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are not sure what the number is, but we know it lies somewhere between aand b. The maximal elements of I[0; 1℄ are the singleton intervals [x℄, and theseare in bijetive orrespondene with the elements of [0; 1℄. Furthermore, themap sending an interval to its length is a measurement on I[0; 1℄. Notie thatwe an view the measurement as giving a notion of the degree of partialityof an element of I[0; 1℄. In partiular, the olletion of maximal elements ofI[0; 1℄ oinides with the kernel of the measurement: the set of elements withmeasurement 0.Given a domain model D of a spae X, under quite mild onditions on Dthe set of normalized Borel measures 3 on X, equipped with the weak topol-ogy, an be embedded into the set of maximal elements of the probabilistipowerdomain PD (f. Edalat [6℄). This onstrution was utilized by Edalat[4,5℄ to provide new results on the existene of attrators for iterated funtionsystems, and to de�ne a generalization of the Riemann integral to funtionson metri spaes.We an begin to appreiate Edalat's idea by takingD to be the interval domainI[0; 1℄. In this ase we have an embedding of the normalized Borel measureson [0; 1℄ in the maximal elements of PI[0; 1℄. Writing ÆI 2 PI[0; 1℄ for thepoint mass onentrated at I 2 I[0; 1℄, and given a positive integer n, thedistribution �n = Pni=1 1nÆIi;where Ii = [ i�1n ; in ℄, is an element of PI[0; 1℄. Intuitively we regard the �n asapproximations to Lebesgue measure on [0; 1℄, and we might expet that Fn �nis Lebesgue measure on [0; 1℄ (under the above-mentioned embedding of Borelmeasures on [0; 1℄ into the maximal elements of PI[0; 1℄).In fat, a proof of this may be found in Edalat [5℄; but it is non-trivial. (Inpartiular, it requires the result that valuations on PI[0; 1℄ extend to Borelmeasures.) Indeed, it is not even straightforward that Fn �n is maximal inPI[0; 1℄. On the other hand, building on the measurement on I[0; 1℄, there isa very natural andidate for a measurement M on PI[0; 1℄: simply de�neM(P riÆ[ai;bi℄) = P ri(bi � ai):Suppose we ould prove that M really is a measurement; then, from a basiproperty of measurements, the simple observation that M(�n) ! 0 as n in-reases, entails that Fn �n de�nes a Borel measure on [0; 1℄. Thus we replaeEdalat's argument from [5℄ with an argument involving measurements whihan also be applied in other settings.In this paper we show that eah measurement m (satisfying a suitable ondi-3 The notion of a measure is quite separate from the notion of a measurement,despite the similarity of the terminology.2



tion, alled MP) on a domain D has a natural extension to a measurement Mon the probabilisti powerdomain PD. Moreover, we show that the kernel ofM , equipped with the relative Sott topology, is homeomorphi to the spaeof valuations 4 on the kernel of m equipped with the weak topology.We show that the ondition MP, alluded to above, is satis�ed by the naturalmeasurements on standard models of metri spaes, suh as the interval do-main, the formal ball model and the upper spae model. We also show thatany !-ontinuous dpo D whose Sott and Lawson topologies agree on thesubset maxD of maximal elements admits suh a measurement.These results an be used to derive fats about domains in general whih areindependent of measurement: for example, if D is an !-ontinuous dpo whoseSott and Lawson topologies agree on maxD, then the set of normalized Borelmeasures on maxD, equipped with the weak topology, an be embedded intothe set of maximal elements of PD. They an also be used to derive resultswhih are independent of domain theory altogether, suh as a new proof thatthe �xed point assoiated with a weakly hyperboli iterated funtion systemwith probabilities is the unique measure whose support is the attrator of theunderlying iterated funtion system.This paper an be seen as a probabilisti analogue of [19℄. The latter gives aneessary and suÆient ondition for a measurement on a domain D to ex-tend to a measurement on the onvex powerdomainCD. Knowing that ertainmeasurements extend to the onvex powerdomain enables one to prove thatany !-ontinuous dpo D with maxD regular satis�es the property that theVietoris hyperspae of max D embeds into max CD (as the kernel of a mea-surement). Further, Edalat's domain theoreti analysis of hyperboli iteratedfuntion systems is then shown to be a onsequene of standard results aboutmeasurement.2 BakgroundIn this setion we summarize some of the notions from topology, measuretheory and domain theory whih will be used in this paper.2.1 Topology and Measure TheoryWe assume familiarity with basi topologial notions suh as losure, ba-sis, neighbourhood, onvergene and ompatness. Here we just explain some4 Roughly speaking, valuations and measures are synonymous.3



terms whih may be slightly less well known to omputer sientists, but whihare entral to our subjet matter. In partiular, we outline some of the basionnetions between topology and measure theory.A topologial spae is regular if eah neighbourhood of a point x ontains alosed neighbourhood of the same point x. A spae is loally ompat if eahneighbourhood of a point x ontains a ompat neighbourhood of the samepoint x. A spae is ompletely metrizable if the topology is generated by aomplete metri.A olletion of subsets of a given set X whih ontains ;, and is losed un-der �nite unions and omplementation is alled a �eld. A topology on a setX generates a �eld, i.e., the smallest �eld ontaining all the open sets. Themembers of this �eld an all be written as disjoint unions of resents, wherea resent is the di�erene between two open sets. A �-�eld on a set X is a�eld on X whih is also losed under ountable unions. The �-�eld generatedby the open sets of a topologial spae is alled the Borel �-�eld.Suppose FX is the Borel �-�eld on a topologial spae X. A normalized Borelmeasure on X is a funtion � : FX ! [0; 1℄ satisfying �(X) = 1 and, for anyountable pairwise disjoint family fTig � FX,�([Ti) =Xi �(Ti) :The weak topology on the spae of normalized Borel measures on X is theweakest topology suh that, for eah bounded ontinuous funtion f : X ! R ,the map � 7! R f d� is ontinuous. The weak topology an also be harater-ized independently of a notion of integral. In fat, a net h�ii of normalizedBorel measures onverges to � in the weak topology i� lim inf �i(U) > �U foreah open set U � X.2.2 Domain TheoryA poset (P;v) is a set P endowed with a partial order v. The least element ofP (if it exists) is denoted ?, and the set of maximal elements of P is writtenmax P . Given A � P , we write "A for the set fx 2 P j (9a 2 A) a v xg;similarly, #A denotes fx 2 P j (9a 2 A) x v ag. A funtion f : P ! Qbetween posets P and Q is monotone if x v y implies f(x) v f(y) for allx; y 2 P . A subset A � P is direted if eah �nite subset F � A has an upperbound in A. Note that sine F = ; is a possibility, a direted subset must benon-empty. A (direted) omplete partial order (dpo) is a poset P in whiheah direted set A � P has a least upper bound, denoted tA.4



If D is a dpo, and x; y 2 D, then we say that x is way-below y, denotedx � y, if for eah direted subset A � D, if y v tA, then " x \ A 6= ;. Let##y = fx 2 D j x � yg; we say that D is ontinuous if it has a basis, i.e., asubset B � D suh that for eah y 2 D, ##y \ B is direted with supremumy. If D has a ountable basis then we say D is !-ontinuous. The way-belowrelation on a ontinuous dpo has the interpolation property : if x � y thenthere exists a basis element z suh that x� z � y.A subset U of a dpo D is Sott-open if it is an upper set (i.e., U = "U)and for eah direted set A � D, if tA 2 U then A \ U 6= ;. The olletion�D of all Sott-open subsets of D is alled the Sott topology on D. If D isontinuous, then the Sott topology on D is loally ompat, and the sets ""xwhere x 2 D form a basis for the topology. If S � D, we write Cl�(S) forthe losure of S with respet to the Sott topology. Given dpos D and E, afuntion f : D! E is ontinuous with respet the Sott topologies on D andE i� it is monotone and preserves direted suprema: for eah direted A � D,f(tA) = tf(A). The Lawson topology on a dpo D is a re�nement of theSott topology generated by inluding the sets D n "x for x 2 D as opens.Hereafter ontinuous dpos will also be referred to as domains.3 Valuations and the Probabilisti PowerdomainWe reall some basi de�nitions and results about valuations and the proba-bilisti powerdomain.De�nition 1 Let X be a topologial spae. A (ontinuous) valuation on X isa mapping � : (
X;�)! ([0; 1℄;6) satisfying:(1) Stritness: �(;) = 0.(2) Monotoniity: U � V ) �(U) 6 �(V ).(3) Modularity: for all U; V 2 
X, �(U [ V ) + �(U \ V ) = �(U) + �(V ).(4) Continuity: for every direted family fUigi2I, �(Si2I Ui) = supi2I �(Ui).Eah element x 2 X gives rise to a valuation de�ned byÆx(U) = 8<:1 if x 2 U;0 otherwise :A simple valuation has the form Pa2A raÆa, where A is a �nite subset of X,ra > 0 and Pa2A ra 6 1. A valuation � is normalized if �(X) = 1. For themost part we will onsider valuations de�ned on the Sott topology �D of adpo D. 5



Obviously, valuations bear a lose resemblane to measures. Lawson [13℄ showedthat any valuation on an !-ontinuous dpo D extends uniquely to a measureon the Borel �-�eld generated by the Sott topology (equivalently by theLawson topology) on D. This result was generalized to ontinuous dpos byAlvarez-Manilla, Edalat and Saheb-Djahromi [3℄. In this paper we do not useeither of these theorems. In Setion 8 we use the well-known fat that any val-uation on a metri spae has a unique extension to a measure (f. [2, Corollary3.24℄). But this is only used to mediate between the formulation of the mainresult of that setion, and the results of Huthinson [10℄, whih are stated formeasures.While the problem of extending valuations to measures is non-trivial, it isstraightforward to extend a valuation on a topologial spae X to a �nitelyadditive set funtion on the �eld FX generated by the open sets of X. Reallthat eah member R of this �eld an be written as a �nite, disjoint unionof resents, i.e., R = Sni=1 Ui n Vi for open Ui; Vi � X. The extension of avaluation � to FX assigns to R the valuenXi=1(�(Ui)� �(Ui \ Vi)):Also we reall from Hekmann [9, Setion 3.2℄ that if E 2 FX then we mayde�ne a valuation � jE by � jE (O) = �(O \ E) for all open O � X.Next we review from [11, Setion 3.9℄ the de�nition of the integral of a lowersemi-ontinuous funtion f : X ! [0;1) (i.e., a ontinuous funtion for theSott topology on [0;1)) against a valuation � on X. This is preisely theonstrution we need to extend a measurement on a domain D to a measure-ment on PD.First, if a lower semi-ontinuous funtion f : X ! [0;1) is simple, i.e., has�nite range, then we an write f uniquely as a linear ombination of hara-teristi funtions f = nXi=1 �i�f�1(�i) ;with moreover f�1(�i) 2 FX. This leads us to de�neZ f d� = nXi=1 �i�(f�1(�i)):Now any lower semi-ontinuous funtion f : X ! [0;1) is the uniform limitof the sequene of simple funtions hfni, wherefn = n2nXi=1 2�n�f�1(i2�n ;1):6



The integral R f d� is now de�ned to be supn R fn d�.This is, of ourse, ompletely analogous to the way one de�nes the integralof a non-negative measurable funtion against a measure. The weak topologyon the set of valuations on X is now de�ned to be the weakest topology suhthat f 7! R f d� is lower semi-ontinuous for eah lower semi-ontinuous mapf . (For Hausdor� spaes the same ondition haraterizes the weak topologyon Borel measures.)Next we reall the probabilisti powerdomain onstrution from Jones [11℄.De�nition 2 Given a dpo D, the probabilisti powerdomain PD is the dpoof all valuations de�ned on D in its Sott topology, and ordered by � v � ifand only if �(U) 6 �(U) for all U 2 �D.Theorem 3 (Jones [11℄) If D is a ontinuous dpo, then PD is a ontinu-ous dpo with a basis B = f�ni=1riÆpi j pi 2 Bg; where B � D is a basis forD.The following proposition shows that the Sott topology on PD is just theweak topology.Proposition 4 (Edalat [6℄) Suppose D is a ontinuous dpo, then a neth�iii2I in PD onverges to � in the Sott topology i�lim inf �i(U) > �(U)for all Sott open subsets U � D.4 MeasurementLet m : D ! E be a Sott ontinuous map between domains D and E. Wede�ne the kernel of m bykerm = fx 2 D : m(x) 2 max Eg:De�nition 5 For " 2 E, the "-approximations of x 2 D arem"(x) = fy 2 D : y v x & "� m(y)g:We say that m measures x 2 D if, for all open U � D, we havex 2 U ) (9" 2 E) x 2 m"(x) � U:7



A helpful intuition is to think of m as an abstration funtion, representingelements of D in a (simpler) domain E; the "-approximations m"(x) are thosepoints in D below x whose measurement is `"-lose to that of x in E'. Fromthis viewpoint, m measures x 2 D just in ase this abstration is faithful tothe Sott topology at x. In partiular, a sequene hxni in # x onverges to xin the Sott topology preisely when m(xn) onverges to m(x) in E.De�nition 6 A measurement is a ontinuous map m : D ! E whih mea-sures every element of kerm:In this paper we will typially take E = [0;1)�: the non-negative reals in theopposite order. In this ase we an see a measurement as apturing the degreeof partiality of elements ofD by a single number. Elaborating the measurementondition in this partiular instane, we have that m : D ! [0;1)� is ameasurement i� for any Sott open U and any ideal element x 2 kerm,x 2 U ) (9 " > 0) fy 2 D : y v x & m(y) < "g � U:That is, any element below x with suÆiently small measurement lies in U .It is straightforward to prove that kerm � maxD for a measurement m.Example 7 The following examples of measurements are all pertinent to thispaper. The �rst two illustrate the idea that natural models of metri spaesyield anonial measurements into [0;1)�.(1) If hX; di is a loally ompat metri spae, then its upper spaeUX = f; 6= K � X : K is ompat; gordered by reverse inlusion, is a ontinuous dpo. The supremum of adireted set S � UX is TS, and the way-below relation is given by A� Bi� B � int A. Given K 2 UX, de�ning the diameter of K byjKj = supfd(x; y) : x; y 2 Kg;it is readily veri�ed that m(K) = jKj is a measurement on UX whosekernel is maxUX = ffxg : x 2 Xg.(2) Given a metri spae hX; di, the formal ball model [7℄ BX = X � [0;1)is a poset ordered by(x; r) v (y; s) i� d(x; y) 6 r � s:The way-below relation is haraterized by(x; r)� (y; s) i� d(x; y) < r � s:8



The poset BX is a ontinuous dpo i� the metri d is omplete. MoreoverBX has a ountable basis i� X is separable. A natural measurement m onBX is given by m(x; r) = r. Then kerm = maxBX = f(x; 0) : x 2 Xg.(3) Let X = fxngn2N be a ountably in�nite set, and (PX;�) the lattie ofsubsets of X ordered by inlusion. Observe that S � T in PX i� S is a�nite subset of T . We an de�ne a measurement m : PX ! [0;1)� bym(S) = 1� Xxn2S 2�(n+1):One of the motivations behind the introdution of measurement in [16℄ wasto failitate the formulation of sharper �xed point theorems. The following isa basi example of one suh result.Theorem 8 Let f : D! D be a monotone map on a pointed ontinuous dpoD equipped with a measurement m : D ! E. If Fm(fn(?)) 2 maxE, thenx? = Gn>0 fn(?) 2 kermis the unique �xed point of f . Moreover, x? is an attrator: For all x, fn(x)!x? in the Sott topology on D. This onvergene restrits to kerm if f arrieskerm into kerm.5 Lebesgue Measurements and MP-MeasurementsMartin [19℄ gives a neessary and suÆient ondition for a measurement ona domain D to extend to a measurement on the onvex powerdomain CD,thereby unovering the lass of Lebesgue measurements. Before de�ning thislass we �rst extend the de�nition of m" to arbitrary sets S � D by writingm"(S) = [s2Sm"(s):De�nition 9 A ontinuous mapm : D ! [0;1)� is a Lebesgue measurementif for all ompat K � kerm and all open U � D,K � U ) (9 " > 0)(m"(K) � U):Clearly any Lebesgue measurement is indeed a measurement aording toDe�nition 6. We ought also to mention that Lebesgue measurements havenothing to do with Lebesguemeasure. The name arises beause a measurementm indues a distane map on kerm, and this map has the Lebesgue overingproperty preisely when m satis�es the onditions laid out in De�nition 9,f. Martin [15℄. 9



Knowing that Lebesgue measurements extend to the onvex powerdomainenables one to prove that any !-ontinuous dpoD withmaxD regular satis�esthe property that the Vietoris hyperspae of maxD embeds into maxCD (asthe kernel of a measurement). Further, Edalat's domain theoreti analysisof hyperboli iterated funtion systems is then shown to be a onsequeneof standard results from measurement. In the same setting, the neessity ofomplete metrizability beomes apparent.Theorem 10 (Martin [15℄) A spae is ompletely metrizable i� it is thekernel of a Lebesgue measurement m : D! [0;1)� on a ontinuous dpo.Here we seek analogous results, with the probabilisti powerdomain in plae ofthe onvex powerdomain, and the weak topology on Borel measures in plaeof the Vietoris topology on ompat sets. We now identify a ondition whihensures that a measurement on a domain D extends to a measurement on theprobabilisti powerdomain PD.Given a ontinuous map m : D! E, we onsider the following ondition:a� b 2 D) (9 " 2 E)m"(" b \ kerm) � ""a: (MP)In words, the ondition states that whenever b is way-above a, then thereexists " suh that all the "-approximations of elements in the kernel above bare still way-above a.Proposition 11 Suppose m : D! [0;1)� satis�es ondition (MP); then mis a Lebesgue measurement.PROOF. Let U � D be Sott open and K a ompat subset of ker m withK � U . For eah x 2 K let ax � bx � x with ax 2 U . Sine m satis�esondition (MP), for eah x 2 K there exists "x > 0 suh that m"x(" bx \ker m) � ""ax. Furthermore, by ompatness of K, we have x1; :::; xn 2 Ksuh that K � " bx1 [ � � � [ " bxn. But then, taking " = min "i, we have thatm"(K) � U . 2In partiular,m : D ! [0;1)� satisfying (MP) is a measurement. We all suha map an MP-measurement. (We explain the terminology below.)Example 12 It turns out that all the measurements we have onsidered thusfar are MP-measurements.(1) Reall from Example 7 the de�nition of a measurement m on the upperspae of a loally ompat metri spae X. Suppose E � K 2 UX, i.e.,there exists an open set U � X with K � U � E. Using the ompatness10



of K it is straightforward that (9 " > 0)(8x 2 K)B"(x) � U , where B"(x)is the open ball of radius " entred at x. It follows that m"("K \kerm) �""E.(2) Suppose hX; di is a metri spae, and let m denote the measurement onthe formal ball model BX de�ned in Example 7. Suppose (x; r)� (y; s) 2BX. Let " = (r � s� d(x; y))2 > 0. We show thatm"(" (y; s) \ kerm) � ""(x; r):To this end, suppose (y; s) v (w; 0) and (z; t) v (w; 0) for some w; z 2 Xand t < ". Thend(x; z)6 d(x; y) + d(y; w) + d(w; z)6 d(x; y) + s+ t< (r � s� 2t) + s+ t= r � t :Thus (x; r)� (z; t). 2The name (MP) for the ondition desribed above arises from the notion of anMP-hull in Lawson [14℄. That paper was onerned with determining whihspaes arise as the spae of maximal points of an !-ontinuous dpo.De�nition 13 An MP-hull is an !-ontinuous dpo suh that the relativeSott topology oinides with the relative Lawson topology on maxD.Theorem 14 Every MP-hull D admits an MP-measurementm : D ! [0;1)�.PROOF. Suppose D is an MP-hull with ountable basis B, and letI = f(a; b) 2 B � B j a� bg:It is straightforward that m : D ! (PI;�) de�ned bym(x) = f(a; b) j x 2 ""a _ x 62 Cl�(" b)g; (1)is a Sott ontinuous map. Next we show that maxD = kerm.Let x 2 maxD. If (a; b) 2 I, then Cl�(" b) \maxD = " b \maxD � ""a, sine" b is Lawson losed and the Sott and Lawson topologies agree on maxD. Itfollows that (a; b) 2 m(x). But the hoie of (a; b) was arbitrary so we havethat x 2 kerm. Conversely, suppose x 2 kerm with x v y. If a� b v y, thenthe fat that (a; b) 2 m(x) and x 2 Cl�(" b)implies a� x. Thus x = y.11
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EEEEEEEEEEEEEEEEEEEEEEEEEFig. 1.Now we show that m satis�es ondition (MP). If a � b, then taking " =f(a; b)g we havem"(" b \ kerm) = m"(" b \maxD) = m"(Cl�(" b) \maxD) � ""a:It is now straightforward that omposingm with the measurement in Example7(iii) yields an MP-measurement m : D! [0;1)�. 2Our main result, Theorem 30, says that an MP-measurement m : D ! [0;1)�extends in a natural way to a measurement M : PD! [0;1)� on the proba-bilisti powerdomain of D. Furthermore, in this ase, kerM is homeomorphito the set of normalized valuations on ker m in the weak topology. Edalat'sdomain theoreti analysis of hyperboli iterated funtion systems [4℄ an thenbe shown to be a onsequene of standard results using measurement [16℄.We onlude this setion with an example showing that the lass of MP-measurements is stritly smaller than the lass of Lebesgue measurements.Example 15 Let D = fn; �n : n 2 Ng [ fa;1g, with order generated byn v �n, a v �n and n v m v 1 for all n;m 2 N with n 6 m in the usualorder (see Figure 1). We de�ne a measurement m : D! [0;1)� by requiringthat m(�n) = m(1) = 0, m(n) = 2�n and m(a) = 1. Then m fails to satisfyMP, sine a� a but for no " > 0 is it the ase that m"(" a\ kerm) � ""a. Onthe other hand, m is a Lebesgue measurement: in partiular, the only ompatsubsets of kerm ontained in ""a are �nite.6 Comparing ValuationsOne of the most elegant results about the probabilisti powerdomain is theSplitting Lemma. This bears a lose relationship to a lassi problem in prob-ability theory: �nd a joint distribution with given marginals.Lemma 16 (Jones [11℄) Let � = Pa2A raÆa and � = Pb2B sbÆb be simple12



valuations. Then � � � if and only if there exists a family of non-negativetransport (or ow) numbers fua;bga2A;b2B satisfying(1) For eah a 2 A, Pb2B ua;b = ra.(2) For eah b 2 B, Pa2A ua;b < sb.(3) ua;b 6= 0 implies a� b.We an piture the situation above as a network ow diagram with a set Aof soures, a set B of sinks, and an edge from eah soure to eah sink. Eahsoure a 2 A has value ra, eah sink b 2 B has value sb, and ua;b indiates thevalue of the mass owing from a to b.In the remainder of this setion we give a haraterization of when a simplevaluation lies way-below an arbitrary valuation.Proposition 17 (Kirh [12℄) If � is a valuation on D, then Pa2A raÆa � �if and only if 8S � A, Pa2S ra < �(""S):De�nition 18 Fix a �nite subset A � D, and for eah S � A de�neCr(A; S) = \a2S ""a n [a02AnS ""a0:Observe that fCr(A; S)gS�A is a family of resents partitioning D.Proposition 19 Let � be a valuation on D, Pa2A raÆa a simple valuation onD, and fEigi2I � FD a �nite partition of D re�ning fCr(A; S)gS�A. ThenPa2A raÆa � � i� there exists a relation R � A� I suh that(1) (a; i) 2 R implies Ei � ""a;(2) for all S � A, Pa2S ra < Pi2R(S) �(Ei).PROOF. ()) Suppose Pa2A raÆa � �. De�ne R by R(a; i) just in aseEi � ""a. Then, given S � A, by Proposition 17,Xa2S ra < �(""S) = Xi2R(S) �(Ei):(() Given a relation R satisfying onditions (1) and (2) above, then for allS � A we have Xa2S ra < Xi2R(S) �(Ei) 6 �(""S):Thus Pa2A raÆa � � by Proposition 17. 213



Next we give an alternate haraterization of the way-below relation on PD.This is a slight generalization of the Splitting Lemma, and should be seen asdual to Proposition 19.Proposition 20 Suppose Pa2A raÆa and � are valuations on D and fEigi2I �FD is a partition of D re�ning fCr(A; S)gS�A. Then Pa2A raÆa � � i� thereexists a family of `transport numbers' fta;iga2A;i2I where(1) For eah a 2 A, Pi2I ta;i = ra.(2) For eah i 2 I, Pa2A ta;i < �(Ei).(3) ta;i > 0 implies Ei � ""a.PROOF. (() Given the existene of a family of transport numbers fta;ig,de�ne R � A � I by R(a; i) i� ta;i > 0. Then R satis�es (1) and (2) inProposition 19.()) By Proposition 19 there exists a relation R � A� I satisfying onditions(1) and (2) thereof. The proof that suh a relation yields transport numbers asrequired uses the max-ow min-ut theorem from graph theory. The basi ideais due to Jones [11℄, but we refer the reader to the formulation of Hekmann[9, Lemma 2.7℄ whih is general enough to apply to the present setting. 26.1 Splittings as Stohasti RelationsNext we de�ne a omposition of two splittings with a ommon index set. Thisis nothing but (the disrete ase of) omposition in the ategory of stohastirelations onsidered in [1℄.De�nition 21 Suppose u = fua;bga2A;b2B and v = fvb;gb2B;2C are familiesof non-negative real numbers, where A;B and C are �nite. Assuming thatP2C vb; > 0 for eah b 2 B, we de�ne u # v to be an (A� C)-indexed familywhere (u # v)a; = Xb2B ua;b  vb;P02C vb;0! :Furthermore, we de�ne u�1 to be the (B � A)-indexed family (u�1)b;a = ua;b.The idea that one an ompose splittings leads to the following question.Suppose � = Pa2A raÆa, � = Pb2B sbÆb and � = P2C tÆ are simple valuationswith � � � � �. If u = fua;bg is a splitting between � and �, and v = fvb;gis a splitting between � and �, then is u #v a splitting between � and �? (Thatis, does u # v satsify onditions (1-3) in Lemma 16?) The following propositionanswers this question in the aÆrmative.14



Proposition 22 Let u and v be as above. Then for eah a 2 A,X2C(u # v)a; = Xb2B ua;b : (2)Furthermore, if Pa2A ua;b < P2C vb; for eah b 2 B, it follows thatXa2A(u # v)a; < Xb2B vb; (3)for eah  2 C.PROOF. Simple algebra. 27 Measuring the Probabilisti PowerdomainUntil now, all of the onrete instanes of measurement that we have onsid-ered have been maps into [0;1)�. Heneforth we onsider measurements into[0; 1℄. There is no loss of generality here, sine [0;1)� an be order-embeddedin [0; 1℄. We used [0;1)� in the preeding setions sine this hoie is bothsimpler and more onventional (see [15℄). However, for the extension of a mea-surement to the probabilisti powerdomain it is more onvenient to use [0; 1℄.Note that the ondition MP is generi. The speialization to a measurementm : D ! [0; 1℄ says that whenever a � b 2 D, then there exists " > 0 suhthat m1�"(" b \ kerm) � ""a.De�nition 23 If m : D! [0; 1℄ is a measurement on a ontinuous dpo D,then we de�ne M : PD! [0; 1℄ by M(�) = R md�.The Sott ontinuity of M follows diretly from the ontinuity of the integral.In partiular, we have thatM(�) = supfPni=1 rim(ai) : Pni=1 riÆai � �g:The next few propositions desribe the kernel ofM . It is worth remarking thatin proving Proposition 24 we do not assume that valuations on ontinuousdpos extend to measures.Proposition 24 Let � 2 ker M , i.e., R md� = 1. Then for a resent E =U n V , where U; V 2 �D, we have that �(E) > 0 implies E \ kerm 6= ;.PROOF. We onstrut an inreasing sequene hxnjn 2 Ni in E withm(xn) >n=(n+ 1). It follows that F xn 2 E \ kerm.15



Firstly, sine � jE is a non-zero valuation on D, we may hoose x1 2 E suhthat � jE (""x1) > 0. Thus, de�ning E1 = E \ ""x1, we have �(E1) > 0.Next, assume xn has been de�ned suh that En = E \""xn has �(En) > 0. Let� = 1�(En)� jEn. Sine � = � jEn + � jEn;the inequality M(� jEn) 6 �(En) fores M(� jEn) = �(En), whene M(�) = 1.We may hoose a simple valuation � � � suh that M(�) > n=(n + 1).Thus there exists y 2 D (namely one of the mass points of �) suh thatm(y) > n=(n + 1) and �(En \ ""y) > 0. Now pik xn+1 2 En \ ""y suh that�(En \ ""xn+1) > 0. 2Proposition 25 Let � 2 kerM . If U1; U2 2 �D with U1\kerm = U2\kerm,then �(U1) = �(U2).PROOF. Sine neither of the resents U1 n U2 and U2 n U1 meets ker m itfollows that�(U1)= �(U1 \ U2) + �(U1 n U2)= �(U1 \ U2) (by Proposition 24)= �(U1 \ U2) + �(U2 n U1) (by Proposition 24)= �(U2):2Theorem 26 The spae of normalized valuations on kerm in the weak topol-ogy is homeomorphi to kerM equipped with the relative Sott topology.PROOF. Suppose � is a normalized valuation on ker m. Then we easily seethat �� : �D ! [0; 1℄ de�ned by ��(O) = �(O \ ker m) is a valuation on �D.For all positive integers n, sine��(fx : m(x) > n=(n + 1)g) = �(kerm) = 1;M(��) > n=(n + 1). Thus �� 2 kerM .Conversely, suppose � 2 kerM . We de�ne a valuation �� on the open sets ofker m as follows. For an open set O � ker m we de�ne ��(O) = �(Oy) whereOy is the greatest Sott open subset of D suh that Oy \ kerm = O. Now forall open subsets O1; O2 of kerm, 16



��(O1 [O2) + ��(O1 \ O2)= �((O1 [ O2)y) + �((O1 \O2)y)= �(Oy1 [ Oy2) + �(Oy1 \ Oy2) (by Proposition 25)= �(Oy1) + �(Oy2) (by modularity of �)= ��(O1) + ��(O2):Thus �� is modular. By similar reasoning it also follows that �� is Sott on-tinuous. One easily sees that the maps � 7! �� and � 7! �� are inverse.Reall that a net h�ii of normalized valuations on kerm onverges to � in theweak topology i� lim inf �i(O) > �(O) for all open O � kerm. Using Proposi-tion 4 it is routine to show that the bijetion above is a homeomorphism. 2Corollary 27 If m satis�es MP and D is an !-ontinuous dpo, then thespae of normalized Borel measures on ker m in the weak topology is homeo-morphi to kerM in the relative Sott topology.PROOF. Sine an MP-measurement is a Lebesgue measurement, kerm is aseparable metri spae by Theorem 10. In this ase, as we remarked earlier,valuations and Borel measures are in one-to-one orrespondene. 2We now begin the build-up to our main result, Theorem 30, showing that Mis a measurement. In partiular, it is this result whih allows us to onludethat kerM � maxPD. The following proposition and lemma ontain most ofthe work involved in proving Theorem 30.Proposition 28 Let � = P2C tÆ and " > 0 be suh that M(�) > 1� ". IfC 0 = f 2 C : m() > 1�p"g, then �0 = P2C0 tÆ satis�es M(�0) > 1�2p".PROOF. From Pt2C t(1�m()) 6 1�M(�) < ", it follows thatM(�)�M(�0) 6 X2CnC0 t 6 X2CnC0 t(1�m())p" < p" :2Lemma 29 Supposem : D ! [0; 1℄ is an MP-measurement andM : PD! [0; 1℄is the map given in De�nition 23. Let � 2 kerM and � = Pa2A raÆa � �. Thenthere exists " > 0 suh that whenever � = P2C tÆ v � and M(�) > 1 � ",then � � �.PROOF. Let � = Pb2B sbÆb be suh that � � �� � and let u = fua;bg bea splitting between � and � as in Lemma 16. Applying Proposition 20 with17
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kkVVVVVVVVVVVVwm;j2n+msshhhhhhhhhhhhFig. 2.the partition fEigi2I , where I = PB and Ei = Cr(B; i), we obtain a splittingv = fvb;ig between � and �.We now de�ne " > 0 in terms of u and v. First we hoose "1 > 0 to be a lowerbound on the unful�lled demand at eah of the sink nodes for the vb;i:"1 = mini2I (�(Ei)�Pb2B vb;i): (4)Sine m satis�es (MP) we may hoose "2 > 0 suh that for all a 2 A andb 2 B with a� b it holds that m1�"2(" b \ kerm) � ""a. Now we de�ne " > 0by " = min("1; "2)2=4.Suppose we are given � = P2C tÆ v � with M(�) > 1� ". Let C 0 � C and�0 v � be as in Proposition 28. In partiular, we have m() > 1� "2 for eah 2 C 0, and M(�0) > 1� "1.Applying Proposition 20 one again, with the partition fFjgj2J , where J =P(B [C 0) and Fj = Cr(B[C 0; j), we obtain a splitting w = fw;jg between �0and �. Notie that the partition fFjg re�nes fEig. We write j � i wheneverj \B = i, so Ei = Sj�i Fj. We illustrate the splittings v and w in the networkow diagram in Figure 2. Roughly speaking, we would like obtain a splittingbetween � and �0 as u # v #w�1. Notie, however, that w�1 and v are not evenomposable as it stands: they do not have a ommon index set. We �rst haveto amalgamate the ow numbers w;j whih go into the same group of irlednodes. Formally, we de�ne the (C 0 � I)-indexed set �w by �w;i = Pj�iw;j.We laim that u # v # �w�1 de�nes a splitting between � and �0 in the sense ofLemma 16, so that � � �0 v �. We verify ondition 3 of the lemma as follows.18



(u # v # �w�1)a; > 0) (9i)(9b)(ua;b > 0 & vb;i > 0 & �w;i > 0) (5)) (9i)(9j � i)(9b)(ua;b > 0 & vb;i > 0 & w;j > 0) (6)) (9i)(9j � i)(9b)(a� b & Ei � ""b & Fj � ""): (7)Now w;j > 0 in (6) implies �(Fj) > 0 (f. Proposition 20(2)). Thus, byProposition 24, there exists z 2 Fj \ kerm. Also, from (7), we have that a�b v z and  v z. Sine z 2 kerm andm() > 1�"2, fromm1�"2(" b\kerm) � ""ait follows that a� .To verify the ondition in Lemma 16(1), observe that two appliations ofProposition 22 yieldX2C0(u # v # �w�1)a; =Xi2I (u # v)a;i = Xb2B ua;b = ra :It remains to verify the ondition in Lemma 16(2). NowXj2J 0��(Fj)� X2C0 w;j1A = �(D)� �0(D) 6 1�M(�0) < "1 : (8)The parenthesized term above is always positive. Thus, for eah i 2 I, takingthe partial sum in (8) over those j 2 J with j � i, we get�(Ei)� X2C0 �w;i < "1 :From the de�nition of "1 in (4) it follows that for eah i 2 I,Xb2B vb;i < X2C0 �w;i:Now two appliations of Proposition 22 yieldsPa2A(u#v# �w�1)a; < Pi2I �w�1i; =t for eah  2 C 0. 2Having proved Lemma 29, the result that M is a measurement follows fromgeneral domain theory.Theorem 30 Suppose m is an MP-measurement on a domain D, and let Mbe the extension of m to a Sott ontinuous map PD ! [0; 1℄ as given inDe�nition 23. Then M is a measurement.PROOF. Let � 2 kerM and � � �. We have to show that there exists " > 0suh that whenever � v � and M(�) > 1� ", then � � �.19



By the interpolation property of � there exists a simple valuation �0 with� � �0 � �. By Lemma 29 there exists " > 0 suh that whenever �0 v � issimple and M(�0) > 1� ", then �0 � �0. But if � v � is an arbitrary valuationwithM(�) > 1�", then there is a simple valuation �0 � � withM(�0) > 1�".Thus � � �0 � �0 � �. 2Corollary 31 If D is an !-ontinuous dpo whose Sott and Lawson topolo-gies agree at the top, then the spae of normalized Borel measures on maxDin the weak topology embeds as a subspae of maxPD.PROOF. The Lawson topology is metrizable in any !-ontinuous dpo, somax D is metrizable. Sine valuations and Borel measures are in one-to-oneorrespondene in any separable metri spae, it suÆes to prove the resultabove with valuations in plae of measures.By Theorem 14, D admits an MP-measurement m with kerm = maxD. Sinethe extensionM : PD! [0; 1℄ is a measurement, it follows that kerM � maxD.Now the result diretly follows from Corollary 27. 2This result is also implied by [6, Corollary 4.1℄. The proof of that orollaryuses the fat that valuations on PD extend uniquely to measures. In [18℄ weprove a more general version of Corollary 31, assuming only that D is an !-ontinuous dpo with maxD regular. This depends on a more general versionof Theorem 30. Here we avoid the extra generality in order to give a lesstehnial presentation.8 Iterated Funtion SystemsDe�nition 32 An iterated funtion system (IFS) on a omplete metri spaeX is a olletion of ontinuous maps fi : X ! X indexed over a �nite set I.Suh an IFS is denoted hX; ffigi2Ii. If eah map fi is ontrating, then theIFS is said to be hyperboli.A hyperboli IFS indues a ontration F on the omplete metri spae ofnon-empty ompat subsets of X equipped with the Hausdor� metri. F isde�ned by F (K) = [i2I fi(K):By Banah's ontration mapping theorem, F has a unique �xed point: theattrator of the IFS. An alternate domain-theoreti proof this result, due toHayashi [8℄, involves onsidering F as a ontinuous selfmap of CUX and20



deduing that the least �xed point of F is maximal inCUX, and therefore is aunique �xed point. Many di�erent fratal sets arise as, or an be approximatedby, attrators of IFSs.De�nition 33 A weighted IFS hX; f(fi; pi)gi2Ii onsists of an IFS hX; ffigi2Iiand a family of weights 0 < pi < 1, where Pi2I pi = 1. These data indue a so-alled Markov operator G :MX !MX on the set MX of normalized Borelmeasures on X, given byG(�)(B) =Xi2I pi�(f�1i (B)) (9)for eah Borel subset B � X.The spae MX equipped with the weak topology an be metrized by theHuthinson metri [10℄. Furthermore, if a weighted IFS is hyperboli then themap G is ontrating with respet to the Huthinson metri. In this ase theunique �xed point of G, obtained by the ontration mapping theorem, de�nesa normalized measure alled an invariant measure for the IFS. The support ofthe invariant measure is the attrator of the underlying IFS. This onstrutionis an important method of de�ning fratal measures. Next we outline a domain-theoreti onstrution, due to Edalat [4℄, of invariant measures for so-alledweakly hyperboli IFSs on ompat metri spaes.Edalat's approah involves embedding the set of measures on a ompat metrispae X in the domain PUX of valuations on the upper spae of X. Reallfrom Setion 4 that UX admits an MP-measurement m : UX ! [0; 1℄, wherem(K) = 2�jKj ; in turn this yields a measurement M on PUX. Next, aweighted IFS hX; f(fi; pi)gi2Ii indues a ontinuous map T : PUX ! PUX {the domain theoreti analogue of the Markov operator { de�ned byT (�)(O) =Xi2I pi�((Ufi)�1(O)) (10)where Ufi : UX ! UX is the map K 7! fi(K).Applying T to ÆX , the point valuation onentrated at X 2 UX, one obtainsT (ÆX) = Pi2I piÆfi(X). Iterating, it follows thatT n(ÆX) = Xi1;:::;in2I pi1 : : : pinÆfi1 :::fin (X): (11)Thus MT n(ÆX), the measurement of the n-th iterate, equalsXi1;:::;in2I pi1:::pinm(fi1 : : : fin(X)):21



To ensure that MT n(ÆX) ! 1 as n ! 1 it is suÆient to require that forall " > 0, there exists n > 0 suh that jfi1 : : : fin(X)j < " for all sequenesi1i2:::in 2 In. In fat, by K�onig's lemma, it is suÆient that for eah in�nitesequene i1i2::: 2 I!, jfi1 : : : fin(X)j ! 0 an n ! 1. Edalat alls an IFSsatisfying the latter ondition weakly hyperboli. It is learly the ase thatevery hyperboli IFS is weakly hyperboli.Theorem 34 (Edalat [4℄) A weakly hyperboli weighted IFS hX; f(fi; pi)gi2Iion a ompat metri spae X has a unique invariant measure whih is more-over an attrator for the Markov operator (9).PROOF. Every valuation on a ompat metri spae extends to a Borelmeasure, and onversely every Borel measure restrits to a valuation. Thus,to prove the existene of a unique invariant measure, it suÆes to prove thatthere is a unique valuation � on X suh that �(O) = Pi2I pi�(f�1i (O)) for allopen O � X.Let D be the sub-dpo of PUX onsisting of valuations with mass 1. Then Dis pointed and ontinuous, and T restrits to a monotone map D! D. Thuswe may apply Theorem 8 to dedue that T has a unique �xed point on D,and this point lies in kerM .By an obvious identi�ation of X with ker m we may regard the Markovoperator G, de�ned in (9), as a selfmap of the set of valuations on kerm. Nextwe show that G, so regarded, agrees with T . Formally, if O � UX is Sottopen, then, using the notation of Theorem 26, we haveG(��)�(O)=G(��)(O \ kerm)=Xi2I pi��(f�1i (O \ kerm))=Xi2I pi�((Ufi)�1(O)) (f�1i (O \ kerm) = (Ufi)�1(O) \ kerm)=T (�)(O):Sine T = G on ker m, we know that the unique �xed point of T is a uniqueinvariant measure. Furthermore, it also follows that T takes kerM into kerM ,and so, by Theorem 8, the �xed point of T is an attrator for T in the relativeSott topology on kerM . But kerM ' MX, so the invariant measure for Gis also an attrator in the weak topology. 2The onstrution of the unique invariant measure here is essentially the sameas in Edalat [4℄. However it is justi�ed in a di�erent way. Edalat dedues22



that the least �xed point of T is a unique �xed point by proving that itis maximal. This observation depends on a haraterization of the maximalelements of PUX in terms of their supports. This last requires some moremeasure-theoreti mahinery than we have used here: in partiular he usesthe result of Lawson [13℄ on extending valuations on !-ontinuous dpos toBorel measures over the Lawson topology.9 Summary and Future WorkWe introdued the lass of MP-measurements: a strit sublass of the Lebesguemeasurements from [19℄. We showed that the natural measurements on the up-per spae and formal ball models are MP-measurements, and that any domainwhih is an MP-hull in the sense of Lawson [14℄ admits an MP-measurement.Our main result, Theorem 30, showed that an MP-measurementm : D! [0; 1℄extends in a natural way to a measurement M : PD! [0; 1℄ on the proba-bilisti powerdomain. As an appliation of this result we showed how Edalat'sdomain theoreti onstrution of unique invariant measures for IFS's an bejusti�ed by standard results about measurements.Martin [19℄ proves that the requirement that m : D! [0; 1℄ be a Lebesguemeasurement is both neessary and suÆient for the natural extension of Mto the onvex powerdomain CD to de�ne a measurement. The orrespondingresult does not hold for MP-measurements and the probabilisti powerdo-main: there are measurements whih do not satisfy MP and yet extend to theprobabilisti powerdomain. For example, it turns out that the measurementin Example 15, whih is Lebesgue but not MP, extends to the probabilistipowerdomain. The question of obtaining a neessary ondition remains open.An interesting problem is to haraterize the maximal elements of the proba-bilisti powerdomain. In partiular, for an MP-measurement m with kerm =maxD, do we have kerM = maxPD?Referenes[1℄ S. Abramsky, R. Blute and P. Panangaden. Nulear and Trae Ideals in Tensor-�-ategories. Journal of Pure and Applied Algebra, 143:3{47, 1999.[2℄ M. Alvarez-Manilla. Measure theoreti results for ontinuous valuations onpartially ordered spaes. PhD thesis, Imperial College, September 2000.23
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