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Abstract

In this paper we initiate the study of discrete random variables over domains. Our
work is inspired by work of Daniele Varacca, who devised indexed valuations as
models of probabilistic computation within domain theory. Our approach relies
on new results about commutative monoids defined on domains that also allow
actions of the non-negative reals. Using our approach, we define two such families
of real domain monoids, one of which allows us to recapture Varacca’s construction
of the Plotkin indexed valuations over a domain. Each of these families leads to
the construction of a family of discrete random variables over domains, the second
of which forms the object level of a continuous endofunctor on the categories RB

(domains that are retracts of bifinite domains), and on FS (domains where the
identity map is the directed supremum of deflations finitely separated from the
identity). The significance of this last result lies in the fact that there is no known
category of continuous domains that is closed under the probabilistic power domain,
which forms the standard approach to modeling probabilistic choice over domains.
The fact that RB and FS are Cartesian closed and also are closed under a power
domain of discrete random variables means we can now model, e.g., the untyped
lambda calculus extended with a probabilistic choice operator, implemented via
random variables.

1 Introduction

Domain theory, perhaps the most widely used method for assigning deno-
tational meanings to programming languages, has recently seen its influence
broaden to other areas of computation and mathematics. It provides a broad
range of constructors for modeling data types, nondeterminism, functional
programming, and several other constructs needed in semantics. Domain the-
ory also admits a number of Cartesian closed categories, the fundamental
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objects needed to model the lambda calculus. Even probabilistic computation
admits a model in the theory, although truth to tell, this particular construc-
tor has proven to be very difficult to unravel. Of particular interest is the
question

Is there a Cartesian closed category of domains
that is closed under the probabilistic power domain?

There have been many attempts to resolve this, but the most we know to date
is contained in [12], where it is shown that the probabilistic power domain of
a finite tree is in RB, that the probabilistic power domain of a finite reversed
tree is in FS, and that RB is closed under the probabilistic power domain if
the probabilistic power domain of every finite poset is in RB. But, other than
finite trees, the only finite posets whose probabilistic power domain is known
to be in RB is the class of flat posets, whose probabilistic power domains are
bounded complete (the continuous analogs of Scott domains).

We do not contribute to settling this question here, but we do provide an
alternative construction—what we call the power domain of discrete ×-random
variables, which we show defines a continuous endofunctor on the category RB,
as well as on FS and on CDOM, the category of coherent domains.

Objects in RB are retracts of bifinite domains, those that can be expressed
as bilimits of finite posets under embedding–projection pairs. This category
is Cartesian closed, and it also is closed under the various power domains for
nondeterminism [7]. With the addition of a mechanism to model probabilistic
choice, RB provides virtually all the tools required to support semantic mod-
eling. Furthermore, playing off results of Varacca [23,24], we show that the
formation of the power domain of discrete ×-random variables over RB yields
a monad that enjoys a distributive law with respect to each of the power
domain monads, and this in turn implies that each of these power domain
monads lifts to a monad on the category RB that are also algebras for the
discrete ×-random variable power domain monad. These laws are enumer-
ated in Definition 4.8. In short, we can now form domain-theoretic models
of computation that respect the laws of discrete ×-random variables as well
as any of the laws we choose for nondeterminism: angelic, demonic or convex
choice.

The outline of the rest of the paper is as follows. In the next section we
provide some background about domains and about the constructions we need.
We then review briefly a construction by Varacca [24] which inspired our work,
and that Varacca calls the Plotkin indexed valuations. In the following section,
we investigate bag domains—domain-theoretic models for multisets, and we
also explore the structure of bag domains that also admit an action of the non-
negative reals. We single out two such constructs, which are distinguished by
how the least element acts. In the first, ⊥ is the identity of the monoid, as well
as being the image of 0 under the action of R≥0. We define a functor which
produces the initial such algebra over a bag domain, and this in turn is what we
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use to recapture Varacca’s family of Plotkin indexed valuations. The second
such construct is distinguished by the fact that ⊥ acts as a multiplicative zero
in the monoid, rather than as an identity, and we again define a functor which
produces the initial such algebra over a bag domain.

The constructions of initial bag domain monoids admitting actions of the
non-negative reals then are exploited to define two families of discrete ran-
dom variables over domains. The first is based on the construction that led
to recapturing Varacca’s results, and because ⊥ acts like an additive zero, we
denote this family by RV+(P ), for a domain P . The second family is based on
our second initial algebra over bag domains, and since ⊥ acts like a multiplica-
tive zero in this case, we denote this family by RV×(P ). We also show that
RV× defines an continuous endofunctor on the category of domains that leaves
both RB and FS invariant. This yields two Cartesian closed categories of do-
mains that support a model of probabilistic computation. In the final section,
we discuss further work along this line, including how to construct Varacca’s
other families of indexed valuations. We also discuss the relationship between
a random variable approach to modeling probabilistic computation and one
based directly on probability distributions.

1.1 Background

We begin with some basic results about partial orders, and about domains in
particular. A general reference for this material is [1] or [4].

A subset A of a partially ordered set P is directed if A has an upper bound
for each of its finite subsets. A mapping between partially ordered sets is
Scott continuous if it preserves the order and the suprema of those directed
sets that have a supremum. A directed complete partial order (dcpo) is a
partially ordered set in which each directed set has a least upper bound. A
cpo is a dcpo with a least element ⊥.

If P is a partial order and x, y ∈ P , then we say x is way-below y (x≪ y)
if whenever A ⊆ P is directed and has a supremum, if y ⊑ ⊔A, then x ⊑ a for
some a ∈ A. A poset P is continuous if ⇓ y = {x ∈ P | x ≪ y} is directed and
y = ⊔⇓ y for each y ∈ P . A domain is a continuous dcpo. We let CPOS denote
the category of continuous posets and Scott continuous maps, and DOM the
full subcategory of domains.

An abstract basis is a pair (B,≪) where ≪ is a transitive relation on B
satisfying the interpolation property:

F ≪ x & F ⊆ B finite ⇒ (∃y ∈ B) F ≪ y ≪ x.

By F ≪ x we mean z ≪ x ∀z ∈ F . If (B,≪) is an abstract basis, then
I ⊆ B is a round ideal if I is a ≪-directed, ≪-lower set, and x ∈ I ⇒
(∃y ∈ I) x ≪ y. The round-ideal completion of an abstract basis (B,≪) is
the family of round ideals, ordered by inclusion. This forms a domain, where
I ≪ J iff (∃x ∈ J) I ⊆ ⇓ x. In fact, every domain P is isomorphic to the
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round-ideal completion of an abstract basis, namely P is isomorphic to the
round ideal completion of (P,≪) under the mapping sending a point x to ⇓ x,
whose inverse is the mapping that sends a round ideal to its supremum.

One of the fundamental results about dcpos is that the family of Scott
continuous maps between two dcpos is another dcpo in the pointwise order.
Since it’s easy to show that the finite product of a family of continuous posets
is another such, and the one-point poset is a terminal object, a central question
is under what conditions is the family of Scott continuous selfmaps [D → E]
between domains also continuous, i.e., which categories of dcpos and Scott
continuous maps are Cartesian closed? This is true of DCPO, the category
of dcpos and Scott continuous maps, but not of DOM. Still, there are several
full subcategories of DOM that are Cartesian closed. Among the notable such
categories are the following: 2

BCD Bounded complete domains, in which every subset having an upper bound
has a least upper bound; equivalently, every non-empty subset has a greatest
lower bound.

RB Domains which are retracts of bifinite domains, themselves bilimits of fam-
ilies of finite posets under embedding-projection maps; these are pairs of
Scott continuous mappings e : P → Q and p : Q → P satisfying p ◦ e = 1P

and e ◦ p ≤ 1Q.

FS Domains D satisfying the property that the identity map is the directed
supremum of Scott-continuous selfmaps f : D → D each finitely separated
from the identity: i.e., for each f there is a finite subset Mf ⊆ D with the
property that, for each x ∈ D, there is some m ∈Mf with f(x) ≤ m ≤ x.

Actually, BCD is a full subcategory of RB, which in turn is a full subcategory
of FS, and FS is a maximal ccc of domains. An interesting (some might say
frustrating) open question is whether RB and FS are equal. The objects in all
of these categories are coherent, 3 but the category CDOM of coherent domains
and Scott continuous maps is not a ccc.

We also recall some facts about categories. A monad or triple on a category
A is a a 3-tuple 〈T, µ, η〉 where T : A → A is an endofunctor, and µ : T 2 .

−→ T
and η : 1A

.
−→ T are natural transformations satisfying the laws:

µ ◦ Tµ = µ ◦ µT and µ ◦ ηT = T = µ ◦ Tη.

Equivalently, if F : A → B is left adjoint to G : B → A with unit η : 1A

·
−→ GF

and counit ǫ : FG
·

−→ 1B, then 〈GF,GǫF, η〉 forms a monad on A, and every
monad arises in this fashion.

If 〈T, µ, η〉 is a monad, then a T -algebra is a pair (a, h), where a ∈ A and
h : Ta→ a is an A-morphism satisfying h ◦ ηa = 1a and h ◦ Th = h ◦ µa.

For example, domain theory provides three models for nondeterminism, the
lower power domain PL,which assigns to a domain the family of Scott-closed

2 See [1] for details about these categories.
3 A domain is coherent if its Lawson topology is compact; cf. [1]
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lower sets with union as the semilattice operation, the upper power domain,
PU which assigns to a domain the family of Scott-compact upper sets with
union as the operation, but with reverse inclusion as the order, and the convex
power domain, PC , which assigns to a (coherent) domain the family of sets that
can be expressed as the intersection of a Scott-closed lower set and a Scott-
compact upper set, with the Egli-Milner order, where the “sum” of sets is the
smallest such set containing their union (cf. [1] for details here). Each of these
defines a monad on DCPO (cf. [7]), whose algebras are ordered semilattices;
another example is the probabilistic power domain V whose algebras satisfy
equations that characterize the probability measures over P (cf. [10]).

One goal of domain theory is to provide a setting in which all of the con-
structors needed to model a given programming language can be combined. If
the aim is to model both nondeterminism and probabilistic choice, then one
needs to combine the appropriate nondeterminism monad with the probabilis-
tic power domain monad, so that the laws of each constructor are preserved in
the resulting model. This is the function of a distributive law, which is a nat-
ural transformation d : ST

.
−→ TS between monads S and T on A satisfying

several identities—cf. [2]. The significance of distributive laws is the following
theorem of Beck:

Theorem 1.1 (Beck [2]) Let (T, ηT , µT ) and (S, ηS, µS) be monads on the
category A. Then there is a one-to-one correspondence between

(i) Distributive laws d : ST
.

−→ TS;

(ii) Multiplications µ : TSTS
.

−→ TS, satisfying
• (TS, ηTηS, µ) is a monad;
• the natural transformations ηTS : S

.
−→ TS and TηS : T

.
−→ TS are

monad morphisms;
• the following middle unit law holds:

TS
TηSηT S

//

IdTS

&&L

L

L

L

L

L

L

L

L

L

L

L

L

L

TSTS
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TS

(iii) Liftings T̃ of the monad T to AS, the category of S-algebras in A. 2

So, one way to know that the combination of the probabilistic power do-
main and one of the power domains for nondeterminism provides a model
satisfying all the needed laws would be to show there is a distributive law of
one of these monads over the probabilistic power domain monad. Unfortu-
nately, it was shown by Plotkin and Varacca [23] that there is no distributive
law of V over PX , or of PX over V for any of the nondeterminism monads PX .
This led to the work we report on next.
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2 Indexed Valuations

We now recall some of the work of Varacca [24] that was motivated by prob-
lems associated with trying to support both nondeterminism and probabilistic
choice within the same model. Once it was shown that there is no distributive
law between V and any of the nondeterminism monads, Varacca considered
the simpler situation of sets, where the model of nondeterminism is the power
set monad, and, in the finite case, the probabilistic monad is the family of
simple measures on the set. A theorem of Gautam shows why the distributive
law doesn’t hold in this setting:

Theorem 2.1 (Gautam [3]) A necessary and sufficient condition for an
equational theory to extend from a model X to its power set is that every
law of the theory mentions each variable at most once on each side of the
equation. 2

Since finite posets are domains, this implies that, even ifX is a probabilistic
algebra, the operations on X cannot be extended to P(X) to satisfy the
same laws. In fact, both the nondeterminism monad over a set X and the
probabilistic monad over X violate the conditions of the theorem. For the
nondeterminism monad, it is the law x ⊕ x = x, while for the probabilistic
monad, it is the law pA⊕(1−p)A = A. 4 Then Varacca realized that weakening
one of the laws of probabilistic choice could result in a monad that enjoys a
distributive law with respect to a monad for nondeterminism. For 0 < p < 1
and A a domain element,Varacca weakened the law pA + (1 − p)A = A in
three ways:

pA+ (1 − p)A ⊒ A, (1)

pA+ (1 − p)A ⊑ A, (2)

pA+ (1 − p)A and A not necessarily related by order. (3)

He called the monad he constructed satisfying (1) the Hoare indexed valua-
tions, the one satisfying (2) the Smyth indexed valuations and the one satisfy-
ing (3), the Plotkin indexed valuations. We exploit this last construction—the
so-called Plotkin indexed valuations over a domain—in the construction of a
power domain of discrete random variables.

2.1 Plotkin Indexed Valuations

Definition 2.2 An indexed valuation over the poset P is a tuple (ri, pi)i∈I

where I is an index set, 5 each ri ≥ 0 is a non-negative real number and
pi ∈ P for each i ∈ I.

4 The operator pA ⊕ (1 − p)A models probabilistic choice where the left branch is chosen
with probability 0 ≤ p ≤ 1 and the right branch is chosen with probability 1 − p.
5 For our discussion, we can assume I is always finite.
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Two indexed valuations satisfy (ri, pi)I ≃1 (sj , qj)J if |I| = |J | and there
is a permutation φ ∈ S(|I|) 6 with rφ(i) = si and pφ(i) = qi for each i.

If I ′ = {i ∈ I | ri 6= 0} and similarly for J , then (ri, pi)I ≃ (sj , qj)J if
(ri, pi)I′ ≃1 (sj , qj)J ′ . Then, ≃ is an equivalence relation on indexed valua-
tions, and we let 〈ri, pi〉I denote the equivalence class of the indexed valuation
(ri, pi)I modulo ≃.

Next, let R≥0 denote the extended non-negative real numbers, with the
usual order. Then given a domain P , Varacca defines a relation ≪IVP

on the
family {〈ri, pi〉I | ri ∈ R≥0 & pi ∈ P} of indexed valuations over P by

〈ri, pi〉I ≪IVP
〈sj, qj〉J iff (|I| = |J |) & (∃φ ∈ S(|I|)) (4)

ri ≪ sφ(i) & pi ≪P qφ(i) (∀i ∈ I).6

This forms an abstract basis whose round ideal completion is the family of
Plotkin indexed valuations over P . We denote this domain by IVP (P ).

We also can “add” indexed valuations 〈ri, pi〉I and 〈sj , qj〉J by

〈ri, xi〉i∈I ⊕ 〈sj, yj〉j∈J = 〈tk, zk〉k∈K

where K = I
·

∪ J and

(tk, zk) =

{
(ri, xi) if k = i ∈ I

(sj, yj) if k = j ∈ J.

This operation of concatenating tuples and taking the equivalence class of the

resulting I
·

∪ J-tuple forms a continuous operation on indexed valuations that
is commutative, by construction. We let R≥0 act on 〈ri, pi〉I by r · 〈ri, pi〉I =
〈r · ri, pi〉I . Varacca’s main result for the family of Plotkin indexed valuations
can be summarized as follows:

Theorem 2.3 (Varacca [23])

(i) If P is a continuous poset, then the family of Plotkin indexed valuations
ordered by ≪IVP

as defined in (4) is an abstract basis.

(ii) The round ideal completion of the Plotkin indexed valuations, IVP (P ),
admits an addition ⊕ and a scalar multiplication by elements of R≥0 that
satisfy the following laws:

(1) A⊕B = B ⊕ A (2) A⊕ (B ⊕ C) = (A⊕ B) ⊕ C

(3) A⊕ 0 = A (4) 0A = 0

(5) 1A = A (6) p(A⊕ B) = pA⊕ pB

(7) p(qA) = (pq)A where p, q ∈ R≥0 and A,B,C ∈ IVP (P ).

6 S(n) denotes the permutation group on an n-element set.
7 Note that r ≪ s iff r = 0 or r < s for r, s ∈ R≥0.

7



Mislove

(iii) IVP defines the object level of an endofunctor which is monadic over
DOM, and that satisfies a distributive law with respect to each of the
power domain monads. 2

A coherent domain is one whose Lawson topology is compact; it is a stan-
dard result of domain theory is that the Plotkin power domain applied to
a coherent domain yields another such (cf. [1] for details). A corollary of
Theorem 2.3 is that the composition PP ◦ IVP defines a monad on CDOM,
the category of coherent domains, whose algebras satisfy the laws listed in
Theorem 2.3(i) and the laws of the Plotkin power domain:

(i) X + Y = Y +X

(ii) X +X = X

(iii) X + (Y + Z) = (X + Y ) + Z

In other words, PP (IVP (P )) is the initial domain semilattice algebra over P
that also satisfies the laws listed in Theorem 2.3(ii).

3 Bag domains

In this section we develop some results that are fundamental for our main
construction. More details about these results are contained in [17]. The ear-
liest comments in the literature about bag domains—domains whose elements
are bags or multisets from an underlying domain, are in [20] where Exercise
103 discusses them; Poigné [21] also comments on the existence of free bag
domains. But the first paper devoted to bag domains is apparently [6], where
a topological approach to their construction is investigated. There is the work
of Vickers [25] and of Johnstone [8,9], but these works were inspired by prob-
lems in database theory, and the focus is on abstract categorical construction,
not on domains as we consider them. To be sure, we also are interested in
categorical aspects, but our aim is more in the spirit of [6], which includes
analyzing the internal structure of these objects. Our results also allow us to
capture the constructions of Varacca [23] more concretely. We begin with a
simple result about posets:

Definition 3.1 Let P be a poset and let n ∈ N. For φ ∈ S(n), define a
mapping

φ : P n → P n by φ(d)i = dφ−1(i). (5)

Then φ permutes the components of d according to φ’s permutation of the
indices i = 1, . . . , n. Next, define a preorder �n on P n by

d �n e iff (∃φ ∈ S(n)) φ(d) ≤ e iff (∃φ ∈ S(n)) dφ−1(i) ≤ ei (∀i = 1 . . . , n).
(6)

Finally, we define the equivalence relation ≡n on P n by

≡n = �n ∩ �n, (7)
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and we note that (P n/≡n,⊑n) is a partial order. We denote by [d] the image
of d ∈ P n in P n/≡n.

Lemma 3.2 Let P be a poset, let n ∈ N, and let d, e ∈ P n. Then the following
are equivalent:

(i) d ⊑n e,

(ii) ↑{φ(d) | φ ∈ S(n)} ⊇ ↑{φ(e) | φ ∈ S(n)}.

Proof. For (i) implies (ii), we note that, if φ ∈ S(n) satisfies dφ−1(i) ≤ ei, then
di ≤ eφ(i) for each i = 1, . . . , n, so φ−1(e) ∈ ↑ d, and then ψ(e) ∈ ↑{(φ(d) | φ ∈
S(n)} for each ψ ∈ S(n) by composing permutations, from which (ii) follows.
Conversely, (ii) implies (i) is clear. 2

We also need a classic result due to M.-E. Rudin (cf. Lemma III-3.3 of[4].

Lemma 3.3 (Rudin) Let P be a poset and let {↑Fi | i ∈ I} be a filter basis
of non-empty, finitely-generated upper sets. Then there is a directed subset
A ⊆ ∪iFi with A ∩ Fi 6= ∅ for all i ∈ I. 2

Next, let P be a dcpo and let n > 0. We can apply the lemma above to
derive the following:

Proposition 3.4 Let P be a dcpo, and let n > 0.

• If A ⊆ P n/≡n is directed, then there is a directed subset B ⊆
⋃

[a]∈A{φ(a) |

φ ∈ S(n)} satisfying

↑{φ(⊔B) | φ ∈ S(n)} =
⋂

a∈A

↑{φ(a) | φ ∈ S(n)} and [⊔B] = ⊔A. (8)

• In particular, (P n/≡n,⊑) is a dcpo, and the mapping x 7→ [x] : P n → P n/≡n

is Scott continuous.

Proof. If A ⊆ P n/≡n is directed, then Lemma 3.2 implies that {∪φ∈S(n) ↑φ(a) |
[a] ∈ A} is a filter basis of finitely generated upper sets, and so by Lemma 3.3
there is a directed set B ⊆

⋃
[a]∈A{φ(a) | φ ∈ S(n)} with B ∩ {φ(a) | φ ∈

S(n)} 6= ∅ for each [a] ∈ A. Since B ⊆ P n is directed, we have x = ⊔B exists.
If [a] ∈ A, then B ∩{φ(a) | φ ∈ S(n)} 6= ∅ means there is some φ ∈ S(n) with
φ(a) ∈ B, so φ(a) ≤ x by Lemma 3.2. Hence [a] ⊑ [x] for each [a] ∈ A, so [x]
is an upper bound for A.

We also note that, since ⊔B = x,

⋂

b∈B

↑{φ(b) | φ ∈ S(n)} = ↑{φ(x) | φ ∈ S(n)}.

Indeed, the right hand side is clearly contained in the left hand side since
b ≤ x for all b ∈ B. On the other hand, if y is in the left hand side, then b ⊑ y
for each b ∈ B. Now, since S(n) is finite, there is some φ0 ∈ S(n) and some
cofinal subset B′ ⊆ B with φ0(b) ≤ y for each b ∈ B′. But then ⊔B′ = ⊔B,
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and so ⊔{φ0(b) | b ∈ B′} = φ0(x), from which we conclude that φ0(x) ≤ y.
Thus y is in the right hand side, so the sets are equal.

Now, if y ∈ P n satisfies [a] ⊑ [y] for each [a] ∈ A, then since B ⊆⋃
[a]∈A{φ(a) | φ ∈ S(n)}, it follows that [b] ⊑ [y] for each b ∈ B. Then

y ∈
⋂

b∈B ↑{φ(b) | φ ∈ S(n)} = ↑{φ(x) | φ ∈ S(n)}, and so [x] ⊑ [y]. Thus
[x] = ⊔A in the order ⊑n. This also shows that

⋂
[a]∈A ↑{φ(a) | φ ∈ S(n)} =

↑{φ(x) | φ ∈ S(n)}.

It is clear now that P n/≡n is a dcpo, and the argument we just gave shows
that directed sets B ⊆ P n satisfy [⊔B] = ⊔b∈B [b] . This concludes the proof.2

Proposition 3.5 Let P be a domain and let n ∈ N. Then

(i) (P n/≡n,⊑n) is a domain. In fact, if d, e ∈ P n, then

[d] ≪ [e] iff (∃φ ∈ S(n)) φ((di)n) ≪ (ei)n.

(ii) If P is RB or FS, then so is P n/≡n.

(iii) If P is coherent, then so is P n/≡n.

Proof. P n/≡n is a domain: Proposition 3.4 shows that (P n/≡n,⊑n) is di-
rected complete and that the quotient map is Scott continuous. To character-
ize the way-below relation on P n/≡n, let x, y ∈ P n with x≪ y. Then xi ≪ yi

for each i = 1, . . . , n, and it follows that φ(x) ≪ φ(y) for each φ ∈ S(n). If
A ⊆ P n/≡n is directed and [y] ⊑n ⊔A, then there is some φ ∈ S(n) with
φ(y) ≤ z, where [z] = ⊔A. Then Proposition 3.4 shows there is a directed set
B ⊆ ∪[a]∈A ↑{φ(a) | φ ∈ S(n)} with ⊔B ≡n z. Hence, there is some ψ ∈ S(n)
with ψ(y) ≤ ⊔B. Since ψ(x) ≪ ψ(y), it follows that there is some b ∈ B with
ψ(x) ≤ b, so [x] ⊑n [b]. Hence [x] ≪ [y] in P n/≡n.

We have just shown that x ≪ y in P n implies that [x] ≪ [y] in P n/≡n.
Since P n is a domain, ↓↓y is directed, and so the same is true for ↓↓ [y] ∈ P n/≡n.
Since the quotient map [ ] : P n → P n/≡n is continuous, if follows that [y] =
⊔ [↓↓y] ⊑n ⊔↓↓ [y] ⊑n [y], and so P n/≡n is a domain.

P n/≡n is RB if P is: Now suppose the P is in RB. Then, by Theorem 4.1
of [11] there is a directed family fk : P → P of Scott-continuous maps with
1P = ⊔kfk and fk(P ) finite for each k ∈ K. Then the mappings (fk)

n : P n →
P n also form such a family, showing P n is in RB.

Next, given k ∈ K, x ∈ P n and φ ∈ S(n), we have φ(fn
k (x)) = fn

k (φ(x))
since fn

k is fk acting on each component of x. It follows that there is an
induced map [fn

k ] : P n/≡n → P n/≡n satisfying [fn
k ]([x]) = [fn

k (x)], and this
map is continuous since [ ] is a quotient map. Finally, [fn

k ](P n/≡n) is finite since
fn

k (P n) is finite, and the fact that ⊔k[f
n
k ] = 1P n/≡n

follows from ⊔kf
n
k = 1P n.

Thus, P n/≡n is RB if P is.

P n/≡n is FS if P is: The argument is analogous to the one we just gave
for the case P is RB.

P n/≡n is coherent if P is: Last, we consider coherent domains. Recall
a domain is coherent if the Lawson topology is compact, where the Lawson

10
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topology has the family of sets {U \ ↑F | F ⊆ P finite & U Scott open} for a
basis. Now, if x ∈ P n, then {φ(x) | φ ∈ S(n)} is finite, and so if F ⊆ P n/≡n

is finite, then [↑F ]−1 = ∪[x]∈F ↑{φ(x) | φ ∈ S(n)} is finitely generated. It
follows that [ ] : P n → P n/≡n is Lawson continuous, so if P is coherent, then
so are P n and P n/≡n. 2

Definition 3.6 Let P and Q be domains, and let f : P → Q be Scott con-
tinuous. We let

(i) Bn(P ) = (P n/≡n,⊑n) denote the domain of n-bags over P . If n = 0,
we identify P 0 with [〈〉], the equivalence class of the empty word over
P . We also let Bn(f) : Bn(P ) → Bn(Q) be the induced map satisfying
Bn(f)([d]P ) = [fn(d)]Q for all d ∈ P n, where [ ]P : P n → P n/≡n is the
quotient map, and likewise for [ ]Q.

(ii) B(P ) =
·

∪n Bn(P ) denote the disjoint sum 8 of the Bn(P ). We also let

B(f) =
·

∪n Bn(f).

(iii) B⊥(P ) = ⊕nBn(P ) denote the separated sum 9 of the Bn(P ). We also
let B⊥(f) be the extension of B(f) that sends ⊥ to ⊥.

Recall that if A is a category of dcpos, then A⊥ denotes the full subcat-
egory of cpos in A, while A⊥,! denotes the subcategory of A⊥ of strict Scott-
continuous maps, i.e., those that preserve least elements. We call A⊥,! the
pointed subcategory determined by A.

Proposition 3.7

(i) Bn defines a continuous endofunctor on the categories DCPO, DOM,
CDOM, RB and FS for each n ∈ N. Bn also defines a continuous endo-
functor of the pointed subcategory determined by each of these categories
of dcpos.

(ii) B defines a continuous endofunctor on DCPO and DOM.

(iii) B⊥ defines a continuous endofunctor on CPO!, the category of cpos and
strict Scott-continuous maps, and on CDOM⊥,!, RB⊥,! and FS⊥,!.

Proof. Ad (i): Proposition 3.5 shows that Bn(P ) is a domain if P is one. If
f : P → Q is Scott continuous, then so is fn : P n → Qn, and it is routine to
show that the mapping [d]P 7→ [fn(d)]Q, d ∈ P n is well-defined and continuous.
Thus Bn is an endofunctor on CDOM, and it is defined as a composition
of constructors that define continuous endofunctors on each of the indicated
categories, so it is continuous. Clearly [(⊥, . . . ,⊥)] is the least element of
Bn(P ) if ⊥ is the least element of P , from which the claim about pointed
subcategories follows.

Ad (ii): For B, we must add the countable separated sum constructor,
which it is easy to show leaves DCPO and DOM invariant.

8 The disjoint sum of dcpos is their disjoint union.
9 The separated sum of (d)cpos is their disjoint union with a (new) bottom element added.
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Ad (iii): It is obvious that B⊥ leaves CPO invariant. A proof that each of
the other pointed categories is closed under coalesced sums can be found in
[1]. 2

3.1 Commutative domain monoids

By a domain monoid we mean a domain S equipped with a monoid operation
· : S × S → S which is Scott continuous. For example, it is well known that

the family of finite words over P , P ∗ =def (
·

∪P n, ·) where · is concatenation,
is the free monoid over P , and hence the free domain monoid over P , if P is
a domain. Of course, our interest is in commutative domain monoids – ones
where the monoid operation is commutative.

Notation 3.8 We let CDM denote that category of commutative domain
monoids and Scott continuous monoid homomorphisms.

Theorem 3.9 Then B : DOM → CDM is left adjoint to the forgetful functor.

Proof. It is routine to show that B(P ) is a commutative monoid with respect
to concatenation, with the empty word as the identity. Is (S, ∗) is any com-
mutative monoid and f : P → S is Scott continuous, then there is a unique
Scott continuous monoid homomorphism f̂ : P ∗ → S since (P ∗, ·) is the free

domain monoid over P . But since S is commutative, the mapping f̂ |P n factors
through the family Bn(P ) for each n ≥ 0, and so there is a unique induced
monoid homomorphism B(f) : B(P ) → S. 2

The interesting question is how to proceed in the case of B⊥(P ), the sep-
arated sum of the family of Bn(P ). There are two “obvious” ways to extend
the monoid operation on B(P ) to include the new least element:

(+) Define ⊥ ·x = x, so that ⊥ acts like an additive 0, or

(×) Define ⊥ ·x =⊥, so that ⊥ acts like a multiplicative 0.

In the first case, we would identify ⊥ with the equivalence class of the empty
word, [〈 〉], and the effect is to make the empty word the least element of
B⊥(P ). We denote this monoid by B+(P ). As we will see, the order on B+(P )
is too coarse to support this monoid structure, so it has to be refined. But
it plays a crucial role in recapturing Varacca’s indexed valuations using our
techniques.

Definition 3.10 If P is a domain, we let B+(P ) = ⊕n>0Bn(P ) denote the
separated sum of the family {Bn(P ) | n > 0}, in the order given by

[(di)m] ⊑ [(ej)n] iff (∃ι : m →֒ n) 10 di ≤ eι(i) for i ∈ m, (9)

with the semigroup operation of B(P ) extended so that ⊥ ·x = x for all
x ∈ B+(P ).

10 We identify m with the set {0, . . . , m − 1}, and similarly for n.
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We also let CPM+ denote the category of commutative monoids whose
underlying order structure is a continuous poset with least element, for which
the monoid operations are Scott continuous, and in which the least element is
the identity of the monoid. The morphisms are the Scott-continuous monoid
homomorphisms.

Theorem 3.11

(i) If P is a continuous poset, then B+(P ) is a continuous poset for which
the monoid operation is Scott continuous.

(ii) In fact, B+ : CPOS → CPM+ is left adjoint to the forgetful functor.

Proof. For the first claim, we begin by noting that the order defined in (9)
restricts to the usual product order on Bn(P ), so it defines a partial order
that refines the order on B⊥(P ). Next, if A ⊆ B+(P ) is directed and [(di)m] ∈
B+(P ) is an upper bound for A, then each [(ai)n] ∈ A satisfies n ≤ m. It
follows that there is a maximum m ≥ 0 with A ∩ Bm(P ) 6= ∅, and we let
A0 = A ∩ Bm(P ) for this maximum m. Since A is directed, it follows that A0

is directed, too, and then that ⊔A0 ∈ Bm(P ) also is the least upper bound of
A. Thus directed sets in B+(P ) that have upper bounds are have least upper
bounds, and these are computed in Bm(P ), where m is the largest m ≥ 0 for
which the directed set intersects Bm(P ). From this and the fact that Bm(P )
is a continuous poset for each m, it is a straightforward argument to show
that B+(P ) is a continuous poset, and in fact that ↓↓[d] ∩ Bm(P ) is a cofinal
subset of ↓↓[d] for each d ∈ Pm. The fact that the monoid operation on B(P )
is continuous implies the same is true of that operation on B+(P ). Hence,
B+(P ) is a CPM+-object.

Now, let (S, ∗) be a continuous poset with a Scott continuous monoid oper-
ation for which the identity is the least element, and let f : P → S be a Scott
continuous map with P a continuous poset. Then P n is a continuous poset,
and since continuous posets have finite products, the mapping fn : P n → Sn

by fn((d1, . . . , dn)) = (f(d1), . . . , f(dn)) is continuous. We can follow this by
the product mapping (s1, . . . , sn) 7→ s1 ∗ · · · ∗ sn : Sn → S, yielding a contin-
uous mapping. Since S is commutative, this mapping factors through Bn(P ),
yielding a Scott-continuous mapping from f [n] : Bn(P ) → S extending f . The
problem is to show the family {f [n]}n≥1 of mappings together with f(⊥) = ǫS
gives a continuous mapping from B+(P ) to S.

Since the B+(P ) =
·

∪nBn(P ), and we know f [n] is Scott continuous, the
family gives a mapping f+ : B+(P ) → S by f+([(di)m]) = f [m]([(di)m]) which
is well-defined since the Bn(P )s are pairwise disjoint. In fact, f+ is Scott
continuous on each Bn(P ), and we claim that it is Scott continuous on all of
B+(P ) because it is monotone. This is clear on each Bn(P ), so suppose the
[(di)m] ⊑ [(ej)n]. Then m ≤ n and there is an injection ι : m →֒ n with di ⊑P

eι(i) for each i. Then f(di) ⊑S f(eι(i)) for each i, from which it follows that
f+([(di)m]) = f [m]([(d1, . . . , dm]) = f(d1) ∗ · · · ∗ f(dm) ⊑S f(eι(1)) ∗ · · · f(eι(m)).
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Since ǫS is the least element of S, if we let s denote the product in S of those
f(ej) with j 6= ι(i) for any i, then ǫS ⊑S s, so

f+([(di)m]) = f [m]([d1, . . . , dm)] = f(d1) ∗ · · · ∗ f(dm) ∗ ǫS
⊑S f(eι(1)) ∗ · · · ∗ f(eι(m)) ∗ s

= f(e1) ∗ · · · ∗ f(en)

= f [n]([e1, . . . , en]) = f+([(ej)n]).

This shows the induced mapping is monotone. Continuity then follows, and
the mapping is a homomorphism by design. As before, uniqueness follows
from that of fn : P n → Sn. 2

If we let CDM+ denote the subcategory of CPM+ whose objects are do-
mains, then each CPM+-object S has a round ideal completion that is in
CDM+, since the inequations and operations on S extend to its completion.
This observation leads to:

Corollary 3.12 B+ restricts to a left adjoint to the forgetful functor from
CDM+ to DOM.

The second possibility for extending the monoid structure on B(P ) to
include ⊥ keeps ⊥ and [〈 〉] distinct, with ⊥ as a multiplicative zero.

Definition 3.13 Let P be a domain. Then we let B×(P ) = ⊕n≥0 Bn(P )
denote the separated sum of the Bn(P ), but where we define ⊥ ⊕ [d] =⊥ for
all d ∈ P n, for all n. Note that [〈 〉], the equivalence class of the empty word,
is included and is the identity of the monoid.

We also define CDM× to be the category of commutative domain monoids
with least element in which the least element acts as a multiplicative 0, and
Scott continuous monoid homomorphisms preserving the least element.

Clearly B×(P ) is in CDM× for each domain P . In fact, we can say more.

Theorem 3.14 B× : DOM → CDM× is left adjoint to the forgetful functor,
In fact, B× restricts to a left adjoint to the forgetful functor from the subcat-
egory of CDM× whose objects are in A, for each of the categories A listed in
Proposition 3.7(iii).

Proof. Given the prior results, the argument for B× only requires noting the
following. First, for a domain P , defining ⊥ ∗[d] =⊥ extends concatenation to
a continuous operation on B×(P ). Further, for a commutative domain monoid
S satisfying s∗ ⊥=⊥, and a Scott-continuous map f : P → S, the mapping
B×(f)(⊥) =⊥S gives the unique strict extension of B(f) : B(P ) → S to all of
B×(P ). This establishes the first claim.

For the second, we showed in Proposition 3.7(iii) that B⊥ restricts to an
endofunctor of each of the subcategories listed there, and it then follows from
what we just showed that B× restricts to a left adjoint to the forgetful functor
from the subcategory of CDM× in each case. 2
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Example 3.15 We have shown that several Cartesian closed categories of
domains are closed under the action of the functor B and its relatives. Here
is an example that demonstrates that the Cartesian closed category of Scott
domains does not enjoy this property. Let P = {⊥, a, b,⊤} be the four-
element lattice with a and b incomparable, then P 2/≡2 is not in BCD: the pair
[a,⊥], [b,⊥] has [a, b] and [⊤,⊥] as minimal upper bounds. 11

4 Reconstructing IVP (P )

We next use our results on bag domains to reconstruct Varacca’s Plotkin in-
dexed valuations. We begin by considering how to introduce the non-negative
reals into the picture. In fact, what we really want are commutative domain
monoids on which the non-negative reals act, so they should be modules over
the non-negative reals.

4.1 R+-spaces

The set R+ of positive reals is a continuous poset in the usual order. We say
a continuous poset P is an R+-continuous poset if there is a Scott continuous
mapping · : R+ × P → P satisfying mixed associativity: r · (s · p) = (rs) · p,
for p ∈ P and r, s ∈ R+, and identity: 1 · p = p for all p ∈ P . We let CPOSR+

denote the category of R+-continuous posets and Scott continuous mappings
that preserve the action: f(r · p) = r · f(p) for each r ∈ R+ and p ∈ P . For
any continuous poset P , its easy to create a continuous poset that contains P
and on which R+ acts:

Proposition 4.1 We define the functor BR+ : CPOS → CPOSR+ by BR+(P ) =
R+ × P and for f : P → Q, BR+(f)(r, p) = (r, f(p)). Then BR+ is left adjoint
to the forgetful functor.

Moreover, if we let CPM denote the category of continuous posets which
are commutative monoids and whose morphisms are Scott-continuous monoid
maps, and if CPMR+ denotes the subcategory of CPM whose objects also admit
R+ actions and whose morphisms respect that action, then BR+ restricts to a
left adjoint to the forgetful functor from CPMR+ to CPM.

Proof. The only interesting point is that the unit is the mapping p 7→
(1, p) : P → R+ × P , which is guaranteed by the identity axiom. 2

4.2 Varacca’s indexed valuations

We now investigate two possibilities for how the identity of a commutative
domain monoid and the least element of the domain relate to one another: in
one they are identified with one another, and in the other, they are distinct

11 Thanks to one of the anonymous referees for this example.
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elements; in the latter case we also treat the least element as a multiplica-
tive zero. The first case allows us to recapture Varacca’s Plotkin indexed
valuations, as we now show.

Definition 4.2 Let P be a continuous poset. We define

BR

+(P ) = B+(R+ × P ) = ⊕n>0Bn(R+ × P )

to be the separated sum of the family {Bn(R+×P ) | n > 0}, and we define the
monoid operation on BR

+(P ) to be the semigroup operation of B+(P ) extended
so that the new least element, ⊥, is the identity as well as the least element.
We define an action of R≥0 on BR

+(P ) by

r · [(ri, di)m] = [(rri, di)m] and 0 · [(ri, di)m] = 0· ⊥ = r· ⊥ = ⊥,

for [(ri, di)m] ∈ BR

+(P ) and r ∈ R+. Then BR

+(P ) is a commutative monoid
whose underlying order structure is a continuous poset, on which R≥0 acts
Scott continuously.

We also recall the laws enumerated in Theorem 2.3 for a monoid (P, ∗)
admitting an action of R≥0:

(1) p ∗ q = q ∗ p (2) p ∗ (q ∗ u) = (p ∗ q) ∗ u

(3) p ∗ ǫP = p (4) 0 · p = ǫP

(5) 1 · p = p (6) r(p ∗ q) = r · p ∗ r · q

(7) r · (s · p) = (rs) · p where r, s ∈ R≥0 and p, q, u ∈ P .

Fig. 1. Varacca’s Laws for Actions of R≥0 on Monoids

These laws assert that (P, ∗) is a commutative monoid that admits an
action of R≥0 so that 1 ∈ R≥0 acts like a multiplicative identity and 0 ∈ R≥0

acts like a multiplicative zero, leaving the identity ǫP fixed. We let CPOSR

+

denote the category of commutative monoids on continuous posets admitting
a Scott-continuous action of R≥0 and satisfying the laws in Figure 1, and
Scott-continuous monoid homomorphisms preserving the R≥0 action.

Theorem 4.3 For a continuous poset P , BR

+(P ) satisfies the laws of Theo-
rem 2.3. In fact, BR

+ is the object level of a left adjoint to the forgetful functor
from CPOSR

+ and the category CPOS of continuous posets and Scott-continuous
maps.

Proof. It’s clear from the definition that BR

+(P ) is a commutative monoid
whose underlying order structure is a continuous poset, and that R≥0 acts
on this structure so that the laws (4) – (7) are satisfied. The fact that the
operations are Scott continuous is also clear from the construction.

For the claim about BR

+, we note that it is a composition of two left adjoints,
BR+ followed by B+, and so their composition is one as well. 2
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Remark 4.4 Recall that a continuous poset P can be completed into a do-
main by taking its round-ideal completion, Id(P ). The resulting structure
has the same way-below relation as the underlying continuous poset, and in
fact it also has the same Scott topology. An equivalent way of realizing this
construction is to take the sobrification of P in its Scott topology.

Corollary 4.5 For a domain P , IVP (P ) ≃ Id(BR

+(P )).

Proof. One proof follows by noting that the mapping 〈ri, pi〉n 7→ [(ri, pi)n]
and 0 7→⊥ defines a bijection of the indexed valuations over P onto BR

+(P )
that takes ≪ in IVP (P ) to ≪ on BR

+(P ). Since they have isomorphic bases,
the domains IVP (P ) and Id(BR

+(P )) are also isomorphic.

A perhaps more elegant proof follows by noting that BR

+(P ) satisfies the
same laws as IVP (P ), and both are initial objects over P according to Theo-
rems 2.3 and 4.3. 2

Corollary 4.6 IdBR

+ generates a monad on DOM, and each of the power
domain monads PX lifts to a monad on IdBR

+-algebras.

Proof. For each of the power domain monads, PX , Varacca showed that there
is a distributive law of IVP over PX in [23], and this implies that PX lifts to
a monad on the class of IdBR

+-algebras by Beck’s Theorem 1.1 [2] and by
Theorem 4.5. In fact, we can easily recover the distributive law that Varacca
obtains in [24] as follows: For a domain P , a power domain monad PX and
an element [(ri, Xi)n] ∈ BR

+PX(P ), the distributive law on the basis elements
in BR

+(P ) is

d : BR

+PX
.

−→ PXB
R

+ by dP ([(ri, Xi)n]) = 〈[(ri, xi)n] | xi ∈ Xi ∈ PX(P )〉,

where 〈− 〉 denotes the element of PXB
R

+(P ) generated by ∪i≤n{[(ri, xi)n] |
xi ∈ Xi ∈ PX(P )}. The result follows from Beck’s Theorem 1.1 [2]. 2

Remark 4.7 For all its attractiveness, the shortcoming of Varacca’s indexed
valuations approach is that it is not clear whether it leaves any ccc’s of do-
mains invariant. There is some relevant literature here: Poigné [21] shows
that there are no left adjoints for commutative semigroups or commutative
idempotent monoids over domains, if one includes a least element in the dis-
cussion. Gordon Plotkin has also commented in a personal communication
that he once showed that the free commutative semigroup with least element
takes one out of the largest ccc of ω-algebraic domains, but that the argument
would fail in the continuous case. Finally, Heckmann [6] has shown that there
is a lower bag domain construction that does not leave any ccc of algebraic
domains invariant, but again his arguments rely on the characterization of
bifinite domains, and it is not clear if they can be generalized to the setting
where one is dealing with continuous objects.

So, this issue remains unresolved for Varacca’s construction. In the next
section, we present an alternative that sacrifices one of the laws of Theorem 2.3,
but gains the property of staying within ccc’s of domains.
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4.3 Real domain monoids

We now turn our attention to the action of R+ on other possible commutative
domain monoids with least element, namely ones in which the monoid identity
is not the least element. Here is a weakening of Varacca’s laws to address this
situation.

Definition 4.8 We call a commutative domain monoid (P, ∗) a real domain
monoid if P has a least element and if R≥0 acts on P so that the following
laws are satisfied:

(1) p ∗ q = q ∗ p (2) p ∗ (q ∗ u) = (p ∗ q) ∗ u

(3) p ∗ ǫP = p (4′) 0 · p =⊥

(5) 1 · p = p (6) r(p ∗ q) = r · p ∗ r · q

(7) r · (s · p) = (rs) · p (8) ⊥ ∗p =⊥

where r, s ∈ R+ and p, q, u ∈ P . A morphism of real domain monoids P
and Q is a Scott-continuous monoid homomorphism that preserves the action
of R≥0. We let RDM denote the category of real domain monoids and their
morphisms.

Remark 4.9 The laws (1) – (3) just assert that (P, ∗) is a commutative
monoid, while the remaining laws characterize the action of R≥0 on P . The
difference with Varacca’s indexed valuation domains defined in Theorem 2.3
is law (4′), which in his case asserts 0A = 0. But for him, 0 =⊥, so his objects
satisfy these laws. We will find that differentiating ǫP from ⊥ gives a very
different structure that is crucial for our construction of a power domain of
discrete random variables in the next section that leaves invariant two Carte-
sian closed categories of domains. But to achieve our results, we also have to
add the last law (8), which enforces that ⊥ acts like a multiplicative zero.

Our next goal is to characterize the objects we have defined.

Definition 4.10 Let P be a domain.

• We define BR

×(P ) = B×(R≥0×P ), the separated sum of the family {Bn(R≥0×
P ) | n ≥ 0} with the monoid structure defined in Definition 3.13. We also
define the action of R≥0 on BR

n (P ) and on BR

×(P ) by

r · [(ri, pi)n] = [(rri, pi)n] and 0 · [(ri, pi)n] = r· ⊥ = ⊥,

where r ∈ R+. Then R≥0 acts Scott continuously on BR

×(P ).

• If f : P → Q is Scott continuous, then we define

BR

×(f) : BR

×(P ) → BR

×(Q) by BR

×(f)([ri, pi]n) = [ri, f(pi)]n ∧ BR

×(f)(⊥) =⊥ .

Theorem 4.11 BR

× defines a continuous endofunctor on DOM, on RB and on
FS. In fact, BR

× is a left adjoint to the forgetful functor from the subcategory

18



Mislove

of real domain monoids of each of these categories.

Proof. The arguments are similar to those given in the proof of Theorem 4.3,
with the distinguishing feature of this construction that the least element is
not the monoid identity, but instead acts like a multiplicative zero relative to
the monoid operation, and that 0 · x =⊥ for all x ∈ BR

×(P ). 2

Remark 4.12

(i) For a poset P , the difference between BR

+(P ) and BR

×(P ) is that the least
element of BR

+(P ) acts like a multiplicative identity, while in BR

×(P ), it
acts as a multiplicative zero.

(ii) We have seen that BR

+(P ) allows us to recapture Varacca’s Plotkin in-
dexed valuations over P . In so doing, we must form an ideal completion,
because the order on BR

+(P ) is incomplete, even if P is a dcpo. This
is because elements of the form [(ri, di)m] and [(sj , ej)n] can compare in
BR

+(P ) even if m 6= n. In fact, it is easy to show that BR

+(P ) is directed,
and so there is a largest element in its round ideal completion. It would
be interesting to study what role this element plays in the structure of
the object.

(iii) On the other hand, BR

×(P ) is a domain if P is one, so no completion
is necessary. Its least element is distinct from the monoid identity, and
the order prevents elements of the form [(ri, di)m] and [(sj, ej)n] from
comparing unless m = n.

5 Discrete random variables over domains

We now show how to construct two power domains of discrete random variables
over a domain, one for each of our constructions, BR

+ and BR

×. We also show
that the second of these leaves some Cartesian closed categories of domains
invariant.

To begin, recall that a random variable is a function f : (X,µ) → (Y,Σ)
where (X,µ) is a probability space, (Y,Σ) is a measure space, and f is a
measurable function, which means f−1(A) is measurable in X for every A ∈ Σ,
the specified σ-algebra of subsets of Y . Most often random variables take their
values in R, equipped with the usual Borel σ-algebra. For us, X will be a
countable, discrete space, and Y will be a domain, where Σ will be the Borel
σ-algebra generated by the Scott-open subsets.

Given a random variable f : X → Y , the usual approach is to “push the
probability measure µ forward” onto Y by defining fµ (A) = µ(f−1(A)) for
each measurable subset A of Y . But this defeats one of the attractions of
random variables: namely, that there may be several points x ∈ X which f
takes to the same value y ∈ Y . This is ‘attractive’ because it means that the
random variable f makes distinctions that the probability measure fµ does
not, and we would like to exploit this fact. Varacca makes exactly this point
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in his work [23,24], a point he justifies by showing how to distinguish the
random variable f from the probability measure fµ operationally. We return
to this point later. For the moment, we define our power domain of random
variables.

Definition 5.1 For a domain P , we define the power domain of additive ran-
dom variables over P 12 to be the subdomain

RV+(P ) =
⋃

n≥0

{[(ri, di)n] |
∑

i

ri ≤ 1} ∪ {⊥} ⊆ IdBR

+(P ).

Remark 5.2 We can think of a finite random variable over P as a formal
sum

∑
i≤n riδxi

where some of the xi can be repeated. But, the order from

BR(P ) distinguishes, for example, 1
2
δx ⊕ 1

2
δx from δx, while these two would

be identified as probability measures.

In order to show that RV+ generates a monad, we need an enumeration of
the laws that a +-random variable algebra should satisfy. These are adapted
from the laws for probabilistic algebras first defined by Graham [5]:

Definition 5.3 An additive random variable algebra is a domain P with ⊥,
its least element and with a Scott-continuous mapping +: (0, 1]×P ×P → P
satisfying:

• a+1 b = a, 13

• a+r b = b+1−r a, and

• (a+r b) +s c = a+rs (b+ s(1−r)
1−sr

c),

where r, s ∈ (0, 1) and a, b, c ∈ P .

A morphism of additive random variable algebras is a Scott-continuous
map f : S → T satisfying f(s +r s

′) = f(s) +r f(s′), for all s, s′ ∈ S and all
r ∈ (0, 1].

Other than the addition of the first law, the difference between our laws
and those from Graham’s characterization of probabilistic algebras are that
(i) we restrict the value of r in +r to cases when 0 < r < 1 in all but the first
law (which avoids some annoying side conditions in Graham’s listing), and (ii)
the law a +r a = a is missing. This last is exactly the law Varacca weakened
to allow a distributive law to hold.

Proposition 5.4 Let P be a domain, and for [(ri, pi)m], [(sj , qj)n] ∈ RV+(P )
and 0 < r ≤ 1, define

[(ri, pi)m] +r [(sj , qj)n] = [(rri, pi)m]⊕ [((1 − r)sj, qj)n] .

12 We call these the additive random variables because the least element acts like an additive
identity. We thank an anonymous referee for suggesting this terminology, and for analogous
terminology for the multiplicative case that we use in the next subsection.
13 We use a +r b as infix notation for +(r, a, b).
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Then:

(i) RV+(P ) is an additive random variable algebra, and

(ii) [(r, p)] = [(1, p)]+r ⊥ for all p ∈ P and all r ∈ (0, 1), and

[(r1, p1), . . . , (rm, pm)] = [(1, p1)] +r1 [(
r2

(1 − r1)
, p2), . . . , (

rm

(1 − r1)
, pm)]

for all [(r1, p1), . . . , (rm, pm)] ∈ RV+(P ).

Proof. Given a domain P , we can define +: (0, 1] × BR(P )2 → BR(P ) by

+(r, [(ri, pi)m], [(sj, qj)n] = [(rri, pi)m]⊕ [((1 − r)sj, qj)n] .

Because R+ acts continuously on BR

+(P ) and because ⊕ is continuous, + is a
continuous operation. RV+(P ) is the subfamily of IdBR

+(P ) whose real compo-
nents are bounded by 1, and this family is clearly invariant under the action of
R+, so this defines a continuous mapping +: (0, 1]×RV+(P )2 → RV+(P ). Us-
ing the abbreviation that [(ri, pi)m] +r [(sj , qj)n] = [(rri, pi)m]⊕ [((1 − r)sj, qj)n],
it also is routine to verify that the laws of Definition 5.3 are satisfied.

The results in (ii) are simple calculations. 2

We now characterize the initial additive random variable algebra over a
domain.

Theorem 5.5 RV+ defines a continuous endofunctor on DOM. Moreover, it
also defines a left adjoint to the forgetful functor from the category of additive
random variable algebra domains and additive random variable maps to DOM.

Proof. RV+ is obtained by restricting IdBR

+ in the “real components” to
ones whose sum is at most 1. This family is a Scott-closed subset of IdBR

+(P ).
Hence RV+(P ) is a domain if P is one. Continuous maps f : P → Q ex-
tend to BR

+(P ) by BR

+(f)[(ri, pi)n] = [(ri, f(pi))n] and then to its round ideal
completion, and the elements in RV+(P ) are those in IdBR

+(P ) whose real
components sum to at most 1; it follows that IdBR

+(f)(P ) ⊆ IdBR(Q). Since
the endofunctor is composed of components that are locally continuous, it is
as well.

For the second part, we first show that RV+ is left adjoint to the forget-
ful functor from additive random variable domains into DOM. First, we let
η : P → RV+(P ) by η(p) = [(1, p)] define the unit of the adjunction.

Next, let S be an additive random variable domain algebra, P a domain,
and let f : P → S be a Scott continuous map. We define f̂ : (RV+(P ) ∩

BR

+(P )) → S via f̂([(ri, pi)m] by induction on m, and then extend to it closure,
which is RV+(P ).

If m = 0, then f̂(⊥) =⊥S. In case of [(r, p)], we have [(r, p)] = [(1, p)]+r ⊥

by Proposition 5.4, so we define f̂([(r, p)]) = f(p)+r ⊥S. This mapping is
clearly continuous on P/≡1⊆ RV+(P ), since P/≡1 inherits its Scott topology
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from that of RV+(P ). This is also the unique such function on P/≡1 satisfying

f̂ ◦ η = f .

Continuing the definition of f̂ by induction, assume that we have defined
f̂ on ∪k≤n(P

k/≡k) uniquely so that it is continuous and satisfies f̂ ◦ η = f .
Let [(r1, p1), . . . , (rm+1, pm+1)] ∈ Pm+1/≡m+1, and then define

f̂([(r1, p1), . . . , (rm+1, pm+1)]) = f(p1) +r1 f̂([(
r2

1 − r1
, p2), . . . , (

rm+1

1 − r1
, pm+1)].

This is well-defined by Proposition 5.4(ii), and it is the composition of con-

tinuous functions, so it is continuous. It also satisfies f̂ ◦ η = f because it’s
restriction to P/≡1 does by definition. Finally, Proposition 5.4(ii) again shows
it is the unique such function.

This shows that RV+ is left adjoint to the forgetful functor from random
variable algebras into DOM, so it generates a monad on DOM. 2

Corollary 5.6 Each of the power domain monads PX lifts to a monad on
RV+-algebras.

Proof. The distributive law given in the proof of Corollary 4.6 clearly restricts
to one for RV+. 2

This corollary means we can solve domain equations such as P ≃ PX ◦
RV+(P ) for each of the power domain monads PX . The resulting domain P
will be a PX -algebra and simultaneously a RV+-algebra.

5.1 Discrete random variables for Cartesian closed categories

We now use our functor BR

× to define a second construction of random variables
over domains. This one has the advantage of leaving some Cartesian closed
categories of domains invariant. Since the results parallel those of the last
subsection, with BR

× replacing BR

+, we confine the proofs to pointing out those
arguments that vary from the ones in the last subsection.

Definition 5.7 For a domain P , we define the power domain of multiplicative
random variables over P to be the subdomain

RV×(P ) =
⋃

n≥0

{[(ri, di)n] |
∑

i

ri ≤ 1} ∪ {⊥} ⊆ BR

×(P ).

The laws that a multiplicative random variable algebra should satisfy vary
only slightly from those for additive random variable algebras from the last
subsection:

Definition 5.8 A multiplicative random variable algebra is a domain P with
0, its identity element and with a Scott-continuous mapping +: (0, 1] × P ×
P → P satisfying:

• ⊥ +r a =⊥ for all 0 < r ≤ 1,
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• a+1 b = a,

• a+r b = b+1−r a, and

• (a+r b) +s c = a+rs (b+ s(1−r)
1−sr

c),

where r, s ∈ (0, 1) and a, b, c ∈ P .

A morphism of multiplicative random variable algebras is a Scott-continuous
map f : S → T satisfying f(0S) = 0T , f(⊥S) =⊥T and f(s +r s

′) = f(s) +r

f(s′), for all s, s′ ∈ S and all r ∈ (0, 1].

The difference between these laws and those characterizing additive ran-
dom variables is the first law that asserts ⊥ +r a = ⊥. This does not hold
in the case of additive random variables, since for those, 0 =⊥. As before, (i)
we restrict the application of the laws involving +r to cases when 0 < r < 1
(which avoids some annoying side conditions in Graham’s listing), and (ii) the
law a+r a = a is missing.

Proposition 5.9 Let P be a domain, and for [(ri, pi)m], [(sj , qj)n] ∈ RV×(P )
and 0 < r ≤ 1, define

[(ri, pi)m] +r [(sj , qj)n] = [(rri, pi)m]⊕ [((1 − r)sj, qj)n] .

Then:

(i) RV×(P ) is a multiplicative random variable algebra, and

(ii) [(r, p)] = [(1, p)] +r 0 for all p ∈ P and all r ∈ (0, 1), and

[(r1, p1), . . . , (rm, pm)] = [(1, p1)] +r1 [(
r2

(1 − r1)
, p2), . . . , (

rm

(1 − r1)
, pm)]

for all [(r1, p1), . . . , (rm, pm)] ∈ RV×(P ).

Proof. Note that the second part of the first law (involving ⊥) holds in
RV×(P ) because it is inherited from BR

×(P ). The proof of the rest of the
first part follows as in the case of additive random variables,

As with additive random variables, the results in (ii) are simple calcula-
tions. 2

We now characterize the initial multiplicative random variable algebra over
a domain.

Theorem 5.10 RV× defines a continuous endofunctor on DOM, as well as on
RB and FS. Moreover, RV× also defines a left adjoint to the forgetful functor
from the subcategory of multiplicative random variable algebra domains and
multiplicative random variable maps to DOM, RB and FS, respectively.

Proof. RV× is obtained by restricting BR

× in the “real components” to ones
whose sum is at most 1. This family is a Scott-closed subset of BR

×(P ). Hence
RV×(P ) is a domain if P is one. Continuous maps f : P → Q extend to
BR

×(P ) by BR

×(f)[(ri, pi)n] = [(ri, f(pi))n], and the elements in RV×(P ) are
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those in BR

×(P ) whose real components sum to at most 1; it follows that
BR

×(f)(P ) ⊆ BR(Q). Since the endofunctor is composed of components that
are locally continuous, it is as well.

For the second part, we first show that RV× is left adjoint to the forgetful
functor from multiplicative random variable domains into DOM. First, we let
η : P → RV×(P ) by η(p) = [(1, p)] define the unit of the adjunction.

Next, let S be a multiplicative random variable domain algebra, P a do-
main, and let f : P → S be a Scott continuous map. We define f̂ : (RV×(P )∩

BR

×(P )) → S via f̂([(ri, pi)m] by induction on m, just as in the case of RV+(P ),
and the argument is virtually the same.

This shows that RV× is left adjoint to the forgetful functor from random
variable algebras into DOM, so it generates a monad on DOM. We have already
shown that RV×(P ) is in RB or FS if P is, so RV× has restrictions to these
subcategories that also define monads. 2

Corollary 5.11 Each of the power domain monads PX lifts to a monad on
RV×-algebras. 2

As in the case of RV×, we can solve domain equations such as P ≃ PX ◦
RV×(P ) for each of the power domain monads PX . The resulting domain P
will be a PX -algebra and simultaneously a RV×-algebra. What’s true now,
though, is that these domain equations can be solved within Cartesian closed
categories of domains.

5.2 Random variables and probability measures

One might also ask about the relationship between our construction and the
traditional probabilistic power domain over a domain. The following provides
the answer.

Theorem 5.12 If P is a domain, then there is an epimorphism F lat : RV+(P )
→ V(P ), the domain of subprobability measures over P . Similarly, there is an
epimorphism F lat : RV×(P ) → V(P ).

Proof. In both cases, the mapping is F lat([ri, di]n) =
∑

i≤n riδdi
, where in

V(P ), summands with the same support are identified. This is easily seen to
define a Scott-continuous map in both cases. It is an epimorphism of domains
because the simple valuations are dense [10], and clearly they are the range of
F lat. 2

6 Summary and Future Work

We have presented two power domains for discrete random variables, and
shown that each of them defines a monad on domains that enjoy distribu-
tive laws with respect to each of the power domain monads. Moreover, our
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second construction – the multiplicative random variables – defines a contin-
uous endofunctor on the Cartesian closed categories RB and FS, as well as
on the category DOM. This is where our results on bag domains have their
payoff, since it is not clear whether this holds of the additive random vari-
ables monad. Indeed, they are defined as the restriction of IdBR

+, which is
equivalent to Varacca’s IVP , and so to show that this construction leaves a
ccc of domains invariant would require showing that IdBR

+ or at least its re-
striction leaves a ccc of domains invariant. We fear this is akin to the long
standing problem of showing there is a ccc of domains that the probabilistic
power domain, V leaves invariant. On the other hand, if we could resolve this
question for IdBR

+ (or even for B or B+), the result might shed some light on
the situation for V. In any case, we believe trying to attack these issues using
abstract bases would be much more difficult. In any case, since no analogous
result is known to hold for the probabilistic power domain, our construction
RV×(P ) provides an alternative for modeling probabilistic choice on domains
that does leave two of the prominent ccc’s of domains invariant.

Varacca actually presents three separate indexed valuation constructions,
as described in Section 2. Our methods can be adopted to recapture each
of them; a discussion of the Hoare indexed valuations from our approach is
presented in [17].

One issue we haven’t discussed is what sort of operational intuition there
is for random variables. Again, we rely on Varacca, who showed in [24] that,
for a simple state-based language supporting nondeterminism and probabilis-
tic choice, probabilistic schedulers could distinguish distinct programs in his
model. This is similar to refusal testing in CSP: one tests a process at each
place where a probabilistic choice is made. In the more traditional approach
using probabilistic bisimulation, such as in [19], one tests processes at the
end of their computation, not at each choice point. Nevertheless, Varacca’s
approach provides a viable, albeit more complicated method of assigning be-
haviors to programs.

Our construction of multiplicative random variables really only models
finite random variables over domains. It is our intention to extend these ideas
to encompass discrete random variables, and eventually continuous ones as
well. The main issue is how to overcome the reliance on Rudin’s Lemma 3.3,
which underlies our proof that P n/≡n is a dcpo, and the arguments we need
to show that B(P ) is a domain.

Another issue not discussed here is whether one can bring Shannon’s in-
formation theory into the picture [22]. This is based on bringing entropy into
play; there are some very interesting results about domains and entropy in
Martin’s recent work [14], a line we plan to explore. A particularly appealing
issue here is defining an order on random variables over a domain relative to
which entropy forms a measurement. If Martin’s work is any indication, this
will probably be a fairly difficult issue to resolve.
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