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EXTENDED ABSTRACT

Abstract

We use a subfamily of the Scott-closed sets of a poset to form a local completion
of the poset. This is simultaneously a topological analogue of the ideal completion
of a poset and a generalization of the sobrification of a topological space. After we
show that our construction is the object level of a left adjoint to the forgetful functor
from the category of local cpos to the category of posets and Scott-continuous maps,
we use this completion to show how local domains can play a role in the study of
domain-theoretic models of topological spaces. Our main result shows that any
topological space that is homeomorphic to the maximal elements of a continuous
poset that is weak at the top also is homeomorphic to the maximal elements of a
bounded complete local domain. The advantage is that continuous maps between
such spaces extend to Scott-continuous maps between the modeling local domains.

1 Introduction

The Scott topology is of fundamental importance in domain theory. It lies at
the heart of the structure of domains, and of how to define the appropriate
morphisms between domains: they are exactly those maps that are continuous
with respect to the Scott topology. Even more, the family of Scott closed
sets is one representation of the lower or Hoare power domain of a domain.
Another application using Scott-closed sets was first revealed in [9], where it
was shown that the sobrification of an algebraic poset in its Scott topology
is an algebraic dcpo with the same set of compact elements. This result was
extended to continuous posets in [12]. The sobrification of any topological
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space is just the set of irreducible closed subsets of the space, and any Tg-
space is homeomorphic to its image in its sobrification, and that image is dense
in the sobrification. One way to view these results is that the sobrification of a
continuous poset completes the poset into a continuous dcpo whose way-below
relation and hence Scott topology is completely determined by the original
poset; this provides a topological generalization of the ideal completion of a
poset into an algebraic dcpo.

In this paper we find another use for the family of Scott-closed sets. Here
we show how a generalization of the sobrification of a continuous poset forms
a local cpo which again contains the original poset densely. In fact, this is
the object-level of the left adjoint to the forgetful functor from the category
of local cpos and Scott continuous maps to the category of posets and Scott
continuous maps. This local cpo — the local completion of the underlying
poset — is simply the closure of the image of the poset within the family of
bounded, irreducible Scott-closed sets, where a subset is bounded if it has an
upper bound in the underlying poset. The sub-cpo of the family of closed sets
generated by the family of bounded Scott-closed sets of a continuous cpo was
first investigated in [11], where it was shown to form the object level of a left
adjoint to the forgetful functor from a subcategory of Scott domains to the
category of SFP objects and Scott-continuous maps.

After we establish the adjunction between the categories of local dcpos and
posets, we turn our attention to using our local completion to model topo-
logical spaces. This line of inquiry has its roots in the work of Edalat [2—4]
who found numerous applications of domain theory to areas beyond program-
ming semantics. A recurring theme of Edalat’s work has been the question
of which topological spaces can be represented as the family of maximal ele-
ments of a domain. Previous results have shown that an important property
for such models is that the inherited Scott topology on the set of maximal
elements agrees with the inherited weak-dual topology on the maximal ele-
ments; we call continuous posets that satisfy this property weak at the top.
In his seminal paper [7], Lawson characterized the spaces that arise as the
maximal elements of w-continuous depos which are weak at the top as being
exactly the Polish spaces. Lawson also showed that domains that are weak
at the top are exactly those for which the mapping into the family of Scott
closed sets preserves maximal elements. We extend this result to the case of
continuous posets?, and then use it to show that any topological space that
is homeomorphic to the maximal elements of a continuous poset that is weak
at the top also can be represented as the space of maximal elements of a local
domain that is bounded complete. This applies in particular to both Lawson’s
model of Polish spaces and to the formal ball model of Edalat and Heckmann
[5]. We also show how continuous mappings between spaces which can be so

2 Unfortunately, our terminology, taken from [9], differs from that of [7]. For us, a contin-
uous poset need not be directed complete, while the posets referred to in [7] are what now
are commonly called continuous dcpos.
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modeled naturally extend to their local domain models.

2 Local dcpos and local cpos

We begin by recalling some basics about partial orders. If P is a partially
ordered set, then a subset D C P is directed if each finite subset of D has
an upper bound in D. P is a directed complete partial order (decpo) if each
directed subset of P has a least upper bound in P. P is a local dcpo if each
directed subset of P with an upper bound has a least upper bound; it is easy
to see that this implies that |z = {y € P | y C z} is a dcpo for each = € P,
but the converse may fail (cf. [9]). A local cpo is a local decpo which also has
a least element.

If P is a partial order and z,y € P, then we write © < y if for each directed
subset D C P for which LD exists, if y C LID, then there is some d € D with
rCd Welet ly={x € P |z <y}, and we say P is a continuous poset if
lly is directed and y = LI |y for each y € P. A domain is a continuous cpo,
while a local domain is a continuous local cpo. An element z € P is compact
if * < x; we let K(P) denote the set of compact elements of P, and we say P
is an algebraic poset if K(y) =ly N K(P) is directed and y = UK (y) for each
y € P.

A mapping between partial orders is Scott continuous if it is monotone and
preserves suprema, of directed sets. More precisely, if f: P — () is a monotone
map between partial orders P and @), then f is Scott continuous if for each
directed subset D C P for which UD exists in P, then f(D) has a supremum
in @ and f(UD) = Uf(D). Equivalently, we can define a Scott-closed subset
of a partial order to be a lower set which is closed under (existing) suprema
of directed subsets. It is easy to show that the intersection of any family of
such sets is another such, as is the finite union, so the family I'(P) of such sets
forms the closed sets of a topology. It also is easy to show that a monotone
mapping f: P — () between partial orders is continuous with respect to this
topology if and only i f preserves suprema of those directed subsets of P that
have suprema.

The following results are from [9,12]:

Theorem 2.1 If P is a continuous poset, then the family Specl'(P) of sup-
primes of the Brouwerian lattice I'(P) is a continuous dcpo. Moreover for
X,Y € Specl'(P), X <Y in Spec['(P) if and only if there are v < y € P
with X Clr Cly CY. O

This result can be raised to the level of an adjunction:

Theorem 2.2 The forgetful functor from the category of continuous dcpos
and Scott-continuous maps to the category of continuous posets and Scott-
continuous mappings has a left adjoint. This left adjoint associates to a con-
tinuous poset P the family Specl’(P). This adjunction also restricts to an
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adjunction between the full subcategories of algebraic posets and algebraic dc-
POS.

Proof. The previous theorem shows that the set of sup-primes of the Brouw-
erian lattice I'(P) is a dcpo which is continuous (algebraic) when P is. Since
posets are always T spaces in their Scott topology, we know from basic results
that the mapping np: P — Specl'(P) by 1p(x) =|z = {z} is a homeomorphis-
m onto its image. Now, each continuous map f: P — () between continuous
posets satisfies f~1:T(Q) — T'(P) preserves all infima and all finite suprema.
Hence, f~! has a lower adjoint T'(f): T'(P) — I'(Q) which preserves all supre-
ma and all sup-primes. It is routine to show the restriction of this map to
the set of sup-primes is then the desired extension of f, and it is uniquely
determined since every closed set is the supremum of elements from the image
of P in Specl'(P). O

2.1 From Posets to Local DCPOs

Our goal in this section is to extend the results at the end of the previous
subsection to categories of posets and continuous maps.
Notation: We let
BI'(P)={X e€Il'(P)|(dz € P) X Clzx}
denote the family of bounded Scott closed sets in the poset P. We also let
BSpec(P) = Specl'(P) N BI'(P)

to be the (sup-)prime closed subsets of P which also are bounded.

Lemma 2.3 If P is a local dcpo, and QQ =@ C P 1is a lower set in P, then
the Scott topology that () inherits from P coincides with the Scott topology
defined by the order on Q.

Proof. If D C @ C P is directed, and if LigD and LpD both exist, then
LUpD T UgD. But if @ is a lower set, then LpD € (@, and so the two
must coincide. So, for a lower set X =X C ), X is Scott-closed in @ iff
UgD € X for any D C @ directed for which LgD exists. But UgD exists
implies LpD exists since P is a local dcpo, and so UgD € X iff UpD € X
for any such D C @, if X = X' N Q. Hence the Scott-closed subsets of
Q are the intersections of Scott-closed subsets of P with (), which means the
intrinsically defined Scott topology on () is the one it inherits from P. O

Proposition 2.4 Let P be a poset. Then

(i) The Scott topology on BI'(P) is the inherited Scott topology from T'(P).
(ii) The Scott topology on BSpec(P) is the one it inherits from Specl'(P).

Moreover, if P is a continuous poset, then
(iii) The Scott topology on Specl'(P) is the one it inherits from T'(P).
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(iv) The Scott topology on BSpec(P) is the inherited Scott topology from
BI'(P), which also coincides with the inherited Scott topology from T'(P).

Proof. Part (i) follows since BI'(P) =] np(P) is a lower set in I'(P), so
Lemma 2.3 implies that its inherited Scott topology from I'(P) is the one
its order defines.

For part (ii), BSpec(P) is the intersection of a lower set in I'(P) with
Spec'(P), and so this is a lower set in SpecI'(P). But it is well-known that
the supremum of a directed set of sup-primes in a complete lattice is another
such (cf. [6]), so Spec'(P) is a dcpo. Hence Lemma 2.3 once again implies the
Scott topology on this subset is the same as the one it inherits from SpecI'(P).

Now assume that P is a continuous poset. Then it is easy to show that
the family

{}F | F is finite and f}x #0 (Vz € F)}

is a basis for I'(P). Theorem 2.1 then implies (iii) holds.

Part (iv) now follows from te previous results: (ii) and (iii) imply the
Scott topology on BSpec(P) is the one it inherits from T'(P), and (i) implies
the Scott topology on BI'(P) is the one it inherits from I'(P), so the Scott
topology on BSpec(P) is the one it inherits from BI'(P). O

We recall that a poset is bounded complete if every subset that has an
upper bound has a least upper bound. This definition traditionally applies to
dcepos, but the conditional for the existence of suprema seems tailor-made for
our setting of local dcpos. In any case, if the poset is also an w-algebraic cpo,
then it is a Scott domain.

Theorem 2.5 Let P be a poset endowed with its Scott topology. Then

(i) BI'(P) is a bounded complete local cpo.

(ii) BSpec(P) is a local depo, and if P has a least element, then it is a local
cpo.

Moreover, if P is continuous, then so are BI'(P) and BSpec(P) and in this
case,

X <Y €BSpec(P) iff (Gz<yeP)X ClzClyCy.

Proof. Since the Scott topology on a poset is always T}, the mapping np: P —
I'(P) by np(z) =]l is a homeomorphism and order isomorphism onto its
image. Since BI'(P) is the lower set of this image in I'(P), it follows that
BI'(P) is a bounded complete local cpo: If X C BI'(P) has an upper bound,
then 3Y € BI'(P) with X CY (VX € X). Then (3z € P)Y Clz,s0 X Clx
for all X € X. Tt follows that UppX = UX" Cla, so LppX € BI'(P). This
proves (i).

For any poset P, the family SpecI'(P) is closed under directed suprema in
['(P), and therefore the supremum in BI'(P) of a directed subset of BSpec(P)
also lies in BSpec(P) if it exists in BI'(P). Since the latter is a local depo, it
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follows that BSpec(P) is one as well.

It is shown in [12] that ['(P) is a completely distributive (and hence con-
tinuous) lattice if P is a continuous poset. Since BI'(P) is a lower set in I'(P),
it follows readily that BI'(P) is a continuous poset.

Furthermore, we know from Theorem 2.1 that, for a continuous poset P,
the depo SpecI’(P) is continuous and satisfies X < Y iff (dx < y € P) X C
lz Cly C Y. Proposition 2.4 implies the Scott topology on BSpec(P) is the
one it inherits from Spec['(P), and since np(P) C BSpec(P), it follows that
this same relation holds in BSpec(P); from this it follows that BSpec(P) is a
continuous poset. O

Each of the structures BSpec(P) and BI'(P) forms the object level of an
adjunction, as we now demonstrate. We define

Pos - the category of posets and Scott continuous maps.
Pos| - the full subcategory of Pos of posets with least element.
LD - the category of local dcpos and Scott-continuous maps.
LC - the full subcategory of LD of local cpos.
BCLC - the category of bounded complete local cpos and maps preserving all
eristing suprema.

Theorem 2.6

(i) The object map P — BSpec(P) extends to a functor BSpec: Pos — LD
which is a left adjoint to the forgetful functor LD — Pos.

(ii) The functor from (i) restricts to a left adjoint BSpec,:Pos, — LC to the
forgetful functor LC — Pos | .

(iii) The object map P +— BI'(P) extends to a functor BI':Pos; — BCLC
which is a left adjoint to the forgetful functor BCLC — Pos | .

Proof. Any continuous mapping f: X — Y between topological spaces gives
rise to a mapping f~':T(Y) — T'(X) preserving all infima and all finite supre-
ma. Then f~' has a lower adjoint I'(f)*: T(X) = I'(Y) by I'(f)*(X) = f(X),
which preserves all suprema and all sup-primes. If X = P is a poset equipped
with its Scott topology, then the fact that ['(f)* preserves all suprema means
['(f)* is continuous with respect to the Scott topology on I'(P), and since
I'(f)* preserves all sup-primes, we conclude that T'(f)* is the unique such
mapping, since any closed set is the supremum of the sets |x = Z7 that it
contains.

Now, since BSpec(P) is a local cpo which is dense in SpecI'(P), we can
simply restrict the functor I'* to a functor BSpec: Pos — LD. Clearly we can
further restrict these functors to the subcategory Pos, on the poset side, and
to LC on the local cpo side.

Finally, the family BI'(P) of bounded Scott-closed sets is a bounded com-
plete local cpo, and we can just as well restrict the upper adjoint I'(f)*: T'(P) —
I'(Q) to this domain. Since I'(f)*onp = ngo f for any continuous map f: P —
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@), and since T'(f)* is order-preserving, it follows easily that T'(f)*(BT'(P)) C
BI'(Q)). Moreover, BI'(P) is closed in I'(P) under all existing suprema and
all infima, so I'* restricts to a functor BI': Pos; — BCLC. This is left ad-
joint to the forgetful functor because all closed sets are the suprema of the
point-closures they contain. O

2.2 From Local DCPOs to CPOs

Our next goal is to relate local dcpos to the better-known directed complete
partial orders.

Theorem 2.7

(i) There is a left adjoint BSpec*: LD — DCPO to the forgetful functor from
the category DCPO of depos and continuous maps to the category LD of
local depos and Scott continuous maps.

(ii) The functor from (i) restricts to a left adjoint BSpec’ : LC — CPO.

(iii) There is a left adjoint BI'*:LC — BCPO to the forgetful functor from
the category of bounded complete cpos and maps preserving all existing
suprema to the category of local cpos and Scott-continuous maps.

Proof. If P is a local dcpo, then the family Specl'(P) of sup-primes in the
Brouwerian lattice of Scott-closed subsets of P is a dcpo, as is true of the sup-
primes of any complete distributive lattice. Moreover, the same arguments
given in the proofs of Theorem 2.6 show that any Scott-continuous mapping
f: P — (@ between local dcpos extends uniquely to a Scott-continuous map-
ping BSpec*(f): SpecI'(P) — Spec'(Q). This is all we need to guarantee that
BSpec® is left adjoint to the forgetful functor. This proves (i), and (ii) is a
simple corollary.

For (iii), we note that the family SpecI’(P) of sup-primes of a local cpo is
a subcpo of T'(P), and so its lower set,

BI*(P) =/ Specl(P) = {X € T'(P) | (3Y € Specl'(P)) X C Y}

also is a cpo, and it is this set which forms the object level of our left ad-
joint. Moreover, this lower set is closed under all non-empty infima, and so
it is a bounded complete cpo. Once again, if f: P — () is a Scott-continuous
mapping between local cpos, then the mapping I'(f)*: T'(P) — ['(Q) preserves
all suprema and all sup-primes. This means I'(f)*(Spec['(P)) C Specl'(Q),
and so I'(f)*(X) €l r)Specl'(Q) for any X €] pp)Specl'(P). That is,
P(f)*(BI*(P)) € BI*(Q), and since the mapping B () = D(f)*|ur-(r) pre-
serves existing suprema, it is the mapping we seek. Finally, this is the unique
mapping extending f: P — () since since any closed set is the supremum of
the point closures it contains. O

Of course, whenever one talks about categories of cpos, then fixed points
of continuous selfmaps immediately spring to mind, as do questions of domain
constructors and cartesian closed categories. We now consider these issues.
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Theorem 2.8 The categories LD of local depos and LC of local cpos are closed
under the following:

* Products.

* Sums.

o Lift.

» Continuous function spaces.

In particular, since the one-point local cpo is a terminal object in both these
categories, both of them are cartesian closed.

Proof. Only the closure under function space merits comment. If P and @
are local dcpos, then the space [P — Q] of Scott-continuous maps is partially
ordered under the pointwise ordering. Suppose F' C [P — )] is a directed
family of continuous functions and f C g for all f € F, for some g € [P — Q).
For any x € P, {f(z) | f € F} Clg(z), and since @ is a local dcpo, lg(z) is
a dcpo, so there is a supremum f'(x) := Ug{f(z) | f € F}. Hence f:P — Q
with f' = LUF is well-defined.

The proof that f’ is continuous is the same as for continuous maps on dc-
pos: Given any directed subset D C P for which LipD exists, then g(LIpD) =
Ugg(D). Then g|y,n:JUpD —lgg(D) is continuous, and since f C g for all
f € F, it follows that each mapping f|,,p: JUpD —]Ugg(D) is continuous.
Since P and @ are local depos, both [UpD and |[Ugg(D) are depos, and so
the directed family of {f|,.,p | f € F'} has least upper bound f’|;,,p which
is continuous. But f'(z) = Ug{f(x) | f € F} for each z €/UpD, and so
f'(UpD) =g f'(D),so f'=UF: P — ( is continuous.

The remarks about cartesian closure now readily follow — in fact, they also
can be gleaned from the fact that we are working within subcategories of the
category of posets and monotone maps, which itself is cartesian closed. O

Proposition 2.9 A continuous selfmap f: P — P of a local cpo has a least
fized point if and only if there is a subcpo Q C P and a continuous selfmap
9:Q — Q such that f(z) C g(z) for all x € Q.

Proof. If f: P — P has a fixed point x, then f(y) C f(z) = = for any y €x.
Hence |z is a subcpo of P and f|,: J© —]x dominates f on .

Conversely, suppose ¢: () — () is a continuous selfmap of a subcpo of P
such that f|g C g¢. Since g is continuous, there is a (least) fixed point z for
g. Then y C z implies f(y) C f(z) C g(x) = z, and so f({x) Clx. That is,
fliz:dx =]z is continuous, and so this mapping has a least fixed point. Now,
for any fixed point y of f, f(ly) Cly, so f(lzN ly) ClzN ly. This implies
that f has a least fixed point on the subcpo® |zN |y, and this least fixed
point must be in ]z, so it coincides with the least fixed point of f|,. That is,
this is the least fixed point of f. O

3 The definition of a local cpo requires that each directed set with an upper bound has a
least upper bound. It is this assumption that allows us to conclude that |z N ]y is a cpo.
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At this point, one might begin to investigate the possibility of solving
domain equations within the categories LD and LC. But, we do not see a
simple way to guarantee that fixed points exist for enough continuous maps
between local cpos, other than to restrict to subcategories of cpos, which
means we would not provide any new solutions to the equations one might
first examine. However, this clearly is a topic for future research.

Another worthwhile area for further research would be to extend our results
from posets to topological spaces in general. That is, we believe the results
described above should admit a generalization that would provide the notion
of a local sobrification of a topological space. This notion may prove useful
for studying the representation theory of non-commutative rings, in particular
for studying non-commutative C*-algebras.

3 Modeling Topological Spaces

One of the most important initiatives in domain theory in recent years has
been the work of Abbas Edalat and the members of the Comprox group [2—-
4]. This work has provided many innovative applications of domain theory to
areas where it formerly had no apparent application, as well as providing new
methods to attack long-standing problems in those areas [2]. One outgrowth
of this work has been interest in which topological spaces are homeomorphic
to the maximal elements of the posets that arise as models in the varying areas
under study. The definitive results along this line are the formal ball model of
Edalat and Heckmann [5], which shows that any metric space is homeomorphic
to the maximal elements of an w-continuous poset, and Lawson’s result [7] that
characterizes the maximal elements of certain w-continuous domains as exactly
the Polish spaces. Other results that have emerged recently are due to Martin
(8] who has shown any w-continuous poset admits a natural mapping, called a
measurement, which gives rise to the Scott topology, and the set of maximal
elements of such a poset is always metrizable.

Several questions remain open in this area. For example, only limited
progress has been made on relations between categories of topological spaces
and those of domains that serve as models: in the case of the formal ball
model, it has only been shown that the Lipschitz continuous functions can
be extended to Scott continuous functions between the associated models. In
addition, exactly which spaces can arise as the maximal elements of a domain
also is unsettled.

This work has focused on using domains or continuous posets as models for
topological spaces. We propose to show how bounded complete local domains
also provide interesting models for topological spaces. Local domains are local
cpos that are continuous posets, so they satisfy all the properties of a domain,
except they are not necessarily directed complete. As we mentioned in the
introduction, these objects have been used to give an explanation of how
certain models of CSP [1] arise from a domain-theoretic viewpoint [9]. But
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our interest here is on using these structures for modeling topological spaces.
Our main result shows that any topological space that can be modeled in a
continuous poset that is weak at the top also can be modeled as the set of
maximal elements of a bounded complete local domain — the local domain
analogue of a Scott domain. This includes the formal ball model of Edalat
and Heckmann [5] and Lawson’s model for Polish spaces [7]. In addition,
we show that continuous mappings between spaces that admit such models
extend to Scott-continuous mappings between the modeling local domains.
This resolves a problem that has arisen in the formal ball model, since only Lip-
schitz continuous functions are known to extend to Scott-continuous mappings
between those models.

Recall that the weak? topology on a poset P has the family {tz | + € P}
as a subbasis of closed sets.

Definition 3.1 A continuous depo P is weak at the top if the weak? topology
and the Scott topology agree on the maximal elements Max(P).

It is shown in [5] how to construct a model for any metric space X in an
w-continuous poset; i.e. an w-continuous poset P which is weak at the top and
for which Max(P) is homeomorphic to X. In [7], it is shown how to model any
Polish space (i.e. complete, separable metric space) as the maximal elements
of an w-continuous cpo that is weak at the top, and it is proved that the
maximal elements of any such domain form a Polish space. But the models
that are constructed in both cases are arcane and not well-understood. A
much better-understood family of domains is the family of bounded complete
domains cpos for which any non-empty subset has an infimum.

Definition 3.2 We say that topological space X has a domain-theoretic mod-
el if X is homeomorphic to the maximal elements of some continuous poset
P that is weak at the top and that has a least element.

Note that the assumption about P having a least element is only a technical
requirement; if a space X is homeomorphic to the maximal elements of a
continuous poset which is weak at the top, but which lacks a least element,
clearly adding a least element as compact element of the poset meets our needs
without significantly altering the structure of the modeling poset.

Recall that the Lawson topology on poset P, denoted A(P), is the common
refinement of the Scott and weak? topologies. On a continuous poset P, A(P)
is Hausdorff and has the family of sets {ftz\ 1F | F U {z} C P finite} as a
basis.

Proposition 3.3 If P is a continuous poset then the map np: P — BSpec(P)
by np(z) =]z is a homeomorphism with respect to the Scott topologies. More-
over, the following are equivalent:

(i) P is weak at the top.

(ii) There is an order-preserving continuous injection of (P, \(P)) into a com-
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pact pospace, i.e., into a compact Hausdorff space endowed with a (topo-
logically) closed partial order.

Proof. It follows from Theorem 2.1 that np is a homeomorphism with respect
to the Scott topologies.

The final equivalence is shown for domains in [7], but the result does not
require that the poset in question be directed complete, but only continuous.™

Example 3.4 For a continuous poset P with least element, it is not neces-
sarily true that BI'(P) is weak at the top. Indeed, the following example
essentially due to Martin [8] shows this may fail. Let

P=A{a, | m>0}U{b, | m>0}U{bz},

where {a,, | m > 0} U {b} is an antichain, {b,, | m > 0} is a chain (increasing
with m) with supremum b and satisfying b,, C a, whenever m < n, and
x C a,, for each m > 0. Then each element except b is compact, and b is the
chain {b,, | m > 0} U {b}. Also, |« = {«} is Scott closed, and b ¢1gr(r)({),
but each Scott-open set containing |b in BT'(P) must contain residually many
of the sets la,,, each of which contains .

Proposition 3.5 For a continuous poset P, the following are equivalent:

(i) P is weak at the top.
(ii) BT'(P) is weak at the top.

Proof. The definition of BI'(P) implies that np: P — BI'(P) is a bijection
of Max(P) onto Max(BI'(P)). If P is continuous, then np: P — np(P) is a
homeomorphism with respect to the Scott topologies. It also is a homeomor-
phism with respect to the weak? topologies: If |p is a maximal element of
BI'(P) and X € BI'(P), then |p et X iff X Clp iff p € ),y T2. Hence
Max(P) and Max(BI'(P)) are homeomorphic in both the inherited Scott- and
the inherited weak? topologies. From this, the equivalence follows. O

Theorem 3.6 For a topological space X, the following are equivalent:

(i) X has a domain-theoretic model.

(i1) X is homeomorphic to the mazimal elements of a bounded complete local
domain which is weak at the top.

Proof. Note that the mapping np: P — BI'(P) preserves maximal elements,
and for P continuous, this mapping is a homeomorphism onto its image. In

particular, Max(P) ~ Max(BI'(P)). Moreover, BI'(P) is bounded complete,
and if P is weak at the top, then so is B['(P). So, if X has a domain-theoretic
model P, then BI'(P) is a domain-theoretic model for X that also is bounded
complete.

The converse is obvious. O

The reason to transfer spaces which have a domain-theoretic model in some
local domain into a model that is bounded complete is the ease with which
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continuous mappings can be extended in the latter situation.

Lemma 3.7 Let f: P — Q) be a monotone mapping between local domains.
Then the mapping F: P — Q by F(x) = Ugf({x) is the largest continuous
mapping satisfying F(x) C f(x) for all x € P. O

Proposition 3.8 Let P and () be bounded complete local domains and let
f:Max(P) — Max(Q) be a continuous map with respect to the relative Scott
topologies. Then there is a Scott-continuous map F: P — Q with F|yaxpy = f.

Proof. We define Fy(z) = Af(T2z N Max(P)). This mapping is well-defined
since Tz N Max(P) # () for all x € P. It also is clear that the mapping F}
is monotone and extends f. Then Lemma 3.7 implies F: P — @ by F(z) =
UgFi(Jx) is Scott-continuous.

We next show Flyaxp) = [ If 2 € Max(P), let y < w < f(2) in Q.
Then x € f'(ffw N Max(Q)) is open in Max(P). So there is some z € P
with z < x and ffz N Max(P) C f~'(fflw N Max(Q)). This implies y C Fi(z),
and so y C Fi(z) C UgFi(Up) = F(p) for any p € P with z < p. In
particular, y < F(x), and since y < f(x) is arbitrary and f(x) is maximal,

Corollary 3.9 Suppose that f: X — Y is a continuous mapping between s-
paces X and Y, and suppose ¢px: X ~ Max(Px) and ¢y:Y ~ Max(Py) are
homeomorphisms onto the maximal elements of bounded complete local do-
mains Px and Py, respectively. Then there is a Scott-continuous mapping
F: P — Q which extends the mapping ¢y o f o ¢y a

Corollary 3.10 Let f: X — X be a continuous selfmap of the space X and
suppose that x € X is a fixed point for f. If X has a domain-theoretic model
P which is a bounded complete local domain, then the extension F' of f has a
least fized point.

Proof. That F|yaxp) = f implies F'(z) = z, and so F/(lz) Cla since F is
monotone. But |z is a cpo since P is a local domain with least element, and
so the continuous selfmap F|Max(p) has a least fixed point on Jx. It is routine
to show that this is the least fixed point of F on P. O

We can apply our results to either the Edalat-Heckmann formal ball mod-
el to conclude that any metric space admits a domain-theoretic model into
a bounded complete, w-continuous local domain, or to Lawson’s model for
Polish spaces, so that they, too, can be modeled with bounded complete, w-
continuous local domains. In each case, we also can conclude that continuous
mappings between such spaces extend to Scott-continuous mappings between
the local domain models. It would be nice to have categorical results here
i.e. to extend this association to the level of a functor. But it is not clear that
Proposition 3.8 yields an extension process that is compositional on maps.

Our results show that continuous maps between spaces that admit domain-
theoretic models that are bounded complete local domains extend to contin-
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uous maps between the domains. Moreover, the extensions have least fixed
points if the maps being extended have fixed points. We believe this is a
faithful representation of the situation among topological spaces — even met-
ric spaces — and continuous maps between them. Namely, the goal of modeling
spaces with cpos so that all continuous maps extend would result in every ex-
tending map having a (least) fixed point regardless of whether the map being
extended had one or not. While we cannot show that this might not happen
here, we also have no method to prove that the extension we define has a least
fixed point unless the original map being extended has a fixed point, precisely
because we use local domains as the models. These models require that the
mapping have a sub-cpo that it leaves invariant before we can prove any fixed
points exist.
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