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Abstract

The first mathematical model of the untyped lambda calculus was
discovered by DANA SCOTT in the category of algebraic lattices and
Scott continuous maps. The question then arises as to which other
cartesian closed categories contain a model of the calculus. In this
paper we show that any compact Hausdorff model of the calculus
must satisfy the property that the semantic map from the calculus to
the model is constant. In particular, any compact reflexive object in
the category of Hausdorff k-spaces gives rise to a degenerate model of
the calculus. We also explore the relationship of the results we derive
to the notions of a combinatory model and of an environment model
of the calculus.

DEDICATION. Dedicated to DANA S. SCOTT on the occasion of his sixty-first
birthday on October 11, 1993 as an expression of our admiration and appreciation
for the continuous inspiration coming from him to topology and algebra. He makes
us think about theory while keeping applications in mind.

0. Introduction

The lambda calculus of CHURCH and CURRY long has been an object of study by
researchers in theoretical computer science. The reason is that the untyped lambda
calculus is very much like a prototypical programming language without assignment.

* The first author thanks Deutsche Forschungsgemeinschaft and the second the Office of Naval
Research for their support. E-mail addresses: first author: hofmann@mathematik.th-darmstadt.de,

and second author: mwm®@tulmath.math.tulane.edu.
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As such, this calculus provides an attractive basis for building models for programming
languages. But the question arises as to the existence of mathematical models of the
calculus. By such a model, we mean one where the terms of the calculus can be
interpreted as functions, and where the application and abstraction operators have the
obvious natural meaning. It was only in the late 1960’s that DANA SCOTT provided
the first mathematical model of the calculus. This result was an offshoot of his
attempt to provide mathematical models for programming languages other than the
lambda calculus, a calculus whose use he viewed as formal and unmotivated (cf. [2],
p. vii). His first model, the so-called D, model ([5]), was found in the category of
algebraic lattices and Scott continuous maps. His investigations led to the founding
of domain theory — objects which are generalizations of algebraic lattices within the
realm of partially ordered sets — and a veritable plethora of models for the calculus
has been found in categories of domains.

An obvious question then is whether models for the calculus can be found in
other categories. Following MEYER (cf. [6]), by a functional domain, we mean an
object X within a cartesian closed category C with internal hom functor = which
satisfies the property that X = X is a retract of X in C.! The model D, is an
example of such an object; indeed, Do ~ (Do = Do). So, one would like to know
whether there exist such objects in other cartesian closed categories.

The place to start such an investigation is clearly SE7T ., the category of
sets and functions. Here, the internal hom functor is the family of all functions,
and then Cantor’s Theorem on cardinalities implies there can be no nondegenerate
functional domain in the category. Other categories of interest are POS, the category
of posets and monotone maps, and the category CU of complete ultrametric spaces
and nonexpansive maps. Arguments exist to show that neither of these categories
admits a nondegenerate functional domain.

The next category on the list of candidates is the category K of Hausdorff
k-spaces and continuous maps. For this category, the question remains open whether
there is a nondegenerate functional domain. Indeed, the purpose of this paper is to
eliminate an obvious subclass of objects as candidates for nondegenerate functional
domains—the compact spaces. The precise aspects, if one wants to present them
in sufficient generality, are technical and sometimes subtle. We introduce concepts
which relate to the issue of “compact lambda models”: the first one is that of a
functional algebra in (2.1), which is a certain topological algebraic structure. All
subsequent results rest on the fact that Hausdorff compact functional algebras must
be singleton (2.7). The proof relies on results from the theory of compact semigroups
and compact semigroup actions. We define a functional domain and its variants in
considerable generality in (3.1). The ones we introduced above we shall call special.

In the third and fourth sections we also take the time to discuss in some
detail the precise effect of our results on models of the untyped lambda calculus in
cartesian closed topological categories. This discourse is motivated by MEYER’s ideas
[6]. In particular, we show that an environment model based on a compact special
functional domain in the category of k-spaces must be trivial in the sense that its
semantic map is constant (3.11). In the fourth section we discuss briefly the concept
of combinatory models in concrete cartesian closed categories and the effects of our
degeneracy theorem on the degeneracy of compact extensional combinatory models
in, say the category of k-spaces (4.5, 4.6).

The first two sections are point-set topological; no category theory is used
there. In the subsequent sections, however, we proceed in sufficient generality so
that most of the results apply to arbitrary concrete cartesian closed categories with

1 Actually, this definition is somewhat more restrictive than MEYER’s, focusing on the case
when the family of self-maps is all of X = X.



3

functions spaces. This requires some background on cartesian closed categories.
Therefore, basic aspects of cartesian closed categories are collected in an Appendix
for easy reference. As soon as the results of the first point-set topological sections and
the category-based arguments merge, we work in what we call standard topological
categories, 1.e., cartesian closed categories based in the category of topological spaces.

We are indebted to SAMSON ABRAMSKY for bringing the problem of models
of the lambda calculus within K to our attention.

1. Preliminaries on Effective Topological Monoid Actions

A topological semigroup T is a Hausdortf topological space together with a continuous
associative multiplication (s,t) — st:T x T — T. Our core results will involve
compact Hausdorff topological semigroups.

Definition 1.1.  Suppose that (T, ¢) is a topological semigroup with an idempotent
e. We say that (T, e) acts e-effectively on a topological space X if there is a continuous
map (t,2) — t-a: T x X — X satisfying

(1) (th, t2 € T, T € X) tltz'l' == tl'(tz'l'),

(2) (Ve € X) ex = .
We say that the action is e-effective if
(3) (th, t2 € T) <(Vl’ € X) tl'l' = tz'l' = et1 = 6t2.>

If e is an identity, then we recover the standard concept of an effective action. We
shall refer to e as being central if et = te for all t € T'. |

Lemma 1.2. Suppose that (T,e) acts e-effectively on X . Then
(4) (Vt € T) et = ete.

Moreover, we have the following conclusions:
(i) The morphism p:T — T, p(t) = et is a homomorphic retraction onto a

subsemagroup
def

S = €T.
(ii) S is a left ideal and, if e 1s central, an ideal of T .
(iii) S 1s @ monoid with identity e acting effectively on X .
(iv) (Mt e T, 2 € X) t-x =p(t)x.

Proof. In order to prove (4) we compute (te)-x =t-(e-x) = t-x. So by (3) we have
ete = et. Now (i) is elementary semigroup theory, (ii) is trivial from S = €T (which
equals Te if e is central). (iii) is straightforward and in order to see (iv), we compute
t-r = e(t-x) = (et)ax = p(t)x. [ |

Definition 1.3.  We shall call S = eT the structure monoid of the action of (T ¢)
on X. ]

The following remarks shed some extra light on ways in which a structure
monoid might be embedded in the full semigroup. If p: T — T is a retraction of set
onto a subset S which is a semigroup, then the definition #1t2 = p(t1)p(t2) makes T
into a semigroup called the inflation of S wvia p. If e 1s an identity of S, then e is a
central idempotent of T'.
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Remark 1.4. Suppose that T is a semigroup with an idempotent e satisfying (4).
Set S = eT'. Then the following two statements are equivalent:

(a) TTCS.
(b) T is an inflation of S via p = (t > et).
Proof. (b)=-(a): We note t1ts = p(t1)p(t2) = etiety = etitz by (4), and the last
element 1s1n eI = 5.
(a)=(b): Let t1,t2 € T. By (a) there is a t € T such that #;t; = et. So
tity = et = €%t = e(et) = e(tita) = (ety )ty = (et1e)ty = (et1)(etz) = p(t1)p(t2). [ ]

The surjective part of an action

Definition 1.5. If T is a semigroup acting on X we say that an element t € T is
surjective provided

(5) (Vae X)(Fr e X) a=tu.

The set of all surjective elements will be denoted by (7T, X). ]

We recall that in a semigroup T', the R-class R(t) of an element ¢ consists
of all ¢ € T for which there are elements u, v € T such that t = t'u and ¢ = tv
For an idempotent e, the largest subgroup containing e is denoted H(e). Notice

H(e) C R(e).
If T is a semigroup we denote its set of idempotents by E(T).

Lemma 1.6. Suppose that (T,e) acts e-effectively on X . Then
(i) (T, X) is a subsemigroup of T containing R(e).
(ii) (S, X) = (T, X)N S 1is a subsemigroup of the structure monoid S con-

taining R(e) 2 H(e).
(iii) X)) ={e}.
(iv) If h E H( ) then the functzon 0: X — X, o(x) = h-x is bijective with inverse

given by o 1(x) =L
Proof. (i) Take s1, s; € X(7,X) and pick @« € X. First find an 27 such that
a = s;-x1. Next find @ € X such that 1 = sp-x. Then a = s1-(s2-2) = (s182)x
This proves that X(7,X) is a subsemigroup of T'. Now suppose that r € R(e).
Then there is a t € T such that e = rt. If « € X 1s given, set * = t-a. Then
r-@ =r-(t-a) =rt-a = e-a = a. Thus r is surjective.

(ii) is a consequence of (i).

(iii) By (i) and (ii) we know e € E(Z(S,X)). Conversely, suppose now that
NS E(Z(S,X)). Define 7: X — X by 7(x) = €’-x. Since €' is idempotent, 7 is
a retraction. Since e’ € X(T, X ), then 7 is surjective. A surjective retraction is the
identity map. Thus e’z = v for all x € X. But also * = e-x. Hence e-effectivity
(3) implies ee’ = ee = e. But also ¢’ € § = eT'. Hence there is a ¢t € T such that
e/ = et. Thus ee’ = eet = et = ¢'. Therefore ¢ = ¢’ and this proves the claim.

(iv) hlo(z) = 7 (ha) = h tha = ez = 2. Similarly, o(h™t2)=2. =

If T is an inflation of S = ¢T, then E(X(T, X)) = {e}. Otherwise this need

not be the case.

The remark on the idempotents has a noteworthy consequence for compact
actions which we shall see presently.
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Lemma 1.7. If X is a compact Hausdorff space and T a topological semigroup with
an itdempotent e acting e-effectively on X, and of S = €T, then S 1s closed in T
and (S, X) s closed in S.

Proof. Retracts of Hausdorff spaces are closed, and S = €T is a retract. Hence S
is closed in T'.

Now let s € 3(S5,X). Then there is a net s; € X(5,X) converging to
5. We claim that s is surjective. Let a € X . Since s; is surjective for each j,
there is an x; € X such that a = s;-2;. As X is compact we find a subnet z;,
converging to some x € X . Since the action (¢t,2) +— t-2: T x X — X is continuous,
s-x = limg 87 j(r) = a. Thus s is surjective as asserted. [ ]

Remark 1.8. Under the circumstances of Lemma 1.7, if T is a compact Hausdorff
space, then so 1s S = eT.

Proof. By 1.7 the space S is closed in a compact Hausdorff space. ]
The following is a basic and classical fact on compact monoids (cf. [3], 1.19,

p. 15):

Proposition 1.9.  Any compact monoid with but one idempotent s a group. ]

This allows us to conclude the following

Proposition 1.10.  Suppose that a compact semigroup (T,e) with an idempotent
e acts e-effectively on a compact Hausdorff space X . Then

(6) 2(5,X) = H(e).

Proof. By Lemma 1.8 and Lemma 1.6(iii), (5, X ) is a compact monoid with one
idempotent. Hence it is a group by Proposition 1.9. Consequently, ¥(5,X) C H(e).
The reverse inclusion holds generally by Lemma 1.6(ii). ]

Actions with constants

For any X we introduce a notation for the constant self-maps of X as follows:
ke X — X, ky(y) = x. Trivially, in a topological space the constant self-maps are
continuous.

Definition 1.11.  We say that a topological semigroup with idempotent (7, e) acts
on a topological space X with constants if there is a continuous function x: X — T
such that

(7) (Va, 2' € X) k(z)z ==.

Clearly, the maps 2’ — k(x)-2' are exactly the constant self-maps r, .

Examples are readily at hand: let X be a compact Hausdorff space and
T the topological Hausdorff monoid C(X,X) of all continuous self-maps with the
compact-open topology. Its identity is e = idx. The monoid T = €T = S acts via
(¢,2) — ¢(x): T x X — X with constants via x: X — S given by r(z) = K, .
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Remark 1.12. Suppose that the conditions of 1.11 are satisfied. Then the function
k': X — 5 defined by r'(x) = ex(x) satisfies

(Va, 2' € X) k'(2)2' = 2.

Proof. We compute '(x)-2' = ex(x)-a' =e(k(a)a')=ex=1x. ]

It therefore would be no loss of generality to assume outrightly that the range

of kis §S.

Lemma 1.13. Suppose that (T,e) acts effectively on X with constants. Then we
have the following conclusions:
(i) k 1is injective and is a morphism of S-actions, i.e.,

(8) (Vs €S,z € X) k(sa)=sk(x).

(ii) ~(X) = M(S) is a minimal ideal of the structure monoid S = €T consisting
of left zeroes. It 1s the minimal 1deal of T if ¢ 18 central.
(iii) Let ko: X — M(S) be the corestriction of k to its image. Then ko is an
wsomorphism of S -actions.
Proof. (i) k(z) = k(y) implies @ = k(z)-x = k(y)-x = y which proves that x
is injective. For all z, y € X and s € S we have (3/4;(:1;))-y = s(k(x)y) = sx =
k(s-x)y. So sk(x) = k(s-x). This proves (8).
(ii) We take z,y € X, s € S. Then (x(x)s)y = k(z)(sy) =« = k(x)y.
Since y is arbitrary and x(a) and s(x)s arein S, the effectivity of the action yields
k(x)s = k(x). Thus k(X) consists of left zeroes and therefore x(X) C M(S). By
(i) Sk(X) C k(X) C S. Thus k(X) is a left ideal of S, and hence an ideal since it
consists of left zeroes. This implies (X ) = M(S) as asserted in (ii). If e is central,
then S is an ideal of T and the computations above are valid for s € T' since then
k(x)s € S even in that case.

(iii) is a trivial consequence of (i). [ |

Corollary 1.14. If (T,e) acts e-effectively on X, then
card X = card M(S) < card S. ]

2. Functional Algebras

Definition 2.1. A functional algebra is a pair of topological spaces (T, X) together
with the following structural data:
(i) T € X is a subspace endowed with a topological semigroup multiplication

(v,y) — 2 oy:T X T — T and with an idempotent e. The monoid S def
(eoT,o0) with identity e will be called the structure monoid of the functional

algebra X .

(ii) There is an e-effective continuous action (z,y) +— v-y: T x X — X.
(iii) There is a distinguished element y € T such that

9) (Ve e X) z-(y-x) = y-z.
(iv) There is a continuous function x: X — X, (X)) C T satisfying
(7) (Va, 2' € X) k(a)2' = a.
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Remark 2.2. Suppose that the conditions of 2.1 are satisfied. Then the element
y' = ecoy € S satisfies

Proof. a:(y'a) = (e oylw) = a-(e-(ya)) = a-(y-w) =y = eyx) = [e o yla =
y-x. [ |

So it would be no loss of generality to postulate that y is in S outrightly. By
1.12 it also would be no loss of generality to assume in 2.1(iv) that x(X) C S.

Remark 2.3. In a functional algebra,

(10) card X = cardT = card S.

Proof. By Corollary 1.14, card X = card M(S) < cardS. Since S CT C X we
have card S < cardT < card X . The assertion follows. [ |

Lemma 2.4. Let (T,X) be a functional algebra. Then
(11) (Ve e X) x = y-r(x).

As a consequence, y € X(T,X) and eoy € 5(5,X).

Proof. Inview of the definition of « in (7) we compute = = r(z)-(y-r(x)) = y-r(x)
by (9). This proves (11). The definition of surjectivity together with (11) directly
shows y € (T, X). By 2.2, the element e oy has the same properties as y and is
contained in eo T =5, and thus eoy € Z(T, X)N S =3(S5,X). u

We say that a functional algebra (T, X) is degenerate if X is singleton.

Lemma 2.5. Any functional algebra X with y € H(e) is degenerate.

Proof. If y € H(e) then o — y 'z, where y~! is the inverse of y in H(e) is
bijective by Lemma 1.6(iv). Thus y~'X = X. Now Lemma 2.4 implies y~ !X =
y e (y-r(X)) = (y toy)kr(X) = e-n(X) = 5(X). By 1.13(ii) we have x(X) = M(S).
Hence X = M(S). In particular e € M(S), and M(S) consists of left zeroes. Thus
the identity e of S is a left zero. This implies S = {e}. On the other hand, « maps

X injectively onto M(S) by 1.13(i). Thus X = {e}. u
Definition 2.6. By a compact functional algebra we mean a functional algebra
(T,X) such that S =eoT and X are compact Hausdorff spaces. ]

Theorem 2.7.  Any compact functional algebra is degenerate.

Proof. By Proposition 1.10 we have ¥(S,e-X) = H(e). By 24, eoy € £(S, X).
Hence eoy € H(e). Then Remark 2.2 and Lemma 2.5 finish the proof. ]

Frequently the axiom (iv) of a functional algebra securing constant self-maps
of X in T in a continuous fashion is realized by a stronger axiom.

Definition 2.8. A functional algebra (T,X) is a k-functional algebra iff the
following condition is satisfied:

(iv") There is an element k € T such that
(7 (Va, 2" € X)  (ka)a' =a.

We note by setting x(x) = k-x that condition (iv') implies (iv).
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Remark 2.9. Suppose that (7,X) is a k-functional algebra. Then the element
kK'=eoke S=ceoT satisfies

(7" (Va, 2" € X)) (ka)a' =a.

Proof. (k'-z)a' = ((eok)-:z;)-:z;’ = (e-(k-:z;)-:z;’ = (k-x)-2’ =« by 1.1(1) and 2.8(7").

It is therefore no loss of generality to assume right away that & € S. So, in
view of Remark 2.2 above we make the following definition:

Definition 2.10. A strict functional algebra is a functional k-algebra with &, y €
S=¢coT. ]

Lemma 2.11. The elements y and k of the structure monoid S of a strict func-
tronal algebra satisfy the relation yok = e.

Proof. Weset r(2) = k-x; then (7') implies (7). From Lemma 2.4 we then deduce
(11") (Ve e X) z=y(kua).

But y-(k-x) = (yok)-x by 1.1(1). Thus (yok)-x =« = e-x for all x. Since the action
is e-effective and since yok € S =eoT, we conclude yok =co(yok)=ecoe=¢c.m

In view of Lemma 2.11 we recall that the free monoid generated by two
elements p and ¢ subject to the relation pg = e is called the bicyclic semigroup B(p,q)
(cf. [1], pp. 43 — 46). The homomorphic images of B(p,q) are either isomorphic to
B(p, q), or else they are cyclic groups.

Proposition 2.12. If (X, T) is a nondegenerate strict functional algebra then the
structure monoid S = eoT contains a bicyclic semigroup B as submonoid.

Proof. Welet B be the submonoid generated by k and y. By way of contradiction
we suppose that B is not a bicyclic semigroup. Then B is a proper homomorphic
image of a bicyclic semigroup and is therefore a group. Since e = yok € B by Lemma
2.11, this implies y € B C H(e). Then Lemma 2.5 shows that X is degenerate in
contradiction with our hypothesis. [ ]

In the theory of compact topological semigroups it is well-known that no
compact topological semigroup can contain a bicyclic semigroup (see e.g. [5]). This
vields a proof of the fact that every compact strict functional algebra is degenerate
which also follows immediately from Theorem 2.7.

It would be reasonable to speculate that degeneracy theorems for strict func-
tronal algebras will have to rely on some proof that bicyclic semigroups cannot exist
as submonoids in 5.

A simple example of B(p,¢) acting on a set is given by the operators P:N —
N and @:N — N by P(n) = max{l,n — 1} and Q(n) =n + 1. A similar example

can be constructed on the space of nonnegative real numbers. |

Exercise 2.13. (i) For each r € R the function # — & — r is an automorphism
of the sup-semilattice (R,V). The map r — (z — z — 1) : (R,+) — Aut(R,V) is a
homomorphism «.

(ii) The semidirect product S = (R, V) x4 (R, +) is a topological semigroup
with respect to the multiplication (x,r)(z',r") = (2 V (2’ —r),r +7'). The projection
(z,r) = r:S — (R,+) is a homomorphism,

(iii) We set ZT = {0,1,2,...} and RT = {r € R | » > 0}. The subset
B(p,q) = Z1(1,-1) 4+ Z7(0,1) is a subsemigroup of S generated by p = (0,1) and
g = (1,—1) and isomorphic to the bicyclic semigroup.

The subset C(p,q) = RT(1,—1) + RT(1,~1) is a monoid, the continuous
bicyclic semaigroup. [ ]



3. Functional Domains, Functional Monoids, and
Environment Models

In this section, we review of the concepts of functional domains, functional monoids
and enwvironment models which were discussed in [6], and interpret our degeneracy
results in these settings. However, we base our considerations on an arbitrary cartesian
closed category with function spaces. We assume some knowledge of the basic aspects
of cartesian closed categories presented in the Appendix. In particular, we utilize the
notation used there.

In [4], MEYER defines a functional domain to be a set X together with a
family of self-maps [X — X]| which is a retract of X (in ST ). Since we are
concerned with such objects in various categories, we have rephrased his definition to
include the possibility of objects in arbitrary cartesian closed categories.

Throughout this section we shall fix a concrete cartesian closed category C
with function spaces. (See. A.11 and A.13.)

Definition 3.1. (i) If X is an object in a cartesian closed category C, then
a functional domain on X is formally a triple ([X — X],j,p) consisting of a C-
subobject of X~ | together with an embedding-projection pair (7, p) of C-morphisms

p: X — [ X — X].

Le., pj =idx.

(ii) A functional monoid on the object X of C is a quadruple (M,[X —
X1],7,p) such that ([X — X],j,p) is a functional domain with a submonoid M
of X~ such that the inclusion morphism M — X~ factors through the inclusion
[X — X] — XX If the constant-picker x5: X — X~ (see A.4) factors through the
inclusion M — X~ then we say the monoid M has constants.

(iii) We say that a functional domain ([X — X1, 7,p) is standard if [X — X]
is a submonoid of X~. Then ([X — X],[X — X],j,p) is called the associated
standard functional monoid. If a functional domain ([X — X],j,p) is such that
the inclusion [X — X] — X* is an isomorphism, then it is called special. Special
functional domains always have an associated standard functional monoid. ]

Functional domains in standard topological categories

Our main application will deal with a concrete cartesian closed category C
based in the category of topological spaces.

Definition 3.2.  We say that C is a standard topological category if the following
hypotheses are satisfied:
(i) All objects of C are (among other things) topological spaces and morphisms
are continuous maps. (That is, there is a faithful functor into the category
T OP of topological spaces and continuous maps through which the grounding
functor |-|: C — SET factors.)
(ii) C is a concrete cartesian closed category with function spaces (see A.1, A.11,

A.13). n

Thus in a standard topological category, every object X has an underly-
ing set |X|, the terminal objects are the singletons, there is a natural bijection
Ja: C({*},X) — |X]| given by ja(f) = |f|(*¥). If no confusion is possible we shall

omit the vertical bars. However, there are instances where it is indispensable to use
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them. If X and Y are spaces in a standard topological category, then Y~ is an
object in the category whose underlying set ‘XY‘ may be viewed as C(X,Y). If C
has arbitrary products, which is the case in most of the categories we consider, then
YI¥l is a product in C. If the grounding functor preserves products (normally the
case!) then ‘Y|X|‘ may be identified with |Y|I¥! the set of all functions from |X| to
Y.

By definition, in view of A.13, the constant self-maps r,: X — X, k(') ==
are all members of | XX,

The most familiar example of a standard topological category is the category
of Hausdorff k-spaces with the k-product and XY the space of all continuous func-
tions X — Y endowed with the compact-open topology and given the k-refinement.

The lambda calculus.

The whole point of studying functional domains and functional monoids is to
understand what categories give rise to models of the untyped lambda calculus. We
now formally introduce the calculus and then relate it to the notion of a functional
monoid.

Suppose that V is a set of elements called variables, and that C is a set of
elements called constants. Then the untyped lambda calculus has syntax given by the
following BNF"

pu=clov|pp]|Avp,
where c€ C' and v € V.
We shall denote the set of all lambda terms (including the elements of V' and

C) by A. Instead of Avi.(...(Av,.m)...) we shall write Avy...v,.m, as is usual in
this context.

For the sake of the record we recall that usually one denotes the substitution
of the term ¢ for the variable v occurring freely in the term m by m[q/v] and imposes
the following reduction rules:

() Av.m = Au.m|[u/v] for u not free in m,
(8) (Aw.m)q =mlg/v], and
(n) Av.(mv) =m for v not free in m.
We then say that a term p converts to a term ¢ if the application of a (sequence of

the) rule(s) can be applied to p to obtain ¢. Note that conversion is a symmetric
relation, and we assume that it also is reflexive.

However, we emphasize that here A is the free algebra generated by CUV via
the binary operation (m,n) — mn and the family of unary operations m — Av.m,
v € V. This will be important in our recursive definition of functions on A.

The lambda calculus supports composition as a “derived” operator, as follows:

Definition 3.3. Define the operator
compose: A Xx A — A by compose(m,n) def Ax.m(nx),
where x is not free in either m or n. [ ]
Lemma 3.4. For my, mg, mg € A, of 0 reduction is imposed,
8
mi(mams) = compose(my, mz)ms.

Proof. We compute compose(my,mz)(ms) = (Av.my(mav))ms = mi(mams) by
#-reduction. [ ]
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As a last comment, we define the following special elements of the algebra

AA:
K = \zy.x,

S = Azyz.az(yz),

Y = £ F(0)) e f(o0)),
I=)z.z.

The element Y € A is called the paradozical combinator. With [3-conversion we have

I~ (SKK.

Construction of an environment model

Since A is a free algebra we can define the length of a A term. The length
function ¢: A — N is defined inductively as follows:
(i) {(m)=1ifmeCUV.
(ii) L(mn) =Ll(m)+{(n).
(iii) L Av.m) =L(m)+1
We shall write
Ai={meA:l(m) < i}

This defines an ascending filtration A; C Ay C -+ with A = Uzoi1 A; which we shall
use for recursive definitions of functions with A as domain and a suitable codomain.

Suppose now that we are given a functional domain ([X — X],j,p) over the
object X in C (cf. Definition 3.1). We consider the underlying set |X| of X as the
set of constants in A so that in fact we may write |X| C A. The functions p:V — | X|
are called environments; therefore, we introduce a set Env = |X|Y. Recall that by
Definition A.11 the category C has products and that the grounding functor preserves
products. Accordingly, suppressing a natural isomorphism, we have

Env = |X|V = ‘XV‘ for the C-object XV,

Each environment p: V' — |X| assigns to each variable v a constant p(v) € |X| as
value. Also, the power XE" is a well-defined C-object. We recall (from A.14 and a
subsequent remark (#)) that there is a natural injective morphism

SO (XY L XY 2 e
Thus, in view of ‘X(XV)‘ = C(XV,X) we obtain an inclusion map
XV nv nv
M )‘ (XY, X) - [XP] = X
In this sense we write

C(XV,X)C x|,

From these data we construct a function V:A — C(XV, X) C |X|* recur-
sively w.r.t the length ¢ in four steps (a), (b), (¢), and (d). More specifically, we shall
define functions

Vilhi - C(XYV,X), i=1,2,...

such that V41]A; = V;, and then we define V:A — C(XV,X) by V[m] = V[m]
unambiguously with ¢ > ¢(m).
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(a) (Vz € |X|CA, p€Euv) Vifa]p=r=,
ie., Vi[r] € C(XV,X) is the constant function with value z.
(b) (Vo eV, pe€Env) Vi[v]p=pv),
i.e., on V the function V; agrees with the evaluation function, or

projection, V — C(XV, X).

Thus Vi:A; — C(XV, X) is defined. Now suppose that the function V;: A; — XY
has been defined on the set A; of lambda terms of length < ¢ such that V;11|A; = V;
for y =1,...,1 —1. We recall that we have a binary operation (x,y) — x-y: X — X
given by x-y = p(x)(y) (cf. 3.2(i1)). If p € A with ¢(p) = 7+ 1, then, since A is
a free algebra, either © = mn with uniquely defined A-terms m and n such that
max{{(m),l(n)} < i, or p = Av.m with a uniquely defined A-term m such that
¢(m) = i¢. The first case is handled rather simply, the second will ask for greater
circumspection. In the first case we define

(¢) (Vm.n € Ai, p € Env)  Viglmnlp = (Vilmlp)(V [nlp).

Since the map (z,y) — x-y = p(z)(y): X xX — X isa C-morphism, then V,1q1[mn] €
C(XY,X) by (c), since V,[m], V,[n] € C(XV,X).

In order to deal with the harder second case, we note that for each environ-
ment p:V — X each constant © € X, and each variable v we can define a new
environment p{z/v}:V — X by setting

plafod) = {20 02
Note that p{z/u}{y/v}w) =y if w = v, while
pliafubo) = {21 02

Thus
o), ot
ple/ul{y/vHw) =< 2, if w=wu and w # v,

Y, if w =wv.

It follows that

v detayont = {2

Let us fix v € V. The equality V = (V \ {v}) U {v} allows us to write
XV = XYM} x X Setting p = (€w)wev we define Q,(2): XV — XV by
Qv(l')(p) = Qv(x)<(‘€w)w€w6\/\{v}7xl> - <(‘€w)w6w€‘/\{v}7x> = IO{J}/U}

Using 3.3(iii) (see also A.4(i)) and K(z) = pj(k.), it follows that K: X — X% is a

morphism and we have
Qo(2)((Ew)weweryioy: ') = ((Ewlwewer(oy, K(2)(").
Thus, in this notation,

(2,9) = Qp(x): X x XV - xV
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is a C-morphism. The universal property of cartesian closed categories (see A.2) then

vi(XY) . . .
shows that Q,: X — (X ) is a morphism, i.e.,

Q,€cC (X, (XV)(XV)> .

Note that the composition
o: x(X7) 5 (xV) ) L, x(x7)

is a morphism (see A.4(ii)). Hence, if F € C(XV,X), then for each v € V the
function = — F o Q,(z): X — x(XY) i a C-morphism. We note (F o Qv(:zj)> (p) =

F(p{z/v}) and that = — F(p(z/v)): X — X is a C-morphism for every p € |[X|V =
Env. Also, setting

D, €|XM | =CX,X) by @u(z) =Qu(x)(p),
we note that
(%) p>Fod,: XV — X+

is a C-morphism.
In order to complete our definition of V;y; we must take recourse to a
definition as follows:

Definition 3.5. The functional domain ([X — X],j,p) in C is called an en-
vironment model in C provided the following recursive condition is satisfied for
i=1,2,3,...;

Suppose that V;: A; — C(XV, is deﬁned in such a fashion that (a) and
(b
i

X)
) are satisfied as well as (¢) for ¢(m) + ¢(n) < ¢. Suppose further that in the case
> 2, for all m € A;—; and all (v,p) € V X Env we have

Vim]o@®,, € [X — X].
Then for all m € A; and all (v,p) € V x Env we have
Vim]o@®,, € [X — X]. [

Note that [V[m] o Q,(2)]p = Vilm]p{z/v} for all (v,p) € V x Env, and that
p(X) = [X — X]. Thus, saying that ([X — X],j,p) is an environment model
means this: whenever m € A; and V;[m] € C(X", X) has been defined as specified,
then (x — Vi[m]p{z/v}) € p(X) for all (v,p) € V x Env.

Now suppose that ([X — X],j,p) is an environment model in C. Then we
can define

(d) Vig1[Av.m](p) = j(Vi[m] o @,,) for all m € A; and all (p,v) €
Env x V.
Since p — {x = FoQ,(2))(p) = F(p{z/v})} isin C(XV,X) foreach F € C(XV,X)
we know that V,ii[\v.m] € C(XV,X).
In any environment model, we have now recursively defined functions
VieA; — C(XV,X) C |X|* such that Vigi|A; = V,; for i = 1,2,.... This allows
us to pick, for any A-term m any ¢ > ((m) and set unambiguously V[m] = V;[m].
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In this fashion we have defined a function V:A — C(XV, X) such that the following
conditions are satisfied:

(a) (Vz € |X|CA, p€Env) V[gp=uz,
i.e., V[z] € C(XV,X) is the constant function with value z.

(b) (Vo €V, p€Env) Violp= plv),
ie., on V the function V agrees with the evaluation function, or
projection, V — C(XV, X).

(©) (Vm, n €A, peBuv) Vimnlp=(V[mlp}(Vnlp).

(d) V[Av.m](p) =j(V[m]o®,,) for all m € A and all (p,v) € Envx V.

This function V is called the semantic map of the model. It is uniquely determined
by conditions (a,b,c,d).

The recursive definition of the semantic map is somewhat involved due to
Definition 3.5. Therefore, it is very important for us to realize that the conditions
of this definition are automatically satisfied as soon as we are dealing with the
most prevalent type of functional domains, namely, the special ones as explained
in Definition 3.1(iii) above.

Special Functional Domain Lemma.  Every special functional domain (X, 5, p)
in a concrete cartesian closed category with function spaces C (see 3.1(iii), A.11, A.13)

is an environment model in C. In particular, V[m] € C(XV,X) C XEW for all
m € A.

Proof. We have seen that for every morphism F € C(X",X), the function
(%) p>Fod,: XV — X+

is a C-morphism. By induction hypothesis on V;, for all m € A;, the morphism
Vilm] € C(XV,X) is well-defined. Thus

(%) p V[m]oq)pv:XveXX

is a C-morphism by (*) above. Since j: X — X is a C-morphism, the requirements

of Definition 3.5 are satisfied with [X — X] = X and
(ot ) Viti[Avo.m] = (ij(Vi[m]oCI)pv)>:Xv—>X

is a C-morphism. By induction on i, for all 7 = 1,2,... we have V;[m] C C(XV, X)
for all m € A;. [

We need the following result (cf. [4]):

Free Variable Lemma. If ([X — X],j,p) is an environment model and V:A —
XE s the semantic map, then

(*) (Vp € Env) Vmlp=Vmlp{e/v}

if the variable v is not free in the term m.

Proof. The proof is by induction on length. If m is a constant y € X, then the
left and right sides of (%) both are y and so the assertion holds. If m € V', then
m # v by hypothesis; the left side of (x) is p(m) the right side is p{z/v}(m) =
p(m) by the definition of p(x/v). Thus the assertion is true in this case. Now
suppose that (x) is true for all m € A;. If u € A;y1 there are two cases: (1)
p = mn with m,n € A; and v free in neither m nor n, or (2) 4 = Au.m
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with m € A; and v not free in m. In case (1), by the induction hypothesis,
Vmlp = VImlp{z/v} and Vn]p = Vn]p{z/v}. Now (c) implies V[mn]p =
(Vlmlp) (Vo) = (Vlmlp{e/o}(VInlplzfo}) = Vimnlp{e/v}. Thus (x) holds
for p in place of m. In case (2), condition (d) implies V[Au.m|p = j(V[m] o ®,,)
and V[ v.mlp{z/v} = j(V[m] o @,1/03u). Let 2 € X. Then (V[m]o @,,)(z) =

Viml(p{z/u}) and (Vm] o ®,1z/0yu)(z) = V[m](p{z/v}{z/u}). By (i) and by
induction hypothesis, since (%) holds for m € A;, we have V[m](p{z/v}{z/u}) =
V[m|(p{z/u}). This yields the assertion. u

Environment models on functional domains

In the following, we assume that the concrete cartesian closed category C
has function spaces (see A.11, A.13) and we consider an environmental model ([X —
X1],j,p) in C. In view of the existence of a grounding functor from C into SET we
may regard the objects of C as sets (with additional structure). We shall therefore
use a notation like # € X (in liew of the more accurate = € |X|); confusion is not
likely to arise by such abuse of notation.

We recall z-y = p(x)(y) for all z,y € X and define D, = {(z,y) € X x X :
p(x)op(y) € [X — X]}. Then we have a partial binary operation o : D, — X defined
by oy = ]<p(:1;) o p(y)) for (z,y) € Ds. From 3.2(i) we also recall the definition
e =j(idx).

For elements of X(X") we shall use the notation EXY - X.

Now we define an algebraic structure on x(xY) pointwise as follows: for

e XV and ne XV weset (£n)(p) =E(p)n(p) for p € XV . Set
D, = {(&.n) e XX x(X) s (vp e XYY (€lp)an(p) € Do)
We define the partial binary operation
0: Dl — XX) by (€on)p) = E(p) onip)
for p € XV and for all (¢,7) € D), and set e(p) = e for all p € XV; thus € is the
constant function with value e.
We define

P X S - XI5 by Y =por
for f: XV — X and

X = X)) L x(YY) by Ry =joF
for F: XV — [X — X]. Then p’ and j' are C-morphisms and p’ 0 j’ =id (xv). We

recall that [X — X] C X* and that there is a morphism

x(xY)
o (X)X <X(XV)>< ) by a(/)EF)p) = F(p)(F(p))

for f: XV — X¥, F: XV — X and p € XV. (For a diagrammatic definition of &
see the Appendix A.4(v). Thus we have a C-inclusion

i1 — X)) (x () (x) .
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x(xY)
We therefore identify [X — X](XV) with a subobject of <X(XV)> < > . Having

done this, we note that ([X — X](XV),j’,p’) is a functional domain on X(X")
(see 3.1). Since the maps j' and p' are defined pointwise, we also note that
([X — X]Env ', p') is a functional domain on X"V, Notice that the identity map
y: x(&Y) , xPBov g continuous; it is not open unless Env = |X|V is finite.

From the information in the preceding subsection we have a semantic map

ViA— C(XV,X)C|X[E". Thus we may define
T=V(A)CCXY,X)C|X|.
Note that T is, at this point, just a set.

Lemma 3.6. If ([X — X],j,p) is an environment model, then for each environment

p € XV, the semantic map V:A — x(x7) satisfies the following conditions:
(i) (Vm,neA) V[mn]= V[m]-V|n],
(i) Tx T C D, and (Vm,n € A) V]compose(m,n)] = V[m]o Vn],
Gii) VI =
(iv) The maps T xT — T and o:T x T — T are continuous with respect to
each of the topologies induced by x(XY) gpd xPnv

Proof. (i) follows from condition (¢) in the recursive definition of V.

For (ii), we consider a variable v which occurs freely in neither m nor n and,
using the definition of an environment model in 3.5, we make the following calculation:
YV [compose(m,n)]p = V[ v.m(nv)]p = j(f) for any environment p by (d), where

f=a e Vimmo)lpfe/o} =« = p(Vimlp{e/o})(VInvlple/v}) by (c)

=z = p(Vm]p{z/v})(p(V[n]p{z/v})(V[v]p{z/v}) by (c)
= x = p(V[m]p{x/v})(p(V[nlp{z/v})(x)) by (b)

=@ = p(VImlp) (p(V[n]p)(z)),

the last equality following from the Free Variable Lemma and the fact that v is free
in neither m nor in n. This shows that the element f € [X — X] is the composition
of the functions p(V[m]p) and (first) p(V[n]p). Thus (V[m]p, Vn]p) € D, for all p
and so (V[m],V[n]) € D,. Hence T x T C D/ as asserted. Thus (ii) is proved in its
entirety.

For (iii), we again calculate: V[IJp = V[ v.v]p = j(f) for any environment
p, where

f=a = Vilpfa! /o) = 2’ s pla o) (e) by (b)

! !
=T = .

This proves the claim.
The assertion (iv) follows since the operations - and o are defined pointwise.m

One comment regarding (ii) is in order. The relation T' x T C D! is perhaps
surprising; it has the flavor of getting something for nothing. However, what is used
here is the information coded into the Definition 3.5 of an environment model.
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Lemma 3.7. If m and n are (a), (B) or (n)-equivalent, then V[m] = V[n].
Proof. We record

() Av.m = Au.m|[u/v] for u not free in m,

(8) (Av.m)g =mlg/v], and

(n) Av.(mv) =m for v not free in m.
Proof for (a): V[Av.m]p = j(V[m] o ®,,) on the one hand and V[Au.m[u/v]]p =
J(V[mlu/v]] o ®,,) on the other. In order for these to be equal it is necessary
and sufficient that V[m]p{z/v} = (V[m] o ®,,)(z) = (VIm[u/v]] o ®,,)(x) =
V[m[u/v]]p{x/u}. This claim is proved by induction on the length of m. Indeed, if m
is constant, then V[m[u/v]]p = V[m]p for all environments p. If m = w € V, we have
mlu/v] =m if w # v, s0 V[m[u/v]]p = V[m]p for all environments p in this case. Al-
ternatively, if w = v, then m[u/v] = u, and so V[m [u/v]],o{:z;/v} =z = Vulp{x/u}
for all environments p. Hence the result also holds in case m is a varlable and this
concludes the proof for the cases when ¢(m) = 1. If the result holds for all terms m
with ¢(m) < ¢, and m = np is an application, then the result holds for m by the
inductive hypothesis and the fact that V is an application-homomorphism (3.6(ii)).

Finally, suppose m = Aw.n is itself an abstraction. Then the definition of

V[m] = V[\w.n] yields
Vimlp{z/v} = V[dw.n]p{z/v} = j(VInlp{z/vi{z/w}),
while
Vm[u/v]]p{z/u} = V[(Aw.n)lu/v]lp{z/u} = j(VInlu/v]]p{z/u}{z/w}).
By the inductive hypothesis, V[n]p{z/v}{z/w} = V[n[u/v]]p{z/u}{z/w} since these

terms have shorter length, and this proves the result for (a).

Proof for (f): We have

and we claim that this equals V[m[g/v]]p. Again this is proved by induction on the
length of m, and the arguments are straightforward and similar to the case of the
(a) rule.

Proof of (n): We compute VAv.(mv)lp = j(V[mv] o ®,). Now for z € X we

have y = (V[mo] o ®,,)(x) = VImvlp{z/v} = (V[mlp{z/v})(V[v]p{z/v}).

the Free Variable Lemma Vm]p{z/v} = V[m]p if v is not free in m. Further
Vivlp{z/v} = p{a/v}v) = x by the definitions of V and p{z/v}. Hence y =

Vm]p-x. Thus V[mv] o ®, = p(V[m|p), whence V[Av.(mv)lp = jp(V[m]p)

Vimlp, ie., V[ v.(mv] = V[ | as asserted.

Lemma 3.8. (i) (T,0) is a monoid. The set M def P (T) C|[X — X](XV) 15 a
Vv
submonoid of ‘(XV>(X )‘ = C(XV,XY). If M is a C-subobject of [X — X], then

both (M,[X — X](XV),j’,p’) and (M,[X — X]|EV 5", p") are functional monoids
(see 3.1(ii)).

(ii) j maps M isomorphically onto a submonoid S of T whose identity is €,
e(p) =e, with e = j(idx). Also, T is an inflation of S with respect to £ — eof.



18

(iii) T acts e-effectively on ‘X(XV) .

Proof. (i) T consists exactly of all V[m]: XV — X with m € A. By 3.6(ii)

x(xY)
and (iii) these elements form a submonoid of <X(XV)> < > contained in [X —

X](XV). If £, n and ( are elements of T with =, = V[m]p, y, = V[n]p, and
z, = VIr]p, then

((€on)-¢)(p) = V]compose(m,n)r](p) = Vm(nr)l(p) for pe X

and thus (£ on)-¢ € T by 3.4 and 3.7(3). Again using 3.6, this last expression is
equal to (£o0n)-C. Thus p(Eon)=p(£)op(n). Hence M is closed under composition

Vv

in (XV>(X ) and contains the identity p(e). Also, p'|T:(T,0) — (M, 0) is a monoid
morphism. The remainder is clear from the definitions.

(ii) j is injective and transports composition in M to the o operation in T'.
The image of the identity of M is e. The definition of the multiplication o directly
implies that 7T is an inflation of S via multiplication with e.

(iii) Suppose that &, 7: XV — X arein T with ¢ = V[m] and n = V[n], and
that ¢ XV — X. Then &(p-C)(p) = #(€)('(0)(O)) (p) = {p(V [m]p)op( Vnlp)}-<(p)

for p € XV on the one hand, and (€ 0 n)<(p) = p(€ 0 )(C)p) = {p(VImlp) o
pVn]p)}-((p) on the other, and this shows that we have an action. The relation

e = ¢ is readily verified. Finally suppose that ¢-¢ = n-¢. Then for all p € XV we
have £(p)-C(p) = n(p)-((p). From 3.2(ii) we have eo&(p) = eon(p). Thus eo = eon.m

Environment models in standard topological categories

Now we assume that C is a standard topological category (see 3.2).

Proposition 3.9. Suppose that ([X — X],7,p) is an environment model in a
cartesian closed category with function spaces. Set T = V[A] C C(XV,X) = x(x7)

and endow this set with either the topology induced from that of x(5Y) or that of
XE  Then, in both cases, (T, T) is a strict functional algebra according to Definition
2.10.

Proof. By Lemma 3.7 conditions (i) and (ii) of Definition 2.1 are satisfied. Recall
the paradoxical combinator Y = Af.(Av.f(vv))(Av.f(vv)); then Ym is n-equivalent
to m(Ym). Hence

VIY]-V[m] = V[Ym] = VIm(Ym)] = V[m]-(V[Y]-V]m])

by 3.6(i) and 3.8(n). Thus hypothesis (iii) of 2.1 is satisfied in (7,7T) with y =
V[Y] € T. Next recall K € A, K = Au.(Av.u). Then Km is n-equivalent to Av.m
for all m € A. Thus (Km)n is equivalent to (Av.m)n which is equivalent m. Hence,
by 3.8(n), we have (VIK]-V[m])V[n] = V[(Km)n] = Vim], and so k = VK] € T
satisfies (7') of 3.6 in T'. It follows that K:T — T, K(&) = k-£ satisfies (7) of
Definition 2.1. This completes the proof that (7,7T) is a strict functional algebra in
the sense of 2.1. |

Proposition 3.10. Suppose that ([ X — X],j,p) s an environment model in
a standard topological category. Set T = V[A] C C(XV,X) = X(XV)‘. Denote

with T the closure of T in X(XY) and with T the closures of T in XP™ | given
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the respective induced topologies. Assume that [X — X| is closed in XX . Then
TxTCTxTCD!, and both (T, T) and (T,T) are strict functional algebras.
Proof. We claim that D, € X x X is closed: the function v = [(z,y) —
p(z)op(y)]: X x X — X~ is continuous since p is continuous and C is cartesian closed.
We have D, = v '[X — X]. Since [X — X] isclosed in XX by hypothesis, the claim
is proved. Now D! = D¥" ig closed in X0V x X0V = (X x X)E" | Since the identity
~: x(XY) 5 xPav g continuous, D! is also closed in X x(XY) (XXX)(XV).
From the continuity of v we also obtain that T C T. Tt follows from 3.6(ii) that
TxTCTxTC D! whence (T,o0) and (T o) are binary algebras with identity
e and a continuous multiplication o in each case; since T' is a dense submonoid by
3.9, we have that (T,0) and (T,0) are monoids. Also the fact that T is closed
i i i i x (X))  x(XY) (x")
with respect to the continuous binary operations -:X x X — X
and -: XEW x XEw . XERV (identical as functions) implies that the restrictions

2TxT —Tand T xT — T are well-defined. All equations involving the binary
operations o and - and the elements k& and y extend by continuity. The e-effectivity

of the action of T on T is directly established as in the last lines of the proof of
3.8(iii). ]

Theorem 3.11.  Assume the following hypotheses:

(a) Cis a standard topological category.

(b) ([X — X],J,p) is an environment model on a compact Hausdortt space X .
Then the semantic map V: A — | X[ is constant.

Proof. Since X is compact, then [X — X] = p(X) is compact and hence closed
in X% as X is Hausdorff. Then by Proposition 3.10 we know that (T,T) with
T = V[A] is a functional algebra Since X is compact, Tychonov s Theorem implies
X i compact and thus T C XEw s compact too. Thus (T T) 1s a compact
Hausdorff functional algebra. By Theorem 2.7, it 1s degenerate. Hence T is singleton
and this is the assertion. |

For a better understanding of Theorem 3.11 it should be recalled from the
Special Functional Domain Lemma that every special functional domain (XX, 7, p)
in C (see 3.1(iii)) is an environment model.

Corollary 3.12.  In the category of Hausdorff k-spaces any compact environmental
model (in particular every compact special functional domain) is trivial in the sense
that its semantic map 18 constant. [ ]

4. Combinatory Models

In this section we fix a cartesian closed category with function spaces (see A.11 and
A.13).

The following definition of a combinatory model is adjusted from [6] in order
to allow for models to be implemented in a suitable standard topological category C:

Definition 4.1. Let C denote a concrete cartesian closed category with function
spaces.

1) A combinatory C-algebra is a C-object X together with a binary C-operation
) g J g Yy p
-1 X x X — X such that there are elements K, 5 € X satisfying

(a) (Vag, 21 € X) (K-x9)x1 =29,
(b) (Vxg, 1, 22 € X) ((S-wo)-x1)axe = (xg-22)(x1-22).
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(ii) A combinatory C-model is a combinatory C-algebra (X,-) which also has a
distinguished element e € X satisfying, for all g, 2, € X:

(¢) (exg)ay =921,
(d) if (Vx € X) xp-x = a1, then exy = e, and
(e) e-e=ce.
The combinatory C-model (X, -) is extensional if € acts as an identity on X . ]

On the free binary algebra A generated by K and S and a set V' of variables

one defines I = S(KK) and, for each variable x an operation P +— A*x.P by
induction via

1) VeeV) XNaza=1,
2) Ve eV) XNaz.P=KP,
3) Ve eV) Nua.PQ= S((x\*:l:P)(x\*:l;Q))
In particular, we define
W = Xua. flax) = S((/\*xf)(/\*xxx)>
= S[E (SO wa)(V )] = S[KF((SUD)],

and, accordingly,

Finally we define

V=\NfWW = 5(( " f. )(A fW))
= S{ES)[(EE)D) (K(SID)]HES) (KK (K(SID)] ).

In the same spirit, we introduce a binary operation o: X x X — X wvia the
A*-abstraction and Definition 3.3 as follows:

Po@Q =X2.P(Qx) = S((/\*:I;.P)(/\*:I;.Qx)>
— S(KP)S{KQ)T)).

Then referring to [2],pp. 127, 128, 147H. for the details, we obtain

Proposition 4.2.  In any combinatory C -algebra we have
(f) VeeX) az(Ya)=Y-.
Defining
XXX =X by zioxy=S((Ka)[S{(Kx)I}])

we obtain
(g) (Vay, a9, 25 € X) (w1 022) 23 =a1-(02-23),
(h) Va1, 29,23 € X) (xr10x3)0x3 =210 (x20ua3). ]

If X is an extensional C-model, then (eo xy)-xy = e(xq-22) = x1-22. Thus
e(eoxy) = ex; by (d,e). Since X is extensional we conclude e oz = x for all z.
Likewise (1 0 €)-xg = x1-(€-x2) = x1-23 since C is extensional. Again we conclude
z oe =gz for all x. Thus we note
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Proposition 4.3.  In any extensional C-model X the object X is a C-monoid with
respect to o and € as identity and -: X x X — X s an effective C-action on X. 1

For the concept of a C-action see A.7(iv)

Combinatory models in standard topological categories

Now we assume that Cis a standard topological category (see 3.2). From
4.1(a), 4.2(f,g,h), and Proposition 4.3 we obtain at once:

Proposition 4.4. If (X,-) 1s an extensional combinatory model in a standard
topological category, then (X,X) s a strict functional algebra with respect to the
C-monoid (X,0) with tdentity e (see Definitions 2.1, 2.10) and with respect to the
elements K and Y . |

We say that a combinatory model in a standard topological category is com-
pact if the underlying topological space X is compact Hausdorff. A singleton combi-
natory model is called degenerate.

From Theorem 2.7 we now obtain at once the following result:

Theorem 4.5.  Any compact extensional combinatorial model in a standard topo-
logical category s degenerate. [ ]

Corollary 4.6.  Any compact extensional combinatorial model in the category of
Hausdorff k-spaces s degenerate. [ ]

5. Conclusion

We have derived some results about compact Hausdorff monoids and shown how they
imply the degeneracy of certain models of the untyped lambda calculus. As we com-
mented at the end of Section 2, the bicyclic semigroup B(k y) plays a fundamental
role in this settmg Its only homomorphlc images are copies of itself, or cychc groups,
and compact semlgroups cannot contain a copy of the former. Hence in a compact
Hausdorff semigroup which either is a functional monoid or a combmatory algebra,
the elements k& and y must be inverses of one another, and this forces the model to
degenerate.

The main results are Theorem 2.7, 3.11, 3.12 and 4.5, and they are related as
follows: Theorem 2.7 is a basic result on topological spaces and compact topological
semigroup actions, while Theorems 3.11 and 4.5 and Corollary 3.12 deal with compact
structures in a given standard topological category. All of these results are degeneracy
theorems and the last two directly derive from 2.7. The generality of our definitions
3.1, 3.5, and 4.1 does not appear to allow us to deduce either of the Theorems 3.11
or 4.5 from the other. If we assume that the functional domain D = ([X — X],p, )
is special (3.1(iii)), i.e. that [X — X] = XX, then D is an environment model by
the Special Functional Domain Lemma (following Definition 3.5). Also in this case
a proof of Theorem 4.5 can be derived from Theorem 3.11: We may create from
D an extensional combinatory model by defining x1-x3 = p(x1)(x2) and defining

K =j(jory)) and S =j(joj’ ooy op¥op).

A. Appendix: Concrete cartesian closed categories

In this section we provide the necessary background on cartesian closed categories.
In a category C with finite products we shall abbreviate A x B by AB. The
cartesian product in a category with finite products is associative (and commutative).
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We note that this implies there is a natural isomorphism A(BC) = (AB)C (respec-
tively AB = BA) and that in general the use of these isomorphisms involves the
consideration of coherence in the sense of MACLANE. However, with the particular
case of cartesian products in a category with finite products we will not encounter
any difficulties if we simply write (AB)C = A(BC) and in fact omit parentheses as
is customary in group and semigroup theory.

Definition A.1. We say that a category C is cartesian closed if it has finite

products and the functor X — X A is a left adjoint for every A. Its right adjoint is
denoted X — X4, |

Notation: if A and B are objects in C, then B4 is the object in C just defined. If
J is a set and C has products, then BY is the usual product object of C. Confusion
could conceivably arise if C = SE7T . In that case, however, the two notations agree.

By interpreting this adjunction in terms of the back adjunction, this definition
is equivalent to the following statement:

Remark A.2. For each object A there is a natural transformation (in B)
app: BYA — B such that for any morphism b: X A — B there is a unique

V:X — B4
such that apf o(b'A) = b.
id
X XA — XA
b/l b/Al lb
a A
BA pig — 2 . B
|
The uniqueness immediately yields the following egalization principle:
Remark A.3. Suppose that «, 3: X — B“ are two morphisms such that
apj; o(ad) = apj o( FA).
Then o = .
aA
X &% p4 X4 —— B44
/ﬂ /3Al lapé
B4 B4 —— B
apg
|

The principle allows some immediate canonical constructions.
Firstly, taking X = B and b = pr; in the universal property in A.2 we obtain
a unique natural morphism s4: B — B“ such that the following diagram commutes
id
B BA —— BA

Fégl I‘CgAJ/ N lPH
app

B4 B4 ———————— B
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(In the category of sets, x4 is the function which associates with an = € B the

constant function k,: A — B with value x.)

Secondly, we consider CPB4 and get a morphism
cB apA apB
p=(CPBAA —® .Pp ——° C.)
The universal property above gives us a unique morphism

OCBA: CBBA — CA

such that apé o(ocpad) = p. In diagrams:

CBpA cipiy % g
(" cona| o eenaa] [t
cA chy — .

ap‘é

Thirdly, every morphism ¢: Ay — As induces functorially a morphism
B?: B4 — A% via the following diagram:

B42¢
BA2 BA2A1 _— BA2A2
B¢l B¢A1l apal lapg2
B4 BA4, — % . B

It is readily checked that ¢ — B?:C — C°P is a functor form C into its opposite
category, 1.e., that it is a contravariant functor.

Fourthly, every morphism ¢:B; — By induces functorially a morphism
¢4: B — B3 via the diagram

B{ B4 — B

" l 6% l A l(ﬁ
apB2

B3 B} ——— B

It is even easier to check that ¢ — ¢4:C — C is a functor.

Fifthly, as an exercise, we note a morphism §: CAB4 — (CB)#: firstly, for
an object A in a category with productslet A4: A — AA be the diagonal morphism
uniquely defined by pr; A =idy for j = 1,2. Ten let v: (CABMYA — (CAA)BAA)
be defined as the composition
(CABYYA 4

(CABM)A (CABMAAS(CAA)B*A).
Then we get 6: CAB4 — (CB)* via
cApA (CABMYA —— ' (CAAYBAA)

6l 6Al N lap‘é apg
app

(CB)* (CBY*4 —m——— CB.
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Next we define ¢': (C ) — (C4)(B#), using the universal property of the product,
by pr;oé’ = (pr; YA, 5 = 1,2. Tt is an exercise to verify ¢/ = §~!. Thus ¢ is an
1somorph1sm

Then the following diagrams define a natural morphism

BA, <CB>A . (CA>(BA) :

Y

w?A (cB)f Bt (ch;>A
o 784 B ) (ap)
(e (c4)(P") pa e L oA

Definition A.4. (i) The morphism x4 is called the constant-picker,
(ii) the morphism ocpa is called composition,
(iii) the assignment ¢+ B? is called the contravariant power object functor,

and
(iv) the assignment ¢ + ¢ is called the the covariant power object functor.
(v) The morphism ¢34 is called the S-morphism (for simple reference only).
|

The S-morphism o corresponds to the S combinator in combinatory algebras
(see 4.1). We use it e.g. in the discussions leading up to Lemma 3.6.

Proposition A.5.  Composition 1s associative. Specifically, the following diagram
18 commutative:
pecBpa _PeRA o poca
(1) opcpB? °pca
DB B4 — DA,
°DBA

Proof. In order to prove the commuting of diagram (1) we use Remark 3 and set
a=oppao(opcgB?) and B =opcao(D%cpa).

We must show

(2) ap}, oo = app of.

For this purpose we consider the following diagram:

id DYCP apy id
DeckEpAy — —— DCCBBAA —— — , DYCBB ———— » DYCERB
id DCocpgaA D ap8 id
D%cpad D¢ apg D¢ an

p‘c3pf4d ————— DYCA4 ———— DYC «———— DYCBB

opcpBtA opcaA " ap$ b opcBB
ODBAA app appg
DBpAgy ———— D4A _— D — —  DBB
id oppaA app

DEpA4 ——  DBEBA4 —— . DBB
id DB apg
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For the purposes of diagram chasing we record the following;:
1) The outer contour commutes by the naturality of ap4 .
2) The corner rectangles commute trivially.
3) The upper middle rectangle commutes because it is of the form D% (x).
)

4) The middle right rectangle, the middle bottom rectangle, and the center
rectangle commute because they are of the form (*)

Simple diagram chasing now shows that the paths around the left middle
rectangle followed by ap7 are equal. This is equation (2). ]

An object E in a category C is called terminal if for each object A there is
a unique morphism cap: A — E. If Ey and F, are terminal, then there is a unique
isomorphism ¢p, g,: E1 — E2 with c;]ll]_% = ¢p,E, - In this sense one may even speak
of “the” terminal object.

Proposition A.6.  Suppose that C is a cartesian closed category with a terminal
object E. Then
(i) pri: AE — A and pry: EA — A are isomorphisms,
(ii) the constant-picker k%:X — XT is an isomorphism.
(iii) If C has products then there is a natural morphism v3: B4 — BCEA given
by the unwversal property of the product through the following diagram

BA 'Yg N BC(EaA)
B“l lPra aE— A inC(EA).
BY - B

(%) |
Proof. (i) Thereis a unique 04: A — AFE such that pry oo4 =id4 and pryoos =
(A — E). Set ¢ = cp4o0pr:AE — AE. Then pryo¢ = pryooy opr, = pry,
and pryo¢p: AE — FE is the unique terminal morphism. The identity morphism
idap: AE — AFE has the same properties; the uniqueness in the universal property
of a product shows that ¢ =idap. We have seen that o4 = pry*.
Similarly one shows that the projection EA — A is an isomorphism. (This

also follows from the preceding and the commutativity of the product.)
(ii) With the natural isomorphism o = pr;*: X — XFE as in (i) above the
following commuting diagram shows that x%: X — X is a coretraction:

OF pry
X —— FEFEX ——m— X

I{;E(J/ #}Xl lid

X - XX — X
OF ap§

This coretraction is an isomorphism iff its left inverse apk: XPE — X is

monic. Thus let U be an arbitrary object and «, $:U — XPE two morphisms
with apoa = apofl. Since U = UE by (i) above, we may assume w.l.g. that
o, B:UE — XFE. By (i) there are unique morphisms o', 3":U — X¥ with o' E = «
and #'E = . The uniqueness in Remark 2 now shows that o' = ' and this means

a = 3. Hence ap¥ is a monic and thus Claim (ii) is established.

By (ii) the constant-picker x% is an isomorphism. The proof of (iii) is now

immediate. ]
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Definition A.7. (i) A morphism m: AA — A in a cartesian closed category is
called associative if the following diagram commutes.

Am
AAA —— AA
A £
AA — A
An object (A,m) together with an associative multiplication is called a
semigroup in C or, in short, a C-semuigroup.
(ii) If Chas a terminal object E, then a morphism : E — A is called an
identity of the semigroup (A, m) if the following diagram commutes:

AR — 7' A4 " EA4

. L I

AF —— A «— FA.
Pry Pry

A C-object (A, m, ) with an associative multiplication m and an identity ¢ is called
a monoid 1n Cor, in short, a C-monoid.
(iii) A morphism f of monoids (A;,m1,¢1) — (A2, ma,?2) is a C-morphism

f: Ay — Ay such that

f11141 ——————lff——————% 111

ffl lf

f12142 —_— 112
ms
commutes and that fi; =iy holds. We say that (Ay,mq,41) is a submonoid
of (Az,ma,iy) if there is a monomorphisms f of monoids from the former to the
latter.
(iv) A morphism a: A x X — X with a monoid A is called a C-action if the
following diagrams commute:

Aa 1 X
AAX —— - AX FEX —— AX
A L I
A X ———m— X FEX ———— X.

a PTy

Corollary A.8. In a cartesian closed category C, for each object A in C, the
morphism o4 = oaaa: AYAY — A makes AY into a semigroup in C. |

Note that for the terminal object E the product EFE is terminal by A.6(i).
Then A = Ap: E — EF is the unique isomorphism from F to EFE.

Proposition A.9.  Suppose that C is a cartesian closed category with a terminal
object E. Then
(i) The unique morphism i4: E — A defined by the universal property via

E EA — " . 4

iAl iAl A\ lid
apA

A4 A4 — A
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is an identity for the semigroup (A%, 04). Le., (A% 04,i4) is a monoid in
the category C.

(i) The monoid structure on A? induces a monoid structure on the set C(E, A%).
Its multiplication given by

C(E,o4)
v = (C(E,A")x C(E, A" ——"—C(E, A% 4% """ ,C(E, A")),

p(fy9) = (fg)oA. Its identity is 1 4.
The set C(A, A) is @ monoid w.r.t. ordinary composition o of functions.

(iii) The function 6:C(A,A) — C(E,A?) which associates with a morphism
fr A — A the unique morphism §(f) = f: E — A? characterized by

E EA — " . 4
) l Fa| s
AA Adg 4

apﬁ

18 an 1somorphism of monovds.

Proof. (i) We have to show that the following diagram (and an analogous one in
which factors are exchanged) commutes:

qhq M qaga

q| [+

At — A4
pry

In other words, we set & = (04) 0 (A%4ia): AYE — A4 and B = pr;: AYE — A4
and want to show that a« = 5. By Remark 3 it suffices to show that

(1) apy o(wA) = apy o( BA).
Now we note from the definition of the product and its associativity that
(2) Al pr, =pr, A:AYEA — A4
With (2) equation (1) becomes
(3) ap’y o((0ad) o (A%iaA))A = aplj o(A” pry).
We have the commuting of

PTy
FA —— A

i i

A4 A

apﬁ
We multiply on the right by A and complete below with the defining diagram for o 4:
A4 pr
AlpA — T 44y
A4 i
Atiad Aapﬁ l d

At — =, 44
oAAl lapﬁ

A4 — A

A
apA
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But the commuting of this diagram yields (3), which we had to show.
The commuting of the diagram for the identity on the other side has an
analogous proof.

(ii) The functor X — C(E,X):C — SET preserves products. Product
preserving functors map monoids in the domain category to monoids in the range
category. This proves the first assertion.

The second assertion follows directly from the axioms of a category.

(iii) The function ¢ is a natural bijection of sets by the adjunction property.
The monoid multiplication *: C(E, A*)x C(E, A*) — C(E, A?) is defined as follows:

For two given morphisms f, ¢g: A — A the morphism f* §:C(E, A"y — C(E, A1) is
the following composition of maps

A By FAA o
E EE i EAA 10 qAgqA M A

We want to show that 6(fog)= f* g . Following Remark 3 we shall show

(4) apit o(6(f 0 )4 = ap} o(f *9)A
The commutativity of the follovviilélg diagram will show tplrrlis claim:
EA —— FEA —F— A
AA E[;]r2 id PEZI]Q id
FF4 ———1 FEFA ——m A
FgA E[3] . Eyg [4] p
pAta — . g4 T 4
FA4A B A[? B FA a[6] f
Adgdy T gAY g
o4 A (7] ap? 8] u
A44 A — A
ap4 id

The individual cells commute for the following reasons

[1] ES EE™} E is the identity of E.

Trivial.

This cell is of the type E(7) for ¢.

Trivial.

Functoriality of the product.

This is diagram (1) for f.

Definition of composition in Remark 3.

[8] Trivial.

Thus the diagram is commutative and shows (4). Every isomorphism of semigroups
preserves identities and thus is an isomorphism of monoids. ]

2]
3]
[4]
[5]
(6]
(7]
8

Comparing the diagrams in (ii) (defining ZA) and (1) (defining f — f)
see that 6(id4) = ¢4. Since 1somorph1sms of semigroups preserve identities we see
that 74 is the identity of the semigroup C(E, A?), )

In a category C with a terminal object E one says that a morphism f: A — B
is constant if it factors through F | i.e., if there is a morphism b: £ — B such that with
the unique c4: A — E one has f =bocy. The map b+ boca: C(E,B) — C(A,B)
maps C(E, B) bijectively onto the set Cconst(A4,B) C C(A, B) constant morphisms
A— B.
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Remark A.10. The constant-picker x4:B — B4 of A4 induces a bijection
C(E,B) — Cconst(4, B) via the function

C(z.w5) B o Clpry,B)
v = <C(E,B)—>C(E,A )—>C(EA,B)—>C(A,B)>.

Proof. We consider the diagram

E EA — ' . B
bJ/ bAJ/ J/id
Pry
B BA ——— B
I{éJ/ IigAJ/ lid
B4 BAA4 ——  B.
apg
Since C(E,k)(b) = rob, the function v assigns to b: E — B bijectively the function
A EL B, m

Definition A.11.  We call a cartesian closed category concrete or set based if it
has products and there is a faithful and product preserving functor |-|: C — SET .

If ||: C — SET isafaithful functor, and if |E| is singleton, then each constant
morphism f gives a constant function |f|: |A| — |B|. We say that all constant maps
are morphisms in C if the image of C(A, B) in |B|l4l under |-| contains all constant
functions. |

Remark A.12. (i) If E is a terminal object in a set-based category, then |E| is a
one element set {*}.

(ii) The function ja: C(E,A) — |A|, ja(f) = |f|(*) is injective.

(iii) The following conditions are equivalent:

(1) For all objects A the function ja: C(E, A) — |A| is bijective.

(2) All constant maps are morphismsin C.
Proof. (i) and (ii): By A.6(i) we know that pry: AE — A is an isomorphism.
Then since |-| preserves products pry: |A| X |E| — |E| is bijective. Letting A = E
we get card|E| = 1. This proves (i), and (ii) follows since the map C(E,A) —
SET(|E|, |A]) = |AIlF! is injective as |-| is faithful.

(iii) (1) implies (2): Suppose that ¢:|A| — |B] is a constant function. If b is
its value, then by (i) there is a unique morphism f;: E — B with b = |f|(*). Let
ca:A — E be the unique morphism into the terminal object A. Set f = fyocyu.
Then |f| = (* +— b) o (JA] — {*}) and this function is c.

(2) implies (1): Immediate from the definitions. ]

Definition A.13. We say that a concrete cartesian closed category C has function
spaces if it has a terminal object and the equivalent conditions of A.12(iii) are satisfied.
|

In a concrete category with function spaces we have C(A,B) = |AB| (ac-
cording to A.12). The grounding functor |-| = C(E,-) assigns to the constant-picker
B — B4 the function x + r,:|B| — |B|l4l where r, is the constant function
with value « € |B|.

In the sense of Proposition A.9(iii), the monoid C(A, A) is the underlying
monoid of the € -monoid A4.

Recall that in any concrete category C a morphism f: X — Y is called
ingective if |f|: | X| — |Y] is injective. Since |.| is faithful, injective morphisms are
monics.
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Proposition A.14. In a concrete cartesian closed category with function spaces
the morphism v35: B BC(E.A) of A.6(iii) s injective.

Proof. Since |.|: C — SET preserves products we have
8l [BA] v |B|C D

and |v| is uniquely determined by the conditions that

1B%| |n 2]
pr, oly| = (|B*| ————— |B¥| ————|B|)

for all a:E — A. We may replace ‘BA‘ by C(A,B) and ‘BE‘ by C(E,B),
accordingly, |B*| by C(a,B) and ‘/ig‘ by jp:C(E,B) — |B|. Thus take f; €
C(A,B), j = 1,2. Then pr, (7|(f;)) = jB(Cla,B)(f))) = jr(fj0a) = fila(*)),

and the equality of these two expressions for j=1,2 and for all ¢ implies f; = fo. ®

Inview of C(E, A) = |A| in a concrete cartesian closed category the morphism
v4: BA — BCEA may be replaced by

#) Bt e B
which induces the injective function

AL 1BA - B = | Bl
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