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tIn this paper we initiate the study of measurements on the probabilisti
 power-domain. We show how measurements on an underlying domain naturally extendto its probabilisti
 powerdomain, so that the kernel of the extension 
onsists ofexa
tly those normalized measures on the kernel of the measurement on the under-lying domain. This result is 
ombined with now-standard results from the theory ofmeasurements to obtain a new proof that the �xed point asso
iated with a weaklyhyperboli
 IFS with probabilities is the unique invariant measure whose support isthe attra
tor of the underlying IFS.
1 Introdu
tionA relatively re
ent dis
overy [16℄ in domain theory is that most domains 
omeequipped with a natural measurement: a S
ott 
ontinuous map into the non-negative reals in the dual order whi
h en
odes the S
ott topology. The exis-ten
e of measurements was exploited by Martin [15{17,19℄ to study the spa
eof maximal elements of a domain, and to formulate various �xed point theo-rems for domains, in
luding �xed point theorems for non-monotoni
 maps.The theory of measurements meshes parti
ularly fruitfully with the idea ofdomains as models of 
lassi
al spa
es. Here we say that a domain D is a modelof a topologi
al spa
e X if the set of maximal elements ofD, equipped with therelative S
ott topology, is homeomorphi
 to X. For instan
e, a simple modelof the unit interval [0; 1℄ is the interval domain I[0; 1℄. This domain 
onsists ofthe non-empty 
losed sub-intervals of [0; 1℄, ordered by reverse in
lusion. Theidea is that an interval [a; b℄ represents a partially de�ned real number | we1 The support of the US OÆ
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are not sure what the number is, but we know it lies somewhere between aand b. The maximal elements of I[0; 1℄ are the singleton intervals [x℄, and theseare in bije
tive 
orresponden
e with the elements of [0; 1℄. Furthermore, themap sending an interval to its length is a measurement on I[0; 1℄. Noti
e thatwe 
an view the measurement as giving a notion of the degree of partialityof an element of I[0; 1℄. In parti
ular, the 
olle
tion of maximal elements ofI[0; 1℄ 
oin
ides with the kernel of the measurement: the set of elements withmeasurement 0.Given a domain model D of a spa
e X, under quite mild 
onditions on Dthe set of normalized Borel measures 3 on X, equipped with the weak topol-ogy, 
an be embedded into the set of maximal elements of the probabilisti
powerdomain PD (
f. Edalat [6℄). This 
onstru
tion was utilized by Edalat[4,5℄ to provide new results on the existen
e of attra
tors for iterated fun
tionsystems, and to de�ne a generalization of the Riemann integral to fun
tionson metri
 spa
es.We 
an begin to appre
iate Edalat's idea by takingD to be the interval domainI[0; 1℄. In this 
ase we have an embedding of the normalized Borel measureson [0; 1℄ in the maximal elements of PI[0; 1℄. Writing ÆI 2 PI[0; 1℄ for thepoint mass 
on
entrated at I 2 I[0; 1℄, and given a positive integer n, thedistribution �n = Pni=1 1nÆIi;where Ii = [ i�1n ; in ℄, is an element of PI[0; 1℄. Intuitively we regard the �n asapproximations to Lebesgue measure on [0; 1℄, and we might expe
t that Fn �nis Lebesgue measure on [0; 1℄ (under the above-mentioned embedding of Borelmeasures on [0; 1℄ into the maximal elements of PI[0; 1℄).In fa
t, a proof of this may be found in Edalat [5℄; but it is non-trivial. (Inparti
ular, it requires the result that valuations on PI[0; 1℄ extend to Borelmeasures.) Indeed, it is not even straightforward that Fn �n is maximal inPI[0; 1℄. On the other hand, building on the measurement on I[0; 1℄, there isa very natural 
andidate for a measurement M on PI[0; 1℄: simply de�neM(P riÆ[ai;bi℄) = P ri(bi � ai):Suppose we 
ould prove that M really is a measurement; then, from a basi
property of measurements, the simple observation that M(�n) ! 0 as n in-
reases, entails that Fn �n de�nes a Borel measure on [0; 1℄. Thus we repla
eEdalat's argument from [5℄ with an argument involving measurements whi
h
an also be applied in other settings.In this paper we show that ea
h measurement m (satisfying a suitable 
ondi-3 The notion of a measure is quite separate from the notion of a measurement,despite the similarity of the terminology.2



tion, 
alled MP) on a domain D has a natural extension to a measurement Mon the probabilisti
 powerdomain PD. Moreover, we show that the kernel ofM , equipped with the relative S
ott topology, is homeomorphi
 to the spa
eof valuations 4 on the kernel of m equipped with the weak topology.We show that the 
ondition MP, alluded to above, is satis�ed by the naturalmeasurements on standard models of metri
 spa
es, su
h as the interval do-main, the formal ball model and the upper spa
e model. We also show thatany !-
ontinuous d
po D whose S
ott and Lawson topologies agree on thesubset maxD of maximal elements admits su
h a measurement.These results 
an be used to derive fa
ts about domains in general whi
h areindependent of measurement: for example, if D is an !-
ontinuous d
po whoseS
ott and Lawson topologies agree on maxD, then the set of normalized Borelmeasures on maxD, equipped with the weak topology, 
an be embedded intothe set of maximal elements of PD. They 
an also be used to derive resultswhi
h are independent of domain theory altogether, su
h as a new proof thatthe �xed point asso
iated with a weakly hyperboli
 iterated fun
tion systemwith probabilities is the unique measure whose support is the attra
tor of theunderlying iterated fun
tion system.This paper 
an be seen as a probabilisti
 analogue of [19℄. The latter gives ane
essary and suÆ
ient 
ondition for a measurement on a domain D to ex-tend to a measurement on the 
onvex powerdomainCD. Knowing that 
ertainmeasurements extend to the 
onvex powerdomain enables one to prove thatany !-
ontinuous d
po D with maxD regular satis�es the property that theVietoris hyperspa
e of max D embeds into max CD (as the kernel of a mea-surement). Further, Edalat's domain theoreti
 analysis of hyperboli
 iteratedfun
tion systems is then shown to be a 
onsequen
e of standard results aboutmeasurement.2 Ba
kgroundIn this se
tion we summarize some of the notions from topology, measuretheory and domain theory whi
h will be used in this paper.2.1 Topology and Measure TheoryWe assume familiarity with basi
 topologi
al notions su
h as 
losure, ba-sis, neighbourhood, 
onvergen
e and 
ompa
tness. Here we just explain some4 Roughly speaking, valuations and measures are synonymous.3



terms whi
h may be slightly less well known to 
omputer s
ientists, but whi
hare 
entral to our subje
t matter. In parti
ular, we outline some of the basi

onne
tions between topology and measure theory.A topologi
al spa
e is regular if ea
h neighbourhood of a point x 
ontains a
losed neighbourhood of the same point x. A spa
e is lo
ally 
ompa
t if ea
hneighbourhood of a point x 
ontains a 
ompa
t neighbourhood of the samepoint x. A spa
e is 
ompletely metrizable if the topology is generated by a
omplete metri
.A 
olle
tion of subsets of a given set X whi
h 
ontains ;, and is 
losed un-der �nite unions and 
omplementation is 
alled a �eld. A topology on a setX generates a �eld, i.e., the smallest �eld 
ontaining all the open sets. Themembers of this �eld 
an all be written as disjoint unions of 
res
ents, wherea 
res
ent is the di�eren
e between two open sets. A �-�eld on a set X is a�eld on X whi
h is also 
losed under 
ountable unions. The �-�eld generatedby the open sets of a topologi
al spa
e is 
alled the Borel �-�eld.Suppose FX is the Borel �-�eld on a topologi
al spa
e X. A normalized Borelmeasure on X is a fun
tion � : FX ! [0; 1℄ satisfying �(X) = 1 and, for any
ountable pairwise disjoint family fTig � FX,�([Ti) =Xi �(Ti) :The weak topology on the spa
e of normalized Borel measures on X is theweakest topology su
h that, for ea
h bounded 
ontinuous fun
tion f : X ! R ,the map � 7! R f d� is 
ontinuous. The weak topology 
an also be 
hara
ter-ized independently of a notion of integral. In fa
t, a net h�ii of normalizedBorel measures 
onverges to � in the weak topology i� lim inf �i(U) > �U forea
h open set U � X.2.2 Domain TheoryA poset (P;v) is a set P endowed with a partial order v. The least element ofP (if it exists) is denoted ?, and the set of maximal elements of P is writtenmax P . Given A � P , we write "A for the set fx 2 P j (9a 2 A) a v xg;similarly, #A denotes fx 2 P j (9a 2 A) x v ag. A fun
tion f : P ! Qbetween posets P and Q is monotone if x v y implies f(x) v f(y) for allx; y 2 P . A subset A � P is dire
ted if ea
h �nite subset F � A has an upperbound in A. Note that sin
e F = ; is a possibility, a dire
ted subset must benon-empty. A (dire
ted) 
omplete partial order (d
po) is a poset P in whi
hea
h dire
ted set A � P has a least upper bound, denoted tA.4



If D is a d
po, and x; y 2 D, then we say that x is way-below y, denotedx � y, if for ea
h dire
ted subset A � D, if y v tA, then " x \ A 6= ;. Let##y = fx 2 D j x � yg; we say that D is 
ontinuous if it has a basis, i.e., asubset B � D su
h that for ea
h y 2 D, ##y \ B is dire
ted with supremumy. If D has a 
ountable basis then we say D is !-
ontinuous. The way-belowrelation on a 
ontinuous d
po has the interpolation property : if x � y thenthere exists a basis element z su
h that x� z � y.A subset U of a d
po D is S
ott-open if it is an upper set (i.e., U = "U)and for ea
h dire
ted set A � D, if tA 2 U then A \ U 6= ;. The 
olle
tion�D of all S
ott-open subsets of D is 
alled the S
ott topology on D. If D is
ontinuous, then the S
ott topology on D is lo
ally 
ompa
t, and the sets ""xwhere x 2 D form a basis for the topology. If S � D, we write Cl�(S) forthe 
losure of S with respe
t to the S
ott topology. Given d
pos D and E, afun
tion f : D! E is 
ontinuous with respe
t the S
ott topologies on D andE i� it is monotone and preserves dire
ted suprema: for ea
h dire
ted A � D,f(tA) = tf(A). The Lawson topology on a d
po D is a re�nement of theS
ott topology generated by in
luding the sets D n "x for x 2 D as opens.Hereafter 
ontinuous d
pos will also be referred to as domains.3 Valuations and the Probabilisti
 PowerdomainWe re
all some basi
 de�nitions and results about valuations and the proba-bilisti
 powerdomain.De�nition 1 Let X be a topologi
al spa
e. A (
ontinuous) valuation on X isa mapping � : (
X;�)! ([0; 1℄;6) satisfying:(1) Stri
tness: �(;) = 0.(2) Monotoni
ity: U � V ) �(U) 6 �(V ).(3) Modularity: for all U; V 2 
X, �(U [ V ) + �(U \ V ) = �(U) + �(V ).(4) Continuity: for every dire
ted family fUigi2I, �(Si2I Ui) = supi2I �(Ui).Ea
h element x 2 X gives rise to a valuation de�ned byÆx(U) = 8<:1 if x 2 U;0 otherwise :A simple valuation has the form Pa2A raÆa, where A is a �nite subset of X,ra > 0 and Pa2A ra 6 1. A valuation � is normalized if �(X) = 1. For themost part we will 
onsider valuations de�ned on the S
ott topology �D of ad
po D. 5



Obviously, valuations bear a 
lose resemblan
e to measures. Lawson [13℄ showedthat any valuation on an !-
ontinuous d
po D extends uniquely to a measureon the Borel �-�eld generated by the S
ott topology (equivalently by theLawson topology) on D. This result was generalized to 
ontinuous d
pos byAlvarez-Manilla, Edalat and Saheb-Djahromi [3℄. In this paper we do not useeither of these theorems. In Se
tion 8 we use the well-known fa
t that any val-uation on a metri
 spa
e has a unique extension to a measure (
f. [2, Corollary3.24℄). But this is only used to mediate between the formulation of the mainresult of that se
tion, and the results of Hut
hinson [10℄, whi
h are stated formeasures.While the problem of extending valuations to measures is non-trivial, it isstraightforward to extend a valuation on a topologi
al spa
e X to a �nitelyadditive set fun
tion on the �eld FX generated by the open sets of X. Re
allthat ea
h member R of this �eld 
an be written as a �nite, disjoint unionof 
res
ents, i.e., R = Sni=1 Ui n Vi for open Ui; Vi � X. The extension of avaluation � to FX assigns to R the valuenXi=1(�(Ui)� �(Ui \ Vi)):Also we re
all from He
kmann [9, Se
tion 3.2℄ that if E 2 FX then we mayde�ne a valuation � jE by � jE (O) = �(O \ E) for all open O � X.Next we review from [11, Se
tion 3.9℄ the de�nition of the integral of a lowersemi-
ontinuous fun
tion f : X ! [0;1) (i.e., a 
ontinuous fun
tion for theS
ott topology on [0;1)) against a valuation � on X. This is pre
isely the
onstru
tion we need to extend a measurement on a domain D to a measure-ment on PD.First, if a lower semi-
ontinuous fun
tion f : X ! [0;1) is simple, i.e., has�nite range, then we 
an write f uniquely as a linear 
ombination of 
hara
-teristi
 fun
tions f = nXi=1 �i�f�1(�i) ;with moreover f�1(�i) 2 FX. This leads us to de�neZ f d� = nXi=1 �i�(f�1(�i)):Now any lower semi-
ontinuous fun
tion f : X ! [0;1) is the uniform limitof the sequen
e of simple fun
tions hfni, wherefn = n2nXi=1 2�n�f�1(i2�n ;1):6



The integral R f d� is now de�ned to be supn R fn d�.This is, of 
ourse, 
ompletely analogous to the way one de�nes the integralof a non-negative measurable fun
tion against a measure. The weak topologyon the set of valuations on X is now de�ned to be the weakest topology su
hthat f 7! R f d� is lower semi-
ontinuous for ea
h lower semi-
ontinuous mapf . (For Hausdor� spa
es the same 
ondition 
hara
terizes the weak topologyon Borel measures.)Next we re
all the probabilisti
 powerdomain 
onstru
tion from Jones [11℄.De�nition 2 Given a d
po D, the probabilisti
 powerdomain PD is the d
poof all valuations de�ned on D in its S
ott topology, and ordered by � v � ifand only if �(U) 6 �(U) for all U 2 �D.Theorem 3 (Jones [11℄) If D is a 
ontinuous d
po, then PD is a 
ontinu-ous d
po with a basis B = f�ni=1riÆpi j pi 2 Bg; where B � D is a basis forD.The following proposition shows that the S
ott topology on PD is just theweak topology.Proposition 4 (Edalat [6℄) Suppose D is a 
ontinuous d
po, then a neth�iii2I in PD 
onverges to � in the S
ott topology i�lim inf �i(U) > �(U)for all S
ott open subsets U � D.4 MeasurementLet m : D ! E be a S
ott 
ontinuous map between domains D and E. Wede�ne the kernel of m bykerm = fx 2 D : m(x) 2 max Eg:De�nition 5 For " 2 E, the "-approximations of x 2 D arem"(x) = fy 2 D : y v x & "� m(y)g:We say that m measures x 2 D if, for all open U � D, we havex 2 U ) (9" 2 E) x 2 m"(x) � U:7



A helpful intuition is to think of m as an abstra
tion fun
tion, representingelements of D in a (simpler) domain E; the "-approximations m"(x) are thosepoints in D below x whose measurement is `"-
lose to that of x in E'. Fromthis viewpoint, m measures x 2 D just in 
ase this abstra
tion is faithful tothe S
ott topology at x. In parti
ular, a sequen
e hxni in # x 
onverges to xin the S
ott topology pre
isely when m(xn) 
onverges to m(x) in E.De�nition 6 A measurement is a 
ontinuous map m : D ! E whi
h mea-sures every element of kerm:In this paper we will typi
ally take E = [0;1)�: the non-negative reals in theopposite order. In this 
ase we 
an see a measurement as 
apturing the degreeof partiality of elements ofD by a single number. Elaborating the measurement
ondition in this parti
ular instan
e, we have that m : D ! [0;1)� is ameasurement i� for any S
ott open U and any ideal element x 2 kerm,x 2 U ) (9 " > 0) fy 2 D : y v x & m(y) < "g � U:That is, any element below x with suÆ
iently small measurement lies in U .It is straightforward to prove that kerm � maxD for a measurement m.Example 7 The following examples of measurements are all pertinent to thispaper. The �rst two illustrate the idea that natural models of metri
 spa
esyield 
anoni
al measurements into [0;1)�.(1) If hX; di is a lo
ally 
ompa
t metri
 spa
e, then its upper spa
eUX = f; 6= K � X : K is 
ompa
t; gordered by reverse in
lusion, is a 
ontinuous d
po. The supremum of adire
ted set S � UX is TS, and the way-below relation is given by A� Bi� B � int A. Given K 2 UX, de�ning the diameter of K byjKj = supfd(x; y) : x; y 2 Kg;it is readily veri�ed that m(K) = jKj is a measurement on UX whosekernel is maxUX = ffxg : x 2 Xg.(2) Given a metri
 spa
e hX; di, the formal ball model [7℄ BX = X � [0;1)is a poset ordered by(x; r) v (y; s) i� d(x; y) 6 r � s:The way-below relation is 
hara
terized by(x; r)� (y; s) i� d(x; y) < r � s:8



The poset BX is a 
ontinuous d
po i� the metri
 d is 
omplete. MoreoverBX has a 
ountable basis i� X is separable. A natural measurement m onBX is given by m(x; r) = r. Then kerm = maxBX = f(x; 0) : x 2 Xg.(3) Let X = fxngn2N be a 
ountably in�nite set, and (PX;�) the latti
e ofsubsets of X ordered by in
lusion. Observe that S � T in PX i� S is a�nite subset of T . We 
an de�ne a measurement m : PX ! [0;1)� bym(S) = 1� Xxn2S 2�(n+1):One of the motivations behind the introdu
tion of measurement in [16℄ wasto fa
ilitate the formulation of sharper �xed point theorems. The following isa basi
 example of one su
h result.Theorem 8 Let f : D! D be a monotone map on a pointed 
ontinuous d
poD equipped with a measurement m : D ! E. If Fm(fn(?)) 2 maxE, thenx? = Gn>0 fn(?) 2 kermis the unique �xed point of f . Moreover, x? is an attra
tor: For all x, fn(x)!x? in the S
ott topology on D. This 
onvergen
e restri
ts to kerm if f 
arrieskerm into kerm.5 Lebesgue Measurements and MP-MeasurementsMartin [19℄ gives a ne
essary and suÆ
ient 
ondition for a measurement ona domain D to extend to a measurement on the 
onvex powerdomain CD,thereby un
overing the 
lass of Lebesgue measurements. Before de�ning this
lass we �rst extend the de�nition of m" to arbitrary sets S � D by writingm"(S) = [s2Sm"(s):De�nition 9 A 
ontinuous mapm : D ! [0;1)� is a Lebesgue measurementif for all 
ompa
t K � kerm and all open U � D,K � U ) (9 " > 0)(m"(K) � U):Clearly any Lebesgue measurement is indeed a measurement a

ording toDe�nition 6. We ought also to mention that Lebesgue measurements havenothing to do with Lebesguemeasure. The name arises be
ause a measurementm indu
es a distan
e map on kerm, and this map has the Lebesgue 
overingproperty pre
isely when m satis�es the 
onditions laid out in De�nition 9,
f. Martin [15℄. 9



Knowing that Lebesgue measurements extend to the 
onvex powerdomainenables one to prove that any !-
ontinuous d
poD withmaxD regular satis�esthe property that the Vietoris hyperspa
e of maxD embeds into maxCD (asthe kernel of a measurement). Further, Edalat's domain theoreti
 analysisof hyperboli
 iterated fun
tion systems is then shown to be a 
onsequen
eof standard results from measurement. In the same setting, the ne
essity of
omplete metrizability be
omes apparent.Theorem 10 (Martin [15℄) A spa
e is 
ompletely metrizable i� it is thekernel of a Lebesgue measurement m : D! [0;1)� on a 
ontinuous d
po.Here we seek analogous results, with the probabilisti
 powerdomain in pla
e ofthe 
onvex powerdomain, and the weak topology on Borel measures in pla
eof the Vietoris topology on 
ompa
t sets. We now identify a 
ondition whi
hensures that a measurement on a domain D extends to a measurement on theprobabilisti
 powerdomain PD.Given a 
ontinuous map m : D! E, we 
onsider the following 
ondition:a� b 2 D) (9 " 2 E)m"(" b \ kerm) � ""a: (MP)In words, the 
ondition states that whenever b is way-above a, then thereexists " su
h that all the "-approximations of elements in the kernel above bare still way-above a.Proposition 11 Suppose m : D! [0;1)� satis�es 
ondition (MP); then mis a Lebesgue measurement.PROOF. Let U � D be S
ott open and K a 
ompa
t subset of ker m withK � U . For ea
h x 2 K let ax � bx � x with ax 2 U . Sin
e m satis�es
ondition (MP), for ea
h x 2 K there exists "x > 0 su
h that m"x(" bx \ker m) � ""ax. Furthermore, by 
ompa
tness of K, we have x1; :::; xn 2 Ksu
h that K � " bx1 [ � � � [ " bxn. But then, taking " = min "i, we have thatm"(K) � U . 2In parti
ular,m : D ! [0;1)� satisfying (MP) is a measurement. We 
all su
ha map an MP-measurement. (We explain the terminology below.)Example 12 It turns out that all the measurements we have 
onsidered thusfar are MP-measurements.(1) Re
all from Example 7 the de�nition of a measurement m on the upperspa
e of a lo
ally 
ompa
t metri
 spa
e X. Suppose E � K 2 UX, i.e.,there exists an open set U � X with K � U � E. Using the 
ompa
tness10



of K it is straightforward that (9 " > 0)(8x 2 K)B"(x) � U , where B"(x)is the open ball of radius " 
entred at x. It follows that m"("K \kerm) �""E.(2) Suppose hX; di is a metri
 spa
e, and let m denote the measurement onthe formal ball model BX de�ned in Example 7. Suppose (x; r)� (y; s) 2BX. Let " = (r � s� d(x; y))2 > 0. We show thatm"(" (y; s) \ kerm) � ""(x; r):To this end, suppose (y; s) v (w; 0) and (z; t) v (w; 0) for some w; z 2 Xand t < ". Thend(x; z)6 d(x; y) + d(y; w) + d(w; z)6 d(x; y) + s+ t< (r � s� 2t) + s+ t= r � t :Thus (x; r)� (z; t). 2The name (MP) for the 
ondition des
ribed above arises from the notion of anMP-hull in Lawson [14℄. That paper was 
on
erned with determining whi
hspa
es arise as the spa
e of maximal points of an !-
ontinuous d
po.De�nition 13 An MP-hull is an !-
ontinuous d
po su
h that the relativeS
ott topology 
oin
ides with the relative Lawson topology on maxD.Theorem 14 Every MP-hull D admits an MP-measurementm : D ! [0;1)�.PROOF. Suppose D is an MP-hull with 
ountable basis B, and letI = f(a; b) 2 B � B j a� bg:It is straightforward that m : D ! (PI;�) de�ned bym(x) = f(a; b) j x 2 ""a _ x 62 Cl�(" b)g; (1)is a S
ott 
ontinuous map. Next we show that maxD = kerm.Let x 2 maxD. If (a; b) 2 I, then Cl�(" b) \maxD = " b \maxD � ""a, sin
e" b is Lawson 
losed and the S
ott and Lawson topologies agree on maxD. Itfollows that (a; b) 2 m(x). But the 
hoi
e of (a; b) was arbitrary so we havethat x 2 kerm. Conversely, suppose x 2 kerm with x v y. If a� b v y, thenthe fa
t that (a; b) 2 m(x) and x 2 Cl�(" b)implies a� x. Thus x = y.11
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ondition (MP). If a � b, then taking " =f(a; b)g we havem"(" b \ kerm) = m"(" b \maxD) = m"(Cl�(" b) \maxD) � ""a:It is now straightforward that 
omposingm with the measurement in Example7(iii) yields an MP-measurement m : D! [0;1)�. 2Our main result, Theorem 30, says that an MP-measurement m : D ! [0;1)�extends in a natural way to a measurement M : PD! [0;1)� on the proba-bilisti
 powerdomain of D. Furthermore, in this 
ase, kerM is homeomorphi
to the set of normalized valuations on ker m in the weak topology. Edalat'sdomain theoreti
 analysis of hyperboli
 iterated fun
tion systems [4℄ 
an thenbe shown to be a 
onsequen
e of standard results using measurement [16℄.We 
on
lude this se
tion with an example showing that the 
lass of MP-measurements is stri
tly smaller than the 
lass of Lebesgue measurements.Example 15 Let D = fn; �n : n 2 Ng [ fa;1g, with order generated byn v �n, a v �n and n v m v 1 for all n;m 2 N with n 6 m in the usualorder (see Figure 1). We de�ne a measurement m : D! [0;1)� by requiringthat m(�n) = m(1) = 0, m(n) = 2�n and m(a) = 1. Then m fails to satisfyMP, sin
e a� a but for no " > 0 is it the 
ase that m"(" a\ kerm) � ""a. Onthe other hand, m is a Lebesgue measurement: in parti
ular, the only 
ompa
tsubsets of kerm 
ontained in ""a are �nite.6 Comparing ValuationsOne of the most elegant results about the probabilisti
 powerdomain is theSplitting Lemma. This bears a 
lose relationship to a 
lassi
 problem in prob-ability theory: �nd a joint distribution with given marginals.Lemma 16 (Jones [11℄) Let � = Pa2A raÆa and � = Pb2B sbÆb be simple12



valuations. Then � � � if and only if there exists a family of non-negativetransport (or 
ow) numbers fua;bga2A;b2B satisfying(1) For ea
h a 2 A, Pb2B ua;b = ra.(2) For ea
h b 2 B, Pa2A ua;b < sb.(3) ua;b 6= 0 implies a� b.We 
an pi
ture the situation above as a network 
ow diagram with a set Aof sour
es, a set B of sinks, and an edge from ea
h sour
e to ea
h sink. Ea
hsour
e a 2 A has value ra, ea
h sink b 2 B has value sb, and ua;b indi
ates thevalue of the mass 
owing from a to b.In the remainder of this se
tion we give a 
hara
terization of when a simplevaluation lies way-below an arbitrary valuation.Proposition 17 (Kir
h [12℄) If � is a valuation on D, then Pa2A raÆa � �if and only if 8S � A, Pa2S ra < �(""S):De�nition 18 Fix a �nite subset A � D, and for ea
h S � A de�neCr(A; S) = \a2S ""a n [a02AnS ""a0:Observe that fCr(A; S)gS�A is a family of 
res
ents partitioning D.Proposition 19 Let � be a valuation on D, Pa2A raÆa a simple valuation onD, and fEigi2I � FD a �nite partition of D re�ning fCr(A; S)gS�A. ThenPa2A raÆa � � i� there exists a relation R � A� I su
h that(1) (a; i) 2 R implies Ei � ""a;(2) for all S � A, Pa2S ra < Pi2R(S) �(Ei).PROOF. ()) Suppose Pa2A raÆa � �. De�ne R by R(a; i) just in 
aseEi � ""a. Then, given S � A, by Proposition 17,Xa2S ra < �(""S) = Xi2R(S) �(Ei):(() Given a relation R satisfying 
onditions (1) and (2) above, then for allS � A we have Xa2S ra < Xi2R(S) �(Ei) 6 �(""S):Thus Pa2A raÆa � � by Proposition 17. 213



Next we give an alternate 
hara
terization of the way-below relation on PD.This is a slight generalization of the Splitting Lemma, and should be seen asdual to Proposition 19.Proposition 20 Suppose Pa2A raÆa and � are valuations on D and fEigi2I �FD is a partition of D re�ning fCr(A; S)gS�A. Then Pa2A raÆa � � i� thereexists a family of `transport numbers' fta;iga2A;i2I where(1) For ea
h a 2 A, Pi2I ta;i = ra.(2) For ea
h i 2 I, Pa2A ta;i < �(Ei).(3) ta;i > 0 implies Ei � ""a.PROOF. (() Given the existen
e of a family of transport numbers fta;ig,de�ne R � A � I by R(a; i) i� ta;i > 0. Then R satis�es (1) and (2) inProposition 19.()) By Proposition 19 there exists a relation R � A� I satisfying 
onditions(1) and (2) thereof. The proof that su
h a relation yields transport numbers asrequired uses the max-
ow min-
ut theorem from graph theory. The basi
 ideais due to Jones [11℄, but we refer the reader to the formulation of He
kmann[9, Lemma 2.7℄ whi
h is general enough to apply to the present setting. 26.1 Splittings as Sto
hasti
 RelationsNext we de�ne a 
omposition of two splittings with a 
ommon index set. Thisis nothing but (the dis
rete 
ase of) 
omposition in the 
ategory of sto
hasti
relations 
onsidered in [1℄.De�nition 21 Suppose u = fua;bga2A;b2B and v = fvb;
gb2B;
2C are familiesof non-negative real numbers, where A;B and C are �nite. Assuming thatP
2C vb;
 > 0 for ea
h b 2 B, we de�ne u # v to be an (A� C)-indexed familywhere (u # v)a;
 = Xb2B ua;b  vb;
P
02C vb;
0! :Furthermore, we de�ne u�1 to be the (B � A)-indexed family (u�1)b;a = ua;b.The idea that one 
an 
ompose splittings leads to the following question.Suppose � = Pa2A raÆa, � = Pb2B sbÆb and � = P
2C t
Æ
 are simple valuationswith � � � � �. If u = fua;bg is a splitting between � and �, and v = fvb;
gis a splitting between � and �, then is u #v a splitting between � and �? (Thatis, does u # v satsify 
onditions (1-3) in Lemma 16?) The following propositionanswers this question in the aÆrmative.14



Proposition 22 Let u and v be as above. Then for ea
h a 2 A,X
2C(u # v)a;
 = Xb2B ua;b : (2)Furthermore, if Pa2A ua;b < P
2C vb;
 for ea
h b 2 B, it follows thatXa2A(u # v)a;
 < Xb2B vb;
 (3)for ea
h 
 2 C.PROOF. Simple algebra. 27 Measuring the Probabilisti
 PowerdomainUntil now, all of the 
on
rete instan
es of measurement that we have 
onsid-ered have been maps into [0;1)�. Hen
eforth we 
onsider measurements into[0; 1℄. There is no loss of generality here, sin
e [0;1)� 
an be order-embeddedin [0; 1℄. We used [0;1)� in the pre
eding se
tions sin
e this 
hoi
e is bothsimpler and more 
onventional (see [15℄). However, for the extension of a mea-surement to the probabilisti
 powerdomain it is more 
onvenient to use [0; 1℄.Note that the 
ondition MP is generi
. The spe
ialization to a measurementm : D ! [0; 1℄ says that whenever a � b 2 D, then there exists " > 0 su
hthat m1�"(" b \ kerm) � ""a.De�nition 23 If m : D! [0; 1℄ is a measurement on a 
ontinuous d
po D,then we de�ne M : PD! [0; 1℄ by M(�) = R md�.The S
ott 
ontinuity of M follows dire
tly from the 
ontinuity of the integral.In parti
ular, we have thatM(�) = supfPni=1 rim(ai) : Pni=1 riÆai � �g:The next few propositions des
ribe the kernel ofM . It is worth remarking thatin proving Proposition 24 we do not assume that valuations on 
ontinuousd
pos extend to measures.Proposition 24 Let � 2 ker M , i.e., R md� = 1. Then for a 
res
ent E =U n V , where U; V 2 �D, we have that �(E) > 0 implies E \ kerm 6= ;.PROOF. We 
onstru
t an in
reasing sequen
e hxnjn 2 Ni in E withm(xn) >n=(n+ 1). It follows that F xn 2 E \ kerm.15



Firstly, sin
e � jE is a non-zero valuation on D, we may 
hoose x1 2 E su
hthat � jE (""x1) > 0. Thus, de�ning E1 = E \ ""x1, we have �(E1) > 0.Next, assume xn has been de�ned su
h that En = E \""xn has �(En) > 0. Let� = 1�(En)� jEn. Sin
e � = � jEn + � jE
n;the inequality M(� jE
n) 6 �(E
n) for
es M(� jEn) = �(En), when
e M(�) = 1.We may 
hoose a simple valuation � � � su
h that M(�) > n=(n + 1).Thus there exists y 2 D (namely one of the mass points of �) su
h thatm(y) > n=(n + 1) and �(En \ ""y) > 0. Now pi
k xn+1 2 En \ ""y su
h that�(En \ ""xn+1) > 0. 2Proposition 25 Let � 2 kerM . If U1; U2 2 �D with U1\kerm = U2\kerm,then �(U1) = �(U2).PROOF. Sin
e neither of the 
res
ents U1 n U2 and U2 n U1 meets ker m itfollows that�(U1)= �(U1 \ U2) + �(U1 n U2)= �(U1 \ U2) (by Proposition 24)= �(U1 \ U2) + �(U2 n U1) (by Proposition 24)= �(U2):2Theorem 26 The spa
e of normalized valuations on kerm in the weak topol-ogy is homeomorphi
 to kerM equipped with the relative S
ott topology.PROOF. Suppose � is a normalized valuation on ker m. Then we easily seethat �� : �D ! [0; 1℄ de�ned by ��(O) = �(O \ ker m) is a valuation on �D.For all positive integers n, sin
e��(fx : m(x) > n=(n + 1)g) = �(kerm) = 1;M(��) > n=(n + 1). Thus �� 2 kerM .Conversely, suppose � 2 kerM . We de�ne a valuation �� on the open sets ofker m as follows. For an open set O � ker m we de�ne ��(O) = �(Oy) whereOy is the greatest S
ott open subset of D su
h that Oy \ kerm = O. Now forall open subsets O1; O2 of kerm, 16



��(O1 [O2) + ��(O1 \ O2)= �((O1 [ O2)y) + �((O1 \O2)y)= �(Oy1 [ Oy2) + �(Oy1 \ Oy2) (by Proposition 25)= �(Oy1) + �(Oy2) (by modularity of �)= ��(O1) + ��(O2):Thus �� is modular. By similar reasoning it also follows that �� is S
ott 
on-tinuous. One easily sees that the maps � 7! �� and � 7! �� are inverse.Re
all that a net h�ii of normalized valuations on kerm 
onverges to � in theweak topology i� lim inf �i(O) > �(O) for all open O � kerm. Using Proposi-tion 4 it is routine to show that the bije
tion above is a homeomorphism. 2Corollary 27 If m satis�es MP and D is an !-
ontinuous d
po, then thespa
e of normalized Borel measures on ker m in the weak topology is homeo-morphi
 to kerM in the relative S
ott topology.PROOF. Sin
e an MP-measurement is a Lebesgue measurement, kerm is aseparable metri
 spa
e by Theorem 10. In this 
ase, as we remarked earlier,valuations and Borel measures are in one-to-one 
orresponden
e. 2We now begin the build-up to our main result, Theorem 30, showing that Mis a measurement. In parti
ular, it is this result whi
h allows us to 
on
ludethat kerM � maxPD. The following proposition and lemma 
ontain most ofthe work involved in proving Theorem 30.Proposition 28 Let � = P
2C t
Æ
 and " > 0 be su
h that M(�) > 1� ". IfC 0 = f
 2 C : m(
) > 1�p"g, then �0 = P
2C0 t
Æ
 satis�es M(�0) > 1�2p".PROOF. From Pt2C t
(1�m(
)) 6 1�M(�) < ", it follows thatM(�)�M(�0) 6 X
2CnC0 t
 6 X
2CnC0 t
(1�m(
))p" < p" :2Lemma 29 Supposem : D ! [0; 1℄ is an MP-measurement andM : PD! [0; 1℄is the map given in De�nition 23. Let � 2 kerM and � = Pa2A raÆa � �. Thenthere exists " > 0 su
h that whenever � = P
2C t
Æ
 v � and M(�) > 1 � ",then � � �.PROOF. Let � = Pb2B sbÆb be su
h that � � �� � and let u = fua;bg bea splitting between � and � as in Lemma 16. Applying Proposition 20 with17
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m;j2n+msshhhhhhhhhhhhFig. 2.the partition fEigi2I , where I = PB and Ei = Cr(B; i), we obtain a splittingv = fvb;ig between � and �.We now de�ne " > 0 in terms of u and v. First we 
hoose "1 > 0 to be a lowerbound on the unful�lled demand at ea
h of the sink nodes for the vb;i:"1 = mini2I (�(Ei)�Pb2B vb;i): (4)Sin
e m satis�es (MP) we may 
hoose "2 > 0 su
h that for all a 2 A andb 2 B with a� b it holds that m1�"2(" b \ kerm) � ""a. Now we de�ne " > 0by " = min("1; "2)2=4.Suppose we are given � = P
2C t
Æ
 v � with M(�) > 1� ". Let C 0 � C and�0 v � be as in Proposition 28. In parti
ular, we have m(
) > 1� "2 for ea
h
 2 C 0, and M(�0) > 1� "1.Applying Proposition 20 on
e again, with the partition fFjgj2J , where J =P(B [C 0) and Fj = Cr(B[C 0; j), we obtain a splitting w = fw
;jg between �0and �. Noti
e that the partition fFjg re�nes fEig. We write j � i wheneverj \B = i, so Ei = Sj�i Fj. We illustrate the splittings v and w in the network
ow diagram in Figure 2. Roughly speaking, we would like obtain a splittingbetween � and �0 as u # v #w�1. Noti
e, however, that w�1 and v are not even
omposable as it stands: they do not have a 
ommon index set. We �rst haveto amalgamate the 
ow numbers w
;j whi
h go into the same group of 
ir
lednodes. Formally, we de�ne the (C 0 � I)-indexed set �w by �w
;i = Pj�iw
;j.We 
laim that u # v # �w�1 de�nes a splitting between � and �0 in the sense ofLemma 16, so that � � �0 v �. We verify 
ondition 3 of the lemma as follows.18



(u # v # �w�1)a;
 > 0) (9i)(9b)(ua;b > 0 & vb;i > 0 & �w
;i > 0) (5)) (9i)(9j � i)(9b)(ua;b > 0 & vb;i > 0 & w
;j > 0) (6)) (9i)(9j � i)(9b)(a� b & Ei � ""b & Fj � ""
): (7)Now w
;j > 0 in (6) implies �(Fj) > 0 (
f. Proposition 20(2)). Thus, byProposition 24, there exists z 2 Fj \ kerm. Also, from (7), we have that a�b v z and 
 v z. Sin
e z 2 kerm andm(
) > 1�"2, fromm1�"2(" b\kerm) � ""ait follows that a� 
.To verify the 
ondition in Lemma 16(1), observe that two appli
ations ofProposition 22 yieldX
2C0(u # v # �w�1)a;
 =Xi2I (u # v)a;i = Xb2B ua;b = ra :It remains to verify the 
ondition in Lemma 16(2). NowXj2J 0��(Fj)� X
2C0 w
;j1A = �(D)� �0(D) 6 1�M(�0) < "1 : (8)The parenthesized term above is always positive. Thus, for ea
h i 2 I, takingthe partial sum in (8) over those j 2 J with j � i, we get�(Ei)� X
2C0 �w
;i < "1 :From the de�nition of "1 in (4) it follows that for ea
h i 2 I,Xb2B vb;i < X
2C0 �w
;i:Now two appli
ations of Proposition 22 yieldsPa2A(u#v# �w�1)a;
 < Pi2I �w�1i;
 =t
 for ea
h 
 2 C 0. 2Having proved Lemma 29, the result that M is a measurement follows fromgeneral domain theory.Theorem 30 Suppose m is an MP-measurement on a domain D, and let Mbe the extension of m to a S
ott 
ontinuous map PD ! [0; 1℄ as given inDe�nition 23. Then M is a measurement.PROOF. Let � 2 kerM and � � �. We have to show that there exists " > 0su
h that whenever � v � and M(�) > 1� ", then � � �.19



By the interpolation property of � there exists a simple valuation �0 with� � �0 � �. By Lemma 29 there exists " > 0 su
h that whenever �0 v � issimple and M(�0) > 1� ", then �0 � �0. But if � v � is an arbitrary valuationwithM(�) > 1�", then there is a simple valuation �0 � � withM(�0) > 1�".Thus � � �0 � �0 � �. 2Corollary 31 If D is an !-
ontinuous d
po whose S
ott and Lawson topolo-gies agree at the top, then the spa
e of normalized Borel measures on maxDin the weak topology embeds as a subspa
e of maxPD.PROOF. The Lawson topology is metrizable in any !-
ontinuous d
po, somax D is metrizable. Sin
e valuations and Borel measures are in one-to-one
orresponden
e in any separable metri
 spa
e, it suÆ
es to prove the resultabove with valuations in pla
e of measures.By Theorem 14, D admits an MP-measurement m with kerm = maxD. Sin
ethe extensionM : PD! [0; 1℄ is a measurement, it follows that kerM � maxD.Now the result dire
tly follows from Corollary 27. 2This result is also implied by [6, Corollary 4.1℄. The proof of that 
orollaryuses the fa
t that valuations on PD extend uniquely to measures. In [18℄ weprove a more general version of Corollary 31, assuming only that D is an !-
ontinuous d
po with maxD regular. This depends on a more general versionof Theorem 30. Here we avoid the extra generality in order to give a lesste
hni
al presentation.8 Iterated Fun
tion SystemsDe�nition 32 An iterated fun
tion system (IFS) on a 
omplete metri
 spa
eX is a 
olle
tion of 
ontinuous maps fi : X ! X indexed over a �nite set I.Su
h an IFS is denoted hX; ffigi2Ii. If ea
h map fi is 
ontra
ting, then theIFS is said to be hyperboli
.A hyperboli
 IFS indu
es a 
ontra
tion F on the 
omplete metri
 spa
e ofnon-empty 
ompa
t subsets of X equipped with the Hausdor� metri
. F isde�ned by F (K) = [i2I fi(K):By Bana
h's 
ontra
tion mapping theorem, F has a unique �xed point: theattra
tor of the IFS. An alternate domain-theoreti
 proof this result, due toHayashi [8℄, involves 
onsidering F as a 
ontinuous selfmap of CUX and20



dedu
ing that the least �xed point of F is maximal inCUX, and therefore is aunique �xed point. Many di�erent fra
tal sets arise as, or 
an be approximatedby, attra
tors of IFSs.De�nition 33 A weighted IFS hX; f(fi; pi)gi2Ii 
onsists of an IFS hX; ffigi2Iiand a family of weights 0 < pi < 1, where Pi2I pi = 1. These data indu
e a so-
alled Markov operator G :MX !MX on the set MX of normalized Borelmeasures on X, given byG(�)(B) =Xi2I pi�(f�1i (B)) (9)for ea
h Borel subset B � X.The spa
e MX equipped with the weak topology 
an be metrized by theHut
hinson metri
 [10℄. Furthermore, if a weighted IFS is hyperboli
 then themap G is 
ontra
ting with respe
t to the Hut
hinson metri
. In this 
ase theunique �xed point of G, obtained by the 
ontra
tion mapping theorem, de�nesa normalized measure 
alled an invariant measure for the IFS. The support ofthe invariant measure is the attra
tor of the underlying IFS. This 
onstru
tionis an important method of de�ning fra
tal measures. Next we outline a domain-theoreti
 
onstru
tion, due to Edalat [4℄, of invariant measures for so-
alledweakly hyperboli
 IFSs on 
ompa
t metri
 spa
es.Edalat's approa
h involves embedding the set of measures on a 
ompa
t metri
spa
e X in the domain PUX of valuations on the upper spa
e of X. Re
allfrom Se
tion 4 that UX admits an MP-measurement m : UX ! [0; 1℄, wherem(K) = 2�jKj ; in turn this yields a measurement M on PUX. Next, aweighted IFS hX; f(fi; pi)gi2Ii indu
es a 
ontinuous map T : PUX ! PUX {the domain theoreti
 analogue of the Markov operator { de�ned byT (�)(O) =Xi2I pi�((Ufi)�1(O)) (10)where Ufi : UX ! UX is the map K 7! fi(K).Applying T to ÆX , the point valuation 
on
entrated at X 2 UX, one obtainsT (ÆX) = Pi2I piÆfi(X). Iterating, it follows thatT n(ÆX) = Xi1;:::;in2I pi1 : : : pinÆfi1 :::fin (X): (11)Thus MT n(ÆX), the measurement of the n-th iterate, equalsXi1;:::;in2I pi1:::pinm(fi1 : : : fin(X)):21



To ensure that MT n(ÆX) ! 1 as n ! 1 it is suÆ
ient to require that forall " > 0, there exists n > 0 su
h that jfi1 : : : fin(X)j < " for all sequen
esi1i2:::in 2 In. In fa
t, by K�onig's lemma, it is suÆ
ient that for ea
h in�nitesequen
e i1i2::: 2 I!, jfi1 : : : fin(X)j ! 0 an n ! 1. Edalat 
alls an IFSsatisfying the latter 
ondition weakly hyperboli
. It is 
learly the 
ase thatevery hyperboli
 IFS is weakly hyperboli
.Theorem 34 (Edalat [4℄) A weakly hyperboli
 weighted IFS hX; f(fi; pi)gi2Iion a 
ompa
t metri
 spa
e X has a unique invariant measure whi
h is more-over an attra
tor for the Markov operator (9).PROOF. Every valuation on a 
ompa
t metri
 spa
e extends to a Borelmeasure, and 
onversely every Borel measure restri
ts to a valuation. Thus,to prove the existen
e of a unique invariant measure, it suÆ
es to prove thatthere is a unique valuation � on X su
h that �(O) = Pi2I pi�(f�1i (O)) for allopen O � X.Let D be the sub-d
po of PUX 
onsisting of valuations with mass 1. Then Dis pointed and 
ontinuous, and T restri
ts to a monotone map D! D. Thuswe may apply Theorem 8 to dedu
e that T has a unique �xed point on D,and this point lies in kerM .By an obvious identi�
ation of X with ker m we may regard the Markovoperator G, de�ned in (9), as a selfmap of the set of valuations on kerm. Nextwe show that G, so regarded, agrees with T . Formally, if O � UX is S
ottopen, then, using the notation of Theorem 26, we haveG(��)�(O)=G(��)(O \ kerm)=Xi2I pi��(f�1i (O \ kerm))=Xi2I pi�((Ufi)�1(O)) (f�1i (O \ kerm) = (Ufi)�1(O) \ kerm)=T (�)(O):Sin
e T = G on ker m, we know that the unique �xed point of T is a uniqueinvariant measure. Furthermore, it also follows that T takes kerM into kerM ,and so, by Theorem 8, the �xed point of T is an attra
tor for T in the relativeS
ott topology on kerM . But kerM ' MX, so the invariant measure for Gis also an attra
tor in the weak topology. 2The 
onstru
tion of the unique invariant measure here is essentially the sameas in Edalat [4℄. However it is justi�ed in a di�erent way. Edalat dedu
es22



that the least �xed point of T is a unique �xed point by proving that itis maximal. This observation depends on a 
hara
terization of the maximalelements of PUX in terms of their supports. This last requires some moremeasure-theoreti
 ma
hinery than we have used here: in parti
ular he usesthe result of Lawson [13℄ on extending valuations on !-
ontinuous d
pos toBorel measures over the Lawson topology.9 Summary and Future WorkWe introdu
ed the 
lass of MP-measurements: a stri
t sub
lass of the Lebesguemeasurements from [19℄. We showed that the natural measurements on the up-per spa
e and formal ball models are MP-measurements, and that any domainwhi
h is an MP-hull in the sense of Lawson [14℄ admits an MP-measurement.Our main result, Theorem 30, showed that an MP-measurementm : D! [0; 1℄extends in a natural way to a measurement M : PD! [0; 1℄ on the proba-bilisti
 powerdomain. As an appli
ation of this result we showed how Edalat'sdomain theoreti
 
onstru
tion of unique invariant measures for IFS's 
an bejusti�ed by standard results about measurements.Martin [19℄ proves that the requirement that m : D! [0; 1℄ be a Lebesguemeasurement is both ne
essary and suÆ
ient for the natural extension of Mto the 
onvex powerdomain CD to de�ne a measurement. The 
orrespondingresult does not hold for MP-measurements and the probabilisti
 powerdo-main: there are measurements whi
h do not satisfy MP and yet extend to theprobabilisti
 powerdomain. For example, it turns out that the measurementin Example 15, whi
h is Lebesgue but not MP, extends to the probabilisti
powerdomain. The question of obtaining a ne
essary 
ondition remains open.An interesting problem is to 
hara
terize the maximal elements of the proba-bilisti
 powerdomain. In parti
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