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Abstract. In this paper we initiate the study of measurements on the
probabilistic powerdomain. We show how measurements on an underly-
ing domain naturally extend to its probabilistic powerdomain, so that
the kernel of the extension consists of exactly those normalized measures
on the kernel of the measurement on the underlying domain. This result
is combined with now-standard results from the theory of measurements
to obtain a new proof that the fixed point associated with a weakly hy-
perbolic IFS with probabilities is the unique invariant measure whose
support is the attractor of the underlying IFS.

1 Introduction

A relatively recent discovery [14] in domain theory is that most domains come
equipped with a natural measurement: a Scott continuous map into the non-
negative reals which encodes the Scott topology. The existence of measurements
was exploited by Martin [13-16] to study the space of maximal elements of a
domain, and to formulate various fixed point theorems for domains, including
fixed point theorems for non-monotonic maps.

The theory of measurements meshes particularly fruitfully with the idea of
domains as models of classical spaces. Here we say that a domain D is a model
of a topological space X if the set of maximal elements of D equipped with
the relative Scott topology is homeomorphic to X. Under quite mild conditions
on D, the set of normalized Borel measures on X, equipped with the weak
topology, can be embedded into the set of maximal elements of the probabilistic
powerdomain PD. This construction was utilized by Edalat [3,4] to provide new
results on the existence of attractors for iterated function systems, and to define
a generalization of the Riemann integral to functions on metric spaces.

In this paper we show that each measurement m: D — [0, 1] satisfying a suit-
able condition has a natural extension to a measurement M : PD — [0, 1]. More-
over we show that the kernel of M, equipped with the relative Scott topology,
is homeomorphic to the space of Borel measures on the kernel of m equipped
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with the weak topology. These results can be used to derive facts about do-
mains in general which are independent of measurement: for example, if D is
an w-continuous model of a regular space X, then the set of normalized Borel
measures on X, equipped with the weak topology, can be embedded into the
set of maximal elements of PD. They can also be used to derive results which
are independent of domain theory altogether, such as a new proof that the fixed
point associated with a weakly hyperbolic iterated function system with proba-
bilities is the unique measure whose support is the attractor of the underlying
iterated function system.

2 Background

2.1 Domain Theory

A poset (P,C) is a set P endowed with a partial order C. The least element of
P (if it exists) is denoted L, and the set of maximal elements of P is written
max P. Given A C P, we write 1 A for the set {x € P | (Ja € A)a C z};
similarly, | A denotes {z € P | (3a € A)x C a}. A function f: P — @ between
posets P and @ is monotone if z C y implies f(z) C f(y) for all z,y € P. A
subset A C P is directed if each finite subset F' C A has an upper bound in A.
Note that since F' = () is a possibility, a directed subset must be non-empty. A
(directed) complete partial order (depo) is a poset P in which each directed set
A C P has a least upper bound, denoted LIA.

If D is a dcpo, and z,y € D, then we write x < y if for each directed
subset A C D, if y C UA, then 1z N A # (). We then say z is way-below y. Let
W ={z € D|x < y}; wesay that D is continuous if it has a basis, i.e., a
subset B C D such that for each y € D, {y N B is directed with supremum y. If
D has a countable basis then we say D is w-continuous. The way-below relation
on a continuous dcpo has the interpolation property: if ¥ < y then there exists
a basis element 2z such that z € z < y.

A subset U of a dcpo D is Scott-open if it is an upper set (i.e., U =1 U) and
for each directed set A C D, if UA € U then ANU # (). The collection XD of
all Scott-open subsets of D is called the Scott topology on D. If D is continuous,
then the Scott topology on D is locally compact, and the sets £z where z € D
form a basis for the topology. If S C D, we write CI(S) for the closure of S with
respect to the Scott topology. Given dcpos D and E, a function f: D — E is
continuous with respect the Scott topologies on D and FE iff it is monotone and
preserves directed suprema: for each directed A C D, f(LA) = Uf(A).

A domain is a continuous dcpo.

2.2 Valuations and the Probabilistic Powerdomain

We briefly recall some basic definitions and results about valuations and the
probabilistic powerdomain.

Definition 1. Let X be a topological space. A continuous valuation on X is a
mapping v: (2X,C) — ([0,1], <) satisfying:



1. Strictness: v(B) = 0.

2. Monotonicity: U CV = v(U) < v(V).

3. Modularity: for allU,V € QX, v(UUV)+v(UNV)=vU)+rv(V).

4. Continuity: for every directed family {U;}icr, v(U;c; Us) = sup;e; v(Us).

Each element « € X gives rise to a valuation defined by

5,(U) = 1 ifzel,
’ 10 otherwise.

A simple valuation has the form ZaeA rq.0, where A is a finite subset of X,
ro 20, and ) o 4re < 1. A valuation v is normalized if v(X) = 1.

For the most part we will consider continuous valuations defined on the Scott
topology X'D of a dcpo D. The set of all such valuations, ordered by ¢ C v if
and only if o(U) < v(U) for all U € XD, forms a dcpo PD: the probabilistic
powerdomain of D. Qur main reference for the probabilistic powerdomain is the
thesis of Jones [10] from which the following result is taken.

Theorem 1 (Jones [10]). If D is a continuous domain then P D is continuous
with a basis B = {X7 ,ri0p, | pi € B}, where B C D is a basis for D.

Proof. (Sketch) Define a dissection of D to be a disjoint family of crescents
D = {C;}ier, where C; = fz; \ U; for some z; € B and U; € ¥D. Given v € PD
and 0 < r < 1 define
Up,, = Z rv(C;)0y, -
el
The substantial part of the proof, which is elided here, is to show that the set
of vp , for all D and r is directed with join v. O

Next we recall a characterization of convergence in the Scott topology on
PD.

Theorem 2 (Edalat [5]). Suppose D is a continuous dcpo, then a net (v;)ici
in PD converges to v in the Scott topology iff

liminf v;(U) > v(U)

iel

for all Scott open subsets U C D.

Obviously, valuations bear a close resemblance to measures. Lawson [12]
showed that any valuation on an w-continuous dcpo D extends uniquely to a
measure on the Borel o-algebra generated by the Scott topology (equivalently
by the Lawson topology) on D. This result was generalized to continuous dcpos
by Alvarez-Manilla, Edalat and Saheb-Djahromi [2]. Both these results depend
heavily on the axiom of choice. In this paper, we avoid using either theorem. We
do use the elementary result that each valuation on a dcpo D extends uniquely
to a finitely additive set function on the field FD generated by X' D. Each mem-
ber R of this field can be written as a finite, disjoint union of crescents, i.e.,



R = U?:l U;\'V; for U;,V; € X¥D. The extension of a valuation v to FD assigns
to R the value

> w(U) = v(U; N V).

i=1
Also we recall from Heckmann [8, Section 3.2] that if E € 7D and v € PD then
we may define v|g€ PD by v|g (O) =v(ONE) for all O € ¥'D.

In Section 6 we use the well-known fact that any continuous valuation on a
metric space has a unique extension to a measure (cf. [1, Corollary 3.24]). But
this is only used to mediate between the formulation of the main result of that
section and the results of Hutchinson [9] which are stated for measures.

3 Measurement

Let u: D — FE be a Scott continuous map between domains D and E.
Definition 2. The e-approximations of © € D are
pe(z) :={y € D:y Cx & e < py},
and we say that p measures z € D if for all open U C D, we have
xeU= (Je)x € p.(z) CU.
The map p measures X C D if it measures each x € X.

One of the crucial insights of [13] is that measuring “information content”
amounts to measuring partiality, and that the definition above seems to provide
a minimal mathematical account of what it means to measure the partiality of
the objects in X. That is, if 4 measures X, then we can say that pz is the
amount of partiality in € X (and then by continuity of u, we can think of it
as measuring partiality of nearby approximations of z); otherwise, it is just a
mapping on a domain.

Granted this, a second and distinct question arises, “What elements should
we expect p to measure the content of?” Again, minimally, if u is a measure of
partiality, it should at least measure the objects in

ker p:={x € D : pxr € max E}.
Why? Because from the viewpoint of u, each x € ker u has no partiality, i.e., is
total or ¢deal. In a certain sense, then, these are the objects that u should have

the least difficulty measuring.

Definition 3. A measurement is a continuous map u: D — E which measures
ker u.



In accord with intuition, one then proves that ker 4 C max D for a measure-
ment . The property of “measuring a set” is also expressed by saying that p
induces the Scott topology near ker .

In the typical case that E is the dcpo [0,00)* of non-negative reals in their
opposite order, u is a measurement iff for any Scott open U and any ideal element
x € ker p,

zelU=3e>0){yeD:yCzand |uz —py| <e} CU. (1)

In words, what it means for u to measure x is that any observation U about x
is also an observation about y, where y is close to z, and fundamentally, “close”
is specified simultaneously by the order and the map p.

Ezample 1. The following examples of measurements are all pertinent to this
paper. The first two illustrate the idea that natural models of metric spaces
yield canonical measurements into [0, co)*.

(i) If (X,d) is a locally compact metric space, then its upper space
UX ={0 # K C X : K is compact}

ordered by reverse inclusion is a continuous dcpo. The supremum of a di-
rected set S C UX is (S, and the way-below relation is given by A < B
iff B Cint A. Given K € UX, defining the diameter of K by

|K| = sup{d(z,y) : 2,y € K},

it is readily verified that K + |K| is a measurement on UX whose kernel is
max UX = {{z}: 2z € X}.

(ii) Given a metric space (X, d), the formal ball model [6] BX = X x [0, 00) is
a poset ordered by

(:E7T) E (y/ S) iff d(’E,y) < r—=s.
The way-below relation is characterized by
(z,7) < (y,s) iff d(z,y) <71 —s.

The poset BX is a continuous dcpo iff the metric d is complete. Moreover
BX has a countable basis iff X is separable. A natural measurement 7 on
BX is given by 7(z,r) = r. Then ker 7 = max BX = {(z,0) : z € X}.

(iii) Let X = {Zn}nen be a countably infinite set, and (PX,C) the lattice of
subsets of X ordered by inclusion. Observe that S < T in PX iff S is a

finite subset of T'. We can define a measurement | - |: PX — [0, 00)* by
|Sl=1- 3 s 0.
rn, €S

In the case of finite X, set |S| = card(X \ 5).



One of the motivations behind the introduction of measurement in [14] was
to facilitate the formulation of sharper fixed point theorems. The following is a
basic example of one such result.

Theorem 3. Let f: D — D be a monotone map on a pointed continuous dcpo
D equipped with a measurement u: D — E. If | |uf™(L) € max E, then

x* = |_| f*(L) € ker pg

n2>0

is the unique fized point of f. Moreover, * is an attractor: For all x, f"(x) — x*
in the Scott topology on D. This convergence restricts to ker p if f carries ker p
into ker p.

Martin [16] gives a necessary and sufficient condition for a measurement
w: D — [0,00)* to extend to a measurement : CD — [0,00)* on the convex
powerdomain CD thereby uncovering the class of Lebesgue measurements.

Definition 4. A continuous map u : D — E is a Lebesgue measurement if
KCU= Je)Ve e K)z € p(z) CT,

for all compact K C ker u and all open U C D.

Knowing that Lebesgue measurements extend to the convex powerdomain
enables one to prove that any w-continuous decpo D with max D regular satisfies
the property that the Vietoris hyperspace of max D embeds into max CD (as
the kernel of a measurement). Further, Edalat’s domain theoretic analysis of
hyperbolic iterated function systems is then shown to be a consequence of stan-
dard results from measurement. In the same setting, the necessity of complete
metrizability becomes apparent.

Theorem 4 (Martin [13]). A space is completely metrizable iff it is the kernel
of a Lebesgue measurement p: D — [0,00)* on a continuous depo.

Here we seek analogous results with the probabilistic powerdomain in place
of the convex powerdomain, and the weak topology on Borel measures in place
of the Vietoris topology on compact sets. We now identify a condition which
ensures that a measurement on D extends to a measurement on the probabilistic
powerdomain P D. First, extend the definition of u. to arbitrary sets S by setting

pe(S) = U fe ().

seS
For example, i is Lebesgue just when there is an € such that K C u.(K) C U.
Definition 5. A continuous u: D — E is a regular measurement if

relU= (Fe)BFb < z)TbNker u C p. (Fb Nker p) C U,

for every x € ker u and every open U C D.



Thus, with a regular measurement, the choice of € not only applies at z, the way
it does for a measurement, it also applies on an open set around x.

Proposition 1. Every regular measurement p : D — [0,00)* is Lebesgue. The
converse holds when ker p is locally compact.

Proof. We prove the first of these, after which the second is routine. If K C kerp
is compact with K C U open, then for each x € K, we use the regularity of u
to obtain b, < = and £, > 0 such that

Tb, N ker i C pe, (The Nker ) C U.

Restricting {1b, : # € K} to a finite subcover {1b;}, leaves a finite number of
g; > 0, which assures us that ¢ := min(g;/2) > 0. We have K C p.(K) CU. O

Note that all the measurements in Example 1 are regular. In Example 2, we
will see a measurement which is not regular. Until then, here is a characterization
of the countably based domains which admit regular measurements.

Theorem 5. Let D be an w-continuous depo. There is a reqular measurement
w: D — [0,00)* with ker p = max D iff the space max D in its relative Scott
topology is regular.

Proof. If p is regular, then ker p is Lebesgue by the last result, so completely
metrizable and hence regular by Theorem 4.

Conversely, let D be an w-continuous dcpo with max D regular and a count-
able basis B. From [16], we know that A: D — (PI, C) defined by

3

Maz) ={(a,b) |z € ta v z ¢ CI(1D)}, (2)

where I = {(a,b) € B x B | CI(1h) Nmax D C fa}, is a Lebesgue measurement.
Unsurprisingly it is also regular: Given a,b € B we have that C1(1h) Nker A C fa
implies that there exists ¢ := {(a,b)} such that b Nker A C A\.(Tb Nker \) C Fa.

As usual, composing this measurement with the map in Example 1(iii) yields
a regular measurement into [0, c0)* with kernel max D. O

As mentioned earlier, we normally work with measurements as mappings
i D — [0,00)*. Unfortunately the choice of p obviously conflicts with the
usual notation for valuations, and since most of our work here is concerned with
valuations, we opt to use the letter m for measurements.

In addition, it is also more convenient to consider measurements into the unit
interval [0, 1] in its usual order for reasons that will become clear shortly. Thus,
given a measurement p : D — [0, 00)*, we simply transform it to a measurement
m : D — [0,1] by m = 1/2*. Notice that the characterization of measurement
given in (1) remains valid when E = [0, 1].

Our main result, Theorem 7, says that a regular measurement m: D — [0, 1]
extends in a natural way to a measurement M : PD — [0, 1] on the probabilistic
powerdomain of D. Furthermore it holds that ker M is homeomorphic to the
set of normalized measures on ker m in the weak topology. Combining this with
Theorem 5 we obtain Corollary 1. This result was first proved, in a different way,
in Martin [16, Theorem 11.8].



Corollary 1. If D is an w-continuous dcpo with max D reqular, then the space
of normalized measures on max D in the weak topology embeds as a subspace of
max PD.

4 Comparing Valuations

One of the most elegant results about the probabilistic powerdomain is the Split-
ting Lemma. This bears a close relationship to a classic problem in probability
theory: find a joint distribution with given marginals.

Lemma 1 (Jones [10]). Let 0 = ) ., 7s0q and v = Y, sp0p be simple
valuations. Then o K v if and only if there exists a family of transport (or flow)
numbers {t,p | a € A,b € B} C0,1] satisfying

1. Foreacha € A, Y cptap =Ta,
2. For eachb € B, ), stap < sp, and
3. top # 0 implies a K b.

In the remainder of this section we give a characterization of when a simple
valuation lies way-below an arbitrary continuous valuation.

Proposition 2 (Kirch [11]). If v is a continuous valuation on D, then o =
YoacaTaba L v if and only if VS C A, 37 cg7a < v(19).
Definition 6. Fiz a finite subset A C D, and for each S C A define

(4,5 = N fa\ |J to-

a€S a' €A\S
Observe that {(A4,S)}sca is a family of crescents partitioning D.

Proposition 3. Let v be a continuous valuation on D, ) 740, a simple
valuation on D, and {E;};,c;r C FD a finite partition of D refining {(A,S)}sca.
Then ZaeA 1.0, < v iff there exists a relation R C A x I such that
(i) (a,i) € R implies E; C Ta.

(ii) For all SC A, ) cg7a < ZiER(S) v(E;).

Proof. (=) Suppose ), 4 7adq K v. Define R by R(a,i) just in case E; C ta.
Then, given S C A, by Proposition 2,

ZT“ <v(1S) = Z v(E;).

acs i€R(S)

(«) Given a relation R satisfying conditions (i) and (ii) above, then for all

S C A we have
D ra < v(E;) < v(1S).
a€S i€ R(S)

Thus > r.0, < v by Proposition 2. O

a€A



Next we give an alternate characterization of the way-below relation on PD.
This is a slight generalization of the Splitting Lemma, and should be seen as
dual to Proposition 3.

Proposition 4. Suppose ), 4 rada and v are continuous valuations on D and
{Ei}tier C FD is a partition of D refining {(A,S)}sca. Then Y . 47ra0a < v
iff there exists a family of ‘transport numbers’ {tq ;}acaicr where

1. Foreacha € A, Y i tai="Ta
2. Foreachi€l, ) . tai <V(E;)
3. ta; > 0 implies E; C ta.

Proof. (<) Given the existence of a family of transport numbers {t,;}, define
R C Ax1Iby R(a,i) iff t,; > 0. Then R satisfies (i) and (ii) in Proposition 3.
(=) By Proposition 3 there exists a relation R C A x I satisfying conditions
(i) and (ii) thereof. The proof that such a relation yields transport numbers as
required uses the max-flow min-cut theorem from graph theory. The basic idea
is due to Jones [10], but we refer the reader to the formulation of Heckmann [8,
Lemma 2.7] which is general enough to apply to the present setting. O

For our main results, we can equally-well use Proposition 3 or (the dual
form) Proposition 4 to characterize the way-below relation. Next we define an
operation x for composing splittings with a common index set by ‘projecting out
that index.” Suppose s = {s; j }ier jes and t = {t; 1} jesrek are families of non-
negative real numbers where I, .J and K are finite. Assuming that ), _, ¢, >0
for each j € J we define t x s to be an I x K-indexed family where

tik
(t*S)i’k = Si.j <]7’> .
jezj Lwer tiw
Proposition 5. Let s and t be as above. Then for each i € I,
D (txs)ie =D sij. (3)
keK jeg
Furthermore, if Y. 8ij < Y e tik for each j € J, it follows that
S (txs)in <Y tiu (4)
iel jed
for each k € K.

Proof. Simple algebra. O

5 Measuring the Probabilistic Powerdomain

Definition 7. Ifm: D — [0,1] is a measurement on a continuous depo D, then
we define M:PD — [0,1] by M(v) = [ mdv, where the integral is that defined
by Jones [10].



The Scott continuity of M follows directly from the continuity of the integral.
In particular, we have that

M(v) = sup{z rom(a) | Z re0q K V}.

acA a€A

We are now in a position to motivate regularity of measurements. Consider
the following example where M, as defined above, fails to be a measurement.

Ezxample 2. Let P be the dcpo obtained by adding a top element oo to the
naturals in their usual order. Let P' = {n' | n’ € N} U {00’} be a disjoint copy
of P. Finally write D for the dcpo consisting of the disjoint union of P and P’
together with a copy of the naturals in the discrete order {n" | n € N}, with
n,n' Cn' for all n € N. (See the diagram below.)

Define a measurement m: D — [0,1] by m(oc0) = m(ox') = m(n") = 0
for all n € N, and m(n) = m(n') = 27" for all n € N. Now the valua-
tion v = Y .y 2-(+1)§,.. is in ker M, and &y <« v. Furthermore, defining
PN = Zn,,SN 2—(ntl)g ., 4+ YN 2-(n+1)§ , we have that py C v but not
0o < pn. However by choosing N large enough we can make M (pn) arbitrarily
close to 1. Thus M is not a measurement on P D, cf. Definition 3.

0 i oo (5)

S

NN

Assume m: D — [0,1] is a measurement, and M the extension to the pow-
erdomain as in Definition 7. The next few propositions describe the kernel of
M. Tt is worth remarking that in proving Proposition 6 we do not assume that
valuations on continuous dcpos extend to measures.

Proposition 6. Let v € kerM, i.e., [ mdv = 1. Then for a crescent E = U\V,
where U,V € XD, we have that v(E) > 0 implies E Nkerm # ().

Proof. We define a decreasing sequence of crescents (E,, | n € N) with v(E,,) > 0
for all n € N. First, Fy = E. Next, assuming F,, is defined, let p = u(}lfn)l’ |k, -
Since

V:V‘En +v Eg,

the inequality M (v |g:) < v(E;,) forces M (v |g,) = v(E,), whence M(p) = 1.
By the proof of Theorem 1 there is a dissection D of E,, and 0 < r < 1 such
that M (pp,r) > 1 — 1/n. In particular, there exists x, € E,, namely one of the




mass points of pp .., such that m(z,) > 1 —1/n and v(E, Nfz,) > 0. Now set
Eni1 = E, N7x,.

The proposition now follows since (z, | » € N) is an increasing sequence in
E, and so | |z, € E N ker m. O

Proposition 7. Let v € ker M. If Uy, Uy € XD with Uy Nker m = Uy N ker m,
then v(Uy) = v(Uz).

Proof. Since neither of the crescents Uy \ Us and U, \ Uy meets ker m it follows
that

v(Uh) = v(Uh NUs) + v(Uy \ Uy)
Uy NU2) (by Proposition 6)

Uy NU2) +v(Us \ Uy) (by Proposition 6)

Theorem 6. The set of normalized valuations on ker m is in bijection with
ker M. Furthermore, if continuous valuations on ker m are in one-to-one corre-
spondence with Borel measures on kerm, then the space of these measures in the
weak topology is homeomorphic to ker M in the relative Scott topology.

Proof. Suppose v is a valuation on ker m with total mass 1. Then we easily see
that v*: ¥ D — [0, 1] defined by v*(O) = v(O Nkerm) is a valuation on X'D. For
all positive integers n, since

v'{z :m(z) >1—-1/n} =v(kerm) =1,

M(v*) 2 1—1/n. Thus v* € ker M.

Conversely, suppose v € ker M. We define a valuation v, on the open sets of
ker m as follows. For an open set O C ker m we define v, (0) = v(O') where Ot
is the greatest Scott open subset of D such that Ot Nkerm = O. Now for all
open subsets O, Oy of ker m,

V(01 U O3) 4+ 1,(01 N 03) = v((01 U0 + (01 N0y
(O;r U O;) + U(OI N O;) (by Proposition 7)
v(01) +v(0})  (by modularity)

Ve(O1) + v4(02).

Il
N

Thus v, is modular. By similar reasoning it also follows that v, is Scott contin-
uous. One easily sees that the maps v — v* and v — v, are inverse.

Suppose that continuous valuations on ker m are in one-to-one correspon-
dence with Borel measures on ker m. Recall that a net (v;);c; of normalized
Borel measures on a Hausdorff space X converges to v in the weak topology iff
liminf;e; v;,(O) > v(O) for all open O C X. Using Theorem 2 it is routine to
show that the bijection above is a homeomorphism. O



Corollary 2. If m is a reqular measurement and D is w-continuous, then the
space of normalized Borel measures on kerm in the weak topology is homeomor-
phic to ker M in the relative Scott topology.

Proof. By Theorem 4, ker m is a separable metric space. In this case, as we
remarked earlier, continuous valuations and Borel measures are in one-to-one
correspondence. O

Henceforth we assume that m is a regular measurement.

Proposition 8. Given v € ker M, U C D Scott open and € > 0, there exists a
Scott open set V.C U and § > 0 such that v(U\V) < e and ms(V Nkerm) C U.

Proof. Since m is regular we can write U N ker m as the directed union
J{V nkerm |V € £D, (36 < 1)ms(V Nkerm) C U}.

The valuation v, is continuous, thus there exists a Scott open set V' C U and
0 > 0 such that v, ((U \ V) Nkerm) < € and ms(V Nkerm) CU. But v = (v,)*
satisfies v(U \ V) < e. O

We are now in a position to prove the main result of the paper, namely that
M as given in Definition 7 is a measurement on PD. Most of the work in the
proof is contained in the following technical lemma.

Lemma 2. Let v € ker M and 0 = ) 70y < v. Then there exists € > 0
such that whenever p =3, sy0y C v and |[M(p) — M (v)| < e, then o < p.

Proof. Applying Proposition 4 with the partition {F;};c;, where I = PA and
E; = (A,i), we obtain a splitting u = {u,,;} between o and v. Now, given
P = Y pensuds < v, we apply Proposition 4 once again, with the partition
{Fj}jes, where J = P(AUB) and F; = (AUB, j), we obtain a splitting v = {vp ; }
between p and v. Notice that the partition {F};} refines {E;}. We write j = i
whenever jNA =1,s0 E; = U];i F;. We illustrate the splittings u and v in the
following flow diagram.

Iy

Uaq,iq
Ty ———

(6)

Uay ,ig

BEICER

Tay

N

Tq

Y




Our strategy is to obtain a splitting between o and p, in the sense of Lemma 1,
by combining u and (a modification of) v using Proposition 5.

First we choose €1 > 0 to be a lower bound on the unfulfilled demand at each
of the circled groups of nodes in the centre of the diagram above, i.e.,

€1 = I;(IGI}I (U(EZ) — Z ua7i> . (7)

a€A

By Proposition 8, for each i € I there exists £; > 0 and a crescent GG; C E; such
that v(E; \ Gi) < €1/3 and m., (G; Nkerm) C E;. We now set €9 = min;ej €;
and € = g169/3. Notice that the value of € does not depend on p.

Next we amalgamate the flows on the right which go into the same circled
group of nodes. In fact we also discard a flow number v ; if the measurement
of the source node b is too low or the target crescent F; does not meet any G;.
Formally we let Okg = {b € B : 1 —m(b) < ex} and Ok; = {j € J : j =
i A v(G;NFj)#0}. We define a B x I-indexed family of transport numbers
wp; by wy; = 0if b € Okp, otherwise

Wh,i = E Vb, j-

j€Ok;

We claim that w % w defines a splitting between ¢ and p in the sense of
Lemma 1. We verify condition (iii) of the lemma as follows.

(w *u)a,b >0= (Eiz')(ua,i >0 A Wy, > 0)
= (32)(3])(’[14&71 >0 A Vp,j > 0ANDeOkp AN jJE Okl)
= (3)@j)aci Abej AbeOky A jeOk)

Now j € Ok; implies that v(G; N Fj) # 0. Thus, by Proposition 6, there exists
z € G;N Fj Nkerm. Since b C z, we have b € m.,(G; Nkerm) C ta, i.e., a < b.

We wish to apply Proposition 5 to complete the proof that w x u defines a
splitting between o and p. To do this we need some estimates (given in (8) and
(9) below) of the mass we ‘threw away’ in going from v to w. Firstly, from

SN (L —m®) = Y s —m(b) <1 M(p) <=

beB je.J beB
it follows that
vp, (1 —m(b)) € &1
Uy < —_ L — = —, 8
DD mi< ) Y T =3 (8)
bgZOkp jEJ bg¢Okp jEJ

Also, from the definition of G; we have that for each fixed i € I,

€1
v U B suENG) <3,
J=1,¢0k;



and so, since ),z vpj < V(Fj),
€
> Yui<3 ®)
j=i,jgOk; bEB

Combining (8), (9) and the definition of wj ; we get that for each i € I

Z va’j - Zw,m' < 2% (10)

beB j=i beB
Now the total mass of a valuation is no bigger than its measurement, thus
€1
Z(v(Fj)ZvM> S1-M{p)<e< 3 (11)
= beB

Each term in the summation over j € J is positive. Thus, for each i € I, taking
the partial sum in (11) over those j € J with j =i, we get

€1
v(E;) — Z > i< 5
j=i beB
Adding this inequality to (10) we get

I/(El) — Z’w},yi < é€1.

beB

From the definition of ; it follows that for each i € I,

Z Ugq,; < Z Wp,j-

a€A beB

Thus we may apply Proposition 5 to deduce that ), _p(wxu)ap = D ;c; Uai =
ro and Y o (wxu)ap < Y whi < Sp O

Having proved Lemma 2, the result that M is a measurement now follows
from general domain theory.

Theorem 7. Let v € ker M and 0 < v. Then there exists € > 0 such that
whenever p C v and |M(p) — M(v)| < g, then o < p.

Proof. By the interpolation property of < there exists a simple valuation o’
with ¢ € ¢’ € v. By Lemma 2 there exists € > 0 such that whenever p' C v is
simple and M (p') > 1 — ¢, then ¢’ < p'. But if p C v is an arbitrary valuation
with M (p) > 1 — g, then there is a simple valuation p’ < p with M (p') > 1 —e¢.
Thus 0 € o' € p' K p. O



6 Iterated Function Systems

Definition 8. An iterated function system (IFS) on a complete metric space X
is a collection of continuous maps f;: X — X indexed over a finite set I. Such
an IFS is denoted (X, {fi}icr). If each map f; is contracting then the IFS is said
to be hyperbolic.

A hyperbolic IFS induces a contraction F' on the complete metric space
of non-empty compact subsets of X equipped with the Hausdorff metric. F is
defined by

F(K) = fi(K).
icl
By Banach’s contraction mapping theorem, F' has a unique fixed point: the
attractor of the IFS. An alternate domain-theoretic proof this result, due to
Hayashi [7], involves considering F' as a continuous selfmap of UX and deducing
that the least fixed point of F' is maximal in UX, and therefore is a unique fixed

point. Many different fractal sets arise as, or can be approximated by, attractors
of IFSs.

Definition 9. A weighted IFS (X, {(fi,pi) }ier) consists of an IFS (X, {fi}icr)
and a family of weights 0 < p; < 1, where ) ,_.;p; = 1. These data induce a
so-called Markov operator G: MX — MX on the set M X of normalized Borel
measures on X, given by

GW)(B) =) _pw(f; ' (B)) (12)

il
for each Borel subset B C X.

The space MX equipped with the weak topology can be metrized by the
Hutchinson metric [9]. Furthermore, if a weighted IFS is hyperbolic then the
map G is contracting with respect to the Hutchinson metric. In this case the
unique fixed point of GG, obtained by the contraction mapping theorem, defines
a normalized measure called an invariant measure for the IFS. The support of
the invariant measure is the attractor of the underlying IFS. This construction
is an important method of defining fractal measures. Next we outline a domain-
theoretic construction, due to Edalat [3], of invariant measures for so-called
weakly hyperbolic IFSs on compact metric spaces.

Edalat’s approach involves embedding the set of measures on a compact
metric space X in the domain PUX of valuations on the upper space of X.
Recall from Section 3 that UX admits a natural measurement m: UX — [0, 1],
where m(K) = 27Kl ; in turn this yields a measurement M on PUX. Next, a
weighted IFS (X, {(fi,pi) }icr) induces a continuous map T: PUX — PUX -
the domain theoretic analogue of the Markov operator defined by

T(w)(0) = p((Ufi)"1(0) (13)

icl



where Uf;: UX — UX is the map K — f;(K).
Applying T to dx, the point valuation concentrated at X, one obtains T'(dx) =
> icr Pidf;(x)- Iterating, it follows that

T"(Ox)= D> P PisOs, g (X): (14)

i1,..,0n €1

Thus M (T™(dx)), the measurement of the n-th iterate, equals

Z Piy--Pi,m(fir - - fi, (X))
i1yerin €1

A sufficient condition ensuring that M (T"(dx)) — 1 as n — oo is to require
that for all e > 0, there exists n > 0 such that |f;, ... f; (X)| < ¢ for all
sequences i11s...5, € I™. In fact, by Konig’s lemma, it is sufficient that for each
infinite sequence i1is... € I, | fi, ... fi, (X)| = 0 an n — co. Edalat calls an IFS
satisfying the latter condition weakly hyperbolic. It is clearly the case that every
hyperbolic IFS is weakly hyperbolic.

Theorem 8 (Edalat [3]). A weakly hyperbolic weighted IFS (X, {(fi,pi)}icr)
on a compact metric space X has a unique invariant measure which is moreover
an attractor for the Markov operator (12).

Proof. Every continuous valuation on a compact metric space extends to a
Borel measure, and conversely every Borel measure restricts to a continuous
valuation. Thus, to prove the existence of a unique invariant measure, it suf-
fices to prove that there is a unique continuous valuation v on X such that
v(0) =3, piv(f; ' (0)) for all open O C X.

Let D be the sub-dcpo of PUX consisting of valuations with mass 1. Then
D is pointed and continuous, and T restricts to a monotone map D — D. Thus
we may apply Theorem 3 to deduce that 7" has a unique fixed point on D, and
this point lies in ker M.

By an obvious identification of X with ker m we may regard the Markov
operator G, defined in (12), as a selfmap of the set of valuations on ker m. Next
we show that G so regarded agrees with 7'. Formally, if O C UX is Scott open,
then using the notation of Theorem 6, we have

G(v.)"(0) = G(v.)(O N ker m)
= Zpiu*(fifl(O N ker m))

iel
=>_piv((Ufi)7'(0)) (as f; (O Nkerm) = (Uf;)~1(0) Nkerm)
iel

— T(»)(0)

Since T' = G on ker m we know that the unique fixed point of T is a unique
invariant measure. Furthermore, it also follows that T takes ker M into ker M,
s0, by Theorem 3, the fixed point of T' is an attractor for T in the relative Scott
topology on ker M. But ker M ~ M X so the invariant measure for G is also an
attractor in the weak topology. O



The construction of the unique invariant measure here is essentially the same
as in Edalat [3]. However it is justified in a different way. Edalat deduces that the
least fixed point of 7" is a unique fixed point by proving that it is maximal. This
observation depends on a characterization of the maximal elements of PUX in
terms of their supports. This last requires some more measure-theoretic machin-
ery than we have used here: in particular he uses the result of Lawson [12] on
extending continuous valuations on w-continuous dcpos to Borel measures over
the Lawson topology.

7 Future Work

By way of conclusion here are some questions we would like to know the answers
to.

— Is there a Lebesgue measurement which is not regular? Possibly the domain
of partial functions on the naturals admits such a measurement since the
maximal elements of this domain are not locally compact in the relative
Scott topology.

— We know that if m is a regular measurement, then M is a measurement.
Does the converse hold?

— Are the following equivalent for a countably based domain D?

(i) Every Lebesgue measurement p with ker 4 = max D is regular.
(ii) The space max D is locally compact, regular and second countable.

— An interesting problem is to characterize the maximal elements of the prob-
abilistic powerdomain. In particular, if ker m = max D, do we have ker M =
max PD?
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