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with the weak topology. These results an be used to derive fats about do-mains in general whih are independent of measurement: for example, if D isan !-ontinuous model of a regular spae X , then the set of normalized Borelmeasures on X , equipped with the weak topology, an be embedded into theset of maximal elements of PD. They an also be used to derive results whihare independent of domain theory altogether, suh as a new proof that the �xedpoint assoiated with a weakly hyperboli iterated funtion system with proba-bilities is the unique measure whose support is the attrator of the underlyingiterated funtion system.2 Bakground2.1 Domain TheoryA poset (P;v) is a set P endowed with a partial order v. The least element ofP (if it exists) is denoted ?, and the set of maximal elements of P is writtenmax P . Given A � P , we write "A for the set fx 2 P j (9a 2 A) a v xg;similarly, #A denotes fx 2 P j (9a 2 A)x v ag. A funtion f : P ! Q betweenposets P and Q is monotone if x v y implies f(x) v f(y) for all x; y 2 P . Asubset A � P is direted if eah �nite subset F � A has an upper bound in A.Note that sine F = ; is a possibility, a direted subset must be non-empty. A(direted) omplete partial order (dpo) is a poset P in whih eah direted setA � P has a least upper bound, denoted tA.If D is a dpo, and x; y 2 D, then we write x � y if for eah diretedsubset A � D, if y v tA, then "x \ A 6= ;. We then say x is way-below y. Let##y = fx 2 D j x � yg; we say that D is ontinuous if it has a basis, i.e., asubset B � D suh that for eah y 2 D, ##y \B is direted with supremum y. IfD has a ountable basis then we say D is !-ontinuous. The way-below relationon a ontinuous dpo has the interpolation property : if x � y then there existsa basis element z suh that x� z � y.A subset U of a dpo D is Sott-open if it is an upper set (i.e., U = "U) andfor eah direted set A � D, if tA 2 U then A \ U 6= ;. The olletion �D ofall Sott-open subsets of D is alled the Sott topology on D. If D is ontinuous,then the Sott topology on D is loally ompat, and the sets ""x where x 2 Dform a basis for the topology. If S � D, we write Cl(S) for the losure of S withrespet to the Sott topology. Given dpos D and E, a funtion f : D ! E isontinuous with respet the Sott topologies on D and E i� it is monotone andpreserves direted suprema: for eah direted A � D, f(tA) = tf(A).A domain is a ontinuous dpo.2.2 Valuations and the Probabilisti PowerdomainWe briey reall some basi de�nitions and results about valuations and theprobabilisti powerdomain.De�nition 1. Let X be a topologial spae. A ontinuous valuation on X is amapping � : (
X;�)! ([0; 1℄;6) satisfying:



1. Stritness: �(;) = 0.2. Monotoniity: U � V ) �(U) 6 �(V ).3. Modularity: for all U; V 2 
X, �(U [ V ) + �(U \ V ) = �(U) + �(V ).4. Continuity: for every direted family fUigi2I , �(Si2I Ui) = supi2I �(Ui).Eah element x 2 X gives rise to a valuation de�ned byÆx(U) = (1 if x 2 U;0 otherwise:A simple valuation has the form Pa2A raÆa where A is a �nite subset of X ,ra > 0, and Pa2A ra 6 1. A valuation � is normalized if �(X) = 1.For the most part we will onsider ontinuous valuations de�ned on the Sotttopology �D of a dpo D. The set of all suh valuations, ordered by � v � ifand only if �(U) 6 �(U) for all U 2 �D, forms a dpo PD: the probabilistipowerdomain of D. Our main referene for the probabilisti powerdomain is thethesis of Jones [10℄ from whih the following result is taken.Theorem 1 (Jones [10℄). If D is a ontinuous domain then PD is ontinuouswith a basis B = f�ni=1riÆpi j pi 2 Bg; where B � D is a basis for D.Proof. (Sketh) De�ne a dissetion of D to be a disjoint family of resentsD = fCigi2I , where Ci = ""xi nUi for some xi 2 B and Ui 2 �D. Given � 2 PDand 0 < r < 1 de�ne �D;r =Xi2I r�(Ci)Æxi :The substantial part of the proof, whih is elided here, is to show that the setof �D;r for all D and r is direted with join �. utNext we reall a haraterization of onvergene in the Sott topology onPD.Theorem 2 (Edalat [5℄). Suppose D is a ontinuous dpo, then a net h�iii2Iin PD onverges to � in the Sott topology i�lim infi2I �i(U) > �(U)for all Sott open subsets U � D.Obviously, valuations bear a lose resemblane to measures. Lawson [12℄showed that any valuation on an !-ontinuous dpo D extends uniquely to ameasure on the Borel �-algebra generated by the Sott topology (equivalentlyby the Lawson topology) on D. This result was generalized to ontinuous dposby Alvarez-Manilla, Edalat and Saheb-Djahromi [2℄. Both these results dependheavily on the axiom of hoie. In this paper, we avoid using either theorem. Wedo use the elementary result that eah valuation on a dpo D extends uniquelyto a �nitely additive set funtion on the �eld FD generated by �D. Eah mem-ber R of this �eld an be written as a �nite, disjoint union of resents, i.e.,



R = Sni=1 Ui n Vi for Ui; Vi 2 �D. The extension of a valuation � to FD assignsto R the value nXi=1(�(Ui)� �(Ui \ Vi)):Also we reall from Hekmann [8, Setion 3.2℄ that if E 2 FD and � 2 PD thenwe may de�ne � jE2 PD by � jE (O) = �(O \E) for all O 2 �D.In Setion 6 we use the well-known fat that any ontinuous valuation on ametri spae has a unique extension to a measure (f. [1, Corollary 3.24℄). Butthis is only used to mediate between the formulation of the main result of thatsetion and the results of Huthinson [9℄ whih are stated for measures.3 MeasurementLet � : D ! E be a Sott ontinuous map between domains D and E.De�nition 2. The "-approximations of x 2 D are�"(x) := fy 2 D : y v x & "� �yg;and we say that � measures x 2 D if for all open U � D, we havex 2 U ) (9")x 2 �"(x) � U:The map � measures X � D if it measures eah x 2 X:One of the ruial insights of [13℄ is that measuring \information ontent"amounts to measuring partiality, and that the de�nition above seems to providea minimal mathematial aount of what it means to measure the partiality ofthe objets in X . That is, if � measures X , then we an say that �x is theamount of partiality in x 2 X (and then by ontinuity of �, we an think of itas measuring partiality of nearby approximations of x); otherwise, it is just amapping on a domain.Granted this, a seond and distint question arises, \What elements shouldwe expet � to measure the ontent of?" Again, minimally, if � is a measure ofpartiality, it should at least measure the objets inker � := fx 2 D : �x 2 maxEg:Why? Beause from the viewpoint of �, eah x 2 ker � has no partiality, i.e., istotal or ideal. In a ertain sense, then, these are the objets that � should havethe least diÆulty measuring.De�nition 3. A measurement is a ontinuous map � : D ! E whih measuresker �:



In aord with intuition, one then proves that ker � � maxD for a measure-ment �. The property of \measuring a set" is also expressed by saying that �indues the Sott topology near ker �.In the typial ase that E is the dpo [0;1)� of non-negative reals in theiropposite order, � is a measurement i� for any Sott open U and any ideal elementx 2 ker �, x 2 U ) (9 " > 0) fy 2 D : y v x and j�x� �yj < "g � U: (1)In words, what it means for � to measure x is that any observation U about xis also an observation about y, where y is lose to x, and fundamentally, \lose"is spei�ed simultaneously by the order and the map �.Example 1. The following examples of measurements are all pertinent to thispaper. The �rst two illustrate the idea that natural models of metri spaesyield anonial measurements into [0;1)�.(i) If hX; di is a loally ompat metri spae, then its upper spaeUX = f; 6= K � X : K is ompatgordered by reverse inlusion is a ontinuous dpo. The supremum of a di-reted set S � UX is TS, and the way-below relation is given by A � Bi� B � int A. Given K 2 UX , de�ning the diameter of K byjKj = supfd(x; y) : x; y 2 Kg;it is readily veri�ed that K 7! jKj is a measurement on UX whose kernel ismaxUX = ffxg : x 2 Xg.(ii) Given a metri spae hX; di, the formal ball model [6℄ BX = X � [0;1) isa poset ordered by (x; r) v (y; s) i� d(x; y) 6 r � s:The way-below relation is haraterized by(x; r) � (y; s) i� d(x; y) < r � s:The poset BX is a ontinuous dpo i� the metri d is omplete. MoreoverBX has a ountable basis i� X is separable. A natural measurement � onBX is given by �(x; r) = r. Then ker � = maxBX = f(x; 0) : x 2 Xg.(iii) Let X = fxngn2N be a ountably in�nite set, and (PX;�) the lattie ofsubsets of X ordered by inlusion. Observe that S � T in PX i� S is a�nite subset of T . We an de�ne a measurement j � j : PX ! [0;1)� byjSj = 1� Xxn2S s�(n+1):In the ase of �nite X , set jSj = ard(X n S):



One of the motivations behind the introdution of measurement in [14℄ wasto failitate the formulation of sharper �xed point theorems. The following is abasi example of one suh result.Theorem 3. Let f : D ! D be a monotone map on a pointed ontinuous dpoD equipped with a measurement � : D ! E. If F�fn(?) 2 max E, thenx? = Gn>0 fn(?) 2 ker �is the unique �xed point of f . Moreover, x? is an attrator: For all x, fn(x)! x?in the Sott topology on D. This onvergene restrits to ker � if f arries ker �into ker �.Martin [16℄ gives a neessary and suÆient ondition for a measurement� : D ! [0;1)� to extend to a measurement �� : CD ! [0;1)� on the onvexpowerdomain CD thereby unovering the lass of Lebesgue measurements.De�nition 4. A ontinuous map � : D ! E is a Lebesgue measurement ifK � U ) (9 ")(8x 2 K)x 2 �"(x) � U;for all ompat K � ker � and all open U � D.Knowing that Lebesgue measurements extend to the onvex powerdomainenables one to prove that any !-ontinuous dpo D with maxD regular satis�esthe property that the Vietoris hyperspae of max D embeds into max CD (asthe kernel of a measurement). Further, Edalat's domain theoreti analysis ofhyperboli iterated funtion systems is then shown to be a onsequene of stan-dard results from measurement. In the same setting, the neessity of ompletemetrizability beomes apparent.Theorem 4 (Martin [13℄). A spae is ompletely metrizable i� it is the kernelof a Lebesgue measurement � : D ! [0;1)� on a ontinuous dpo.Here we seek analogous results with the probabilisti powerdomain in plaeof the onvex powerdomain, and the weak topology on Borel measures in plaeof the Vietoris topology on ompat sets. We now identify a ondition whihensures that a measurement on D extends to a measurement on the probabilistipowerdomainPD. First, extend the de�nition of �" to arbitrary sets S by setting�"(S) = [s2S �"(s):For example, � is Lebesgue just when there is an " suh that K � �"(K) � U:De�nition 5. A ontinuous � : D ! E is a regular measurement ifx 2 U ) (9")(9b� x) ""b \ ker � � �"(""b \ ker �) � U;for every x 2 ker � and every open U � D.



Thus, with a regular measurement, the hoie of " not only applies at x, the wayit does for a measurement, it also applies on an open set around x.Proposition 1. Every regular measurement � : D ! [0;1)� is Lebesgue. Theonverse holds when ker � is loally ompat.Proof. We prove the �rst of these, after whih the seond is routine. If K � ker�is ompat with K � U open, then for eah x 2 K, we use the regularity of �to obtain bx � x and "x > 0 suh that""bx \ ker � � �"x(""bx \ ker �) � U:Restriting f""bx : x 2 Kg to a �nite subover f""big, leaves a �nite number of"i > 0, whih assures us that " := min("i=2) > 0. We have K � �"(K) � U: utNote that all the measurements in Example 1 are regular. In Example 2, wewill see a measurement whih is not regular. Until then, here is a haraterizationof the ountably based domains whih admit regular measurements.Theorem 5. Let D be an !-ontinuous dpo. There is a regular measurement� : D ! [0;1)� with ker � = max D i� the spae max D in its relative Sotttopology is regular.Proof. If � is regular, then ker � is Lebesgue by the last result, so ompletelymetrizable and hene regular by Theorem 4.Conversely, let D be an !-ontinuous dpo with maxD regular and a ount-able basis B. From [16℄, we know that � : D ! (PI;�) de�ned by�(x) = f(a; b) j x 2 ""a _ x 62 Cl(""b)g; (2)where I = f(a; b) 2 B �B j Cl(""b) \maxD � ""ag, is a Lebesgue measurement.Unsurprisingly it is also regular: Given a; b 2 B we have that Cl(""b)\ ker� � ""aimplies that there exists " := f(a; b)g suh that ""b \ ker � � �"(""b \ ker �) � ""a.As usual, omposing this measurement with the map in Example 1(iii) yieldsa regular measurement into [0;1)� with kernel maxD. utAs mentioned earlier, we normally work with measurements as mappings� : D ! [0;1)�. Unfortunately the hoie of � obviously onits with theusual notation for valuations, and sine most of our work here is onerned withvaluations, we opt to use the letter m for measurements.In addition, it is also more onvenient to onsider measurements into the unitinterval [0; 1℄ in its usual order for reasons that will beome lear shortly. Thus,given a measurement � : D ! [0;1)�, we simply transform it to a measurementm : D ! [0; 1℄ by m = 1=2�. Notie that the haraterization of measurementgiven in (1) remains valid when E = [0; 1℄:Our main result, Theorem 7, says that a regular measurement m : D ! [0; 1℄extends in a natural way to a measurementM : PD ! [0; 1℄ on the probabilistipowerdomain of D. Furthermore it holds that ker M is homeomorphi to theset of normalized measures on kerm in the weak topology. Combining this withTheorem 5 we obtain Corollary 1. This result was �rst proved, in a di�erent way,in Martin [16, Theorem 11.8℄.



Corollary 1. If D is an !-ontinuous dpo with maxD regular, then the spaeof normalized measures on maxD in the weak topology embeds as a subspae ofmaxPD.4 Comparing ValuationsOne of the most elegant results about the probabilisti powerdomain is the Split-ting Lemma. This bears a lose relationship to a lassi problem in probabilitytheory: �nd a joint distribution with given marginals.Lemma 1 (Jones [10℄). Let � = Pa2A raÆa and � = Pb2B sbÆb be simplevaluations. Then � � � if and only if there exists a family of transport (or ow)numbers fta;b j a 2 A; b 2 Bg � [0; 1℄ satisfying1. For eah a 2 A, Pb2B ta;b = ra,2. For eah b 2 B, Pa2A ta;b < sb, and3. ta;b 6= 0 implies a� b.In the remainder of this setion we give a haraterization of when a simplevaluation lies way-below an arbitrary ontinuous valuation.Proposition 2 (Kirh [11℄). If � is a ontinuous valuation on D, then � =Pa2A raÆa � � if and only if 8S � A, Pa2S ra < �(""S):De�nition 6. Fix a �nite subset A � D, and for eah S � A de�neLA;SM = \a2S ""a n [a02AnS ""a0:Observe that fLA;SMgS�A is a family of resents partitioning D.Proposition 3. Let � be a ontinuous valuation on D, Pa2A raÆa a simplevaluation on D, and fEigi2I � FD a �nite partition of D re�ning fLA;SMgS�A.Then Pa2A raÆa � � i� there exists a relation R � A� I suh that(i) (a; i) 2 R implies Ei � ""a.(ii) For all S � A, Pa2S ra <Pi2R(S) �(Ei).Proof. ()) Suppose Pa2A raÆa � �. De�ne R by R(a; i) just in ase Ei � ""a.Then, given S � A, by Proposition 2,Xa2S ra < �(""S) = Xi2R(S) �(Ei):(() Given a relation R satisfying onditions (i) and (ii) above, then for allS � A we have Xa2S ra < Xi2R(S) �(Ei) 6 �(""S):Thus Pa2A raÆa � � by Proposition 2. ut



Next we give an alternate haraterization of the way-below relation on PD.This is a slight generalization of the Splitting Lemma, and should be seen asdual to Proposition 3.Proposition 4. Suppose Pa2A raÆa and � are ontinuous valuations on D andfEigi2I � FD is a partition of D re�ning fLA;SMgS�A. Then Pa2A raÆa � �i� there exists a family of `transport numbers' fta;iga2A;i2I where1. For eah a 2 A, Pi2I ta;i = ra2. For eah i 2 I, Pa2A ta;i < �(Ei)3. ta;i > 0 implies Ei � ""a.Proof. (() Given the existene of a family of transport numbers fta;ig, de�neR � A� I by R(a; i) i� ta;i > 0. Then R satis�es (i) and (ii) in Proposition 3.()) By Proposition 3 there exists a relation R � A� I satisfying onditions(i) and (ii) thereof. The proof that suh a relation yields transport numbers asrequired uses the max-ow min-ut theorem from graph theory. The basi ideais due to Jones [10℄, but we refer the reader to the formulation of Hekmann [8,Lemma 2.7℄ whih is general enough to apply to the present setting. utFor our main results, we an equally-well use Proposition 3 or (the dualform) Proposition 4 to haraterize the way-below relation. Next we de�ne anoperation ? for omposing splittings with a ommon index set by `projeting outthat index.' Suppose s = fsi;jgi2I;j2J and t = ftj;kgj2J;k2K are families of non-negative real numbers where I; J and K are �nite. Assuming thatPk2K tj;k > 0for eah j 2 J we de�ne t ? s to be an I �K-indexed family where(t ? s)i;k =Xj2J si;j � tj;kPk02K tj;k0 � :Proposition 5. Let s and t be as above. Then for eah i 2 I,Xk2K(t ? s)i;k =Xj2J si;j : (3)Furthermore, if Pi2I si;j <Pk2K tj;k for eah j 2 J , it follows thatXi2I (t ? s)i;k <Xj2J tj;k (4)for eah k 2 K.Proof. Simple algebra. ut5 Measuring the Probabilisti PowerdomainDe�nition 7. If m : D ! [0; 1℄ is a measurement on a ontinuous dpo D, thenwe de�ne M : PD ! [0; 1℄ by M(�) = R md�, where the integral is that de�nedby Jones [10℄.



The Sott ontinuity of M follows diretly from the ontinuity of the integral.In partiular, we have thatM(�) = supfXa2A ram(a) jXa2A raÆa � �g:We are now in a position to motivate regularity of measurements. Considerthe following example where M , as de�ned above, fails to be a measurement.Example 2. Let P be the dpo obtained by adding a top element 1 to thenaturals in their usual order. Let P 0 = fn0 j n0 2 Ng [ f10g be a disjoint opyof P . Finally write D for the dpo onsisting of the disjoint union of P and P 0together with a opy of the naturals in the disrete order fn00 j n 2 Ng, withn; n0 v n00 for all n 2 N. (See the diagram below.)De�ne a measurement m : D ! [0; 1℄ by m(1) = m(10) = m(n00) = 0for all n 2 N, and m(n) = m(n0) = 2�n for all n 2 N. Now the valua-tion � = Pn002N 2�(n+1)Æn00 is in ker M , and Æ0 � �. Furthermore, de�ning�N = Pn006N 2�(n+1)Æn00 +Pn>N 2�(n+1)Æn0 we have that �N v � but notÆ0 � �N . However by hoosing N large enough we an make M(�N ) arbitrarilylose to 1. Thus M is not a measurement on PD, f. De�nition 3.1 ... 10... � ...� ����� � �>>>>>� {{{{ � �DDDDD� {{{{ �DDDDD

(5)
Assume m : D ! [0; 1℄ is a measurement, and M the extension to the pow-erdomain as in De�nition 7. The next few propositions desribe the kernel ofM . It is worth remarking that in proving Proposition 6 we do not assume thatvaluations on ontinuous dpos extend to measures.Proposition 6. Let � 2 kerM , i.e., R md� = 1. Then for a resent E = U nV ,where U; V 2 �D, we have that �(E) > 0 implies E \ kerm 6= ;.Proof. We de�ne a dereasing sequene of resents hEn j n 2 Ni with �(En) > 0for all n 2 N. First, E0 = E. Next, assuming En is de�ned, let � = 1�(En)� jEn .Sine � = � jEn + � jEn ;the inequality M(� jEn) 6 �(En) fores M(� jEn) = �(En), whene M(�) = 1.By the proof of Theorem 1 there is a dissetion D of En and 0 < r < 1 suhthat M(�D;r) > 1� 1=n. In partiular, there exists xn 2 En, namely one of the



mass points of �D;r, suh that m(xn) > 1� 1=n and �(En \ ""xn) > 0. Now setEn+1 = En \ ""xn.The proposition now follows sine hxn j n 2 Ni is an inreasing sequene inE, and so Fxn 2 E \ kerm. utProposition 7. Let � 2 kerM . If U1; U2 2 �D with U1 \ kerm = U2 \ kerm,then �(U1) = �(U2).Proof. Sine neither of the resents U1 n U2 and U2 n U1 meets kerm it followsthat �(U1) = �(U1 \ U2) + �(U1 n U2)= �(U1 \ U2) (by Proposition 6)= �(U1 \ U2) + �(U2 n U1) (by Proposition 6)= �(U2):Theorem 6. The set of normalized valuations on ker m is in bijetion withkerM . Furthermore, if ontinuous valuations on kerm are in one-to-one orre-spondene with Borel measures on kerm, then the spae of these measures in theweak topology is homeomorphi to kerM in the relative Sott topology.Proof. Suppose � is a valuation on kerm with total mass 1. Then we easily seethat �� : �D! [0; 1℄ de�ned by ��(O) = �(O\kerm) is a valuation on �D. Forall positive integers n, sine��fx : m(x) > 1� 1=ng = �(kerm) = 1;M(��) > 1� 1=n. Thus �� 2 kerM .Conversely, suppose � 2 kerM . We de�ne a valuation �� on the open sets ofkerm as follows. For an open set O � kerm we de�ne ��(O) = �(Oy) where Oyis the greatest Sott open subset of D suh that Oy \ ker m = O. Now for allopen subsets O1; O2 of kerm,��(O1 [ O2) + ��(O1 \O2) = �((O1 [ O2)y) + �((O1 \ O2)y)= �(Oy1 [ Oy2) + �(Oy1 \Oy2) (by Proposition 7)= �(Oy1) + �(Oy2) (by modularity)= ��(O1) + ��(O2):Thus �� is modular. By similar reasoning it also follows that �� is Sott ontin-uous. One easily sees that the maps � 7! �� and � 7! �� are inverse.Suppose that ontinuous valuations on ker m are in one-to-one orrespon-dene with Borel measures on ker m. Reall that a net h�iii2I of normalizedBorel measures on a Hausdor� spae X onverges to � in the weak topology i�lim inf i2I �i(O) > �(O) for all open O � X . Using Theorem 2 it is routine toshow that the bijetion above is a homeomorphism. ut



Corollary 2. If m is a regular measurement and D is !-ontinuous, then thespae of normalized Borel measures on kerm in the weak topology is homeomor-phi to kerM in the relative Sott topology.Proof. By Theorem 4, ker m is a separable metri spae. In this ase, as weremarked earlier, ontinuous valuations and Borel measures are in one-to-oneorrespondene. utHeneforth we assume that m is a regular measurement.Proposition 8. Given � 2 kerM , U � D Sott open and " > 0, there exists aSott open set V � U and Æ > 0 suh that �(U nV ) < " and mÆ(V \kerm) � U .Proof. Sine m is regular we an write U \ kerm as the direted union[fV \ kerm j V 2 �D; (9Æ < 1)mÆ(V \ kerm) � Ug:The valuation �� is ontinuous, thus there exists a Sott open set V � U andÆ > 0 suh that ��((U n V ) \ kerm) < " and mÆ(V \ kerm) � U . But � = (��)�satis�es �(U n V ) < ". utWe are now in a position to prove the main result of the paper, namely thatM as given in De�nition 7 is a measurement on PD. Most of the work in theproof is ontained in the following tehnial lemma.Lemma 2. Let � 2 ker M and � = Pa2A raÆa � �. Then there exists " > 0suh that whenever � =Pb2B sbÆb v � and jM(�)�M(�)j < ", then � � �.Proof. Applying Proposition 4 with the partition fEigi2I , where I = PA andEi = LA; iM, we obtain a splitting u = fua;ig between � and �. Now, given� = Pb2B sbÆb 6 �, we apply Proposition 4 one again, with the partitionfFjgj2J , where J = P(A[B) and Fj = LA[B; jM, we obtain a splitting v = fvb;jgbetween � and �. Notie that the partition fFjg re�nes fEig. We write j � iwhenever j \A = i, so Ei = Sj�i Fj . We illustrate the splittings u and v in thefollowing ow diagram.ra1 ua1;i1 //ua1;i2
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Our strategy is to obtain a splitting between � and �, in the sense of Lemma 1,by ombining u and (a modi�ation of) v using Proposition 5.First we hoose "1 > 0 to be a lower bound on the unful�lled demand at eahof the irled groups of nodes in the entre of the diagram above, i.e.,"1 = mini2I  �(Ei)�Xa2Aua;i! : (7)By Proposition 8, for eah i 2 I there exists "i > 0 and a resent Gi � Ei suhthat �(Ei n Gi) < "1=3 and m"1(Gi \ kerm) � Ei. We now set "2 = mini2I "iand " = "1"2=3. Notie that the value of " does not depend on �.Next we amalgamate the ows on the right whih go into the same irledgroup of nodes. In fat we also disard a ow number vb;j if the measurementof the soure node b is too low or the target resent Fj does not meet any Gi.Formally we let OkB = fb 2 B : 1 � m(b) < "2g and Oki = fj 2 J : j �i ^ �(Gi \ Fj) 6= 0g. We de�ne a B � I-indexed family of transport numberswb;i by wb;i = 0 if b 62 OkB , otherwisewb;i = Xj2Oki vb;j :We laim that w ? u de�nes a splitting between � and � in the sense ofLemma 1. We verify ondition (iii) of the lemma as follows.(w ? u)a;b > 0) (9i)(ua;i > 0 ^ wb;i > 0)) (9i)(9j)(ua;i > 0 ^ vb;j > 0 ^ b 2 OkB ^ j 2 Oki)) (9i)(9j)(a 2 i ^ b 2 j ^ b 2 OkB ^ j 2 Oki)Now j 2 Oki implies that �(Gi \ Fj) 6= 0. Thus, by Proposition 6, there existsz 2 Gi \ Fj \ kerm. Sine b v z, we have b 2 m"2(Gi \ kerm) � ""a, i.e., a� b.We wish to apply Proposition 5 to omplete the proof that w ? u de�nes asplitting between � and �. To do this we need some estimates (given in (8) and(9) below) of the mass we `threw away' in going from v to w. Firstly, fromXb2BXj2J vb;j(1�m(b)) =Xb2B sb(1�m(b)) 6 1�M(�) < "it follows thatXb 62OkBXj2J vb;j 6 Xb 62OkBXj2J vb;j(1�m(b))"2 < ""2 = "13 : (8)Also, from the de�nition of Gi we have that for eah �xed i 2 I ,�( [j�i;j 62Oki Fj) 6 �(Ei nGi) < "13 ;



and so, sine Pb2B vb;j 6 �(Fj),Xj�i;j 62Oki Xb2B vb;j < "13 : (9)Combining (8), (9) and the de�nition of wb;i we get that for eah i 2 I0�Xb2BXj�i vb;j1A�Xb2Bwb;i < 2"13 : (10)Now the total mass of a valuation is no bigger than its measurement, thusXj2J  �(Fj)�Xb2B vb;j! 6 1�M(�) < " 6 �13 : (11)Eah term in the summation over j 2 J is positive. Thus, for eah i 2 I , takingthe partial sum in (11) over those j 2 J with j � i, we get�(Ei)�Xj�i Xb2B vb;j < "13 :Adding this inequality to (10) we get�(Ei)�Xb2Bwb;i < "1:From the de�nition of "1 it follows that for eah i 2 I ,Xa2Aua;i <Xb2Bwb;i:Thus we may apply Proposition 5 to dedue thatPb2B(w ?u)a;b =Pi2I ua;i =ra and Pa2A(w ? u)a;b <Pi2I wb;i 6 sb. utHaving proved Lemma 2, the result that M is a measurement now followsfrom general domain theory.Theorem 7. Let � 2 kerM and � � �. Then there exists " > 0 suh thatwhenever � v � and jM(�)�M(�)j < ", then � � �.Proof. By the interpolation property of � there exists a simple valuation �0with � � �0 � �. By Lemma 2 there exists " > 0 suh that whenever �0 v � issimple and M(�0) > 1� ", then �0 � �0. But if � v � is an arbitrary valuationwith M(�) > 1� ", then there is a simple valuation �0 � � with M(�0) > 1� ".Thus � � �0 � �0 � �. ut



6 Iterated Funtion SystemsDe�nition 8. An iterated funtion system (IFS) on a omplete metri spae Xis a olletion of ontinuous maps fi : X ! X indexed over a �nite set I. Suhan IFS is denoted hX; ffigi2Ii. If eah map fi is ontrating then the IFS is saidto be hyperboli.A hyperboli IFS indues a ontration F on the omplete metri spaeof non-empty ompat subsets of X equipped with the Hausdor� metri. F isde�ned by F (K) = [i2I fi(K):By Banah's ontration mapping theorem, F has a unique �xed point: theattrator of the IFS. An alternate domain-theoreti proof this result, due toHayashi [7℄, involves onsidering F as a ontinuous selfmap of UX and deduingthat the least �xed point of F is maximal in UX , and therefore is a unique �xedpoint. Many di�erent fratal sets arise as, or an be approximated by, attratorsof IFSs.De�nition 9. A weighted IFS hX; f(fi; pi)gi2Ii onsists of an IFS hX; ffigi2Iiand a family of weights 0 < pi < 1, where Pi2I pi = 1. These data indue aso-alled Markov operator G :MX !MX on the set MX of normalized Borelmeasures on X, given by G(�)(B) =Xi2I pi�(f�1i (B)) (12)for eah Borel subset B � X.The spae MX equipped with the weak topology an be metrized by theHuthinson metri [9℄. Furthermore, if a weighted IFS is hyperboli then themap G is ontrating with respet to the Huthinson metri. In this ase theunique �xed point of G, obtained by the ontration mapping theorem, de�nesa normalized measure alled an invariant measure for the IFS. The support ofthe invariant measure is the attrator of the underlying IFS. This onstrutionis an important method of de�ning fratal measures. Next we outline a domain-theoreti onstrution, due to Edalat [3℄, of invariant measures for so-alledweakly hyperboli IFSs on ompat metri spaes.Edalat's approah involves embedding the set of measures on a ompatmetri spae X in the domain PUX of valuations on the upper spae of X .Reall from Setion 3 that UX admits a natural measurement m : UX ! [0; 1℄,where m(K) = 2�jKj ; in turn this yields a measurement M on PUX . Next, aweighted IFS hX; f(fi; pi)gi2Ii indues a ontinuous map T : PUX ! PUX {the domain theoreti analogue of the Markov operator { de�ned byT (�)(O) =Xi2I pi�((Ufi)�1(O)) (13)



where Ufi : UX ! UX is the map K 7! fi(K).Applying T to ÆX , the point valuation onentrated atX , one obtains T (ÆX) =Pi2I piÆfi(X). Iterating, it follows thatTn(ÆX) = Xi1;:::;in2I pi1 : : : pinÆfi1 :::fin (X): (14)Thus M(Tn(ÆX )), the measurement of the n-th iterate, equalsXi1;:::;in2I pi1 :::pinm(fi1 : : : fin(X)):A suÆient ondition ensuring that M(Tn(ÆX))! 1 as n!1 is to requirethat for all " > 0, there exists n > 0 suh that jfi1 : : : fin(X)j < " for allsequenes i1i2:::in 2 In. In fat, by K�onig's lemma, it is suÆient that for eahin�nite sequene i1i2::: 2 I!, jfi1 : : : fin(X)j ! 0 an n!1. Edalat alls an IFSsatisfying the latter ondition weakly hyperboli. It is learly the ase that everyhyperboli IFS is weakly hyperboli.Theorem 8 (Edalat [3℄). A weakly hyperboli weighted IFS hX; f(fi; pi)gi2Iion a ompat metri spae X has a unique invariant measure whih is moreoveran attrator for the Markov operator (12).Proof. Every ontinuous valuation on a ompat metri spae extends to aBorel measure, and onversely every Borel measure restrits to a ontinuousvaluation. Thus, to prove the existene of a unique invariant measure, it suf-�es to prove that there is a unique ontinuous valuation � on X suh that�(O) =Pi2I pi�(f�1i (O)) for all open O � X .Let D be the sub-dpo of PUX onsisting of valuations with mass 1. ThenD is pointed and ontinuous, and T restrits to a monotone map D ! D. Thuswe may apply Theorem 3 to dedue that T has a unique �xed point on D, andthis point lies in kerM .By an obvious identi�ation of X with ker m we may regard the Markovoperator G, de�ned in (12), as a selfmap of the set of valuations on kerm. Nextwe show that G so regarded agrees with T . Formally, if O � UX is Sott open,then using the notation of Theorem 6, we haveG(��)�(O) = G(��)(O \ kerm)=Xi2I pi��(f�1i (O \ kerm))=Xi2I pi�((Ufi)�1(O)) (as f�1i (O \ kerm) = (Ufi)�1(O) \ kerm)= T (�)(O)Sine T = G on kerm we know that the unique �xed point of T is a uniqueinvariant measure. Furthermore, it also follows that T takes kerM into kerM ,so, by Theorem 3, the �xed point of T is an attrator for T in the relative Sotttopology on kerM . But kerM 'MX , so the invariant measure for G is also anattrator in the weak topology. ut



The onstrution of the unique invariant measure here is essentially the sameas in Edalat [3℄. However it is justi�ed in a di�erent way. Edalat dedues that theleast �xed point of T is a unique �xed point by proving that it is maximal. Thisobservation depends on a haraterization of the maximal elements of PUX interms of their supports. This last requires some more measure-theoreti mahin-ery than we have used here: in partiular he uses the result of Lawson [12℄ onextending ontinuous valuations on !-ontinuous dpos to Borel measures overthe Lawson topology.7 Future WorkBy way of onlusion here are some questions we would like to know the answersto.{ Is there a Lebesgue measurement whih is not regular? Possibly the domainof partial funtions on the naturals admits suh a measurement sine themaximal elements of this domain are not loally ompat in the relativeSott topology.{ We know that if m is a regular measurement, then M is a measurement.Does the onverse hold?{ Are the following equivalent for a ountably based domain D?(i) Every Lebesgue measurement � with ker � = maxD is regular.(ii) The spae maxD is loally ompat, regular and seond ountable.{ An interesting problem is to haraterize the maximal elements of the prob-abilisti powerdomain. In partiular, if kerm = maxD, do we have kerM =maxPD?Referenes1. M. Alvarez-Manilla.Measure theoreti results for ontinuous valuations on partiallyordered spaes. PhD thesis, Imperial College, September 2000.2. M. Alvarez-Manilla, A. Edalat, and N. Saheb-Djahromi. An extension result forontinuous valuations. Journal of the London Mathematial Soiety, 61(2):629{640,2000.3. A. Edalat. Power Domains and Iterated Funtion Systems. Information and Com-putation, 124:182{197, 1996.4. A. Edalat. Domain theory and integration. Theoretial Computer Siene, 151:163{193, 1995.5. A. Edalat. When Sott is weak at the top. Mathematial Strutures in ComputerSiene, 7:401{417, 1997.6. A. Edalat and R. Hekmann. A omputational model for metri spaes. TheoretialComputer Siene, 193:53{78, 1998.7. S. Hayashi. Self-similar sets as Tarski's �xed points. Publiations of the ResearhInstitute for Mathematial Sienes, 21(5):1059{1066, 1985.8. R. Hekmann. Spaes of valuations. Papers on General Topology and Appliations:11th Summer Conferene at the University of Southern Maine, Vol. 806, Annalsof the New York Aademy of Sienes, pp. 174{200. New York, 1996.
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