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Abstract. Labelled Markov processes (LMPs) are probabilistic labelled
transition systems. In this paper we present a ‘universal’ LMP as the
Stone-Gelfand-Naimark dual of a C*-algebra consisting of formal linear
combinations of labelled trees. We characterize the state space of the
universal LMP as the set of homomorphims from an ordered commuta-
tive monoid of labelled trees into the multiplicative unit interval. This
yields a simple semantics for LMPs which is fully abstract with respect
to probabilistic bisimilarity. We also consider LMPs with entry points
and exit points in the framework of Elgot’s iterative theories. We define
an iterative theory of LMPs by specifying its categorical dual: a cate-
gory of commutative rings consisting of C*-algebras of trees and ‘shapely
maps’ between them. We find that the basic operations for composing
or programming LMPs have simple definitions in the dual category.

1 Introduction

This paper is concerned with the semantics of certain probabilistic labelled tran-
sition systems, called labelled Markov processes (or LMPs) [10,12,8,9]. Prob-
abilistic models are important for capturing quantitative aspects of process be-
haviour, such as performance and reliability, e.g., the probability with which a
failure occurs, or the average response time to a given action. For this reason
there has been a lot of research into adapting concepts and results of classical
concurrency theory to the probabilistic case. In particular, the notion of bisim-
ilarity has been adapted to probabilistic systems [17,10,16], and its equational
theory investigated in [22,5,19].

The bisimulation equivalence classes of LMPs can be gathered together into
what could be termed a universal LMP. This object has previously been studied
as the solution of a domain equation in the category of complete metric spaces
[8], and in the category of coherent domains [12,9]. However, none of these
domain theoretic treatments yielded concrete representations of the elements of
the universal LMP.
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In this paper we exploit Stone-Gelfand-Naimark duality for C*-algebras to
show that the universal LMP has a very straightforward characterization as
a space of order-preserving monoid homomorphisms from a partially ordered
monoid T of trees to the multiplicative monoid [0, 1]. The salient feature of this
characterization is the lack of explicit reference to probabilities.

We think of the elements of T as branching traces or trace trees. Formally they
are just finite trees whose edges are labelled by events from a given alphabet. The
operation of grafting two such trees at the root gives the monoid multiplication
in T. The order on T is the natural generalization of the prefix order on traces.
For a given LMP the corresponding homomorphism maps each trace tree to the
probability that it gets performed.

In an earlier paper [9] we showed that two processes are bisimilar iff they
perform each trace tree with the same probability. This generalized a result of
Larsen and Skou [17]." The main result of this paper can be seen as extending this
characterization result to ‘build processes out of trace trees’. This is a natural
variation of the familiar trace models of abstract machines.

The main mathematical tool that we use is the theorem of Stone-Gelfand-
Naimark which asserts a dual equivalence between the category of compact
Hausdorff spaces and continuous maps on the one hand, and the category of
real C*-algebras (a full subcategory of the category of commutative rings) on
the other hand. This duality associates to each compact Hausdorff space the
ring of continuous real-valued functions on the space, and to each C*-algebra its
spectral space of characters: ring homomorphisms into R. We apply the Stone-
Gelfand-Naimark duality to recover the universal LMP as the spectrum of a
C*-algebra consisting of formal linear combinations of trace trees.

The concrete representation of the universal LMP, obtained in the first part
of this paper, opens a new effective approach to composing and programming
LMPs. In the present paper, we outline the use of basic combinators, such as
substitution, probabilistic choice and recursion, in the setting of Elgot’s iterative
theories [7]. They arise when the basic model of LMPs is extended by entry
points an exit points. Thus we obtain a category whose objects are arities, i.e.
nonnegative integers. A morphism S: n — p is an LMP with n entry points and
p exit points. This category turns out to be dual (contravariantly equivalent)
to a category of commutative rings consisting of C*-algebras of trace trees and
‘shape preserving’ ring homomorphisms. Represented through this duality, the
basic combinators for LMPs have remarkably simple descriptions.

1.1 Related Work

Kozen [14] presents a predicate transformer semantics of an imperative program-
ming language with probabilistic choice. This semantics is based on a duality be-
tween linear maps and probabilistic relations. The probabilistic relations model
programs as state transformers. In the dual view, programs act as linear transfor-
mations, mapping measurable functions on final states to measurable functions

! In fact we took the view that trace trees are types of button-pressing tests.



on initial states. The semantics is formalized in the setting of iteration theories.
The same themes of duality and iteration theories appear in the present paper,
but our development is in the context of interactive processes rather than im-
perative programs. In particular, for us states are not just measurable functions
on a space of variables, but have a recursively defined structure.

An iteration theory of probabilistic processes has been studied by Aceto, Esik
and Ingdlfsdéttir [5], building on earlier work of Stark and Smolka [22]. These
two papers treat finite-state LMPs as terms in a simple probabilistic process
calculus. Their main contributions are soundness and completeness results for
various axiomatizations of the bisimilarity relation. Since these papers deal with
process calculi, the basic operations of prefixing, probabilistic choice and iter-
ation are defined at the syntactic level using an operational semantics. These
operations are then lifted to bisimulation equivalence classes of terms using the
fact that bisimilarity is a congruence. In contrast, we utilize a concrete repre-
sentation of bisimulation equivalence classes of LMPs as maps of C*-algebras,
and define the basic operations directly on these representations.

One of the most comprehensive applications of duality in semantics can be
found in the work of Abramsky on domain theory in logical form [2]. This work
is based on a Stone-type duality between a category of spectral spaces (SFP
domains in their Scott topologies) and a category of distributive lattices. In par-
ticular, as a case study, Abramsky considers a domain equation for bisimulation
and computes its Stone dual. What we have in done in this paper is compute
the Stone-Gelfand-Naimark dual of a domain equation for probabilistic bisim-
ulation. However, so far our work is much more modest in scope; in particular
we have not tried to isolate a fragment of Stone-Gelfand-Naimark duality that
is pertinent to any reasonable category of domains.

Another paper close in spirit to the present work is Abramsky and Vickers
[3]. They consider a variety of equivalences for concurrent processes in a unified
framework of quantale modules—actions of quantales on sup-lattices. In partic-
ular, they present quantales of tests using generators and relations, and model
transition systems as right quantale modules (where the elements of the quan-
tale act on states of the transition system). Using the self-duality of the category
of sup-lattices they obtain left quantale modules of ‘process capabilities’ which
they use to build fully abstract models of processes, where the meaning of a
process is its capabilities.

Di Pierro, Hankin and Wicklicky [21] use C*-algebras to define abstract in-
terpretations of probabilistic transition systems. However, at this stage, their
work does not seem closely related to ours.

2 Labelled Markov Processes

Below we give the formal definition of the class of probabilistic transition systems
that we study in this paper. This definition extends that of Larsen and Skou [17]
by including entry points and exit points as part of the basic data. This extension
allows us to define composition (or substitution) and iteration.



Let [n] denote the set {1,...,n} for a positive integer n, and let [0] denote
(. Furthermore we assume a fixed finite set Act of actions or events.

Definition 1. Given non-negative integers n, p, a labelled Markov process S: n — p
is a tuple (S,in, u) consisting of a set S of states, a function in: [n] — S, and,
for each s € S, a subprobability distribution ps on (Act x S) U [p].

Intuitively ps(a,t) is the probability that the process in state s makes an
a-transition to state ¢, and ps(i) is the probability that it makes an transition to
the exit point ¢ € [p]. Note that us is a subprobability distribution, i.e., its total
mass is no greater than 1. We interpret the difference between the total mass of
ps and 1 as the probability of deadlock in state s. We also adopt the notation
Us,q for the subprobability distribution on S given by s q(t) = ps(a,t).

A theme of the work on LMPs [10] has been to allow more generality than
Definition 1 by taking the state space S to be a measurable space, and the tran-
sitions to be given by subprobability measures. All our results hold in the more
general setting—indeed the more general view is required in order to formulate
and prove our main theorems. However we focus on the discrete case as much
as possible to keep things simple.

Probabilistic bisimilarity [17] (henceforth just bisimilarity) is the probabilis-
tic analog of Park and Milner’s notion of strong bisimilarity [18]. It gives a
branching-time notion of behavioural equivalence for LMPs.

Definition 2. Let S:n — p be an LMP with S = (S,in, u). An equivalence
relation R on S is a bisimulation if sRt implies that

— for each a € Act and R-equivalence class A, psq(A) = pt o (4),
— for each i € [p], ps(2) = pe(d).

We say that two states are bisimilar if they are related by some bisimulation.

In words: an equivalence relation is a bisimulation if related states have
matching probabilities of making transitions into any equivalence class and into
any exit point.

3 Operations on LMPs

In this section we define some operations for composing LMPs. These are the
counterparts on the semantic level of constructs that might be found in a typical
process calculus. In particular, processes with exit points correspond to terms
with free variables, composition corresponds to substitution of terms, and iter-
ation to application of the recursion operator. These definitions will later form
the basis of a category in which LMPs are morphisms. For a similar treatment
of labelled transition systems see [7].

Coproducts. Given a strictly positive integer n and i € [n], the injection
8i:1 — nis an LMP with one state which makes a transition to the i-th output
with probability 1. Formally we let St = ({s},in, u), where us(i) = 1.



Tupling. Let S:n — p and S': m — p be LMPs with § = (S,in, u) and
S' = (8',in’, u'). Then the tuple (S,S’) : n + m — p is defined to be (S U
S’ in", p'"y where

(i) = { 00) if1<i<n
T lin'(i—n) fn+l1<i<n+m
i = p for s € S, and p!f = pl, for s € §'.

Composition. Let S: n — m and §': m — p be LMPs with § = (S, in, u)
and 8’ = (S',in’, u'). The composition S §S’ : n — p is obtained by connecting
the outputs of S with the inputs of §’. Formally it is defined to be (SUS’,in", u"'),
where in" (i) = in(i), for i € [n],

ws(a,t) ifs,t €8S

1 ay) = Sy ws(i) 'H;-n:(,-)(a,t) ?f seStes
we(a,t) if s,t €8’
0 ifse S, teS

and pl! (i) = pl (i) for s € S" and i € [p].

Iteration. Given an LMP S:n —»n+p with § = (S,in, u), the iterate
S8: n — p is obtained by identifying the i-th exit point of S with the i-th entry
point for each ¢ € [n]. Formally 1S = (S, in, u') where p' is defined by:

n
/l‘ls (Cl, t) = Us (a7 t) + Zﬂs (l) ) /l’:n(z) (a7 t)
i=1
and .
s (i) = ps(i +n) + Z 115 (5) - i) (3) -
Jj=1
Notice that the definition of p' is recursive. It is straightforward that p! is
uniquely defined by the clauses above provided that E;Ll pin(i)(7) < 1 for all
i€ [n].

Probabilistic Sum. Let S:n — p and §': n — p be LMPs. Write § =
(S,in, ) and 8’ = (S',in’, u'). Given a real number 0 < r < 1, the probabilistic
sum S®, S’ : n — pis defined to be (SUS'UI,in", u"), where I = {s1,...,8,}
is disjoint from S and S', in" (i) = s;, and

/’l/;l,' =T -l’l’in(i) + (1 - /r) ) M;n’(i)?
p! =pl for s € S, and pl! = pl for s € S'.

E
The operations defined above form the basis of the iteration theory of LMPs
defined in Section 8. More precisely, this theory is predicated on LMPs modulo
bisimilarity, where the bisimilarity relation is extended from states to LMPs by
the definition below.



Definition 3. We say that two LMPs S,S8’: n — p are bisimilar, written S ~
S', if there is a bisimulation R on the tuple (S,S’) such that s;Rs;y, for each
i € [n] where s; is the j-th entry point of (S,S").

4 A Monoid of Trace Trees

In this section we present a grammar for a class of trees corresponding to
branching-time traces of an LMP. This language (minus exit actions) corre-
sponds to the test languages of [17,1,6,9] which were shown to characterize,
respectively, similarity in labelled transition systems, and probabilistic bisimi-
larity in labelled Markov processes.

Fix a finite set {X7,...,X,} (corresponding to the eXit points of an LMP).
The language of trace trees is generated by the grammar

Tu=1|X;|ar |7 7 (1)

where a € Act and i € [p)].

A trace tree is either the null tree 1, an exit action X;, an event a € Act
followed by the tree 7, or a branch point 7 - 75. Note the distinction between
prefixing (which is denoted by mere juxtaposition) and branching. We will typ-
ically elide the symbol 1 when denoting non-trivial trace trees, e.g., we write
a - be for al - bcl. Without the branching construct ‘-’ the grammar above would
just specify a language of traces. In order to physically realize a branching-time
trace one would need to be able to duplicate the process at any point in a run,
for instance, via a save-and-restore construct.

Definition 4. Given an LMP S: n — p, with S = (S, in, u), for each s € S we
define 7s(s): the probability that s performs tree 7.

Ls(s) = 1.
( i)s(8) = ps (i)
(aT) (8) :f Sdusa
— (11 - 72)s(8) = (11)s(8)(72)s(5).

The null tree is performed with probability 1 in any state. The probability
that ar is performed in any given state is the weighted average of the probability
that 7 is performed in the next state after an a-transition. The last clause says
that probability of performing an immediately branching tree 7, -7 is the product
of the probabilities of performing each branch.

Given an LMP S:n — p, for each i € [n] we define the real-valued function
S; on trace trees by é/’;( ) = 7s(in(7)). Thus S; (1) is the probability that S does
7 on the ¢-th input. The following theorem is a generalization of the main result
of [9] to allow for LMPs with entry and exit points.

Theorem 5. LetS,T:n — p be LMPs. Then S and T are bisimilar zﬁgz = ‘7\;
for all i € [n].



Having used trace trees to characterize equivalence of states we move on to
the dual problem: when are two trees equivalent in the sense that each state per-
forms them with the same probability? More generally we consider a preorder
< on trace trees defined by 7 < 7' iff 75 < 75 for all LMPs S. The key to
constructing a model for LMPs which is fully abstract with respect to bisim-
ilarity is to axiomatize this preorder. Below we give a list of equations which
are sufficient. Together they say that the set of trace trees forms a commutative
monoid equipped with the smallest partial order in which 1 is the top element
and prefixing and multiplication are monotone.

l-7=71 7<1
TL-To =Ty - Tq T -7 if11 <™
T1 '(7'2'7'3) = (7'1 '7'2)'7'3 aTy SaTz ile <7'2

We denote the resulting partially ordered monoid T[p], where, as the reader
may recall, the set of exit actions {Xi,...,X,} was indexed over [p]. In case
p =0 we just write T.

5 Stone-Gelfand-Naimark Duality

Our basic reference for this section is the monograph of Johnstone [15, Chap-
ter IV 4]. We define C*-algebras to be certain types of commutative rings. The
category C* — Alg is the resulting full subcategory of CRng. We should empha-
size that we consider C*-algebras as algebras over R as opposed to the more
traditional presentation as algebras over C.

Let A be a commutative ring. Since we are primarily interested in rings of
functions, we use f,g to denote typical elements of A. We say that A is an
ordered ring if it is equipped with a partial order satisfying

f+o<f+gif f<f
frg<fgif f<f 920
7>o0.
We say that an ordered commutative ring A is Archimedean if for all f there

exists a positive integer n with f < n- 1. Given an Archimedean (ordered) ring
A which admits a Q-algebra? structure one may define a seminorm?® by

IIfll=inf{g € Q| —¢-1a < f<q-1a}. (2)
Definition 6. A commutative ring A is a real C*-algebra if
— A admits a Q-algebra structure (equivalently the additive group of A is tor-

sion free and divisible), and

2 That is, (A,+) is a vector space over the rationals Q, and scalar multiplication is
compatible with multiplication in A.
3 Non-zero elements can have norm zero.



— A possesses an Archimedean partial order such that (2) defines a norm with
respect to which A is complete.

Definition 7. A character of a C*-algebra A is a ring homomorphism ¢: A — R.
The spectrum of A, denoted Spec(A), is the space of characters of A in the
Zariski topology, which is generated by the cozero sets coz(f) = {¢ : o(f) # 0}
where f € A.

It turns out that the spectrum of a C*-algebra is a compact Hausdorff space.
Conversely, the ordered ring C*(X) of continuous real-valued functions on a
compact Hausdorff space X is always a C*-algebra. This association of compact
Hausdorff spaces and C*-algebras is functorial, and is in fact a dual equivalence:

Theorem 8. (Stone) The category KHaus of compact Hausdorff spaces and con-
tinuous maps is dually equivalent to C* — Alg.

6 A Family of CA-algebras

In this section we extend the monoid of trace trees to a C*-algebra whose spec-
trum will be the state space of a universal LMP.

Fix a set {X1,...,X,} of exit points. We extend the grammar (1) for trace
trees to a grammar of functional expressions by allowing rational linear combi-
nations. Thus functional expressions are given by

fe=al Xilaf | f-FIf+] 3)

where a € Act, i € [p] and g € Q.

Note that we use the letters f and g to denote functional expressions. We
adopt the convention that a term denoted 7 has been generated using only the
sub-grammar (1). We reserve the phrase trace tree for such terms.

We use functional expressions as generators in a presentation of a family
of ordered rings Q[p], where the index p indicates the dependance on the set
{X1,...,X,} of exit variables. In this presentation ‘-’ acts as multiplication, 1
is the multiplicative identity, and + acts as addition in Q[p].

The relations in the presentation of Q[p] include the equations for an ordered
ring: the Abelian group axioms for +, the commutative monoid axioms for ‘-,
the distributive law of ‘> over 4+, and axioms asserting the compatibility of the
order relation with the ring structure. To these equations we add (4-7) below.
The effect of these equations is to fix the semantics of prefixing as integration
against a subprobability measure. Note that the distributive law (7) implies that
every functional expression is equal to the linear sum of trace trees.

0<X; (4)

af <agif f<g (5)
Dachct @ iy Xi < 1 (6)
algr-f+a-9)=q-af+q¢-ag (M)



Definition 9. Define Q[p] to be the free ordered ring* generated by the set of
functional expressions and satisfying equations (4-7).

Proposition 10. Q[p] is a torsion-free divisible Archimedean ordered ring.

O[p] is Archimedean since each functional expression is equal to a linear
combination of trace trees, and each trace tree 7 satisfies 7 < 1.

Definition 11. The C*-algebra Alp] is defined to be the Cauchy completion of
Q[p] in the norm (2). The ring operations on Q[p] are nonexpansive in this norm,
so they extend to Alp].

Proposition 12. Alp] is the free C*-algebra over Qp] qua ordered ring.

Remark 13. Combining Definition 9 and Proposition 12 we see that in order to
specify a ring homomorphism from A[p] to a C*-algebra R it suffices to give an
interpretation of the functional expressions in R such that the relations in the
presentation of Q[p] all hold. Since the interpretation of + and - is forced, this
boils down to interpreting prefixing a(—) and exit actions X;.

Definition 14. Let S: n — p be an LMP with S = (S, in, u). We define a ring
homomorphism
Alp] 8 ¢ (8)
by the following clauses:
(af)S(s) = /std,u/s,a
(Xi)s(s) = ps(i) -
Furthermore we define S; € Spec(Alp]) by Si(f) = fs(in(i)).

Note that this extends Definition 4. Indeed, since every element of Q[p] is equal
to a linear combination of trace trees, an element of Spec(A[p]) is determined by
an order preserving monoid homomorphism T[p] — [0, 1] which satisfies equation

(6).

7 Universal LMPs

In this section we show how to define a universal LMP on p outputs—U[p].

The state space of U[p] is defined to be Spec(A[p]). In order to manufacture
the transition probabilities we use the Riesz representation theorem [20]. First
some terminology: A linear map ¢: C*(X) — R is said to be positive if p(f) >0
whenever f > 0.

4 Note in passing that the existence of a free ordered ring on a given set of generators
and relations can be seen to follow from the existence of free algebras for Horn clause
theories.



Theorem 15. (Riesz) Let X be a compact Hausdorff space and ¢: C*(X) - R
a positive linear map. Then there is a unique Borel measure p on X such that

= [ fdu for all f € C*(X).

Given ¢ € Spec(A[p]) and a € Act, let ¢,: Alp] = R be defined by ¢ (f) =
p(af). The distributive law (7) ensures that ¢, is a linear map. ¢, is also positive
since ¢ is positive and prefixing is monotone in Alp]. We define p, , to be the
Borel subprobability measure corresponding to the linear map

C*(Spec(A[p])) = Alp] 2% R

Note the application of Theorem 8 in the above isomorphism.
We now define the transition behaviour of ¢ by ¢ — pu,, where

Z u¢a+290

a€Act

Equations (4) and (6) guarantee that p,, is a subprobability measure.

We have not defined a set of entry points to U[p]. Nevertheless it is convenient
to admit U[p] as a partially defined LMP. In order to state the universal property
of U[p], we define the notion of zig-zag [10]

Definition 16. Let S,S' be LMPs on p outputs. Suppose that S = (S,in, u)
and 8' = (S',in’, u'y. A function h: S — S' is a zig-zag map iff

— fis,a(R7H(t)) = pn(s),a(t) for all s € S,t € S' and a € Act.

= ps(i) = ,uhs)()fo"'a”SGSZE[p]

Proposition 17. Let S,S' be LMPs on p outputs. A function h: S — S' is a
zig-zag map iff the kernel of h is a bisimulation.

Proposition 18. Let S = (S, in, u) be an LMP on p outputs. Then a function
h: S — Spec(Alp]) is a zig-zag map S — U[p] iff the transpose h: Alp] — C*(S)
satisfies

— h(af)(s) = [sh(f)dps,q, and
- h(X )() ws(7) for all s € S,i € [p)].

By Remark 13 there is a unique map satisfying the clauses in Proposition 18—
namely the map (—)s from Definition 14. Thus we obtain:

Theorem 19. U[p] is final in the category whose objects are LMPs on p outputs
and whose morphisms are zig-zag maps.

In conjunction with Proposition 17, the finality of U[p] implies that the relation
of bisimilarity on a given LMP § is the kernel of the unique zig-zag map to
U[p]. In this way we recover Theorem 5.

Corollary 20. Given an LMP S:n — p, there is a unique LMP T:n —p
extending U[p] such that S ~ T. T is defined by assigning S; as the i-th entry
state for each i € [n].



8 Iterative Theories

In this section we define an iterative theory of LMPs modulo bisimilarity. They
build on algebraic theories by adding a fixed point operator 1. Iterative theories
arose in the semantics of flowchart algorithms, and have since been applied to
study, among other things, regular and context-free languages, synchronization
trees and Floyd-Hoare logic [7].

The canonical representative of an LMP S:n — p up-to bisimulation has
been defined to be the n-tuple (Si,...,S,), where S; € Spec(A[p]). Below we
combine the S; into a single ring homomorphism S: Alp] — A[n]. Note the re-
versal of direction in going from S to 8. The point of this new representation is
that we want to equate composition of LMPs with functional composition on
the dual side.

Definition 21. S is defined by the following two clauses. (Recall from Remark
13 that to define a ring map Alp] — A[n] one must explain how to interpret
prefixing and exit variables from the grammar for functional expressions in the
target ring.)

S(af) = aS(f) +_ Xi - Si(af)

=1
S(x;) = Xi-Si(X;).
=1

Clearly S so defined is determined by (§1, ... ,§n) Conversely, defining the ‘pro-
jections’ m;: A[n] — R, where i € [n], by
1ifi=j
mi(af) =0 and m;(X;) = .
i(af) i(X5) {0 otherwise,

we get that 3; =1m; o0 S. Note that these projections are the representations as
characters of the ‘injection’ processes defined in Section 3. Proposition 22 now
follows from Theorem 5.

Proposition 22. S=T iff S and T are bisimilar.

The following definition gives a necessary and sufficient condition for a ring
homomorphism 6: Alp] — A[n] to arise as S for some LMP S:n — p.

Definition 23. A ring homomorphism 6: Alp] — A[n] is called a shapely map
if 8(X;) is a linear combination of the variables {X,...,X,} for each j € [p],
and B(af) is equal to the sum of af(f) and a linear combination of variables
{X1,..., X} for each functional expression af.

To explain the terminology, note that a shapely map sends a trace tree 7 € T|[p]
to a linear combination of those trees in T[n] obtained by replacing actions in
T by exit actions from the set {Xi,...,X,}. Given a shapely map 6, we can
recover § as S, where S: n — p is the LMP with components (r108,...,m080)
as constructed in Corollary 20.



Ezample 2. Let a,b,c € Act. A shapely map A — A[1] maps ab - ¢ to a linear
combination of the trees ab-c¢, X7 - ¢, ab- X7, aX; - ¢, aX; - X7, X7 - X;.

The following lemma explains the intuition that T acts like a predicate trans-
former.

Lemma 25. Suppose that S:n — m and T: m — p are LMPs. Then

fsir(s) = (Tf)s(s).
for all states s € S.

In the following sequence of propositions we characterize the operations of
composition, iteration and probabilistic choice on LMPs as constructions on
shapely maps. We deal first with composition of LMPs, showing that it corre-
sponds to functional composition of shapely maps. Note that we write compo-
sition of LMPs using diagrammatic notation, whereas composition of shapely
maps is the usual functional composition notation.

Proposition 26. Suppose thatS: n — m and T: m — p are LMPs, and define
V=8sT. ThenV =8oT.

Probabilistic choice of shapely maps is implemented as convex combination.

Proposition 27. Let S,T:n — p be LMPs and define V = S@®,.T. Then V is
specified by

V(af) =r-S(af) + (1 ~1)-T(af)

V(X)) =r-S(X) +(1—r) - T(Xy)
Proposition 28. Let S:n — n+p be an LMP with 3\,(2]”:1 X;) <1 for all
i € [n]. Let I,: p — p be the ‘identity’ LMP I, = ({s1,...,8p},in, u), with
in(¢) = s; and ps;(4) = 1, and define V = (}S,Z,). Then V satisfies

V(af) = aV(f) + Y Xi - Si(V(af))

(X)) =D Xi - Si(V(X;)) + Xnsj for j € [p].

i=1

<)

Note that the term V(af) occurs on both sides of the first clause above.

The following proposition asserts that the Elgot fixed point identity [7] holds
up to bisimulation for LMPs. The proof works by showing that both sides denote
the same shapely map.

Proposition 29. Let S:n —n +p be an LMP. Then 1S ~ S5 (1S, Z,)

In the remainder of this section we turn the above characterizations of oper-
ations on LMPs as operations on shapely maps into a definition of an iterative
theory. Our main reference for iterative theories is [7]. It is standard to denote
composition in an iterative theory using diagrammatic notation.



Definition 30. A theory is a category whose objects are the non-negative inte-
gers, where n is the n-th copower of 1. For each n we pick a coproduct cocone of
‘distinguished morphisms’ k% : 1 —n for i € [n]. Given a family of morphisms
gi: 1= p, i € [n], the unique morphism g:n — p with kX, §g = g; is denoted
<gl7" 7gn)

Definition 31. A pointed theory is a theory with a distinguished morphism
1:1—0: the ‘point’. An ideal theory is a theory with the property that if
f:1 = pis not a distinguished morphism, then neither is f$g for any g: p — n.
In an ideal theory, the morphisms n — p none of whose components is distin-
guished are called ideal morphisms. An iterative theory is an ideal theory with
the property that for each ideal morphism f: n — n + p there is a unique solution

tf:n — p to the fized point equation Tf = f§(1f,1,).
The pointed iterative theory LMP is specified by the following data.

— Objects are the non-negative integers.

— A morphism ¢: n — p is a shapely map ¢*: Alp] — A[n].

— Given ¢: n — m and ¥: m — p, the composition @3 is defined by (p3y)* =
@* oyt

— The identity id,: n — n is defined by (id,)* = id App)-

The point L:1 — 0 is the shapely map defined by L*(af) = aL*(f).

— The coproduct injection &% : 1 — n is the shapely map defined by (s%)*(af) =
a(ki)*(f) and (ki)*(X;) = Xy if i = j and 0 otherwise.

n

It remains to define the class of ideal maps and iteration.

Given a morphism ¢: n — p, for i € [n] define ¢} = m; 0 ¢* : Alp] > R. We
say that a morphism ¢:n — n+p is ideal if o} (37, X;) <1 for all i € [n].
Suppose that ¢: n — n + p is an ideal map and let 8: n + p — p be defined by
induction on functional expressions by the clauses:

6" (af) = ab*(f) + ) Xi- ¢} (6" (at))

i=1

0*(X;) = ZXz' i (07(X;)) + Xy for j € [p].

Note that the definition of 6*(af) is recursive. Using the fact that ¢ is ideal
and the complete normed structure of Aln + p] it is readily seen that 6*(af) is
well-defined. Finally, fp: n — p is defined by 19 = k§ 60 where k:n > n+pis
the coproduct injection (k1 gpre- ok +p)' The proof of Proposition 29 can be
carried over to show that fy satisfies the Elgot fixed point equation.

9 Summary and Future Work

In programming and semantical frameworks, there are usually many different
ways to represent the same computational behaviours. In concurrency, canonical



representatives of the equivalence classes of bisimilar processes are represented
as elements of final coalgebras, often constructed in categories of domains. The
applicability of such theories hinges on convenient representations of those ele-
ments.

The final coalgebra capturing LMPs has been described in [8]. The domain-
theoretic treatment is in [12, 9]. The issues of representation have so far not been
tackled. In the present paper, a method for obtaining canonical representatives
of LMPs has been presented. Their states are represented as simple monoid
homomorphisms. The effectiveness of this representation supports hope for a
wider practical applicability of the LMP model.

The presented application of the Stone-Gelfand-Naimark duality in deriv-
ing canonical representatives of LMPs is an instance of a general approach to
representing computational behaviours by lifting dualities, and adjunctions. A
detailed account of this general framework, with applications to other computa-
tional structures, will be described in forthcoming work.

Unlike the papers [10,12,9] we did not emphasize the measure-theoretic as-
pects of LMPs, but stuck to the discrete case. As we already said, the idea was
to communicate the essential concepts with the minimum overhead. However,
another reason for this policy is that treating LMPs at the level of measurable
spaces sits rather uneasily with the assumption of finite sets of entry and exit
points. This suggests that an interesting direction for further work is to allow
the domain and codomain of an LMP to be measurable spaces. This would yield
a category of measurable spaces and LMPs. It would be interesting to compare
such a category to the category of probabilistic relations studied in [4].

The iteration theory LMP is a subtheory of an abstract matricial theory [7].
Any such theory can be represented as a theory of modules on a semiring. This
suggests some potential connections between our approach and that of Abramsky
and Vickers [3].

Finally we would like to investigate connections between our representation
of LMPs and the notion of formal tree series, and between shapely maps and
transducers of formal tree series [13].
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10 Appendix

Lemma 25. Suppose that S:n — m and T : m — p are LMPs. Then
fsir(s) = (TPs(s).-
for all states s € S.

Proof. Write S = (S,in,u) and T = (S',in’, u'). Write (S”,in", ") for the
composition S §7 as defined in Section 3.



First note that it is straightforward that fs,7(t) = fr(¢) for all t € T. We
now prove the lemma by induction on functional expressions. The induction step
for prefixing is as follows.

(af)s;T(s / fs;rdus,
= /SfS;le"s,a +Z,u8(7:) /;/ fS;TdNiln’(z'),a
i=1

/S (PP dpna+ 3 1s0)Ti af)
=1

=a(TF)(s) + D (Xi)s(s)Ti(af)
i=1
= 'f(af)(s) .0
Proposition 29. Let S:n — n + p be an LMP. Then 1S ~ S5 (1S, Z,)

Proof. For simplicity we give the proof in the case n = 1 and p = 0. In view of
Proposition 22 it suffices to show that SoV =V : A — > A[1], where V = 1S. We

show by induction on functional expressions f that S(V(f)) = V(f).
The induction step for prefixing is as follows.

SW(af)) = S(aV(f) + X1 - & (V(af)))
= §<alj(f>) + X, -§1 (X1) S,(V(af))
V(f)) + X; '§1(aV(f)) + X3 31(X1)31( (af))



