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t. In this paper we initiate the study of measurements on theprobabilisti
 powerdomain. We show how measurements on an underly-ing domain naturally extend to its probabilisti
 powerdomain, so thatthe kernel of the extension 
onsists of exa
tly those normalized measureson the kernel of the measurement on the underlying domain. This resultis 
ombined with now-standard results from the theory of measurementsto obtain a new proof that the �xed point asso
iated with a weakly hy-perboli
 IFS with probabilities is the unique invariant measure whosesupport is the attra
tor of the underlying IFS.1 Introdu
tionA relatively re
ent dis
overy [14℄ in domain theory is that most domains 
omeequipped with a natural measurement: a S
ott 
ontinuous map into the non-negative reals whi
h en
odes the S
ott topology. The existen
e of measurementswas exploited by Martin [13{16℄ to study the spa
e of maximal elements of adomain, and to formulate various �xed point theorems for domains, in
luding�xed point theorems for non-monotoni
 maps.The theory of measurements meshes parti
ularly fruitfully with the idea ofdomains as models of 
lassi
al spa
es. Here we say that a domain D is a modelof a topologi
al spa
e X if the set of maximal elements of D equipped withthe relative S
ott topology is homeomorphi
 to X . Under quite mild 
onditionson D, the set of normalized Borel measures on X , equipped with the weaktopology, 
an be embedded into the set of maximal elements of the probabilisti
powerdomain PD. This 
onstru
tion was utilized by Edalat [3, 4℄ to provide newresults on the existen
e of attra
tors for iterated fun
tion systems, and to de�nea generalization of the Riemann integral to fun
tions on metri
 spa
es.In this paper we show that ea
h measurementm : D ! [0; 1℄ satisfying a suit-able 
ondition has a natural extension to a measurementM : PD ! [0; 1℄. More-over we show that the kernel of M , equipped with the relative S
ott topology,is homeomorphi
 to the spa
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with the weak topology. These results 
an be used to derive fa
ts about do-mains in general whi
h are independent of measurement: for example, if D isan !-
ontinuous model of a regular spa
e X , then the set of normalized Borelmeasures on X , equipped with the weak topology, 
an be embedded into theset of maximal elements of PD. They 
an also be used to derive results whi
hare independent of domain theory altogether, su
h as a new proof that the �xedpoint asso
iated with a weakly hyperboli
 iterated fun
tion system with proba-bilities is the unique measure whose support is the attra
tor of the underlyingiterated fun
tion system.2 Ba
kground2.1 Domain TheoryA poset (P;v) is a set P endowed with a partial order v. The least element ofP (if it exists) is denoted ?, and the set of maximal elements of P is writtenmax P . Given A � P , we write "A for the set fx 2 P j (9a 2 A) a v xg;similarly, #A denotes fx 2 P j (9a 2 A)x v ag. A fun
tion f : P ! Q betweenposets P and Q is monotone if x v y implies f(x) v f(y) for all x; y 2 P . Asubset A � P is dire
ted if ea
h �nite subset F � A has an upper bound in A.Note that sin
e F = ; is a possibility, a dire
ted subset must be non-empty. A(dire
ted) 
omplete partial order (d
po) is a poset P in whi
h ea
h dire
ted setA � P has a least upper bound, denoted tA.If D is a d
po, and x; y 2 D, then we write x � y if for ea
h dire
tedsubset A � D, if y v tA, then "x \ A 6= ;. We then say x is way-below y. Let##y = fx 2 D j x � yg; we say that D is 
ontinuous if it has a basis, i.e., asubset B � D su
h that for ea
h y 2 D, ##y \B is dire
ted with supremum y. IfD has a 
ountable basis then we say D is !-
ontinuous. The way-below relationon a 
ontinuous d
po has the interpolation property : if x � y then there existsa basis element z su
h that x� z � y.A subset U of a d
po D is S
ott-open if it is an upper set (i.e., U = "U) andfor ea
h dire
ted set A � D, if tA 2 U then A \ U 6= ;. The 
olle
tion �D ofall S
ott-open subsets of D is 
alled the S
ott topology on D. If D is 
ontinuous,then the S
ott topology on D is lo
ally 
ompa
t, and the sets ""x where x 2 Dform a basis for the topology. If S � D, we write Cl(S) for the 
losure of S withrespe
t to the S
ott topology. Given d
pos D and E, a fun
tion f : D ! E is
ontinuous with respe
t the S
ott topologies on D and E i� it is monotone andpreserves dire
ted suprema: for ea
h dire
ted A � D, f(tA) = tf(A).A domain is a 
ontinuous d
po.2.2 Valuations and the Probabilisti
 PowerdomainWe brie
y re
all some basi
 de�nitions and results about valuations and theprobabilisti
 powerdomain.De�nition 1. Let X be a topologi
al spa
e. A 
ontinuous valuation on X is amapping � : (
X;�)! ([0; 1℄;6) satisfying:



1. Stri
tness: �(;) = 0.2. Monotoni
ity: U � V ) �(U) 6 �(V ).3. Modularity: for all U; V 2 
X, �(U [ V ) + �(U \ V ) = �(U) + �(V ).4. Continuity: for every dire
ted family fUigi2I , �(Si2I Ui) = supi2I �(Ui).Ea
h element x 2 X gives rise to a valuation de�ned byÆx(U) = (1 if x 2 U;0 otherwise:A simple valuation has the form Pa2A raÆa where A is a �nite subset of X ,ra > 0, and Pa2A ra 6 1. A valuation � is normalized if �(X) = 1.For the most part we will 
onsider 
ontinuous valuations de�ned on the S
otttopology �D of a d
po D. The set of all su
h valuations, ordered by � v � ifand only if �(U) 6 �(U) for all U 2 �D, forms a d
po PD: the probabilisti
powerdomain of D. Our main referen
e for the probabilisti
 powerdomain is thethesis of Jones [10℄ from whi
h the following result is taken.Theorem 1 (Jones [10℄). If D is a 
ontinuous domain then PD is 
ontinuouswith a basis B = f�ni=1riÆpi j pi 2 Bg; where B � D is a basis for D.Proof. (Sket
h) De�ne a disse
tion of D to be a disjoint family of 
res
entsD = fCigi2I , where Ci = ""xi nUi for some xi 2 B and Ui 2 �D. Given � 2 PDand 0 < r < 1 de�ne �D;r =Xi2I r�(Ci)Æxi :The substantial part of the proof, whi
h is elided here, is to show that the setof �D;r for all D and r is dire
ted with join �. utNext we re
all a 
hara
terization of 
onvergen
e in the S
ott topology onPD.Theorem 2 (Edalat [5℄). Suppose D is a 
ontinuous d
po, then a net h�iii2Iin PD 
onverges to � in the S
ott topology i�lim infi2I �i(U) > �(U)for all S
ott open subsets U � D.Obviously, valuations bear a 
lose resemblan
e to measures. Lawson [12℄showed that any valuation on an !-
ontinuous d
po D extends uniquely to ameasure on the Borel �-algebra generated by the S
ott topology (equivalentlyby the Lawson topology) on D. This result was generalized to 
ontinuous d
posby Alvarez-Manilla, Edalat and Saheb-Djahromi [2℄. Both these results dependheavily on the axiom of 
hoi
e. In this paper, we avoid using either theorem. Wedo use the elementary result that ea
h valuation on a d
po D extends uniquelyto a �nitely additive set fun
tion on the �eld FD generated by �D. Ea
h mem-ber R of this �eld 
an be written as a �nite, disjoint union of 
res
ents, i.e.,



R = Sni=1 Ui n Vi for Ui; Vi 2 �D. The extension of a valuation � to FD assignsto R the value nXi=1(�(Ui)� �(Ui \ Vi)):Also we re
all from He
kmann [8, Se
tion 3.2℄ that if E 2 FD and � 2 PD thenwe may de�ne � jE2 PD by � jE (O) = �(O \E) for all O 2 �D.In Se
tion 6 we use the well-known fa
t that any 
ontinuous valuation on ametri
 spa
e has a unique extension to a measure (
f. [1, Corollary 3.24℄). Butthis is only used to mediate between the formulation of the main result of thatse
tion and the results of Hut
hinson [9℄ whi
h are stated for measures.3 MeasurementLet � : D ! E be a S
ott 
ontinuous map between domains D and E.De�nition 2. The "-approximations of x 2 D are�"(x) := fy 2 D : y v x & "� �yg;and we say that � measures x 2 D if for all open U � D, we havex 2 U ) (9")x 2 �"(x) � U:The map � measures X � D if it measures ea
h x 2 X:One of the 
ru
ial insights of [13℄ is that measuring \information 
ontent"amounts to measuring partiality, and that the de�nition above seems to providea minimal mathemati
al a

ount of what it means to measure the partiality ofthe obje
ts in X . That is, if � measures X , then we 
an say that �x is theamount of partiality in x 2 X (and then by 
ontinuity of �, we 
an think of itas measuring partiality of nearby approximations of x); otherwise, it is just amapping on a domain.Granted this, a se
ond and distin
t question arises, \What elements shouldwe expe
t � to measure the 
ontent of?" Again, minimally, if � is a measure ofpartiality, it should at least measure the obje
ts inker � := fx 2 D : �x 2 maxEg:Why? Be
ause from the viewpoint of �, ea
h x 2 ker � has no partiality, i.e., istotal or ideal. In a 
ertain sense, then, these are the obje
ts that � should havethe least diÆ
ulty measuring.De�nition 3. A measurement is a 
ontinuous map � : D ! E whi
h measuresker �:



In a

ord with intuition, one then proves that ker � � maxD for a measure-ment �. The property of \measuring a set" is also expressed by saying that �indu
es the S
ott topology near ker �.In the typi
al 
ase that E is the d
po [0;1)� of non-negative reals in theiropposite order, � is a measurement i� for any S
ott open U and any ideal elementx 2 ker �, x 2 U ) (9 " > 0) fy 2 D : y v x and j�x� �yj < "g � U: (1)In words, what it means for � to measure x is that any observation U about xis also an observation about y, where y is 
lose to x, and fundamentally, \
lose"is spe
i�ed simultaneously by the order and the map �.Example 1. The following examples of measurements are all pertinent to thispaper. The �rst two illustrate the idea that natural models of metri
 spa
esyield 
anoni
al measurements into [0;1)�.(i) If hX; di is a lo
ally 
ompa
t metri
 spa
e, then its upper spa
eUX = f; 6= K � X : K is 
ompa
tgordered by reverse in
lusion is a 
ontinuous d
po. The supremum of a di-re
ted set S � UX is TS, and the way-below relation is given by A � Bi� B � int A. Given K 2 UX , de�ning the diameter of K byjKj = supfd(x; y) : x; y 2 Kg;it is readily veri�ed that K 7! jKj is a measurement on UX whose kernel ismaxUX = ffxg : x 2 Xg.(ii) Given a metri
 spa
e hX; di, the formal ball model [6℄ BX = X � [0;1) isa poset ordered by (x; r) v (y; s) i� d(x; y) 6 r � s:The way-below relation is 
hara
terized by(x; r) � (y; s) i� d(x; y) < r � s:The poset BX is a 
ontinuous d
po i� the metri
 d is 
omplete. MoreoverBX has a 
ountable basis i� X is separable. A natural measurement � onBX is given by �(x; r) = r. Then ker � = maxBX = f(x; 0) : x 2 Xg.(iii) Let X = fxngn2N be a 
ountably in�nite set, and (PX;�) the latti
e ofsubsets of X ordered by in
lusion. Observe that S � T in PX i� S is a�nite subset of T . We 
an de�ne a measurement j � j : PX ! [0;1)� byjSj = 1� Xxn2S s�(n+1):In the 
ase of �nite X , set jSj = 
ard(X n S):



One of the motivations behind the introdu
tion of measurement in [14℄ wasto fa
ilitate the formulation of sharper �xed point theorems. The following is abasi
 example of one su
h result.Theorem 3. Let f : D ! D be a monotone map on a pointed 
ontinuous d
poD equipped with a measurement � : D ! E. If F�fn(?) 2 max E, thenx? = Gn>0 fn(?) 2 ker �is the unique �xed point of f . Moreover, x? is an attra
tor: For all x, fn(x)! x?in the S
ott topology on D. This 
onvergen
e restri
ts to ker � if f 
arries ker �into ker �.Martin [16℄ gives a ne
essary and suÆ
ient 
ondition for a measurement� : D ! [0;1)� to extend to a measurement �� : CD ! [0;1)� on the 
onvexpowerdomain CD thereby un
overing the 
lass of Lebesgue measurements.De�nition 4. A 
ontinuous map � : D ! E is a Lebesgue measurement ifK � U ) (9 ")(8x 2 K)x 2 �"(x) � U;for all 
ompa
t K � ker � and all open U � D.Knowing that Lebesgue measurements extend to the 
onvex powerdomainenables one to prove that any !-
ontinuous d
po D with maxD regular satis�esthe property that the Vietoris hyperspa
e of max D embeds into max CD (asthe kernel of a measurement). Further, Edalat's domain theoreti
 analysis ofhyperboli
 iterated fun
tion systems is then shown to be a 
onsequen
e of stan-dard results from measurement. In the same setting, the ne
essity of 
ompletemetrizability be
omes apparent.Theorem 4 (Martin [13℄). A spa
e is 
ompletely metrizable i� it is the kernelof a Lebesgue measurement � : D ! [0;1)� on a 
ontinuous d
po.Here we seek analogous results with the probabilisti
 powerdomain in pla
eof the 
onvex powerdomain, and the weak topology on Borel measures in pla
eof the Vietoris topology on 
ompa
t sets. We now identify a 
ondition whi
hensures that a measurement on D extends to a measurement on the probabilisti
powerdomainPD. First, extend the de�nition of �" to arbitrary sets S by setting�"(S) = [s2S �"(s):For example, � is Lebesgue just when there is an " su
h that K � �"(K) � U:De�nition 5. A 
ontinuous � : D ! E is a regular measurement ifx 2 U ) (9")(9b� x) ""b \ ker � � �"(""b \ ker �) � U;for every x 2 ker � and every open U � D.



Thus, with a regular measurement, the 
hoi
e of " not only applies at x, the wayit does for a measurement, it also applies on an open set around x.Proposition 1. Every regular measurement � : D ! [0;1)� is Lebesgue. The
onverse holds when ker � is lo
ally 
ompa
t.Proof. We prove the �rst of these, after whi
h the se
ond is routine. If K � ker�is 
ompa
t with K � U open, then for ea
h x 2 K, we use the regularity of �to obtain bx � x and "x > 0 su
h that""bx \ ker � � �"x(""bx \ ker �) � U:Restri
ting f""bx : x 2 Kg to a �nite sub
over f""big, leaves a �nite number of"i > 0, whi
h assures us that " := min("i=2) > 0. We have K � �"(K) � U: utNote that all the measurements in Example 1 are regular. In Example 2, wewill see a measurement whi
h is not regular. Until then, here is a 
hara
terizationof the 
ountably based domains whi
h admit regular measurements.Theorem 5. Let D be an !-
ontinuous d
po. There is a regular measurement� : D ! [0;1)� with ker � = max D i� the spa
e max D in its relative S
otttopology is regular.Proof. If � is regular, then ker � is Lebesgue by the last result, so 
ompletelymetrizable and hen
e regular by Theorem 4.Conversely, let D be an !-
ontinuous d
po with maxD regular and a 
ount-able basis B. From [16℄, we know that � : D ! (PI;�) de�ned by�(x) = f(a; b) j x 2 ""a _ x 62 Cl(""b)g; (2)where I = f(a; b) 2 B �B j Cl(""b) \maxD � ""ag, is a Lebesgue measurement.Unsurprisingly it is also regular: Given a; b 2 B we have that Cl(""b)\ ker� � ""aimplies that there exists " := f(a; b)g su
h that ""b \ ker � � �"(""b \ ker �) � ""a.As usual, 
omposing this measurement with the map in Example 1(iii) yieldsa regular measurement into [0;1)� with kernel maxD. utAs mentioned earlier, we normally work with measurements as mappings� : D ! [0;1)�. Unfortunately the 
hoi
e of � obviously 
on
i
ts with theusual notation for valuations, and sin
e most of our work here is 
on
erned withvaluations, we opt to use the letter m for measurements.In addition, it is also more 
onvenient to 
onsider measurements into the unitinterval [0; 1℄ in its usual order for reasons that will be
ome 
lear shortly. Thus,given a measurement � : D ! [0;1)�, we simply transform it to a measurementm : D ! [0; 1℄ by m = 1=2�. Noti
e that the 
hara
terization of measurementgiven in (1) remains valid when E = [0; 1℄:Our main result, Theorem 7, says that a regular measurement m : D ! [0; 1℄extends in a natural way to a measurementM : PD ! [0; 1℄ on the probabilisti
powerdomain of D. Furthermore it holds that ker M is homeomorphi
 to theset of normalized measures on kerm in the weak topology. Combining this withTheorem 5 we obtain Corollary 1. This result was �rst proved, in a di�erent way,in Martin [16, Theorem 11.8℄.



Corollary 1. If D is an !-
ontinuous d
po with maxD regular, then the spa
eof normalized measures on maxD in the weak topology embeds as a subspa
e ofmaxPD.4 Comparing ValuationsOne of the most elegant results about the probabilisti
 powerdomain is the Split-ting Lemma. This bears a 
lose relationship to a 
lassi
 problem in probabilitytheory: �nd a joint distribution with given marginals.Lemma 1 (Jones [10℄). Let � = Pa2A raÆa and � = Pb2B sbÆb be simplevaluations. Then � � � if and only if there exists a family of transport (or 
ow)numbers fta;b j a 2 A; b 2 Bg � [0; 1℄ satisfying1. For ea
h a 2 A, Pb2B ta;b = ra,2. For ea
h b 2 B, Pa2A ta;b < sb, and3. ta;b 6= 0 implies a� b.In the remainder of this se
tion we give a 
hara
terization of when a simplevaluation lies way-below an arbitrary 
ontinuous valuation.Proposition 2 (Kir
h [11℄). If � is a 
ontinuous valuation on D, then � =Pa2A raÆa � � if and only if 8S � A, Pa2S ra < �(""S):De�nition 6. Fix a �nite subset A � D, and for ea
h S � A de�neLA;SM = \a2S ""a n [a02AnS ""a0:Observe that fLA;SMgS�A is a family of 
res
ents partitioning D.Proposition 3. Let � be a 
ontinuous valuation on D, Pa2A raÆa a simplevaluation on D, and fEigi2I � FD a �nite partition of D re�ning fLA;SMgS�A.Then Pa2A raÆa � � i� there exists a relation R � A� I su
h that(i) (a; i) 2 R implies Ei � ""a.(ii) For all S � A, Pa2S ra <Pi2R(S) �(Ei).Proof. ()) Suppose Pa2A raÆa � �. De�ne R by R(a; i) just in 
ase Ei � ""a.Then, given S � A, by Proposition 2,Xa2S ra < �(""S) = Xi2R(S) �(Ei):(() Given a relation R satisfying 
onditions (i) and (ii) above, then for allS � A we have Xa2S ra < Xi2R(S) �(Ei) 6 �(""S):Thus Pa2A raÆa � � by Proposition 2. ut



Next we give an alternate 
hara
terization of the way-below relation on PD.This is a slight generalization of the Splitting Lemma, and should be seen asdual to Proposition 3.Proposition 4. Suppose Pa2A raÆa and � are 
ontinuous valuations on D andfEigi2I � FD is a partition of D re�ning fLA;SMgS�A. Then Pa2A raÆa � �i� there exists a family of `transport numbers' fta;iga2A;i2I where1. For ea
h a 2 A, Pi2I ta;i = ra2. For ea
h i 2 I, Pa2A ta;i < �(Ei)3. ta;i > 0 implies Ei � ""a.Proof. (() Given the existen
e of a family of transport numbers fta;ig, de�neR � A� I by R(a; i) i� ta;i > 0. Then R satis�es (i) and (ii) in Proposition 3.()) By Proposition 3 there exists a relation R � A� I satisfying 
onditions(i) and (ii) thereof. The proof that su
h a relation yields transport numbers asrequired uses the max-
ow min-
ut theorem from graph theory. The basi
 ideais due to Jones [10℄, but we refer the reader to the formulation of He
kmann [8,Lemma 2.7℄ whi
h is general enough to apply to the present setting. utFor our main results, we 
an equally-well use Proposition 3 or (the dualform) Proposition 4 to 
hara
terize the way-below relation. Next we de�ne anoperation ? for 
omposing splittings with a 
ommon index set by `proje
ting outthat index.' Suppose s = fsi;jgi2I;j2J and t = ftj;kgj2J;k2K are families of non-negative real numbers where I; J and K are �nite. Assuming thatPk2K tj;k > 0for ea
h j 2 J we de�ne t ? s to be an I �K-indexed family where(t ? s)i;k =Xj2J si;j � tj;kPk02K tj;k0 � :Proposition 5. Let s and t be as above. Then for ea
h i 2 I,Xk2K(t ? s)i;k =Xj2J si;j : (3)Furthermore, if Pi2I si;j <Pk2K tj;k for ea
h j 2 J , it follows thatXi2I (t ? s)i;k <Xj2J tj;k (4)for ea
h k 2 K.Proof. Simple algebra. ut5 Measuring the Probabilisti
 PowerdomainDe�nition 7. If m : D ! [0; 1℄ is a measurement on a 
ontinuous d
po D, thenwe de�ne M : PD ! [0; 1℄ by M(�) = R md�, where the integral is that de�nedby Jones [10℄.



The S
ott 
ontinuity of M follows dire
tly from the 
ontinuity of the integral.In parti
ular, we have thatM(�) = supfXa2A ram(a) jXa2A raÆa � �g:We are now in a position to motivate regularity of measurements. Considerthe following example where M , as de�ned above, fails to be a measurement.Example 2. Let P be the d
po obtained by adding a top element 1 to thenaturals in their usual order. Let P 0 = fn0 j n0 2 Ng [ f10g be a disjoint 
opyof P . Finally write D for the d
po 
onsisting of the disjoint union of P and P 0together with a 
opy of the naturals in the dis
rete order fn00 j n 2 Ng, withn; n0 v n00 for all n 2 N. (See the diagram below.)De�ne a measurement m : D ! [0; 1℄ by m(1) = m(10) = m(n00) = 0for all n 2 N, and m(n) = m(n0) = 2�n for all n 2 N. Now the valua-tion � = Pn002N 2�(n+1)Æn00 is in ker M , and Æ0 � �. Furthermore, de�ning�N = Pn006N 2�(n+1)Æn00 +Pn>N 2�(n+1)Æn0 we have that �N v � but notÆ0 � �N . However by 
hoosing N large enough we 
an make M(�N ) arbitrarily
lose to 1. Thus M is not a measurement on PD, 
f. De�nition 3.1 ... 10... � ...� ����� � �>>>>>� {{{{ � �DDDDD� {{{{ �DDDDD

(5)
Assume m : D ! [0; 1℄ is a measurement, and M the extension to the pow-erdomain as in De�nition 7. The next few propositions des
ribe the kernel ofM . It is worth remarking that in proving Proposition 6 we do not assume thatvaluations on 
ontinuous d
pos extend to measures.Proposition 6. Let � 2 kerM , i.e., R md� = 1. Then for a 
res
ent E = U nV ,where U; V 2 �D, we have that �(E) > 0 implies E \ kerm 6= ;.Proof. We de�ne a de
reasing sequen
e of 
res
ents hEn j n 2 Ni with �(En) > 0for all n 2 N. First, E0 = E. Next, assuming En is de�ned, let � = 1�(En)� jEn .Sin
e � = � jEn + � jE
n ;the inequality M(� jE
n) 6 �(E
n) for
es M(� jEn) = �(En), when
e M(�) = 1.By the proof of Theorem 1 there is a disse
tion D of En and 0 < r < 1 su
hthat M(�D;r) > 1� 1=n. In parti
ular, there exists xn 2 En, namely one of the



mass points of �D;r, su
h that m(xn) > 1� 1=n and �(En \ ""xn) > 0. Now setEn+1 = En \ ""xn.The proposition now follows sin
e hxn j n 2 Ni is an in
reasing sequen
e inE, and so Fxn 2 E \ kerm. utProposition 7. Let � 2 kerM . If U1; U2 2 �D with U1 \ kerm = U2 \ kerm,then �(U1) = �(U2).Proof. Sin
e neither of the 
res
ents U1 n U2 and U2 n U1 meets kerm it followsthat �(U1) = �(U1 \ U2) + �(U1 n U2)= �(U1 \ U2) (by Proposition 6)= �(U1 \ U2) + �(U2 n U1) (by Proposition 6)= �(U2):Theorem 6. The set of normalized valuations on ker m is in bije
tion withkerM . Furthermore, if 
ontinuous valuations on kerm are in one-to-one 
orre-sponden
e with Borel measures on kerm, then the spa
e of these measures in theweak topology is homeomorphi
 to kerM in the relative S
ott topology.Proof. Suppose � is a valuation on kerm with total mass 1. Then we easily seethat �� : �D! [0; 1℄ de�ned by ��(O) = �(O\kerm) is a valuation on �D. Forall positive integers n, sin
e��fx : m(x) > 1� 1=ng = �(kerm) = 1;M(��) > 1� 1=n. Thus �� 2 kerM .Conversely, suppose � 2 kerM . We de�ne a valuation �� on the open sets ofkerm as follows. For an open set O � kerm we de�ne ��(O) = �(Oy) where Oyis the greatest S
ott open subset of D su
h that Oy \ ker m = O. Now for allopen subsets O1; O2 of kerm,��(O1 [ O2) + ��(O1 \O2) = �((O1 [ O2)y) + �((O1 \ O2)y)= �(Oy1 [ Oy2) + �(Oy1 \Oy2) (by Proposition 7)= �(Oy1) + �(Oy2) (by modularity)= ��(O1) + ��(O2):Thus �� is modular. By similar reasoning it also follows that �� is S
ott 
ontin-uous. One easily sees that the maps � 7! �� and � 7! �� are inverse.Suppose that 
ontinuous valuations on ker m are in one-to-one 
orrespon-den
e with Borel measures on ker m. Re
all that a net h�iii2I of normalizedBorel measures on a Hausdor� spa
e X 
onverges to � in the weak topology i�lim inf i2I �i(O) > �(O) for all open O � X . Using Theorem 2 it is routine toshow that the bije
tion above is a homeomorphism. ut



Corollary 2. If m is a regular measurement and D is !-
ontinuous, then thespa
e of normalized Borel measures on kerm in the weak topology is homeomor-phi
 to kerM in the relative S
ott topology.Proof. By Theorem 4, ker m is a separable metri
 spa
e. In this 
ase, as weremarked earlier, 
ontinuous valuations and Borel measures are in one-to-one
orresponden
e. utHen
eforth we assume that m is a regular measurement.Proposition 8. Given � 2 kerM , U � D S
ott open and " > 0, there exists aS
ott open set V � U and Æ > 0 su
h that �(U nV ) < " and mÆ(V \kerm) � U .Proof. Sin
e m is regular we 
an write U \ kerm as the dire
ted union[fV \ kerm j V 2 �D; (9Æ < 1)mÆ(V \ kerm) � Ug:The valuation �� is 
ontinuous, thus there exists a S
ott open set V � U andÆ > 0 su
h that ��((U n V ) \ kerm) < " and mÆ(V \ kerm) � U . But � = (��)�satis�es �(U n V ) < ". utWe are now in a position to prove the main result of the paper, namely thatM as given in De�nition 7 is a measurement on PD. Most of the work in theproof is 
ontained in the following te
hni
al lemma.Lemma 2. Let � 2 ker M and � = Pa2A raÆa � �. Then there exists " > 0su
h that whenever � =Pb2B sbÆb v � and jM(�)�M(�)j < ", then � � �.Proof. Applying Proposition 4 with the partition fEigi2I , where I = PA andEi = LA; iM, we obtain a splitting u = fua;ig between � and �. Now, given� = Pb2B sbÆb 6 �, we apply Proposition 4 on
e again, with the partitionfFjgj2J , where J = P(A[B) and Fj = LA[B; jM, we obtain a splitting v = fvb;jgbetween � and �. Noti
e that the partition fFjg re�nes fEig. We write j � iwhenever j \A = i, so Ei = Sj�i Fj . We illustrate the splittings u and v in thefollowing 
ow diagram.ra1 ua1;i1 //ua1;i2
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FF
FF
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FF
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Our strategy is to obtain a splitting between � and �, in the sense of Lemma 1,by 
ombining u and (a modi�
ation of) v using Proposition 5.First we 
hoose "1 > 0 to be a lower bound on the unful�lled demand at ea
hof the 
ir
led groups of nodes in the 
entre of the diagram above, i.e.,"1 = mini2I  �(Ei)�Xa2Aua;i! : (7)By Proposition 8, for ea
h i 2 I there exists "i > 0 and a 
res
ent Gi � Ei su
hthat �(Ei n Gi) < "1=3 and m"1(Gi \ kerm) � Ei. We now set "2 = mini2I "iand " = "1"2=3. Noti
e that the value of " does not depend on �.Next we amalgamate the 
ows on the right whi
h go into the same 
ir
ledgroup of nodes. In fa
t we also dis
ard a 
ow number vb;j if the measurementof the sour
e node b is too low or the target 
res
ent Fj does not meet any Gi.Formally we let OkB = fb 2 B : 1 � m(b) < "2g and Oki = fj 2 J : j �i ^ �(Gi \ Fj) 6= 0g. We de�ne a B � I-indexed family of transport numberswb;i by wb;i = 0 if b 62 OkB , otherwisewb;i = Xj2Oki vb;j :We 
laim that w ? u de�nes a splitting between � and � in the sense ofLemma 1. We verify 
ondition (iii) of the lemma as follows.(w ? u)a;b > 0) (9i)(ua;i > 0 ^ wb;i > 0)) (9i)(9j)(ua;i > 0 ^ vb;j > 0 ^ b 2 OkB ^ j 2 Oki)) (9i)(9j)(a 2 i ^ b 2 j ^ b 2 OkB ^ j 2 Oki)Now j 2 Oki implies that �(Gi \ Fj) 6= 0. Thus, by Proposition 6, there existsz 2 Gi \ Fj \ kerm. Sin
e b v z, we have b 2 m"2(Gi \ kerm) � ""a, i.e., a� b.We wish to apply Proposition 5 to 
omplete the proof that w ? u de�nes asplitting between � and �. To do this we need some estimates (given in (8) and(9) below) of the mass we `threw away' in going from v to w. Firstly, fromXb2BXj2J vb;j(1�m(b)) =Xb2B sb(1�m(b)) 6 1�M(�) < "it follows thatXb 62OkBXj2J vb;j 6 Xb 62OkBXj2J vb;j(1�m(b))"2 < ""2 = "13 : (8)Also, from the de�nition of Gi we have that for ea
h �xed i 2 I ,�( [j�i;j 62Oki Fj) 6 �(Ei nGi) < "13 ;



and so, sin
e Pb2B vb;j 6 �(Fj),Xj�i;j 62Oki Xb2B vb;j < "13 : (9)Combining (8), (9) and the de�nition of wb;i we get that for ea
h i 2 I0�Xb2BXj�i vb;j1A�Xb2Bwb;i < 2"13 : (10)Now the total mass of a valuation is no bigger than its measurement, thusXj2J  �(Fj)�Xb2B vb;j! 6 1�M(�) < " 6 �13 : (11)Ea
h term in the summation over j 2 J is positive. Thus, for ea
h i 2 I , takingthe partial sum in (11) over those j 2 J with j � i, we get�(Ei)�Xj�i Xb2B vb;j < "13 :Adding this inequality to (10) we get�(Ei)�Xb2Bwb;i < "1:From the de�nition of "1 it follows that for ea
h i 2 I ,Xa2Aua;i <Xb2Bwb;i:Thus we may apply Proposition 5 to dedu
e thatPb2B(w ?u)a;b =Pi2I ua;i =ra and Pa2A(w ? u)a;b <Pi2I wb;i 6 sb. utHaving proved Lemma 2, the result that M is a measurement now followsfrom general domain theory.Theorem 7. Let � 2 kerM and � � �. Then there exists " > 0 su
h thatwhenever � v � and jM(�)�M(�)j < ", then � � �.Proof. By the interpolation property of � there exists a simple valuation �0with � � �0 � �. By Lemma 2 there exists " > 0 su
h that whenever �0 v � issimple and M(�0) > 1� ", then �0 � �0. But if � v � is an arbitrary valuationwith M(�) > 1� ", then there is a simple valuation �0 � � with M(�0) > 1� ".Thus � � �0 � �0 � �. ut



6 Iterated Fun
tion SystemsDe�nition 8. An iterated fun
tion system (IFS) on a 
omplete metri
 spa
e Xis a 
olle
tion of 
ontinuous maps fi : X ! X indexed over a �nite set I. Su
han IFS is denoted hX; ffigi2Ii. If ea
h map fi is 
ontra
ting then the IFS is saidto be hyperboli
.A hyperboli
 IFS indu
es a 
ontra
tion F on the 
omplete metri
 spa
eof non-empty 
ompa
t subsets of X equipped with the Hausdor� metri
. F isde�ned by F (K) = [i2I fi(K):By Bana
h's 
ontra
tion mapping theorem, F has a unique �xed point: theattra
tor of the IFS. An alternate domain-theoreti
 proof this result, due toHayashi [7℄, involves 
onsidering F as a 
ontinuous selfmap of UX and dedu
ingthat the least �xed point of F is maximal in UX , and therefore is a unique �xedpoint. Many di�erent fra
tal sets arise as, or 
an be approximated by, attra
torsof IFSs.De�nition 9. A weighted IFS hX; f(fi; pi)gi2Ii 
onsists of an IFS hX; ffigi2Iiand a family of weights 0 < pi < 1, where Pi2I pi = 1. These data indu
e aso-
alled Markov operator G :MX !MX on the set MX of normalized Borelmeasures on X, given by G(�)(B) =Xi2I pi�(f�1i (B)) (12)for ea
h Borel subset B � X.The spa
e MX equipped with the weak topology 
an be metrized by theHut
hinson metri
 [9℄. Furthermore, if a weighted IFS is hyperboli
 then themap G is 
ontra
ting with respe
t to the Hut
hinson metri
. In this 
ase theunique �xed point of G, obtained by the 
ontra
tion mapping theorem, de�nesa normalized measure 
alled an invariant measure for the IFS. The support ofthe invariant measure is the attra
tor of the underlying IFS. This 
onstru
tionis an important method of de�ning fra
tal measures. Next we outline a domain-theoreti
 
onstru
tion, due to Edalat [3℄, of invariant measures for so-
alledweakly hyperboli
 IFSs on 
ompa
t metri
 spa
es.Edalat's approa
h involves embedding the set of measures on a 
ompa
tmetri
 spa
e X in the domain PUX of valuations on the upper spa
e of X .Re
all from Se
tion 3 that UX admits a natural measurement m : UX ! [0; 1℄,where m(K) = 2�jKj ; in turn this yields a measurement M on PUX . Next, aweighted IFS hX; f(fi; pi)gi2Ii indu
es a 
ontinuous map T : PUX ! PUX {the domain theoreti
 analogue of the Markov operator { de�ned byT (�)(O) =Xi2I pi�((Ufi)�1(O)) (13)



where Ufi : UX ! UX is the map K 7! fi(K).Applying T to ÆX , the point valuation 
on
entrated atX , one obtains T (ÆX) =Pi2I piÆfi(X). Iterating, it follows thatTn(ÆX) = Xi1;:::;in2I pi1 : : : pinÆfi1 :::fin (X): (14)Thus M(Tn(ÆX )), the measurement of the n-th iterate, equalsXi1;:::;in2I pi1 :::pinm(fi1 : : : fin(X)):A suÆ
ient 
ondition ensuring that M(Tn(ÆX))! 1 as n!1 is to requirethat for all " > 0, there exists n > 0 su
h that jfi1 : : : fin(X)j < " for allsequen
es i1i2:::in 2 In. In fa
t, by K�onig's lemma, it is suÆ
ient that for ea
hin�nite sequen
e i1i2::: 2 I!, jfi1 : : : fin(X)j ! 0 an n!1. Edalat 
alls an IFSsatisfying the latter 
ondition weakly hyperboli
. It is 
learly the 
ase that everyhyperboli
 IFS is weakly hyperboli
.Theorem 8 (Edalat [3℄). A weakly hyperboli
 weighted IFS hX; f(fi; pi)gi2Iion a 
ompa
t metri
 spa
e X has a unique invariant measure whi
h is moreoveran attra
tor for the Markov operator (12).Proof. Every 
ontinuous valuation on a 
ompa
t metri
 spa
e extends to aBorel measure, and 
onversely every Borel measure restri
ts to a 
ontinuousvaluation. Thus, to prove the existen
e of a unique invariant measure, it suf-�
es to prove that there is a unique 
ontinuous valuation � on X su
h that�(O) =Pi2I pi�(f�1i (O)) for all open O � X .Let D be the sub-d
po of PUX 
onsisting of valuations with mass 1. ThenD is pointed and 
ontinuous, and T restri
ts to a monotone map D ! D. Thuswe may apply Theorem 3 to dedu
e that T has a unique �xed point on D, andthis point lies in kerM .By an obvious identi�
ation of X with ker m we may regard the Markovoperator G, de�ned in (12), as a selfmap of the set of valuations on kerm. Nextwe show that G so regarded agrees with T . Formally, if O � UX is S
ott open,then using the notation of Theorem 6, we haveG(��)�(O) = G(��)(O \ kerm)=Xi2I pi��(f�1i (O \ kerm))=Xi2I pi�((Ufi)�1(O)) (as f�1i (O \ kerm) = (Ufi)�1(O) \ kerm)= T (�)(O)Sin
e T = G on kerm we know that the unique �xed point of T is a uniqueinvariant measure. Furthermore, it also follows that T takes kerM into kerM ,so, by Theorem 3, the �xed point of T is an attra
tor for T in the relative S
otttopology on kerM . But kerM 'MX , so the invariant measure for G is also anattra
tor in the weak topology. ut



The 
onstru
tion of the unique invariant measure here is essentially the sameas in Edalat [3℄. However it is justi�ed in a di�erent way. Edalat dedu
es that theleast �xed point of T is a unique �xed point by proving that it is maximal. Thisobservation depends on a 
hara
terization of the maximal elements of PUX interms of their supports. This last requires some more measure-theoreti
 ma
hin-ery than we have used here: in parti
ular he uses the result of Lawson [12℄ onextending 
ontinuous valuations on !-
ontinuous d
pos to Borel measures overthe Lawson topology.7 Future WorkBy way of 
on
lusion here are some questions we would like to know the answersto.{ Is there a Lebesgue measurement whi
h is not regular? Possibly the domainof partial fun
tions on the naturals admits su
h a measurement sin
e themaximal elements of this domain are not lo
ally 
ompa
t in the relativeS
ott topology.{ We know that if m is a regular measurement, then M is a measurement.Does the 
onverse hold?{ Are the following equivalent for a 
ountably based domain D?(i) Every Lebesgue measurement � with ker � = maxD is regular.(ii) The spa
e maxD is lo
ally 
ompa
t, regular and se
ond 
ountable.{ An interesting problem is to 
hara
terize the maximal elements of the prob-abilisti
 powerdomain. In parti
ular, if kerm = maxD, do we have kerM =maxPD?Referen
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