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Abstract

The �rst mathematical model of the untyped lambda calculus was

discovered by DANA SCOTT in the category of algebraic lattices and

Scott continuous maps. The question then arises as to which other

cartesian closed categories contain a model of the calculus. In this

paper we show that any compact Hausdor� model of the calculus

must satisfy the property that the semantic map from the calculus to

the model is constant. In particular, any compact reexive object in

the category of Hausdor� k -spaces gives rise to a degenerate model of

the calculus. We also explore the relationship of the results we derive

to the notions of a combinatory model and of an environment model

of the calculus.

DEDICATION. Dedicated to Dana S. Scott on the occasion of his sixty-�rst

birthday on October 11, 1993 as an expression of our admiration and appreciation

for the continuous inspiration coming from him to topology and algebra. He makes

us think about theory while keeping applications in mind.

0. Introduction

The lambda calculus of Church and Curry long has been an object of study by

researchers in theoretical computer science. The reason is that the untyped lambda

calculus is very much like a prototypical programming language without assignment.

* The �rst author thanks Deutsche Forschungsgemeinschaft and the second the O�ce of Naval

Research for their support. E-mail addresses: �rst author: hofmann@mathematik.th-darmstadt.de,

and second author: mwm@tulmath.math.tulane.edu.
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As such, this calculus provides an attractive basis for buildingmodels for programming

languages. But the question arises as to the existence of mathematical models of the

calculus. By such a model, we mean one where the terms of the calculus can be

interpreted as functions, and where the application and abstraction operators have the

obvious natural meaning. It was only in the late 1960's that Dana Scott provided

the �rst mathematical model of the calculus. This result was an o�shoot of his

attempt to provide mathematical models for programming languages other than the

lambda calculus, a calculus whose use he viewed as formal and unmotivated (cf. [2],

p. vii). His �rst model, the so-called D

1

model ([5]), was found in the category of

algebraic lattices and Scott continuous maps. His investigations led to the founding

of domain theory { objects which are generalizations of algebraic lattices within the

realm of partially ordered sets { and a veritable plethora of models for the calculus

has been found in categories of domains.

An obvious question then is whether models for the calculus can be found in

other categories. Following Meyer (cf. [6]), by a functional domain, we mean an

object X within a cartesian closed category C with internal hom functor ) which

satis�es the property that X ) X is a retract of X in C .

1

The model D

1

is an

example of such an object; indeed, D

1

' (D

1

) D

1

) . So, one would like to know

whether there exist such objects in other cartesian closed categories.

The place to start such an investigation is clearly SET , the category of

sets and functions. Here, the internal hom functor is the family of all functions,

and then Cantor's Theorem on cardinalities implies there can be no nondegenerate

functional domain in the category. Other categories of interest are POS , the category

of posets and monotone maps, and the category CU of complete ultrametric spaces

and nonexpansive maps. Arguments exist to show that neither of these categories

admits a nondegenerate functional domain.

The next category on the list of candidates is the category K of Hausdor�

k -spaces and continuous maps. For this category, the question remains open whether

there is a nondegenerate functional domain. Indeed, the purpose of this paper is to

eliminate an obvious subclass of objects as candidates for nondegenerate functional

domains|the compact spaces. The precise aspects, if one wants to present them

in su�cient generality, are technical and sometimes subtle. We introduce concepts

which relate to the issue of \compact lambda models": the �rst one is that of a

functional algebra in (2.1), which is a certain topological algebraic structure. All

subsequent results rest on the fact that Hausdor� compact functional algebras must

be singleton (2.7). The proof relies on results from the theory of compact semigroups

and compact semigroup actions. We de�ne a functional domain and its variants in

considerable generality in (3.1). The ones we introduced above we shall call special.

In the third and fourth sections we also take the time to discuss in some

detail the precise e�ect of our results on models of the untyped lambda calculus in

cartesian closed topological categories. This discourse is motivated byMeyer's ideas

[6]. In particular, we show that an environment model based on a compact special

functional domain in the category of k -spaces must be trivial in the sense that its

semantic map is constant (3.11). In the fourth section we discuss briey the concept

of combinatory models in concrete cartesian closed categories and the e�ects of our

degeneracy theorem on the degeneracy of compact extensional combinatory models

in, say the category of k -spaces (4.5, 4.6).

The �rst two sections are point-set topological; no category theory is used

there. In the subsequent sections, however, we proceed in su�cient generality so

that most of the results apply to arbitrary concrete cartesian closed categories with

1

Actually, this de�nition is somewhat more restrictive than MEYER's, focusing on the case

when the family of self-maps is all of X)X.
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functions spaces. This requires some background on cartesian closed categories.

Therefore, basic aspects of cartesian closed categories are collected in an Appendix

for easy reference. As soon as the results of the �rst point-set topological sections and

the category-based arguments merge, we work in what we call standard topological

categories, i.e., cartesian closed categories based in the category of topological spaces.

We are indebted to Samson Abramsky for bringing the problem of models

of the lambda calculus within K to our attention.

1. Preliminaries on E�ective Topological Monoid Actions

A topological semigroup T is a Hausdor� topological space together with a continuous

associative multiplication (s; t) 7! st:T � T ! T . Our core results will involve

compact Hausdor� topological semigroups.

De�nition 1.1. Suppose that (T; e) is a topological semigroup with an idempotent

e . We say that (T; e) acts e-e�ectively on a topological space X if there is a continuous

map (t; x) 7! t�x:T �X ! X satisfying

(1) (8t

1

; t

2

2 T; x 2 X) t

1

t

2

�x = t

1

�(t

2

�x);

(2) (8x 2 X) e�x = x:

We say that the action is e-e�ective if

(3) (8t

1

; t

2

2 T )

�

(8x 2 X) t

1

�x = t

2

�x ) et

1

= et

2

:

�

If e is an identity, then we recover the standard concept of an e�ective action. We

shall refer to e as being central if et = te for all t 2 T .

Lemma 1.2. Suppose that (T; e) acts e-e�ectively on X . Then

(4) (8t 2 T ) et = ete:

Moreover, we have the following conclusions:

(i) The morphism p:T ! T , p(t) = et is a homomorphic retraction onto a

subsemigroup

S

def

= eT:

(ii) S is a left ideal and, if e is central, an ideal of T .

(iii) S is a monoid with identity e acting e�ectively on X .

(iv) (8t 2 T; x 2 X) t�x = p(t)�x .

Proof. In order to prove (4) we compute (te)�x = t�(e�x) = t�x . So by (3) we have

ete = et . Now (i) is elementary semigroup theory, (ii) is trivial from S = eT (which

equals Te if e is central). (iii) is straightforward and in order to see (iv), we compute

t�x = e�(t�x) = (et)�x = p(t)�x .

De�nition 1.3. We shall call S = eT the structure monoid of the action of (T; e)

on X .

The following remarks shed some extra light on ways in which a structure

monoid might be embedded in the full semigroup. If p : T ! T is a retraction of set

onto a subset S which is a semigroup, then the de�nition t

1

t

2

= p(t

1

)p(t

2

) makes T

into a semigroup called the ination of S via p . If e is an identity of S , then e is a

central idempotent of T .
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Remark 1.4. Suppose that T is a semigroup with an idempotent e satisfying (4).

Set S = eT . Then the following two statements are equivalent:

(a) TT � S .

(b) T is an ination of S via p = (t 7! et) .

Proof. (b))(a): We note t

1

t

2

= p(t

1

)p(t

2

) = et

1

et

2

= et

1

t

2

by (4), and the last

element is in eT = S .

(a)) (b): Let t

1

; t

2

2 T . By (a) there is a t 2 T such that t

1

t

2

= et . So

t

1

t

2

= et = e

2

t = e(et) = e(t

1

t

2

) = (et

1

)t

2

= (et

1

e)t

2

= (et

1

)(et

2

) = p(t

1

)p(t

2

) .

The surjective part of an action

De�nition 1.5. If T is a semigroup acting on X we say that an element t 2 T is

surjective provided

(5) (8a 2 X)(9x 2 X) a = t�x:

The set of all surjective elements will be denoted by �(T;X) .

We recall that in a semigroup T , the R-class R(t) of an element t consists

of all t

0

2 T for which there are elements u; v 2 T such that t = t

0

u and t

0

= tv .

For an idempotent e , the largest subgroup containing e is denoted H(e) . Notice

H(e) � R(e) .

If T is a semigroup we denote its set of idempotents by E(T ) .

Lemma 1.6. Suppose that (T; e) acts e-e�ectively on X . Then

(i) �(T;X) is a subsemigroup of T containing R(e) .

(ii) �(S;X) = �(T;X) \ S is a subsemigroup of the structure monoid S con-

taining R(e) � H(e) .

(iii) E(�(S;X)

�

= feg .

(iv) If h 2 H(e) then the function �:X ! X , �(x) = h�x is bijective with inverse

given by �

�1

(x) = h

�1

�x .

Proof. (i) Take s

1

; s

2

2 �(T;X) and pick a 2 X . First �nd an x

1

such that

a = s

1

�x

1

: Next �nd x 2 X such that x

1

= s

2

�x . Then a = s

1

�(s

2

�x) = (s

1

s

2

)�x .

This proves that �(T;X) is a subsemigroup of T . Now suppose that r 2 R(e) .

Then there is a t 2 T such that e = rt . If a 2 X is given, set x = t�a . Then

r�x = r�(t�a) = rt�a = e�a = a . Thus r is surjective.

(ii) is a consequence of (i).

(iii) By (i) and (ii) we know e 2 E

�

�(S;X)

�

. Conversely, suppose now that

e

0

2 E

�

�(S;X)

�

. De�ne � :X ! X by � (x) = e

0

�x . Since e

0

is idempotent, � is

a retraction. Since e

0

2 �(T;X) , then � is surjective. A surjective retraction is the

identity map. Thus e

0

�x = x for all x 2 X . But also x = e�x . Hence e-e�ectivity

(3) implies ee

0

= ee = e . But also e

0

2 S = eT . Hence there is a t 2 T such that

e

0

= et . Thus ee

0

= eet = et = e

0

. Therefore e = e

0

and this proves the claim.

(iv) h

�1

��(x) = h

�1

�(h�x) = h

�1

h�x = e�x = x . Similarly, �(h

�1

�x) = x .

If T is an ination of S = eT , then E

�

�(T;X)

�

= feg . Otherwise this need

not be the case.

The remark on the idempotents has a noteworthy consequence for compact

actions which we shall see presently.
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Lemma 1.7. If X is a compact Hausdor� space and T a topological semigroup with

an idempotent e acting e-e�ectively on X , and if S = eT , then S is closed in T

and �(S;X) is closed in S .

Proof. Retracts of Hausdor� spaces are closed, and S = eT is a retract. Hence S

is closed in T .

Now let s 2 �(S;X) . Then there is a net s

j

2 �(S;X) converging to

s . We claim that s is surjective. Let a 2 X . Since s

j

is surjective for each j ,

there is an x

j

2 X such that a = s

j

�x

j

. As X is compact we �nd a subnet x

j(k)

converging to some x 2 X . Since the action (t; x) 7! t�x:T �X ! X is continuous,

s�x = lim

k

s

j(k)

�x

j(k)

= a . Thus s is surjective as asserted.

Remark 1.8. Under the circumstances of Lemma 1.7, if T is a compact Hausdor�

space, then so is S = eT .

Proof. By 1.7 the space S is closed in a compact Hausdor� space.

The following is a basic and classical fact on compact monoids (cf. [3], 1.19,

p. 15):

Proposition 1.9. Any compact monoid with but one idempotent is a group.

This allows us to conclude the following

Proposition 1.10. Suppose that a compact semigroup (T; e) with an idempotent

e acts e-e�ectively on a compact Hausdor� space X . Then

(6) �(S;X) = H(e):

Proof. By Lemma 1.8 and Lemma 1.6(iii), �(S;X) is a compact monoid with one

idempotent. Hence it is a group by Proposition 1.9. Consequently, �(S;X) � H(e) .

The reverse inclusion holds generally by Lemma 1.6(ii).

Actions with constants

For any X we introduce a notation for the constant self-maps of X as follows:

�

x

:X ! X , �

x

(y) = x . Trivially, in a topological space the constant self-maps are

continuous.

De�nition 1.11. We say that a topological semigroup with idempotent (T; e) acts

on a topological space X with constants if there is a continuous function �:X ! T

such that

(7) (8x; x

0

2 X) �(x)�x = x:

Clearly, the maps x

0

7! �(x)�x

0

are exactly the constant self-maps �

x

.

Examples are readily at hand: let X be a compact Hausdor� space and

T the topological Hausdor� monoid C(X;X) of all continuous self-maps with the

compact-open topology. Its identity is e = id

X

. The monoid T = eT = S acts via

(�; x) 7! �(x):T �X ! X with constants via �:X ! S given by �(x) = �

x

.
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Remark 1.12. Suppose that the conditions of 1.11 are satis�ed. Then the function

�

0

:X ! S de�ned by �

0

(x) = e�(x) satis�es

(8x; x

0

2 X) �

0

(x)�x

0

= x:

Proof. We compute �

0

(x)�x

0

= e�(x)�x

0

= e�(�(x)�x

0

) = e�x = x .

It therefore would be no loss of generality to assume outrightly that the range

of � is S .

Lemma 1.13. Suppose that (T; e) acts e�ectively on X with constants. Then we

have the following conclusions:

(i) � is injective and is a morphism of S -actions, i.e.,

(8) (8s 2 S; x 2 X) �(s�x) = s�(x):

(ii) �(X) =M(S) is a minimal ideal of the structure monoid S = eT consisting

of left zeroes. It is the minimal ideal of T if e is central.

(iii) Let �

0

:X ! M(S) be the corestriction of � to its image. Then �

0

is an

isomorphism of S -actions.

Proof. (i) �(x) = �(y) implies x = �(x)�x = �(y)�x = y which proves that �

is injective. For all x; y 2 X and s 2 S we have

�

s�(x)

�

�y = s�(�(x)�y) = s�x =

�(s�x)�y . So s�(x) = �(s�x) . This proves (8).

(ii) We take x; y 2 X , s 2 S . Then (�(x)s)�y = �(x)�(s�y) = x = �(x)�y .

Since y is arbitrary and �(x) and �(x)s are in S , the e�ectivity of the action yields

�(x)s = �(x) . Thus �(X) consists of left zeroes and therefore �(X) � M(S) . By

(i) S�(X) � �(X) � S . Thus �(X) is a left ideal of S , and hence an ideal since it

consists of left zeroes. This implies �(X) =M(S) as asserted in (ii). If e is central,

then S is an ideal of T and the computations above are valid for s 2 T since then

�(x)s 2 S even in that case.

(iii) is a trivial consequence of (i).

Corollary 1.14. If (T; e) acts e-e�ectively on X , then

cardX = cardM(S) � cardS:

2. Functional Algebras

De�nition 2.1. A functional algebra is a pair of topological spaces (T;X) together

with the following structural data:

(i) T � X is a subspace endowed with a topological semigroup multiplication

(x; y) 7! x � y:T � T ! T and with an idempotent e . The monoid S

def

=

(e �T; �) with identity e will be called the structure monoid of the functional

algebra X .

(ii) There is an e-e�ective continuous action (x; y) 7! x�y:T �X ! X .

(iii) There is a distinguished element y 2 T such that

(9) (8x 2 X) x�(y�x) = y�x:

(iv) There is a continuous function �:X ! X , �(X) � T satisfying

(7) (8x; x

0

2 X) �(x)�x

0

= x:
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Remark 2.2. Suppose that the conditions of 2.1 are satis�ed. Then the element

y

0

= e � y 2 S satis�es

(8x 2 X) x�(y

0

�x) = y

0

�x:

Proof. x�(y

0

�x) = x�([e � y]�x) = x�(e�(y�x)) = x�(y�x) = y�x = e�(y�x) = [e � y]�x =

y

0

�x .

So it would be no loss of generality to postulate that y is in S outrightly. By

1.12 it also would be no loss of generality to assume in 2.1(iv) that �(X) � S .

Remark 2.3. In a functional algebra,

(10) cardX = cardT = cardS:

Proof. By Corollary 1.14, cardX = cardM(S) � cardS . Since S � T � X we

have cardS � cardT � cardX . The assertion follows.

Lemma 2.4. Let (T;X) be a functional algebra. Then

(11) (8x 2 X) x = y��(x):

As a consequence, y 2 �(T;X) and e � y 2 �(S;X) .

Proof. In view of the de�nition of � in (7) we compute x = �(x)�(y��(x)) = y��(x)

by (9). This proves (11). The de�nition of surjectivity together with (11) directly

shows y 2 �(T;X) . By 2.2, the element e � y has the same properties as y and is

contained in e � T = S , and thus e � y 2 �(T;X) \ S = �(S;X) .

We say that a functional algebra (T;X) is degenerate if X is singleton.

Lemma 2.5. Any functional algebra X with y 2 H(e) is degenerate.

Proof. If y 2 H(e) then x 7! y

�1

�x , where y

�1

is the inverse of y in H(e) is

bijective by Lemma 1.6(iv). Thus y

�1

�X = X . Now Lemma 2.4 implies y

�1

�X =

y

�1

�(y��(X)) = (y

�1

�y)��(X) = e��(X) = �(X) . By 1.13(ii) we have �(X) =M(S) .

Hence X =M(S) . In particular e 2 M(S) , and M(S) consists of left zeroes. Thus

the identity e of S is a left zero. This implies S = feg . On the other hand, � maps

X injectively onto M(S) by 1.13(i). Thus X = feg .

De�nition 2.6. By a compact functional algebra we mean a functional algebra

(T;X) such that S = e � T and X are compact Hausdor� spaces.

Theorem 2.7. Any compact functional algebra is degenerate.

Proof. By Proposition 1.10 we have �(S; e�X) = H(e) . By 2.4, e � y 2 �(S;X) .

Hence e � y 2 H(e) . Then Remark 2.2 and Lemma 2.5 �nish the proof.

Frequently the axiom (iv) of a functional algebra securing constant self-maps

of X in T in a continuous fashion is realized by a stronger axiom.

De�nition 2.8. A functional algebra (T;X) is a k -functional algebra i� the

following condition is satis�ed:

(iv

0

) There is an element k 2 T such that

(7

0

) (8x; x

0

2 X) (k�x)�x

0

= x:

We note by setting �(x) = k�x that condition (iv

0

) implies (iv).
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Remark 2.9. Suppose that (T;X) is a k -functional algebra. Then the element

k

0

= e � k 2 S = e � T satis�es

(7

00

) (8x; x

0

2 X) (k

0

�x)�x

0

= x:

Proof. (k

0

�x)�x

0

=

�

(e�k)�x

�

�x

0

=

�

e�(k�x

�

�x

0

= (k�x)�x

0

= x by 1.1(1) and 2.8(7

0

).

It is therefore no loss of generality to assume right away that k 2 S . So, in

view of Remark 2.2 above we make the following de�nition:

De�nition 2.10. A strict functional algebra is a functional k -algebra with k; y 2

S = e � T .

Lemma 2.11. The elements y and k of the structure monoid S of a strict func-

tional algebra satisfy the relation y � k = e .

Proof. We set �(x) = k�x ; then (7

0

) implies (7). From Lemma 2.4 we then deduce

(11

0

) (8x 2 X) x = y�(k�x):

But y�(k�x) = (y �k)�x by 1.1(1). Thus (y �k)�x = x = e�x for all x . Since the action

is e-e�ective and since y � k 2 S = e � T , we conclude y � k = e � (y � k) = e � e = e .

In view of Lemma 2.11 we recall that the free monoid generated by two

elements p and q subject to the relation pq = e is called the bicyclic semigroup B(p; q)

(cf. [1], pp. 43 { 46). The homomorphic images of B(p; q) are either isomorphic to

B(p; q) , or else they are cyclic groups.

Proposition 2.12. If (X;T ) is a nondegenerate strict functional algebra then the

structure monoid S = e � T contains a bicyclic semigroup B as submonoid.

Proof. We let B be the submonoid generated by k and y . By way of contradiction

we suppose that B is not a bicyclic semigroup. Then B is a proper homomorphic

image of a bicyclic semigroup and is therefore a group. Since e = y�k 2 B by Lemma

2.11, this implies y 2 B � H(e) . Then Lemma 2.5 shows that X is degenerate in

contradiction with our hypothesis.

In the theory of compact topological semigroups it is well-known that no

compact topological semigroup can contain a bicyclic semigroup (see e.g. [5]). This

yields a proof of the fact that every compact strict functional algebra is degenerate

which also follows immediately from Theorem 2.7.

It would be reasonable to speculate that degeneracy theorems for strict func-

tional algebras will have to rely on some proof that bicyclic semigroups cannot exist

as submonoids in S .

A simple example of B(p; q) acting on a set is given by the operators P :N!

N and Q:N ! N by P (n) = maxf1; n � 1g and Q(n) = n + 1. A similar example

can be constructed on the space of nonnegative real numbers.

Exercise 2.13. (i) For each r 2 R the function x 7! x � r is an automorphism

of the sup-semilattice (R;_) . The map r 7! (x 7! x � r) : (R;+) ! Aut(R;_) is a

homomorphism � .

(ii) The semidirect product S = (R;_)�

�

(R;+) is a topological semigroup

with respect to the multiplication (x; r)(x

0

; r

0

) = (x_ (x

0

� r); r+ r

0

) . The projection

(x; r) 7! r:S ! (R;+) is a homomorphism,

(iii) We set Z

+

= f0; 1; 2; : : :g and R

+

= fr 2 R j r � 0g . The subset

B(p; q) = Z

+

(1;�1) + Z

+

(0; 1) is a subsemigroup of S generated by p = (0; 1) and

q = (1;�1) and isomorphic to the bicyclic semigroup.

The subset C(p; q) = R

+

(1;�1) + R

+

(1;�1) is a monoid, the continuous

bicyclic semigroup.
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3. Functional Domains, Functional Monoids, and

Environment Models

In this section, we review of the concepts of functional domains, functional monoids

and environment models which were discussed in [6], and interpret our degeneracy

results in these settings. However, we base our considerations on an arbitrary cartesian

closed category with function spaces. We assume some knowledge of the basic aspects

of cartesian closed categories presented in the Appendix. In particular, we utilize the

notation used there.

In [4], Meyer de�nes a functional domain to be a set X together with a

family of self-maps [X ! X] which is a retract of X (in SET ). Since we are

concerned with such objects in various categories, we have rephrased his de�nition to

include the possibility of objects in arbitrary cartesian closed categories.

Throughout this section we shall �x a concrete cartesian closed category C

with function spaces. (See. A.11 and A.13.)

De�nition 3.1. (i) If X is an object in a cartesian closed category C , then

a functional domain on X is formally a triple ([X ! X]; j; p) consisting of a C -

subobject of X

X

, together with an embedding-projection pair (j; p) of C -morphisms

j: [X ! X]! X

p:X ! [X ! X]:

I.e., pj = id

X

.

(ii) A functional monoid on the object X of C is a quadruple (M; [X !

X]; j; p) such that ([X ! X]; j; p) is a functional domain with a submonoid M

of X

X

such that the inclusion morphism M ! X

X

factors through the inclusion

[X ! X] ! X

X

. If the constant-picker �

X

X

:X ! X

X

(see A.4) factors through the

inclusion M ! X

X

, then we say the monoid M has constants.

(iii) We say that a functional domain ([X ! X]; j; p) is standard if [X ! X]

is a submonoid of X

X

. Then ([X ! X]; [X ! X]; j; p) is called the associated

standard functional monoid. If a functional domain ([X ! X]; j; p) is such that

the inclusion [X ! X] ! X

X

is an isomorphism, then it is called special. Special

functional domains always have an associated standard functional monoid.

Functional domains in standard topological categories

Our main application will deal with a concrete cartesian closed category C

based in the category of topological spaces.

De�nition 3.2. We say that C is a standard topological category if the following

hypotheses are satis�ed:

(i) All objects of C are (among other things) topological spaces and morphisms

are continuous maps. (That is, there is a faithful functor into the category

T OP of topological spaces and continuous maps through which the grounding

functor j�j: C ! SET factors.)

(ii) C is a concrete cartesian closed category with function spaces (see A.1, A.11,

A.13).

Thus in a standard topological category, every object X has an underly-

ing set jXj , the terminal objects are the singletons, there is a natural bijection

j

A

: C (f�g;X) 7! jXj given by j

A

(f) = jf j(�) . If no confusion is possible we shall

omit the vertical bars. However, there are instances where it is indispensable to use
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them. If X and Y are spaces in a standard topological category, then Y

X

is an

object in the category whose underlying set

�

�

X

Y

�

�

may be viewed as C (X;Y ) . If C

has arbitrary products, which is the case in most of the categories we consider, then

Y

jXj

is a product in C . If the grounding functor preserves products (normally the

case!) then

�

�

Y

jXj

�

�

may be identi�ed with jY j

jXj

the set of all functions from jXj to

jY j .

By de�nition, in view of A.13, the constant self-maps �

x

:X ! X , �

x

(x

0

) = x

are all members of jX

X

j .

The most familiar example of a standard topological category is the category

of Hausdor� k -spaces with the k -product and X

Y

the space of all continuous func-

tions X ! Y endowed with the compact-open topology and given the k -re�nement.

The lambda calculus.

The whole point of studying functional domains and functional monoids is to

understand what categories give rise to models of the untyped lambda calculus. We

now formally introduce the calculus and then relate it to the notion of a functional

monoid.

Suppose that V is a set of elements called variables, and that C is a set of

elements called constants. Then the untyped lambda calculus has syntax given by the

following BNF:

p ::= c j v j pp j �v:p;

where c 2 C and v 2 V .

We shall denote the set of all lambda terms (including the elements of V and

C ) by �. Instead of �v

1

:(: : : (�v

n

:m) : : :) we shall write �v

1

: : : v

n

:m , as is usual in

this context.

For the sake of the record we recall that usually one denotes the substitution

of the term q for the variable v occurring freely in the term m by m[q=v] and imposes

the following reduction rules:

(�) �v:m = �u:m[u=v] for u not free in m ,

(�) (�v:m)q =m[q=v] , and

(�) �v:(mv) = m for v not free in m .

We then say that a term p converts to a term q if the application of a (sequence of

the) rule(s) can be applied to p to obtain q . Note that conversion is a symmetric

relation, and we assume that it also is reexive.

However, we emphasize that here � is the free algebra generated by C[V via

the binary operation (m;n) 7! mn and the family of unary operations m 7! �v:m ,

v 2 V . This will be important in our recursive de�nition of functions on �.

The lambda calculus supports composition as a \derived" operator, as follows:

De�nition 3.3. De�ne the operator

compose:�� �! � by compose(m;n)

def

= �x:m(nx);

where x is not free in either m or n .

Lemma 3.4. For m

1

; m

2

; m

3

2 � , if � reduction is imposed,

m

1

(m

2

m

3

)

�

= compose(m

1

;m

2

)m

3

:

Proof. We compute compose(m

1

;m

2

)(m

3

) = (�v:m

1

(m

2

v))m

3

= m

1

(m

2

m

3

) by

� -reduction.
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As a last comment, we de�ne the following special elements of the algebra

� �:

K = �xy:x;

S = �xyz:xz(yz);

Y = �f:(�v:f(vv))(�v:f(vv));

I = �x:x:

The element Y 2 � is called the paradoxical combinator. With � -conversion we have

I

�

=

(SK)K .

Construction of an environment model

Since � is a free algebra we can de�ne the length of a � term. The length

function `: �! N is de�ned inductively as follows:

(i) `(m) = 1 if m 2 C [ V .

(ii) `(mn) = `(m) + `(n) .

(iii) `(�v:m) = `(m) + 1

We shall write

�

i

= fm 2 � : `(m) � ig:

This de�nes an ascending �ltration �

1

� �

2

� � � � with � =

S

1

i=1

�

i

which we shall

use for recursive de�nitions of functions with � as domain and a suitable codomain.

Suppose now that we are given a functional domain ([X ! X]; j; p) over the

object X in C (cf. De�nition 3.1). We consider the underlying set jXj of X as the

set of constants in � so that in fact we may write jXj � �. The functions �:V ! jXj

are called environments; therefore, we introduce a set Env = jXj

V

. Recall that by

De�nition A.11 the category C has products and that the grounding functor preserves

products. Accordingly, suppressing a natural isomorphism, we have

Env = jXj

V

=

�

�

X

V

�

�

for the C -object X

V

:

Each environment �:V ! jXj assigns to each variable v a constant �(v) 2 jXj as

value. Also, the power X

Env

is a well-de�ned C -object. We recall (from A.14 and a

subsequent remark (#)) that there is a natural injective morphism



(

X

V

)

X

:X

(

X

V

)

! X

j

X

V

j

= X

Env

:

Thus, in view of

�

�

�

X

(

X

V

)

�

�

�

= C (X

V

;X) we obtain an inclusion map

�

�

�

�



(

X

V

)

X

�

�

�

�

: C (X

V

;X) !

�

�

X

Env

�

�

= jXj

Env

:

In this sense we write

C (X

V

;X) � jXj

Env

:

From these data we construct a function V : �! C (X

V

;X) � jXj

Env

recur-

sively w.r.t the length ` in four steps (a), (b), (c), and (d). More speci�cally, we shall

de�ne functions

V

i

: �

i

! C (X

V

;X); i = 1; 2; : : :

such that V

i+1

j�

i

= V

i

, and then we de�ne V : � ! C (X

V

;X) by V [m] = V

i

[m]

unambiguously with i � `(m) .
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(a) (8x 2 jXj � �; � 2 Env) V

1

[x]� = x ,

i.e., V

1

[x] 2 C (X

V

;X) is the constant function with value x .

(b) (8v 2 V; � 2 Env) V

1

[v]� = �(v) ,

i.e., on V the function V

1

agrees with the evaluation function, or

projection, V ! C (X

V

;X) .

Thus V

1

: �

1

! C (X

V

;X) is de�ned. Now suppose that the function V

i

: �

i

! X

Env

has been de�ned on the set �

i

of lambda terms of length � i such that V

j+1

j�

j

= V

j

for j = 1; : : : ; i � 1. We recall that we have a binary operation (x; y) 7! x�y:X ! X

given by x�y = p(x)(y) (cf. 3.2(ii)). If � 2 � with `(�) = i + 1, then, since � is

a free algebra, either � = mn with uniquely de�ned �-terms m and n such that

maxf`(m); `(n)g � i , or � = �v:m with a uniquely de�ned �-term m such that

`(m) = i . The �rst case is handled rather simply, the second will ask for greater

circumspection. In the �rst case we de�ne

(c) (8m; n 2 �

i

; � 2 Env) V

i+1

[mn]� = (V

i

[m]�)�(V

i

[n]�) .

Since the map (x; y) 7! x�y = p(x)(y):X�X ! X is a C -morphism, then V

i+1

[mn] 2

C (X

V

;X) by (c), since V

i

[m]; V

i

[n] 2 C (X

V

;X) .

In order to deal with the harder second case, we note that for each environ-

ment �:V ! X , each constant x 2 X , and each variable v we can de�ne a new

environment �fx=vg:V ! X by setting

�fx=vg(w) =

�

�(w); if w 6= v,

x; if w = v.

Note that �fx=ugfy=vg(w) = y if w = v , while

�fx=ug(w) =

�

�(w); if w 6= u,

x; if w = u.

Thus

�fx=ugfy=vg(w) =

8

<

:

�(w); if v 6= w 6= u,

x; if w = u and w 6= v,

y; if w = v.

It follows that

(y) �fx=ugfy=vg =

�

�fy=vgfx=ug if u 6= v,

�fy=vg if u = v.

Let us �x v 2 V . The equality V = (V n fvg) [ fvg allows us to write

X

V

= X

V nfvg

�X . Setting � = (�

w

)

w2V

we de�ne 


v

(x):X

V

! X

V

by




v

(x)(�) = 


v

(x)

�

(�

w

)

w2w2V nfvg

; x

0

�

=

�

(�

w

)

w2w2V nfvg

; x

�

= �fx=vg:

Using 3.3(iii) (see also A.4(i)) and K(x) = pj(�

x

) , it follows that K:X ! X

X

is a

morphism and we have




v

(x)

�

(�

w

)

w2w2V nfvg

; x

0

�

=

�

(�

w

)

w2w2V nfvg

;K(x)(x

0

)

�

:

Thus, in this notation,

(x;


v

) 7! 


v

(x):X �X

V

! X

V
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is a C -morphism. The universal property of cartesian closed categories (see A.2) then

shows that 


v

:X !

�

X

V

�

(

X

V

)

is a morphism, i.e.,




v

2 C

�

X;

�

X

V

�

(

X

V

)

�

:

Note that the composition

�:X

(

X

V

)

�

�

X

V

�

(

X

V

)

! X

(

X

V

)

is a morphism (see A.4(ii)). Hence, if F 2 C (X

V

;X) , then for each v 2 V the

function x 7! F � 


v

(x):X ! X

(

X

V

)

is a C -morphism. We note

�

F � 


v

(x)

�

(�) =

F (�fx=vg) and that x 7! F (�(x=v)):X ! X is a C -morphism for every � 2 jXj

V

=

Env. Also, setting

�

�v

2

�

�

X

X

�

�

= C (X;X) by �

�v

(x) = 


v

(x)(�);

we note that

(�) � 7! F � �

�v

:X

V

! X

X

is a C -morphism.

In order to complete our de�nition of V

i+1

we must take recourse to a

de�nition as follows:

De�nition 3.5. The functional domain ([X ! X]; j; p) in C is called an en-

vironment model in C provided the following recursive condition is satis�ed for

i = 1; 2; 3; : : : :

Suppose that V

i

: �

i

! C (X

V

;X) is de�ned in such a fashion that (a) and

(b) are satis�ed as well as (c) for `(m) + `(n) � i . Suppose further that in the case

i � 2, for all m 2 �

i�1

and all (v; �) 2 V � Env we have

V

i

[m] � �

�v

2 [X ! X]:

Then for all m 2 �

i

and all (v; �) 2 V �Env we have

V

i

[m] � �

�v

2 [X ! X]:

Note that [V

i

[m] � 


v

(x)]� = V

i

[m]�fx=vg for all (v; �) 2 V � Env, and that

p(X) = [X ! X] . Thus, saying that ([X ! X]; j; p) is an environment model

means this: whenever m 2 �

i

and V

i

[m] 2 C (X

V

;X) has been de�ned as speci�ed,

then (x 7! V

i

[m]�fx=vg) 2 p(X) for all (v; �) 2 V � Env.

Now suppose that ([X ! X]; j; p) is an environment model in C . Then we

can de�ne

(d) V

i+1

[�v:m](�) = j(V

i

[m] � �

�v

) for all m 2 �

i

and all (�; v) 2

Env� V .

Since � 7! fx 7! F �


v

(x)

�

(�) = F (�fx=vg)g is in C (X

V

;X) for each F 2 C (X

V

;X)

we know that V

i+1

[�v:m] 2 C (X

V

;X) .

In any environment model, we have now recursively de�ned functions

V

i

: �

i

! C (X

V

;X) � jXj

Env

such that V

i+1

j�

i

= V

i

for i = 1; 2; : : : . This allows

us to pick, for any �-term m any i � `(m) and set unambiguously V [m] = V

i

[m] .
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In this fashion we have de�ned a function V : �! C (X

V

;X) such that the following

conditions are satis�ed:

(a) (8x 2 jXj � �; � 2 Env) V [x]� = x ,

i.e., V [x] 2 C (X

V

;X) is the constant function with value x .

(b) (8v 2 V; � 2 Env) V [v]� = �(v) ,

i.e., on V the function V agrees with the evaluation function, or

projection, V ! C (X

V

;X) .

(c) (8m; n 2 �; � 2 Env) V [mn]� = (V [m]�)�(V [n]�) .

(d) V [�v:m](�) = j(V [m] ��

�v

) for all m 2 � and all (�; v) 2 Env� V .

This function V is called the semantic map of the model. It is uniquely determined

by conditions (a,b,c,d).

The recursive de�nition of the semantic map is somewhat involved due to

De�nition 3.5. Therefore, it is very important for us to realize that the conditions

of this de�nition are automatically satis�ed as soon as we are dealing with the

most prevalent type of functional domains, namely, the special ones as explained

in De�nition 3.1(iii) above.

Special Functional Domain Lemma. Every special functional domain (X

X

; j; p)

in a concrete cartesian closed category with function spaces C (see 3.1(iii), A.11, A.13)

is an environment model in C . In particular, V [m] 2 C (X

V

;X) � X

Env

for all

m 2 � .

Proof. We have seen that for every morphism F 2 C (X

V

;X) , the function

(�) � 7! F � �

�v

:X

V

! X

X

is a C -morphism. By induction hypothesis on V

i

, for all m 2 �

i

, the morphism

V

i

[m] 2 C (X

V

;X) is well-de�ned. Thus

(��) � 7! V [m] � �

�v

:X

V

! X

X

is a C -morphism by (�) above. Since j:X

X

! X is a C -morphism, the requirements

of De�nition 3.5 are satis�ed with [X ! X] = X

X

, and

(���) V

i+1

[�v:m] =

�

� 7! j(V

i

[m] � �

�v

)

�

:X

V

! X

is a C -morphism. By induction on i , for all i = 1; 2; : : : we have V

i

[m] � C (X

V

;X)

for all m 2 �

i

.

We need the following result (cf. [4]):

Free Variable Lemma. If ([X ! X]; j; p) is an environment model and V : � !

X

Env

is the semantic map, then

(?) (8� 2 Env) V [m]� = V [m]�fx=vg

if the variable v is not free in the term m .

Proof. The proof is by induction on length. If m is a constant y 2 X , then the

left and right sides of (?) both are y and so the assertion holds. If m 2 V , then

m 6= v by hypothesis; the left side of (?) is �(m) the right side is �fx=vg(m) =

�(m) by the de�nition of �(x=v) . Thus the assertion is true in this case. Now

suppose that (?) is true for all m 2 �

i

. If � 2 �

i+1

there are two cases: (1)

� = mn with m; n 2 �

i

and v free in neither m nor n , or (2) � = �u:m
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with m 2 �

i

and v not free in m . In case (1), by the induction hypothesis,

V [m]� = V [m]�fx=vg and V [n]� = V [n]�fx=vg . Now (c) implies V [mn]� =

(V [m]�)�(V [n]�) = (V [m]�fx=vg)�(V [n]�fx=vg) = V [mn]�fx=vg . Thus (?) holds

for � in place of m . In case (2), condition (d) implies V [�u:m]� = j(V [m] � �

�u

)

and V [�v:m]�fx=vg = j(V [m] � �

�fx=vgu

) . Let z 2 X . Then (V [m] � �

�u

)(z) =

V [m](�fz=ug) and (V [m] � �

�fx=vgu

)(z) = V [m](�fx=vgfz=ug) . By (y) and by

induction hypothesis, since (?) holds for m 2 �

i

, we have V [m](�fz=vgfx=ug) =

V [m](�fz=ug) . This yields the assertion.

Environment models on functional domains

In the following, we assume that the concrete cartesian closed category C

has function spaces (see A.11, A.13) and we consider an environmental model ([X !

X]; j; p) in C . In view of the existence of a grounding functor from C into SET we

may regard the objects of C as sets (with additional structure). We shall therefore

use a notation like x 2 X (in lieu of the more accurate x 2 jXj); confusion is not

likely to arise by such abuse of notation.

We recall x�y = p(x)(y) for all x; y 2 X and de�ne D

�

= f(x; y) 2 X �X :

p(x)�p(y) 2 [X ! X]g . Then we have a partial binary operation � : D

�

! X de�ned

by x � y = j

�

p(x) � p(y)

�

for (x; y) 2 D

�

. From 3.2(i) we also recall the de�nition

e = j(id

X

) .

For elements of X

(

X

V

)

we shall use the notation �:X

V

! X .

Now we de�ne an algebraic structure on X

(

X

V

)

pointwise as follows: for

� 2 X

V

and � 2 X

V

we set (���)(�) = �(�)��(�) for � 2 X

V

. Set

D

0

�

= f(�; �) 2 X

(

X

V

)

�X

(

X

V

)

: (8� 2 X

V

)

�

�(�); �(�)

�

2 D

�

g:

We de�ne the partial binary operation

�:D

0

�

! X

(

X

V

)

by (� � �)(�) = �(�) � �(�)

for � 2 X

V

and for all (�; �) 2 D

0

�

, and set �(�) = e for all � 2 X

V

; thus � is the

constant function with value e .

We de�ne

p

0

:X

(

X

V

)

! [X ! X]

(

X

V

)

by p

0

(f) = p � f

for f :X

V

! X and

j

0

: [X ! X]

(

X

V

)

! X

(

X

V

)

by j

0

(F ) = j � F

for F :X

V

! [X ! X]: Then p

0

and j

0

are C -morphisms and p

0

� j

0

= id

X

(

X

V

)

. We

recall that [X ! X] � X

X

and that there is a morphism

�: (X

X

)

(

X

V

)

!

�

X

(

X

V

)

�

�

X

(

X

V

)

�

by �(f)(F )(�) = f(�)

�

F (�)

�

for f :X

V

! X

X

, F :X

V

! X and � 2 X

V

. (For a diagrammatic de�nition of �

see the Appendix A.4(v). Thus we have a C -inclusion

i: [X ! X]

(

X

V

)

!

�

X

(

X

V

)

�

�

X

(

X

V

)

�

:
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We therefore identify [X ! X]

(

X

V

)

with a subobject of

�

X

(

X

V

)

�

�

X

(

X

V

)

�

. Having

done this, we note that ([X ! X]

(

X

V

)

; j

0

; p

0

) is a functional domain on X

(

X

V

)

(see 3.1). Since the maps j

0

and p

0

are de�ned pointwise, we also note that

([X ! X]

Env

; j

0

; p

0

) is a functional domain on X

Env

. Notice that the identity map

:X

(

X

V

)

! X

Env

is continuous; it is not open unless Env = jXj

V

is �nite.

From the information in the preceding subsection we have a semantic map

V : �! C (X

V

;X) � jXj

Env

. Thus we may de�ne

T = V (�) � C (X

V

;X) � jXj

Env

:

Note that T is, at this point, just a set.

Lemma 3.6. If ([X ! X]; j; p) is an environment model, then for each environment

� 2 X

V

, the semantic map V : �! X

(

X

V

)

satis�es the following conditions:

(i) (8m; n 2 �) V [mn] = V [m]�V [n] ,

(ii) T � T � D

0

�

and (8m; n 2 �) V [compose(m;n)] = V [m] � V [n] ,

(iii) V [I] = � .

(iv) The maps �:T � T ! T and �:T � T ! T are continuous with respect to

each of the topologies induced by X

(

X

V

)

and X

Env

.

Proof. (i) follows from condition (c) in the recursive de�nition of V .

For (ii), we consider a variable v which occurs freely in neither m nor n and,

using the de�nition of an environment model in 3.5, we make the following calculation:

V [compose(m;n)]� = V [�v:m(nv)]� = j(f) for any environment � by (d), where

f = x 7! V [m(nv)]�fx=vg = x 7! p(V [m]�fx=vg)

�

V [nv]�fx=vg

�

by (c)

= x 7! p(V [m]�fx=vg)

�

p(V [n]�fx=vg)(V [v]�fx=vg

�

by (c)

= x 7! p(V [m]�fx=vg)

�

p(V [n]�fx=vg)(x)

�

by (b)

= x 7! p(V [m]�) (p(V [n]�)(x)) ;

the last equality following from the Free Variable Lemma and the fact that v is free

in neither m nor in n . This shows that the element f 2 [X ! X] is the composition

of the functions p(V [m]�) and (�rst) p(V [n]�) . Thus (V [m]�; V [n]�) 2 D

�

for all �

and so (V [m]; V [n]) 2 D

0

�

. Hence T � T � D

0

�

as asserted. Thus (ii) is proved in its

entirety.

For (iii), we again calculate: V [I]� = V [�v:v]� = j(f) for any environment

� , where

f = x

0

7! V[v]�fx

0

=vg = x

0

7! �fx

0

=vg(x

0

) by (b)

= x

0

7! x

0

:

This proves the claim.

The assertion (iv) follows since the operations � and � are de�ned pointwise.

One comment regarding (ii) is in order. The relation T � T � D

0

�

is perhaps

surprising; it has the avor of getting something for nothing. However, what is used

here is the information coded into the De�nition 3.5 of an environment model.
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Lemma 3.7. If m and n are (�) , (�) or (�)-equivalent, then V [m] = V [n] .

Proof. We record

(�) �v:m = �u:m[u=v] for u not free in m ,

(�) (�v:m)q =m[q=v] , and

(�) �v:(mv) = m for v not free in m .

Proof for (�) : V [�v:m]� = j(V [m] � �

�v

) on the one hand and V [�u:m[u=v]]� =

j(V [m[u=v]] � �

�u

) on the other. In order for these to be equal it is necessary

and su�cient that V [m]�fx=vg = (V [m] � �

�v

)(x) = (V [m[u=v]] � �

�u

)(x) =

V [m[u=v]]�fx=ug . This claim is proved by induction on the length of m . Indeed, if m

is constant, then V [m[u=v]]� = V [m]� for all environments � . If m = w 2 V , we have

m[u=v] =m if w 6= v , so V [m[u=v]]� = V [m]� for all environments � in this case. Al-

ternatively, if w = v , then m[u=v] = u , and so V [m[u=v]]�fx=vg = x = V [u]�fx=ug

for all environments � . Hence the result also holds in case m is a variable, and this

concludes the proof for the cases when `(m) = 1. If the result holds for all terms m

with `(m) < i , and m = np is an application, then the result holds for m by the

inductive hypothesis and the fact that V is an application-homomorphism (3.6(ii)).

Finally, suppose m = �w:n is itself an abstraction. Then the de�nition of

V [m] = V [�w:n] yields

V [m]�fx=vg = V [�w:n]�fx=vg = j(V [n]�fx=vgfx=wg);

while

V [m[u=v]]�fx=ug = V [(�w:n)[u=v]]�fx=ug = j(V [n[u=v]]�fx=ugfx=wg):

By the inductive hypothesis, V [n]�fx=vgfx=wg = V [n[u=v]]�fx=ugfx=wg since these

terms have shorter length, and this proves the result for (�) .

Proof for (�) : We have

V[(�v:m)q]� = (V[�v:m]�)�(V[q]�)

= (V[m] � �

�v

)(V [q]�)

= V[m]�f(V[q]�)=vg;

and we claim that this equals V [m[q=v]]� . Again this is proved by induction on the

length of m , and the arguments are straightforward and similar to the case of the

(�) rule.

Proof of (�) : We compute V [�v:(mv)]� = j(V [mv] � �

�

) . Now for x 2 X we

have y

def

= (V [mv] � �

�v

)(x) = V [mv]�fx=vg = (V [m]�fx=vg)�(V [v]�fx=vg) . By

the Free Variable Lemma, V [m]�fx=vg = V [m]� if v is not free in m . Further

V [v]�fx=vg = �fx=vg(v) = x by the de�nitions of V and �fx=vg . Hence y =

V [m]��x . Thus V [mv] � �

�

= p(V [m]�) , whence V [�v:(mv)]� = jp(V [m]�) =

V [m]� , i.e., V [�v:(mv] = V [m] as asserted.

Lemma 3.8. (i) (T; �) is a monoid. The set M

def

= p

0

(T ) �

�

�

�

[X ! X]

(

X

V

)

�

�

�

is a

submonoid of

�

�

�

�

�

X

V

�

(

X

V

)

�

�

�

�

= C (X

V

;X

V

) . If M is a C -subobject of [X ! X] , then

both (M; [X ! X]

(

X

V

)

; j

0

; p

0

) and (M; [X ! X]

Env

; j

0

; p

0

) are functional monoids

(see 3.1(ii)).

(ii) j maps M isomorphically onto a submonoid S of T whose identity is � ,

�(�) = e , with e = j(id

X

) . Also, T is an ination of S with respect to � 7! � � � .
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(iii) T acts �-e�ectively on

�

�

�

X

(

X

V

)

�

�

�

.

Proof. (i) T consists exactly of all V [m]:X

V

! X with m 2 �. By 3.6(ii)

and (iii) these elements form a submonoid of

�

X

(

X

V

)

�

�

X

(

X

V

)

�

contained in [X !

X]

(

X

V

)

. If � , � and � are elements of T with x

�

= V [m]� , y

�

= V [n]� , and

z

�

= V [r]� , then

�

(� � �)��

�

(�) = V [compose(m;n)r](�) = V [m(nr)](�) for � 2 X

V

and thus (� � �)�� 2 T by 3.4 and 3.7(� ). Again using 3.6, this last expression is

equal to (� � �)�� . Thus p(� � �) = p(�) � p(�) . Hence M is closed under composition

in

�

X

V

�

(

X

V

)

and contains the identity p(�) . Also, p

0

jT : (T; �) ! (M; �) is a monoid

morphism. The remainder is clear from the de�nitions.

(ii) j is injective and transports composition in M to the � operation in T .

The image of the identity of M is � . The de�nition of the multiplication � directly

implies that T is an ination of S via multiplication with � .

(iii) Suppose that �; �:X

V

! X are in T with � = V [m] and � = V [n] , and

that �:X

V

! X . Then ��(���)(�) = p

0

(�)

�

p

0

(�)(�)

�

(�) = fp(V [m]�)�p(V [n]�)g��(�)

for � 2 X

V

on the one hand, and (� � �)��(�) = p

0

(� � �)(�)(�) = fp(V [m]�) �

pV [n]�)g��(�) on the other, and this shows that we have an action. The relation

��� = � is readily veri�ed. Finally suppose that ��� = ��� . Then for all � 2 X

V

we

have �(�)��(�) = �(�)��(�) . From 3.2(ii) we have e��(�) = e��(�) . Thus ��� = ��� .

Environment models in standard topological categories

Now we assume that C is a standard topological category (see 3.2).

Proposition 3.9. Suppose that ([X ! X]; j; p) is an environment model in a

cartesian closed category with function spaces. Set T = V [�] � C (X

V

;X) =

�

�

�

X

(

X

V

)

�

�

�

and endow this set with either the topology induced from that of X

(

X

V

)

or that of

X

Env

. Then, in both cases, (T; T ) is a strict functional algebra according to De�nition

2.10.

Proof. By Lemma 3.7 conditions (i) and (ii) of De�nition 2.1 are satis�ed. Recall

the paradoxical combinator Y = �f:(�v:f(vv))(�v:f (vv)) ; then Ym is � -equivalent

to m(Ym) . Hence

V [Y]�V [m] = V [Ym] = V [m(Ym)] = V [m]�(V [Y]�V [m])

by 3.6(i) and 3.8(�) . Thus hypothesis (iii) of 2.1 is satis�ed in (T; T ) with y =

V [Y] 2 T . Next recall K 2 �, K = �u:(�v:u) . Then Km is � -equivalent to �v:m

for all m 2 �. Thus (Km)n is equivalent to (�v:m)n which is equivalent m . Hence,

by 3.8(�) , we have (V [K]�V [m])V [n] = V [(Km)n] = V [m] , and so k = V [K] 2 T

satis�es (7

0

) of 3.6 in T . It follows that K:T ! T , K(�) = k�� satis�es (7) of

De�nition 2.1. This completes the proof that (T; T ) is a strict functional algebra in

the sense of 2.1.

Proposition 3.10. Suppose that ([X ! X]; j; p) is an environment model in

a standard topological category. Set T = V [�] � C (X

V

;X) =

�

�

�

X

(

X

V

)

�

�

�

. Denote

with T the closure of T in X

(

X

V

)

and with

e

T the closures of T in X

Env

, given
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the respective induced topologies. Assume that [X ! X] is closed in X

X

. Then

T � T �

e

T �

e

T � D

0

�

and both (T ; T ) and (

e

T ;

e

T ) are strict functional algebras.

Proof. We claim that D

�

� X � X is closed: the function  = [(x; y) 7!

p(x)�p(y)]:X�X ! X

X

is continuous since p is continuous and C is cartesian closed.

We have D

�

= 

�1

[X ! X] . Since [X ! X] is closed in X

X

by hypothesis, the claim

is proved. Now D

0

�

�

=

D

Env

�

is closed in X

Env

�X

Env

�

=

(X�X)

Env

. Since the identity

:X

(

X

V

)

! X

Env

is continuous, D

0

�

is also closed in X

(

X

V

)

�X

(

X

V

)

�

=

(X�X)

(

X

V

)

.

From the continuity of  we also obtain that T �

e

T . It follows from 3.6(ii) that

T � T �

e

T �

e

T � D

0

�

whence (T ; �) and (

e

T ; �) are binary algebras with identity

� and a continuous multiplication � in each case; since T is a dense submonoid by

3.9, we have that (T ; �) and (

e

T ; �) are monoids. Also the fact that T is closed

with respect to the continuous binary operations � :X

(

X

V

)

� X

(

X

V

)

! X

(

X

V

)

and � :X

Env

� X

Env

! X

Env

(identical as functions) implies that the restrictions

��:T � T ! T and ��:

e

T �

e

T !

e

T are well-de�ned. All equations involving the binary

operations � and � and the elements k and y extend by continuity. The �-e�ectivity

of the action of T on T is directly established as in the last lines of the proof of

3.8(iii).

Theorem 3.11. Assume the following hypotheses:

(a) C is a standard topological category.

(b) ([X ! X]; j; p) is an environment model on a compact Hausdor� space X .

Then the semantic map V : �! jXj

Env

is constant.

Proof. Since X is compact, then [X ! X] = p(X) is compact and hence closed

in X

X

as X is Hausdor�. Then by Proposition 3.10 we know that (T ; T ) with

T = V [�] is a functional algebra. Since X is compact, Tychonov's Theorem implies

X

Env

is compact and thus

e

T � X

Env

is compact, too. Thus (

e

T ;

e

T ) is a compact

Hausdor� functional algebra. By Theorem 2.7, it is degenerate. Hence T is singleton

and this is the assertion.

For a better understanding of Theorem 3.11 it should be recalled from the

Special Functional Domain Lemma that every special functional domain (X

X

; j; p)

in C (see 3.1(iii)) is an environment model.

Corollary 3.12. In the category of Hausdor� k -spaces any compact environmental

model (in particular every compact special functional domain) is trivial in the sense

that its semantic map is constant.

4. Combinatory Models

In this section we �x a cartesian closed category with function spaces (see A.11 and

A.13).

The following de�nition of a combinatory model is adjusted from [6] in order

to allow for models to be implemented in a suitable standard topological category C :

De�nition 4.1. Let C denote a concrete cartesian closed category with function

spaces.

(i) A combinatory C -algebra is a C -object X together with a binary C -operation

� : X �X ! X such that there are elements K;S 2 X satisfying

(a) (8x

0

; x

1

2 X) (K�x

0

)�x

1

= x

0

,

(b) (8x

0

; x

1

; x

2

2 X) ((S�x

0

)�x

1

)�x

2

= (x

0

�x

2

)�(x

1

�x

2

) .
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(ii) A combinatory C -model is a combinatory C -algebra (X; �) which also has a

distinguished element � 2 X satisfying, for all x

0

; x

1

2 X :

(c) (��x

0

)�x

1

= x

0

�x

1

,

(d) if (8x 2 X) x

0

�x = x

1

�x , then ��x

0

= ��x

1

, and

(e) � � � = � .

The combinatory C -model (X; �) is extensional if � acts as an identity on X .

On the free binary algebra A generated by K and S and a set V of variables

one de�nes I = S(KK) and, for each variable x an operation P 7! �

�

x:P by

induction via

1) (8x 2 V ) �

�

x:x = I ,

2) (8x 2 V ) �

�

x:P = KP ,

3) (8x 2 V ) �

�

x:PQ = S

�

(�

�

x:P )(�

�

x:Q)

�

.

In particular, we de�ne

W = �

�

x:f(xx) = S

�

(�

�

x:f)(�

�

x:xx)

�

= S

�

(Kf)

�

S(�

�

x:x)(�

�

x:x)

��

= S

�

(Kf)

�

(S(II)

��

;

and, accordingly,

�

�

f:W = (�

�

f:S)[�

�

f:(Kf)(S(II))]

= (KS)

��

�

�

f:(Kf)

��

K(S(II))

��

= (KS)

��

(KK)I

��

K(S(II))

��

:

Finally we de�ne

Y = �

�

f:WW = S

�

(�

�

f:W )(�

�

f:W )

�

= S

��

(KS)

��

(KK)I

��

K(S(II))

��	�

(KS)

��

(KK)I

��

K(S(II))

��	�

:

In the same spirit, we introduce a binary operation �:X �X ! X via the

�

�

-abstraction and De�nition 3.3 as follows:

P �Q = �

�

x:P (Qx) = S

�

(�

�

x:P )(�

�

x:Qx)

�

= S

�

(KP )[Sf(KQ)Ig]

�

:

Then referring to [2],pp. 127, 128, 147�. for the details, we obtain

Proposition 4.2. In any combinatory C -algebra we have

(f) (8x 2 X) x�(Y �x) = Y �x .

De�ning

�:X �X ! X by x

1

� x

2

= S�

�

(K�x

1

)�[S�f(K�x

2

)�Ig]

�

we obtain

(g) (8x

1

; x

2

; x

3

2 X) (x

1

� x

2

)�x

3

= x

1

�(x

2

�x

3

) ,

(h) (8x

1

; x

2

; x

3

2 X) (x

1

� x

2

) � x

3

= x

1

� (x

2

� x

3

) .

If X is an extensional C -model, then (� � x

1

)�x

2

= ��(x

1

�x

2

) = x

1

�x

2

. Thus

��(� � x

1

) = ��x

1

by (d,e). Since X is extensional we conclude � � x = x for all x .

Likewise (x

1

� �)�x

2

= x

1

�(��x

2

) = x

1

�x

2

since C is extensional. Again we conclude

x � � = x for all x . Thus we note
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Proposition 4.3. In any extensional C -model X the object X is a C -monoid with

respect to � and � as identity and � :X �X ! X is an e�ective C -action on X .

For the concept of a C -action see A.7(iv)

Combinatory models in standard topological categories

Now we assume that C is a standard topological category (see 3.2). From

4.1(a), 4.2(f,g,h), and Proposition 4.3 we obtain at once:

Proposition 4.4. If (X; �) is an extensional combinatory model in a standard

topological category, then (X;X) is a strict functional algebra with respect to the

C -monoid (X; �) with identity � (see De�nitions 2.1, 2.10) and with respect to the

elements K and Y .

We say that a combinatory model in a standard topological category is com-

pact if the underlying topological space X is compact Hausdor�. A singleton combi-

natory model is called degenerate.

From Theorem 2.7 we now obtain at once the following result:

Theorem 4.5. Any compact extensional combinatorial model in a standard topo-

logical category is degenerate.

Corollary 4.6. Any compact extensional combinatorial model in the category of

Hausdor� k -spaces is degenerate.

5. Conclusion

We have derived some results about compact Hausdor� monoids and shown how they

imply the degeneracy of certain models of the untyped lambda calculus. As we com-

mented at the end of Section 2, the bicyclic semigroup B(k; y) plays a fundamental

role in this setting. Its only homomorphic images are copies of itself, or cyclic groups,

and compact semigroups cannot contain a copy of the former. Hence, in a compact

Hausdor� semigroup which either is a functional monoid or a combinatory algebra,

the elements k and y must be inverses of one another, and this forces the model to

degenerate.

The main results are Theorem 2.7, 3.11, 3.12 and 4.5, and they are related as

follows: Theorem 2.7 is a basic result on topological spaces and compact topological

semigroup actions, while Theorems 3.11 and 4.5 and Corollary 3.12 deal with compact

structures in a given standard topological category. All of these results are degeneracy

theorems and the last two directly derive from 2.7. The generality of our de�nitions

3.1, 3.5, and 4.1 does not appear to allow us to deduce either of the Theorems 3.11

or 4.5 from the other. If we assume that the functional domain D = ([X ! X]; p; j)

is special (3.1(iii)), i.e. that [X ! X] = X

X

, then D is an environment model by

the Special Functional Domain Lemma (following De�nition 3.5). Also in this case

a proof of Theorem 4.5 can be derived from Theorem 3.11: We may create from

D an extensional combinatory model by de�ning x

1

�x

2

= p(x

1

)(x

2

) and de�ning

K = j(j � �

X

X

)

�

and S = j(j � j

j

� �

XX

X

� p

X

� p) .

A. Appendix: Concrete cartesian closed categories

In this section we provide the necessary background on cartesian closed categories.

In a category C with �nite products we shall abbreviate A�B by AB . The

cartesian product in a category with �nite products is associative (and commutative).
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We note that this implies there is a natural isomorphism A(BC)

�

=

(AB)C (respec-

tively AB

�

=

BA) and that in general the use of these isomorphisms involves the

consideration of coherence in the sense of MacLane. However, with the particular

case of cartesian products in a category with �nite products we will not encounter

any di�culties if we simply write (AB)C = A(BC) and in fact omit parentheses as

is customary in group and semigroup theory.

De�nition A.1. We say that a category C is cartesian closed if it has �nite

products and the functor X 7! XA is a left adjoint for every A . Its right adjoint is

denoted X 7! X

A

.

Notation: if A and B are objects in C , then B

A

is the object in C just de�ned. If

J is a set and C has products, then B

J

is the usual product object of C . Confusion

could conceivably arise if C = SET . In that case, however, the two notations agree.

By interpreting this adjunction in terms of the back adjunction, this de�nition

is equivalent to the following statement:

Remark A.2. For each object A there is a natural transformation (in B )

ap

A

B

:B

A

A! B such that for any morphism b:XA ! B there is a unique

b

0

:X ! B

A

such that ap

A

B

�(b

0

A) = b .

X XA

id

���������! XA

b

0

?

?

y
b

0

A

?

?

y

?

?

y

b

B

A

B

A

A

ap

A

B

���������! B

The uniqueness immediately yields the following egalization principle:

Remark A.3. Suppose that �; �:X ! B

A

are two morphisms such that

ap

A

B

�(�A) = ap

A

B

�(�A):

Then � = � .

X

�

! B

A

XA

�A

���������! B

A

A

�

?

?

y

�A

?

?

y

?

?

y

ap

A

B

B

A

B

A

A ���������!

ap

A

B

B

The principle allows some immediate canonical constructions.

Firstly, taking X = B and b = pr

1

in the universal property in A.2 we obtain

a unique natural morphism �

A

B

:B ! B

A

such that the following diagram commutes

B BA

id

���������! BA

�

A

B

?

?

y

�

A

B

A

?

?

y

?

?

y

pr

1

B

A

B

A

A

ap

A

B

���������! B
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(In the category of sets, �

A

B

is the function which associates with an x 2 B the

constant function �

x

:A! B with value x .)

Secondly, we consider C

B

B

A

and get a morphism

� = (C

B

B

A

A

C

B

ap

A

B

���������!C

B

B

ap

B

C

���������! C: )

The universal property above gives us a unique morphism

�

CBA

:C

B

B

A

! C

A

such that ap

A

C

�(�

CBA

A) = � . In diagrams:

(�)

C

B

B

A

C

B

B

A

A

C

B

ap

A

B

���������! C

B

B

�

CBA

?

?

y

�

CBA

A

?

?

y

?

?

y

ap

B

C

C

A

C

A

A ���������!

ap

A

C

C

Thirdly, every morphism �:A

1

! A

2

induces functorially a morphism

B

�

:B

A

2

! A

A

1

via the following diagram:

B

A

2

B

A

2

A

1

B

A

2

�

���������! B

A

2

A

2

B

�

?

?

y

B

�

A

1

?

?

y

?

?

y

ap

A

2

B

B

A

1

B

A

1

A

1

ap

A

1

B

���������! B:

It is readily checked that � 7! B

�

: C ! C

op

is a functor form C into its opposite

category, i.e., that it is a contravariant functor.

Fourthly, every morphism �:B

1

! B

2

induces functorially a morphism

�

A

:B

A

1

! B

A

2

via the diagram

B

A

1

B

A

1

A

ap

A

B

1

���������! B

1

�

A

?

?

y

�

A

?

?

y

?

?

y

�

B

A

2

B

A

2

ap

A

B

2

���������! B

2

:

It is even easier to check that � 7! �

A

: C ! C is a functor.

Fifthly, as an exercise, we note a morphism �:C

A

B

A

! (CB)

A

: �rstly, for

an object A in a category with products let �

A

:A! AA be the diagonal morphism

uniquely de�ned by pr

j

� = id

A

for j = 1; 2. Ten let �: (C

A

B

A

)A ! (C

A

A)(B

A

A)

be de�ned as the composition

(C

A

B

A

)A

(C

A

B

A

)�

A

���������!(C

A

B

A

)AA

�

=

!(C

A

A)(B

A

A):

Then we get �:C

A

B

A

! (CB)

A

via

C

A

B

A

(C

A

B

A

)A

�

���������! (C

A

A)(B

A

A)

�

?

?

y

�A

?

?

y

?

?

y

ap

A

C

ap

A

B

(CB)

A

(CB)

A

A

ap

A

B

���������! CB:
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Next we de�ne �

0

: (CB)

A

! (C

A

)(B

A

) , using the universal property of the product,

by pr

j

��

0

= (pr

j

)

A

, j = 1; 2. It is an exercise to verify �

0

= �

�1

. Thus � is an

isomorphism.

Then the following diagrams de�ne a natural morphism

�

BA

C

:

�

C

B

�

A

!

�

C

A

�

(

B

A

)

:

�

C

B

�

A

�

C

B

�

A

B

A

�

�1

���������!

�

C

B

B

�

A

�

BA

C

?

?

y

�

BA

C

B

A

?

?

y

?

?

y

(ap

B

C

)

A

�

C

A

�

(

B

A

)

�

C

A

�

(

B

A

)

B

A

ap

B

A

C

A

���������! C

A

:

De�nition A.4. (i) The morphism �

A

B

is called the constant-picker,

(ii) the morphism �

CBA

is called composition,

(iii) the assignment � 7! B

�

is called the contravariant power object functor,

and

(iv) the assignment � 7! �

A

is called the the covariant power object functor.

(v) The morphism �

BA

C

is called the S -morphism (for simple reference only).

The S -morphism � corresponds to the S combinator in combinatory algebras

(see 4.1). We use it e.g. in the discussions leading up to Lemma 3.6.

Proposition A.5. Composition is associative. Speci�cally, the following diagram

is commutative:

(1)

D

C

C

B

B

A

D

C

�

CBA

���������! D

C

C

A

�

DCB

B

A

?

?

y

?

?

y

�

DCA

D

B

B

A

���������!

�

DBA

D

A

:

Proof. In order to prove the commuting of diagram (1) we use Remark 3 and set

� = �

DBA

� (�

DCB

B

A

) and � = �

DCA

� (D

C

�

CBA

):

We must show

(2) ap

A

D

�� = ap

A

D

��:

For this purpose we consider the following diagram:

D

C

C

B

B

A

A

id

���������! D

C

C

B

B

A

A

D

C

C

B

ap

A

B

���������! D

C

C

B

B

id

���������! D

C

C

B

B

?

?

y

id
D

C

�

CBA

A

?

?

y

?

?

y

D

C

ap

B

C

id

?

?

y

D

C

C

B

B

A

A

D

C

�

CBA

A

���������! D

C

C

A

A

D

C

ap

A

B

���������! D

C

C

D

C

ap

B

C

 ��������� D

C

C

B

B

?

?

y
�

DCB

B

A

A

�

DCA

A

?

?

y

?

?

y

ap

C

D

�

DCB

B

?

?

y

D

B

B

A

A

�

DBA

A

���������! D

A

A

ap

A

D

���������! D

ap

D

B

 ��������� D

B

B

id

?

?

y

�

DBA

A

x

?

?

ap

D

B

x

?

?

D

B

B

A

A ���������!

id

D

B

B

A

A ���������!

D

B

ap

A

B

D

B

B
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For the purposes of diagram chasing we record the following:

1) The outer contour commutes by the naturality of ap

A

B

.

2) The corner rectangles commute trivially.

3) The upper middle rectangle commutes because it is of the form D

C

(�) .

4) The middle right rectangle, the middle bottom rectangle, and the center

rectangle commute because they are of the form (�)

Simple diagram chasing now shows that the paths around the left middle

rectangle followed by ap

A

D

are equal. This is equation (2).

An object E in a category C is called terminal if for each object A there is

a unique morphism c

AE

:A ! E . If E

1

and E

2

are terminal, then there is a unique

isomorphism c

E

1

E

2

:E

1

! E

2

with c

�1

E

1

E

2

= c

E

2

E

1

. In this sense one may even speak

of \the" terminal object.

Proposition A.6. Suppose that C is a cartesian closed category with a terminal

object E . Then

(i) pr

1

:AE ! A and pr

2

:EA! A are isomorphisms,

(ii) the constant-picker �

E

X

:X ! X

E

is an isomorphism.

(iii) If C has products then there is a natural morphism 

A

B

:B

A

! B

C (E;A)

given

by the universal property of the product through the following diagram

B

A



A

B

���������! B

C(E;A)

B

a

?

?

y

?

?

y

pr

a

B

E

���������!

(

�

E

X

)

�1

B;

a:E ! A in C (E;A):

Proof. (i) There is a unique �

A

:A ! AE such that pr

1

��

A

= id

A

and pr

2

��

A

=

(A ! E) . Set � = �

A

� pr

1

:AE ! AE . Then pr

1

�� = pr

1

��

A

� pr

1

= pr

1

,

and pr

2

��:AE ! E is the unique terminal morphism. The identity morphism

id

AE

:AE ! AE has the same properties; the uniqueness in the universal property

of a product shows that � = id

AE

. We have seen that �

A

= pr

�1

1

.

Similarly one shows that the projection EA ! A is an isomorphism. (This

also follows from the preceding and the commutativity of the product.)

(ii) With the natural isomorphism �

E

= pr

�1

1

:X ! XE as in (i) above the

following commuting diagram shows that �

E

X

:X ! X

E

is a coretraction:

X

�

E

���������! EX

pr

1

���������! X

�

E

X

?

?

y

�

E

X

X

?

?

y

?

?

y

id

X

E

���������!

�

E

X

E

X ���������!

ap

E

X

X:

This coretraction is an isomorphism i� its left inverse ap

E

X

:X

E

E ! X is

monic. Thus let U be an arbitrary object and �; �:U ! X

E

E two morphisms

with ap �� = ap �� . Since U

�

=

UE by (i) above, we may assume w.l.g. that

�; �:UE ! X

E

E . By (i) there are unique morphisms �

0

; �

0

:U ! X

E

with �

0

E = �

and �

0

E = � . The uniqueness in Remark 2 now shows that �

0

= �

0

and this means

� = � . Hence ap

E

X

is a monic and thus Claim (ii) is established.

By (ii) the constant-picker �

E

X

is an isomorphism. The proof of (iii) is now

immediate.



26

De�nition A.7. (i) A morphism m:AA ! A in a cartesian closed category is

called associative if the following diagram commutes.

AAA

Am

���������! AA

mA

?

?

y

?

?

y

m

AA ���������!

m

A:

An object (A;m) together with an associative multiplication is called a

semigroup in C or, in short, a C -semigroup.

(ii) If Chas a terminal object E , then a morphism i:E ! A is called an

identity of the semigroup (A;m) if the following diagram commutes:

AE

Ai

���������! AA

iA

 ��������� EA

id

?

?

y

?

?

y

m

?

?

y

id

AE ���������!

pr

1

A  ���������

pr

2

EA:

A C -object (A;m; i) with an associative multiplication m and an identity i is called

a monoid in C or, in short, a C -monoid.

(iii) A morphism f of monoids (A

1

;m

1

; i

1

) ! (A

2

;m

2

; i

2

) is a C -morphism

f :A

1

! A

2

such that

A

1

A

1

m

1

���������! A

1

ff

?

?

y

?

?

y

f

A

2

A

2

���������!

m

2

A

2

commutes and that fi

1

= i

2

holds. We say that (A

1

;m

1

; i

1

) is a submonoid

of (A

2

;m

2

; i

2

) if there is a monomorphisms f of monoids from the former to the

latter.

(iv) A morphism a:A�X ! X with a monoid A is called a C -action if the

following diagrams commute:

AAX

Aa

���������! AX

mA

?

?

y

?

?

y

a

AX ���������!

a

X

EX

iX

���������! AX

id

?

?

y

?

?

y

a

EX ���������!

pr

2

X:

Corollary A.8. In a cartesian closed category C , for each object A in C , the

morphism �

A

= �

AAA

:A

A

A

A

! A makes A

A

into a semigroup in C .

Note that for the terminal object E the product EE is terminal by A.6(i).

Then � = �

E

:E ! EE is the unique isomorphism from E to EE .

Proposition A.9. Suppose that C is a cartesian closed category with a terminal

object E . Then

(i) The unique morphism i

A

:E ! A

A

de�ned by the universal property via

E EA

pr

2

���������! A

i

A

?

?

y

i

A

?

?

y

?

?

y

id

A

A

A

A

A

ap

A

A

���������! A
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is an identity for the semigroup (A

A

; �

A

) . I.e., (A

A

; �

A

; i

A

) is a monoid in

the category C .

(ii) The monoid structure on A

A

induces a monoid structure on the set C (E;A

A

) .

Its multiplication given by

� =

�

C (E;A

A

)� C (E;A

A

)

�

���������!C (E;A

A

A

A

)

C(E;�

A

)

���������!C (E;A

A

)

�

;

�(f; g) = (fg) �� . Its identity is i

A

.

The set C (A;A) is a monoid w.r.t. ordinary composition � of functions.

(iii) The function �: C (A;A) ! C (E;A

A

) which associates with a morphism

f :A ! A the unique morphism �(f) =

e

f :E ! A

A

characterized by

(y)

E EA

pr

2

���������! A

e

f

?

?

y

e

fA

?

?

y

?

?

y

f

A

A

A

A

A ���������!

ap

A

A

A

is an isomorphism of monoids.

Proof. (i) We have to show that the following diagram (and an analogous one in

which factors are exchanged) commutes:

A

A

A

Ai

A

���������! A

A

A

A

id

?

?

y

?

?

y

�

A

A

A

A ���������!

pr

1

A

A

:

In other words, we set � = (�

A

) � (A

A

i

A

):A

A

E ! A

A

and � = pr

1

:A

A

E ! A

A

,

and want to show that � = � . By Remark 3 it su�ces to show that

(1) ap

A

A

�(�A) = ap

A

A

�(�A):

Now we note from the de�nition of the product and its associativity that

(2) A

A

pr

2

= pr

1

A:A

A

EA! A

A

A:

With (2) equation (1) becomes

(3) ap

A

A

�

�

(�

A

A) � (A

A

i

A

A)

�

A = ap

A

A

�(A

A

pr

2

):

We have the commuting of

EA

pr

2

���������! A

i

A

A

?

?

y

?

?

y

id

A

A

A ���������!

ap

A

A

A:

We multiply on the right by A and complete below with the de�ning diagram for �

A

:

A

A

EA

A

A

pr

2

���������! A

A

A

A

A

i

A

A

?

?

y

?

?

y

id

A

A

A

A

Aap

A

A

���������! A

A

�

A

A

?

?

y

?

?

y

ap

A

A

A

A

���������!

ap

A

A

A:
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But the commuting of this diagram yields (3), which we had to show.

The commuting of the diagram for the identity on the other side has an

analogous proof.

(ii) The functor X 7! C (E;X): C ! SET preserves products. Product

preserving functors map monoids in the domain category to monoids in the range

category. This proves the �rst assertion.

The second assertion follows directly from the axioms of a category.

(iii) The function � is a natural bijection of sets by the adjunction property.

The monoid multiplication �: C (E;A

A

)�C (E;A

A

)! C (E;A

A

) is de�ned as follows:

For two given morphisms f; g:A! A the morphism

e

f � eg: C (E;A

A

)! C (E;A

A

) is

the following composition of maps

E

�

���������! EE

Eeg

���������! EA

A

e

fA

A

���������! A

A

A

A

�

A

���������! A

A

:

We want to show that �(f � g) =

e

f � eg . Following Remark 3 we shall show

(4) ap

A

A

�

�

�(f � g)

�

A = ap

A

A

�(

e

f � eg)A:

The commutativity of the following diagram will show this claim:

EA

id

���������! EA

pr

2

���������! A

�A

?

?

y

[1]

id

?

?

y

[2]

?

?

y

id

EEA

E pr

2

���������! EA

pr

2

���������! A

EegA

?

?

y

[3]

Eg

?

?

y

[4]

?

?

y

g

EA

A

A

E ap

A

A

���������! EA

pr

2

���������! A

e

fA

A

A

?

?

y

[5]

e

fA

?

?

y

[6]

?

?

y

f

A

A

A

A

A

A

A

ap

A

A

���������! A

A

A

ap

A

A

���������! A

�

A

A

?

?

y

[7]

ap

A

A

?

?

y

[8]

?

?

y

id

A

A

A ���������!

ap

A

A

A ���������!

id

A:

The individual cells commute for the following reasons

[1] E

�

! EE

pr

1

! E is the identity of E .

[2] Trivial.

[3] This cell is of the type E(y) for g .

[4] Trivial.

[5] Functoriality of the product.

[6] This is diagram (y) for f .

[7] De�nition of composition in Remark 3.

[8] Trivial.

Thus the diagram is commutative and shows (4). Every isomorphism of semigroups

preserves identities and thus is an isomorphism of monoids.

Comparing the diagrams in (ii) (de�ning i

A

) and (y) (de�ning f 7!

e

f ) we

see that �(id

A

) = i

A

. Since isomorphisms of semigroups preserve identities we see

that i

A

is the identity of the semigroup C (E;A

A

); �)

In a category C with a terminal object E one says that a morphism f :A ! B

is constant if it factors through E , i.e., if there is a morphism b:E ! B such that with

the unique c

A

:A ! E one has f = b � c

A

. The map b 7! b � c

A

: C (E;B)! C (A;B)

maps C (E;B) bijectively onto the set C

const

(A;B) � C (A;B) constant morphisms

A! B .
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Remark A.10. The constant-picker �

A

B

:B ! B

A

of A.4 induces a bijection

C (E;B) ! C

const

(A;B) via the function

 =

�

C (E;B)

C(E;�

A

B

)

���������!C (E;A

B

)

�

=

! C (EA;B)

C(pr

1

;B)

���������!C (A;B)

�

:

Proof. We consider the diagram

E EA

pr

1

���������! B

b

?

?

y

bA

?

?

y

?

?

y

id

B BA

pr

1

���������! B

�

A

B

?

?

y

�

A

B

A

?

?

y

?

?

y

id

B

A

B

A

A ���������!

ap

A

B

B:

Since C (E;�)(b) = � � b , the function  assigns to b:E ! B bijectively the function

A

c

A

! E

b

! B .

De�nition A.11. We call a cartesian closed category concrete or set based if it

has products and there is a faithful and product preserving functor j�j: C ! SET .

If j�j: C ! SET is a faithful functor, and if jEj is singleton, then each constant

morphism f gives a constant function jf j: jAj ! jBj . We say that all constant maps

are morphisms in C if the image of C (A;B) in jBj

jAj

under j�j contains all constant

functions.

Remark A.12. (i) If E is a terminal object in a set-based category, then jEj is a

one element set f�g .

(ii) The function j

A

: C (E;A) ! jAj , j

A

(f) = jf j(�) is injective.

(iii) The following conditions are equivalent:

(1) For all objects A the function j

A

: C (E;A)! jAj is bijective.

(2) All constant maps are morphisms in C .

Proof. (i) and (ii): By A.6(i) we know that pr

1

:AE ! A is an isomorphism.

Then since j�j preserves products pr

1

: jAj � jEj ! jEj is bijective. Letting A = E

we get cardjEj = 1. This proves (i), and (ii) follows since the map C (E;A) !

SET (jEj; jAj) = jAj

jEj

is injective as j�j is faithful.

(iii) (1) implies (2): Suppose that c: jAj ! jBj is a constant function. If b is

its value, then by (i) there is a unique morphism f

b

:E ! B with b = jf

b

j(�) . Let

c

A

:A ! E be the unique morphism into the terminal object A . Set f = f

b

� c

A

.

Then jf j = (� 7! b) � (jAj ! f�g) and this function is c .

(2) implies (1): Immediate from the de�nitions.

De�nition A.13. We say that a concrete cartesian closed category C has function

spaces if it has a terminal object and the equivalent conditions of A.12(iii) are satis�ed.

In a concrete category with function spaces we have C (A;B) = jA

B

j (ac-

cording to A.12). The grounding functor j�j

�

=

C (E; �) assigns to the constant-picker

�

A

B

:B ! B

A

the function x 7! �

x

: jBj ! jBj

jAj

where �

x

is the constant function

with value x 2 jBj .

In the sense of Proposition A.9(iii), the monoid C (A;A) is the underlying

monoid of the C -monoid A

A

.

Recall that in any concrete category C a morphism f :X ! Y is called

injective if jf j: jXj ! jY j is injective. Since j:j is faithful, injective morphisms are

monics.
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Proposition A.14. In a concrete cartesian closed category with function spaces

the morphism 

A

B

:B

A

7! B

C (E;A)

of A.6(iii) is injective.

Proof. Since j:j: C ! SET preserves products we have

j

A

B

j:

�

�

B

A

�

�

7! jBj

C (E;A)

and jj is uniquely determined by the conditions that

pr

a

�jj =

�

�

�

B

A

�

�

jB

a

j

���������!

�

�

B

E

�

�

j

�

B

E

j

���������!jBj

�

for all a:E ! A . We may replace

�

�

B

A

�

�

by C (A;B) and

�

�

B

E

�

�

by C (E;B) ,

accordingly, jB

a

j by C (a;B) and

�

�

�

B

E

�

�

by j

B

: C (E;B) ! jBj . Thus take f

j

2

C (A;B) , j = 1; 2. Then pr

a

�

jj(f

j

)

�

= j

B

�

C (a;B)(f

j

)

�

= j

B

(f

j

� a) = f

j

(a(�)) ,

and the equality of these two expressions for j=1,2 and for all a implies f

1

= f

2

.

In view of C (E;A)

�

=

jAj in a concrete cartesian closed category the morphism



A

B

:B

A

! B

C (E;A)

may be replaced by

(#) 

A

B

:B

A

7! B

jAj

which induces the injective function

j

A

B

j: jB

A

j !

�

�

�

B

jAj

�

�

�

= jBj

jAj

:
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