(B�(P )). Moreover, B�(P ) is bounded 
omplete,and if P is weak at the top, then so is B�(P ). So, if X has a domain-theoreti
model P , then B�(P ) is a domain-theoreti
 model for X that also is bounded
omplete.The 
onverse is obvious. 2The reason to transfer spa
es whi
h have a domain-theoreti
 model in somelo
al domain into a model that is bounded 
omplete is the ease with whi
h297



Mislove
ontinuous mappings 
an be extended in the latter situation.Lemma 3.7 Let f :P ! Q be a monotone mapping between lo
al domains.Then the mapping F :P ! Q by F (x) = tQf(+x) is the largest 
ontinuousmapping satisfying F (x) v f(x) for all x 2 P . 2Proposition 3.8 Let P and Q be bounded 
omplete lo
al domains and letf :Max(P ) ! Max(Q) be a 
ontinuous map with respe
t to the relative S
otttopologies. Then there is a S
ott-
ontinuous map F :P ! Q with F jMax(P ) = f .Proof. We de�ne F1(x) = ^f("x \Max(P )). This mapping is well-de�nedsin
e "x \ Max(P ) 6= ; for all x 2 P . It also is 
lear that the mapping F1is monotone and extends f . Then Lemma 3.7 implies F :P ! Q by F (x) =tQF1(+x) is S
ott-
ontinuous.We next show F jMax(P ) = f: If x 2 Max(P ), let y � w � f(x) in Q.Then x 2 f�1(*w \ Max(Q)) is open in Max(P ). So there is some z 2 Pwith z � x and *z \Max(P ) � f�1(*w \Max(Q)). This implies y v F1(z),and so y v F1(z) v tQF1(+ p) = F (p) for any p 2 P with z � p. Inparti
ular, y � F (x), and sin
e y � f(x) is arbitrary and f(x) is maximal,F (x) = f(x): 2Corollary 3.9 Suppose that f :X ! Y is a 
ontinuous mapping between s-pa
es X and Y , and suppose �X :X ' Max(PX) and �Y :Y ' Max(PY ) arehomeomorphisms onto the maximal elements of bounded 
omplete lo
al do-mains PX and PY , respe
tively. Then there is a S
ott-
ontinuous mappingF :P ! Q whi
h extends the mapping �Y Æ f Æ ��1X . 2Corollary 3.10 Let f :X ! X be a 
ontinuous selfmap of the spa
e X andsuppose that x 2 X is a �xed point for f . If X has a domain-theoreti
 modelP whi
h is a bounded 
omplete lo
al domain, then the extension F of f has aleast �xed point.Proof. That F jMax(P ) = f implies F (x) = x, and so F (#x) �#x sin
e F ismonotone. But #x is a 
po sin
e P is a lo
al domain with least element, andso the 
ontinuous selfmap F jMax(P ) has a least �xed point on #x. It is routineto show that this is the least �xed point of F on P . 2We 
an apply our results to either the Edalat-He
kmann formal ball mod-el to 
on
lude that any metri
 spa
e admits a domain-theoreti
 model intoa bounded 
omplete, !-
ontinuous lo
al domain, or to Lawson's model forPolish spa
es, so that they, too, 
an be modeled with bounded 
omplete, !-
ontinuous lo
al domains. In ea
h 
ase, we also 
an 
on
lude that 
ontinuousmappings between su
h spa
es extend to S
ott-
ontinuous mappings betweenthe lo
al domain models. It would be ni
e to have 
ategori
al results here {i.e. to extend this asso
iation to the level of a fun
tor. But it is not 
lear thatProposition 3.8 yields an extension pro
ess that is 
ompositional on maps.Our results show that 
ontinuous maps between spa
es that admit domain-theoreti
 models that are bounded 
omplete lo
al domains extend to 
ontin-298



Misloveuous maps between the domains. Moreover, the extensions have least �xedpoints if the maps being extended have �xed points. We believe this is afaithful representation of the situation among topologi
al spa
es { even met-ri
 spa
es { and 
ontinuous maps between them. Namely, the goal of modelingspa
es with 
pos so that all 
ontinuous maps extend would result in every ex-tending map having a (least) �xed point regardless of whether the map beingextended had one or not. While we 
annot show that this might not happenhere, we also have no method to prove that the extension we de�ne has a least�xed point unless the original map being extended has a �xed point, pre
iselybe
ause we use lo
al domains as the models. These models require that themapping have a sub-
po that it leaves invariant before we 
an prove any �xedpoints exist.A
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