
Generalizing Domain TheoryMichael Mislove?Tulane University, New Orleans, LA 70118, USAmwm@math.tulane.eduWWW home page: http://www.math.tulane.edu/mislove.htmlAbstract. Domain theory began in an attempt to provide mathemat-ical models for high-level programming languages, an area where it hasproved to be particularly useful. It is perhaps the most widely-usedmethod for devising semantic models for such languages. This paper is asurvey of some generalizations of domain theory that have arisen in ef-forts to solve related problems. In each case, a description is given of theproblem and of the solution generalizing domain theory it inspired. Theproblems range from the relation of domain theory to other approachesfor providing semantic models, particularly in process algebra, to issuessurrounding the notion of a computational model, an approach inspiredby the recent work of Abbas Edalat.1 The Basics { How Domain Theory BeganThis section is a brief outline of some of the \basic ingredients" of domain theoryand the applications that inspired them.1.1 In the beginning. . .Domain theory began in an attempt by Dana Scott to �nd mathematicalmodels for high-level programming languages. Upon his arrival in Oxford in themid 1960s, Scott found Christopher Strachey and his colleagues at the Pro-gramming Research Group using the untyped lambda calculus of Church andCurry as a model for programming, something Scott found disturbing becausehe regarded it as a \formal and unmotivated" notation (cf. [11]). He thus set outto �nd alternative models for Strachey and his colleagues to use. Because pro-grams can call other programs, and indeed, can even call themselves, Scott wasled to consider objects X in some category or other which satisfy the propertythat they contain a copy of their space of selfmaps in the category. Of course,Cantor's Lemma implies the only such objects in the category of sets and func-tions are degenerate (i.e., they consist of a single point), and so no such objectscan be found there. But the reals have only as many continuous selfmaps asthere are real numbers (because of their having a dense, countable subset onwhich all continuous selfmaps are completely determined), so it is potentially? This work partially supported by the US O�ce of Naval Research

IIpossible to �nd such objects X among topological spaces. While attempting to�nd appropriate models of partially de�ned maps, Scott realized there had tobe T0 spaces isomorphic to their space of continuous selfmaps, and he then con-structed such an object in the category of algebraic lattices and so-called Scottcontinuous maps.In the years since Scott constructed the �rst model of the untyped lambdacalculus, the nature of the construction has become much better understood,and it now is realized that very little of the machinery that is available in thecategory of algebraic lattices and Scott continuous maps actually is necessaryfor the construction. In fact, it now is understood that only directed completepartial orders are needed to carry out the construction. Remarkably, despite thismuch better understanding, the only known models of the calculus are within thecategory of such partial orders and Scott continuous functions. We now describethis setting.1.2 Directed Complete Partial OrdersLet's switch gears for a moment, and consider what we need to model a recursiveprocess. If we are working within some language { let's not worry about typingissues { and we are confronted with a term recx:f(x), then the operational rulewhich allows us to understand this process is given byrecx:f(x) 7! f [(recx:f(x))=x]:This unwinding of recursion allows us to deduce that the recursive processrecx:f(x) actually should be a �xed point for the body of the recursion. Inany case, if we are to model programs as functions, then the unwinding rule tellsus the functions we are interested in must have �xed points. In fact, it wouldbe nice if those �xed points were canonical in some sense, so that their choice isnot arbitrary. This is what domain theory o�ers us.To begin, a partial order (or poset) is a non-empty set P equipped with areexive, symmetric and transitive relation, usually denotedv. A simple exampleis to take any non-empty set X and equip it with the discrete order, wherex v y , x = y. A subset D � P of such a set is directed if every �nite subset ofD has an upper bound in D. In our example, the only directed subsets are thesingleton sets. Finally, a partial order P is directed complete if every directedsubset has a least upper bound in P . These are called dcpos. Clearly, discreteorders satisfy this condition, since the only directed subsets are singleton sets.A directed complete partial order which has a least element ? (i.e., one whichis below all other elements) is sometimes called a cpo.What is important about cpos is that monotone1 selfmaps have least �xedpoints :Theorem 1 (Tarski). A monotone mapping f :P ! P of a cpo has a least�xed point, namely, FIX f = t�2Ordf�(?): ut1 A map f :P ! Q is monotone if x v y =) f(x) v f(y).

III(Here, Ord stands for the class of ordinals.) Thus, a good place to seek modelsfor recursion is within the category of cpos and monotone mappings. But, if werequire our functions to preserve sups of directed sets, we can do better.De�nition 1. A mapping f :P ! Q between dcpos is Scott continuous if f ismonotone2 and f preserves sups of directed sets:(8D � P directed) f(tD) = tf(D):Corollary 1 (Scott). A Scott continuous selfmap f :P ! P on a cpo has itsleast �xed point given by FIX f = tn2N fn(?): utThe category of directed complete partial orders and Scott continuous mapshas many desirable properties { it is Cartesian closed, for example. We denotethe family of continuous maps between (d)cpos P and Q by [P ! Q]; this spacebecomes a dcpo when endowed with the pointwise order, in whichf v g , f(x) v g(x) (8x 2 P):The full subcategory whose objects are cpos also is Cartesian closed, and it iswithin these categories where one can �nd ample support for constructing de-notational models of programming languages. We even can conclude more here.Since the least �xed point of a monotone or continuous selfmap always exists,assigning it as the meaning of a recursive process is in some sense canonical. Infact,Theorem 2. The least �xed point operator Y: [P ! P]! P by Yf = FIX f iscontinuous. utThe implication here is that one has continuous �xed point operators of allorders, so modeling recursion at higher types can be done in the same way it isat the start. There is even a transfer principle available; it tells us that \�xedpoints are preserved" by certain operators:Proposition 1. Let f :P ! P and g:Q! Q be continuous selfmaps of cpos Pand Q, and let h:P ! Q also be a continuous strict3 map satisfying g�h = h�f .Then FIX g = h(FIX f). utThe categories DCPO and CPO of directed complete partial orders (withleast element in the second case) and Scott continuous maps thus enjoy severalappealing properties. In addition to Cartesian closure, they also are closed un-der (arbitrary) products and direct sums. In addition, there is a closely-relatedadjunction. If CPO! denotes the category of cpos and strict Scott continuousmaps, then the forgetful functor into DCPO has the lift functor as left adjoint;this functor adds a (new) least element to a dcpo P and extends a continuousmapping to the lifted domains to be strict.2 This hypothesis is simply to guarantee that the image of a directed set in P isdirected in Q.3 By strict, we mean h takes the least element of P to the least element of Q.

IV1.3 The Myhill-Sheperdson TheoremThe results described so far make an appealing, if somewhat abstract case forusing domain theory to build models for programming languages { well, at leastfor modeling recursion. We now describe a result which puts more substance tothis claim.Perhaps the most natural place to start to model programs is over the naturalnumbers. In order to invoke a domain-theoretic setting, we can endow N withthe discrete order, and clearly we have a dcpo. Our interest is in using domaintheory to model computable functions. Functions on N are mappings f :N ! N,so we want to start with the space [N ! N],. This is not quite right, either.Church's thesis says the partial recursives are the computable functions, and sowe should consider partial mappings f :N * N. Now, the family of such mappings{ [N * N] { is a cpo under the extensional ordering:f v g , dom f � dom g & gjdom f = f:Here, a directed family of partial mappings has for its supremum the union of thefamily. Two convenient facts are that any function from N to itself is monotone {even continuous { with respect to the discrete order, and the extensional order onthe space of mappings between two discretely ordered sets is in fact the pointwiseorder. Thus, the partial mappings on N with the extensional order are just thepartial mappings endowed with the pointwise order from the discrete order onN. But how do we distinguish the partial recursives from arbitrary partial self-maps of N? A simple and very well-worn example shows how. Consider thefactorial function Fac(n) = � 1 if n = 0,n � Fac(n� 1) otherwise.This leads us to de�ne a functional F : [N * N] ! [N * N] byF (f)(m) = � 1 if m = 0m � f(m� 1) if m > 0 & f(m� 1) de�ned.It is easy to show that this functional is continuous (it only needs to preserveincreasing unions of partial functions), and that its least �xed point is the fac-torial. What is harder is the fact that the e�ective structure (in the sense ofrecursion theory) on N can be extended to one on [N * N] ! [N * N] (usingideas from the next section { see [26] for details), and F can be shown to bee�ective with respect to this structure. This means F 's restriction to the partialrecursives leaves them invariant; i.e., F (g) is partial recursive if g is. If we let[N * N]k denote the computable mappings on the natural numbers (i.e., thepartial recursives), the following says every partial recursive arises exactly inthis way:Theorem 3 (Myhill-Sheperdson). The e�ective operators on [N * N]k areexactly the restrictions of the e�ective continuous functionals G: [N * N] ![N * N] to [N * N]k . ut

V1.4 Algebraicity and ContinuityA second component of domain theory { apart from the ease with which one canmodel recursion { is that of approximation. The idea is illustrated by the Myhill-Sheperdson Theorem. For any continuous functional G: [N * N] ! [N * N], theleast �xed point is FIXG = tn2NGn(;), since ; is the least partial function. Inthe case of G is e�ective, Gn(;) is a �nite function. The �nite functions play aspecial role in [N * N]: they are the compact elements.De�nition 2. An element k 2 P in a dcpo is compact if k v tD implies(9d 2 D) k v d for all directed subsets D � P . The set of compact elements ofP is denoted K(P), and, for each x 2 P the set of compact elements below x isdenoted K(x).Lastly, P is algebraic if K(x) is directed and x = tK(x) for every x 2 P .Since any partial mapping f :N * N satis�esf = tff jX j X � domf �niteg;[N * N] is algebraic.The compact elements of an algebraic dcpo completely determine the dcpo,since each element of the dcpo is the directed supremum of the compact elementsbelow it. This association can be made more precise. Indeed, if we call a subsetI � Q of a partially ordered set an ideal if I = #I is a lower set which also isdirected, then we have the association x 7! K(x):P ! IdlK(P) which sends eachelement of P to the ideal of compact elements below it. This association is anisomorphism, where the inverse mapping simply sends an ideal to its supremum(which exists because P is a dcpo). Hence, P ' IdlK(P) for each algebraicdcpo P . This gives rise to an adjunction between the category ALG of algebraicdcpos and Scott continuous maps and the category POS of posets and monotonemappings. The right adjoint is the forgetful functor from ALG to POS, and theleft adjoint is the ideal functor, which sends a partially ordered set to its familyof ideals ordered under inclusion. One of the important consequences of thisadjunction is that each continuous mapping f :P ! Q between algebraic dcposis completely determined by the restriction of f to the compact elements ofP , and, conversely, each monotone mapping f :K(P) ! Q from the compactelements of P to any dcpo Q extends to a unique continuous map from P to Q.All of this has an important extension. The motivating example is the unitinterval, which has 0 as its only compact element. Yet there is a clear notion ofapproximation here: if x < y, then for a directed set to have its supremum abovey, some element of the directed set must be above x.De�nition 3. The elements x; y 2 P in a dcpo satisfy x � y (read \x isrelatively compact in y") if y v tD implies there is some d 2 D with x v d,for all directed subsets D of P . The set of elements relatively compact in y isdenoted #y, and the dcpo P is called continuous if #y is directed and y = t+yor all y 2 P .

VI An adjunction similar to the one between ALG and POS is available forcontinuous dcpos. It involves the notion of an abstract basis originally due toSmyth [21].De�nition 4. An abstract basis is a non-empty set X equipped with a transitiverelation � which satis�es the interpolation property:(8y 2 X)(8M � X �nite) M � y) (9x 2 X) M � x � y:A function f :X ! Y between abstract bases is ideal if x � y in X implies thatfz 2 Y j z � f(x)g � fz 2 Y j z � f(y)g.For example, in any continuous dcpo P , the pair (P;�) is an abstract basis. Anyabstract basis satis�es the property that the family of ideals (de�ned just as inthe partially ordered set case) is a continuous dcpo under the inclusion order.The notion of an ideal mapping is designed precisely to capture those functionsbetween abstract bases which extend to continuous mappings between their idealcompletions. The following result generalizes the situation for algebraic domains.Theorem 4 ([17]). The functor which associates to a continuous dcpo P theabstract basis (P;�) and to a continuous mapping f :P ! Q the ideal mappingf(I) = fy 2 Q j (9z 2 I) y � f(z)g is right adjoint to the ideal functor whichassociates to an abstract basis its ideal completion and to an ideal mapping theassociated continuous mapping on the space of ideals. utNotes: This completes our rather cursory outline of domain theory. We have leftout far more than we have included, but our intention is to provide only thebarest of introductions to motivate the generalizations that we describe below.We have not made speci�c reference to any result. Except for the last resultson continuous dcpos (which can be found in [2] for the most part), most of this isfolklore now, and can be found in many places. Again, [2] is an excellent sourcefor referencing most of these results. The last theorem, however, appears only in[17]. A survey of a number of the ideas presented here can be found in [18].2 Continuous PosetsA rather successful approach to modeling concurrent computation was devisedby the members of the Programming Research Group at Oxford using the lan-guage CSP. We briey outline this approach below, with an eye toward �ndingthe relationship between the CSP models and more standard ones from domaintheory. In endeavoring to understand this relationship, it became clear that oneof the fundamental principles of domain theory had to be relaxed in order todescribe the CSP models in purely domain-theoretic terms. That fundamentalproperty of dcpos is that they are directed complete: all directed subsets haveleast upper bounds. This property is crucial in assuring that all continuous self-maps have (least) �xed points. But it turns out that describing the CSP modelsin domain-theoretic terms requires relaxing this condition in order to relate themodels to the world of domains. The model we focus on for this discussion is thefailures model for CSP, which we now describe.

VII2.1 CSP and the Failures ModelCSP is a process algebra for reasoning about concurrent processes. It was origi-nally devised by C. A. R. Hoare and the �rst, de�nitive model for the languagewas presented in [3]. This is the so-called failures model, which models a processin terms of the communication events it can participate in (the traces of theprocess) together with the events it may refuse to participate in after a giventrace (the so-called refusals). A syntax for CSP suitable for our purposes is givenby the following BNF-like production rules:P ::= STOP j SKIP j a! P j P n a j P ;P j PAkBP j P2P j P u P j x j �x:PIn this syntax, STOP denotes immediate abnormal termination, while SKIPdenotes immediate normal termination. The actions a range over a set � ofatomic actions which denote communication events between processes; a ! Pis a process which �rst wishes to participate in the action a and then to act likeprocess P . P n a is the process P with all occurrences of the action a hiddenfrom the environment (but they still occur, and as soon as they are o�ered).P ;P is the sequential composition of the two component processes; PAkBP isthe process which has the two components synchronize on all actions in A \ B(A;B � �), but either branch is free to perform actions not in the intersectionwhenever it wishes. P2P is the external choice of the two processes, in whichthe environment is allowed to decide which branch will be chosen on the �rstaction only, while P u P is the internal choice of the branches, in which themachine decides. The term x denotes a process variable, and the last term isrecursion.The failures model for CSP as presented, e.g., in [3] gives a model for thislanguage based of pairs (s;X), where s 2 ��[��p is a �nite sequence of actions,possibly ending in the normal termination event p 62 �, and X � � is a set ofrefusals { events which the process may refuse to participate in after execution ofs. The second component is needed in the model in order to distinguish internaland external choice. The failures model FM interprets each process as a setof such pairs, and the sets F that qualify to represent a process in CSP mustsatisfy the following conditions:1. ; 6= F .2. (s;X) 2 F and t a pre�x of s imply (t; ;) 2 F .3. (s;X) 2 F and Y � X imply (s; Y) 2 F .4. (s; Y) 2 F for all Y � X �nite implies (s;X) 2 F .5. (s;X) 2 F and (shci; ;) 62 F for all c 2 Y � � �nite imply (s;X [Y) 2 F .The sets satisfying these conditions are called the failures model for CSP; it isshown in [3] that they form a complete inf-semilattice. This structure is usedas the basis for showing this family of sets can be endowed with operationscorresponding to each of the CSP operators. This allows an interpretation ofCSP in the set of subsets of (�� [��p) � P(�) satisfying 1) { 5) { i.e., itprovides the ingredients to show the family FM is a denotational model forCSP.

VIIIThe order on the failures model is reverse containment on sets. So, the smallerthe set, the higher it is in the order. Because the inf-operation is used to modelnondeterminism, the order on the model is the order of nondeterminism { thehigher a set, the more deterministic the process it represents. In fact, the maximalelements of the model are the deterministic processes. These have the propertythat they cannot be re�ned by any other process.The order on the model also is used to model recursion, just as in the caseof cpos. All the operators from CSP are modeled by operations on the modelthat are continuous with respect to reverse inclusion, and so Scott's corollary toTarski's Theorem implies that each of the recursive processes can be modeled asthe least �xed point of a continuous operator on the model.2.2 The Failures Model as Closed SetsAll of the above indicates that the failures model is a cpo (the least elementof the model is the set CHAOS = f(s;X) j s 2 �� [��p & X � �g). Butthe construction is far from \standard", and it is unclear what relationship thismodel has to languages other than CSP. The work in [15] resulted from an e�ortto better understand this relationship. The analysis relies on a closer scrutiny ofthe properties that de�ne failures sets.The �rst three conditions imply that the sets F that qualify as process mean-ings are lower sets from some related partial order, and it was this idea that ledto a realization that the conditions listed actually describe certain closed setsfrom a partial order. By closed, we mean closed with respect to the Scott topol-ogy, which we now de�ne. But notice that we relax the situation somewhat,and consider any partial order, not just ones that are directed complete. Thisis because the partial order that gives rise to the failures model is not directedcomplete.De�nition 5. Let P be a partially ordered set. A subset U � P is Scott open if1. U = "U = fy 2 P j (9x 2 U) x v yg is an upper set in P , and2. tD 2 U =) D \ U 6= ; for all directed subsets D of P .It is routine to show that the Scott open sets on any partial order are closedunder �nite intersections and arbitrary unions, so they do indeed form a topology.This topology is always T0, which means distinct points can be separated bysome open set (containing exactly one of them), but the topology is Hausdor�if and only if the partial order is the discrete order. What is more, the functionswe de�ned earlier as being Scott continuous are in fact exactly those that arecontinuous with respect to this topology.The Scott closed sets are those whose complements are Scott open, and sincewe have a description of the latter, we can derive the following characterizationof the former.Proposition 2. X � P is Scott closed if and only if1. X = #X is a lower set in P , and

IX2. D � X directed implies tD 2 X. utNotice that a corollary of this result is that the closure of a point x 2 P is #x, theprincipal lower set x de�nes. This is what makes Scott-closed sets an appealingmodel for concurrent computation { in the traces setting, they naturally includethe history of a process since they are lower sets.As with any topological space, the family of Scott closed sets forms a completeBrouwerian lattice under containment (cf. [11]). But in the case of an algebraicor continuous poset4, we can say a lot more. Indeed, in this case, the familyof Scott-closed sets forms a completely distributive, hence continuous lattice.If the underlying poset P is algebraic, then the family of Scott-closed sets isin fact completely distributive and algebraic, which in turn imply it forms acomplete ring of sets. Finally, the relation X � Y on the family of Scott-closedsets is completely determined by that of P , and the compact elements in theScott-closed sets are exactly the closed sets generated by �nite sets of compactelements of P .In particular, the family of non-empty Scott-closed subsets of a continuous(resp., algebraic) dcpo is a continuous (resp., algebraic) dcpo semilattice (underunion) whose relative compactness relation� is completely determined by thatof the underlying poset. Moreover, in the case P is algebraic, this family is analgebraic dcpo under reverse containment as well, and the compact elementshere are the sets of the form P n ("F) as F � K(P) ranges over the non-empty�nite sets of compact elements of P .What all this has to do with CSP and the failures model is explained by thefollowing:Example 1. Consider the set PF = f(s;X) j s 2 �� [��p & X � �g. Wede�ne a partial order of PF by(s;X) v (t; Y) () (s < t & X = ;) _ (s = t & X � Y):It is routine to show this is a partial order, and it also is easy to see that thepairs (s;X) with X �nite are compact in this order. Hence PF is an algebraicposet.Theorem 5 ([15]). The failures model consists of (some) Scott-closed sets fromthe algebraic poset PF , and this family is closed in the family of all Scott-closedsets under �ltered intersections. Each of the operators from CSP gives rise toan operation on all the Scott-closed sets that is continuous with respect to usualcontainment, and all but the hiding operator give rise to operations that arecontinuous with respect reverse containment. utThe point to note here is that it is the hiding operator that \causes all theproblems" with the failures model. More to the point, the approach adopted with4 By a continuous poset we mean a partial order P in which #y is directed and y = t#yfor all y 2 P ; P is an algebraic poset if K(y) is directed and y = tK(y) for all y 2 P .The point is that we no longer require P to be directed complete.

Xthe failures model was to use the order of nondeterminism to model a certaintype of partial correctness { namely, that deadlock or divergence is catastrophic.That decision required a model in which all the operators are continuous withrespect to reverse set containment, and since hiding is the only operation whichdoesn't satisfy this property on the family of all Scott-closed sets, it is the reasonfor the condition 5) in the de�nition of the sets that comprise the model. In otherwords, if one were to seek a model for CSP without hiding, then all of the non-empty Scott closed subsets of the poset PF could be used.3 Local CposFrom the outset, computation has viewed sequential composition as the \mostprimitive" operation. When the issue of modeling concurrent computation arose,the reaction was to devise models for nondeterminism using subset-like construc-tions, and then to model parallel composition in terms of sequential compositionand nondeterministic choice. As described in [12], three distinct models for non-deterministic choice emerged in domain theory { the so-called power domains.These three constructs were �rst de�ned in terms of ideal completions of threedistinct orders that can be de�ned on the �nite subsets of the set K(P) of com-pact elements of the underlying domain P . This works for any algebraic dcpo,but more restrictive domains allow for alternative descriptions of these construc-tions. As described in [22], coherent domains (i.e., those algebraic cpos for whichthe intersection of any �nite family of Scott compact upper sets is again com-pact in the Scott topology) allow the three power domains to be described incompletely topological terms:{ The lower power domain is the family of non-empty Scott-closed subsets ofthe underlying domain equipped with the usual order, and with union asthe nondeterministic choice operation. This family is the free sup-semilatiicecpo over P .{ the upper power domain is the family of non-empty Scott compact upper setsfrom P , again with union as the operation, but this time under the reversecontainment order. This family is the free inf-semilattice cpo over P .{ the convex power domain is the family of non-empty order-convex subsetsX = "X \ #X of P whose lower set #X is Scott closed and whose upper set"X is Scott compact. The operation is the convex hull of the union:(X;Y) 7! #(X [Y) \ "(X [Y);and the order is the Egli-Milner order :X v Y , X � #Y & Y � "X:This family is the free semilattice cpo over P .Each of these constructions produces a coherent domain from an underlyingcoherent domain; these are the more-or-less standard constructions for modeling

XInondeterministic choice within domain theory. Each construct allows operations(such as sequential composition) de�ned on the underlying domain P to beextended to the power domain. But, these extended operations all distribute overthe nondeterministic choice operation, and so modeling bisimulation requires theadditional step of solving a domain equation de�ned in terms of the convex powerdomain (cf. [1]).All of the above applies to bounded nondeterminism, but unbounded non-determinism also is useful, especially for speci�cation. For example, consider aprocess-algebraic setting in which one wants to specify a process that can par-ticipate in any �nite number of a given action, say a, but which is not supposedto participate in in�nitely many a's. This requires distinguishing the processun2N (an ! STOP) from the process (un2N (an ! STOP)) u a1. But, thesetwo processes must be identi�ed in any of the models described above, and sowe have to generalize domain theory and power domains in order to allow theseprocesses to be distinguished.In [24], an approach to modeling unbounded nondeterminism in CSP waspresented. This approach added a new component to the meaning of each pro-cess { the in�nite traces that a process could execute. By actually listing thesetraces, it became possible to distinguish a process that could execute an in�nitetrace from one which couldn't. But the resulting model was no longer a dcpo.Moreover, some selfmaps of the model no longer were continuous, and some ofthose that were didn't have any �xed points, let alone least ones. The point isthat the new model was not a dcpo. The question then became how to makesure all the processes that could be meanings of recursive CSP processes in thissetting actually had well-de�ned meanings. In other words, the question becameone of how to assure that the recursive terms from CSP had meanings given byleast �xed points in this new model.The solution that was found was quite inventive. It amounted to using the factthat the model U for unbounded nondeterminism naturally contained a modelfor CSP with bounded nondeterminism { i.e., a copy of the failures-divergencesmodel FD [4]. This was obtained by sending each CSP process to its meaningin FD together with those in�nite traces that the process could execute, andthis gave an embedding of FD within U \at the top": any element of U is thein�mum of those elements in FD that are above it. This provided a cpo \at thetop" of U , which in turn proved crucial for deriving the results that were neededto show that U actually could serve as a model for unbounded nondeterminismin CSP.The heart of the proof presented in [24] amounts to showing that each of theoperations on U from CSP has a corresponding operation on FD from CSP withbounded nondeterminism that \dominates" it in the pointwise order. In termsof selfmaps of the model, the dominating operation leaves FD invariant (as itsits in U). As a result, each term from CSP with bounded nondeterminism hasa least �xed point on this submodel, and this �xed point is a pre-�xed point forany corresponding term on U that is dominated by the original term from CSP.But a pre-�xed point for a monotone mapping is all that is necessary to assure

XIIthe mapping has a least �xed point provided each element of the model satis�esthe property that its lower set is a cpo. This indeed is the case, and this is howit is shown that each term from CSP with unbounded nondeterminism actuallyhas a least �xed point on U . We now present a more general description of theseresults that also is more precise.Inspired by the work in [24] and by related work in [25] on unbounded non-determinism for Timed CSP, an e�ort was made to �nd an underlying math-ematical principle for the results that were obtained in these two papers. Theresulting principle turned out to be remarkably simple. It hinged on two mainideas:{ the notion of a local cpo, and{ a dominated �xed point theorem.De�nition 6. A partial order P is a local cpo if #x is a cpo for each x 2 P .Clearly any cpo is a local cpo, but there are local cpos which are not directedcomplete. For example, consider (N;�) the natural numbers in the usual order{ the lower set of each point is �nite, but N has no upper bound. This is notexactly the example we have in mind for modeling unbounded nondeterminism,however.The dominated �xed point theorem can then be stated as follows:Theorem 6 (Dominated Fixed Point Theorem [19]). Let P be a local cpoand E a space for which there is a mapping �:E ! P . Suppose that f :P ! P ismonotone and satis�es the property that there is some mapping F :E ! E withf � � v � �F . If F has a �xed point in E, then f has a least �xed point in P . utThe proof of this result is straightforward. One only has to note that a �xedpoint x = F (x) for F satis�es �(x) is a pre-�xed point for f : f(�(x)) v �(F (x)) =�(x) by the hypothesis of the Theorem. Thus, f : #x ! #x, and this set is a cpoas P is a local cpo. Hence f has a least �xed point by Tarski's Theorem.In [19] it is shown how this result provides the common mathematical under-pinning for the models for unbounded nondeterminism in Timed and untimedCSP. In the former case, the space E is one of the metric space models for TimedCSP with bounded nondeterminism devised by Reed and Roscoe [23], and inthe later, the space E is the failures-divergences model for untimed CSP withbounded nondeterminism. One result of [19] was the internalization of the �xedpoint theory for recursive process meanings in each model; in the �rst approachdevised by Roscoe for untimed CSP, an operational model for unbounded non-determinism and a congruence theorem were used to justify the existence ofmeanings for each recursive process; of course, this still is needed to validatethat the �xed point meanings de�ned in the model are the operationally correctones. Another result of [19] was the realization that the work done in [24] toshow that each process meaning in the model is the in�mum of meanings thatlie in the subspace E (which is a cpo) is not needed. It is enough to know thateach mapping for which a least �xed point is required has a dominating mappingon E in the sense of the Dominated Fixed Point Theorem.

XIIIAs outlined above, for coherent domains, the three power domains are eachdescribable in topological terms. But more generally, they can be de�ned forany algebraic dcpo in terms of the family of non-empty �nite subsets of theset of compact elements of the underlying dcpo. For example, the lower powerdomain is the ideal completion of the family of non-empty subsets of K(P)under the quasiorder F v G , F � #G. Similarly, the upper power domainis the ideal completion of the same family, but endowed with the quasiorderF v G , G � "F . In both of these cases, union de�nes a monotone operationwhich extends to the ideal completions to de�ne the meaning of nondeterministicchoice. Finally, the convex power domain is the ideal completion of the samefamily, this time ordered by the common re�nement of these two quasiorders.In [16], an attempt was made to develop a general theory for modeling un-bounded nondeterminism in a domain-theoretic setting based on the results justdescribed. In fact, the goal of that work was to devise analogues for each of thepower domains for unbounded nondeterminism. The point of departure was theassumption that the underlying model for sequential composition { P { embedsin the model for unbounded nondeterminism so that elements of P are \free"with respect to unbounded nondeterminism. More precisely, the underlying as-sumption is that a 6v uX if a 62 #X for any subset X � P . This assumption iswhat is required if one wants to distinguish processes such as un2N (an ! STOP)from (un2N (an ! STOP)) u a1. We now describe the results obtained.First, it was found that there is no analogue to the lower power domain. Thereason is that the order of nondeterminism (x v y , x u y = x) correspondsto the order used to model recursion as least �xed points in any analogue to thelower power domain, so any element that dominates all of the terms an ! STOPalso must dominate a1.On the other hand, it was shown that there is an analogue to the upper powerdomain. This is possible because, in the setting of the upper power domain, theorder of nondeterminism is opposite to the order of recursion. The model inquestion is de�ned simply as the family of all non-empty upper sets fX j ; 6=X = "X � Pg of the underlying domain P with union as the operation. It wasshown in [16] that one could construct a Cartesian closed category of local cposand monotone mappings having least �xed points (via the Dominated FixedPoint Theorem) which is closed under this construction of an unbounded upperpower space. By the way, this is the abstract analogue of the model devised tomodel unbounded nondeterminism for untimed and Timed CSP.Finally, an open question is whether there is an analogue for the convexpower domain in this setting. In [16] an example is provided which shows thatthe analogue for the upper power space just described will not work: it is shownthere that the family of all non-empty order-convex subsets of the underlyingdomain P is not a local cpo in general. (Unfortunately, more is claimed there{ that there is no such model { but that claim remains unsettled.) It would benice to know if this family can be completed into a local cpo which then couldserve as the desired model for unbounded nondeterminism.

XIVReaders familiar with Plotkin's work on countable nondeterminism [20]may wonder about the relationship between that work and what has been de-scribed here from [16]. Plotkin's approach was to weaken the continuity prop-erties of the maps under consideration { instead of being continuous, they areonly @1-continuous (so that they preserve sups of directed sets of less than @1-cardinality). Plotkin shows there is a free object supporting countable sumswithin the category of @1-complete objects and @1-continuous maps. This is notat odds with our results, since we studied objects which are not assumed tobe directed complete for any cardinality of directed subsets, and the maps weconsider are only monotone, and do not satisfy any stronger continuity prop-erties. Our approach is justi�ed by the work in [24, 25] which shows that thesehypotheses are as strong as can be invoked, at least in the CSP setting.4 Computational ModelsSo far the generalizations we have described have been inspired by work inprocess algebra. In this section, we focus on another area of application of domaintheory { models of computation. In the early and mid1990s, Abbas Edalatbegan producing a number of striking applications of domain theory to areasof mathematics and computation. These began with an application showinghow domain theory could provide a simpler approach to modeling fractals anditerated functions systems [5], even providing new algorithms for computingthese objects. There followed applications to neural networks [6], and then tointegration [7]. This last was notable because it showed how domain theorycould be used to devise a new approach to Riemann integration in which thefocus shifted from varying the function being integrated to varying measureswhich approximate Riemann measure, thus allowing domain theory to de�nethe integral. Most recently, Edalat has continued his work by developing realPCF, which contains a real numbers datatype, along with e�cient algorithmsfor exact computations in this datatype using continued fractions [10].In all of this work, an emerging theme has been modeling topological spacesin domain theory, thus allowing the approximation theory of domains to beapplied to problems in this setting. A focal point then becomes the question ofwhich topological spaces admit computational (i.e., domain-theoretic) models.The precise statement is:Which topological spaces can be embedded as the set of maximal elementsin a domain?An initial answer was provided by Lawson [13] who showed that any Polishspace (complete, separable metric space) can be so represented. Shortly there-after, Edalat and Heckmann [9] produced the formal ball model which showsthat any metric space can be embedded as the space of maximal elements in acontinuous poset. The model is the family of all pairs f(x; r) j x 2 X & r � 0gunder the order (x; r) v (y; s) () d(x; y) � r � s. Moreover, they show thatthe model is a continuous poset whose completion (as described in Section 2)

XVhas the completion of the metric space as its space of maximal elements. Both ofthese results focus on domains which satisfy the property that the Scott topologyis weak at the top [8], and indeed under this assumption, the maximal elementsof the underlying domain form a separable metric space.We now outline some results that are due to Keye Martin, a PhD studentat Tulane, which provide an alternative approach to these and related results.They all will be contained in [14].To begin, Martin begins with the notion of a measurement on a domain.De�nition 7. Let P be a continuous poset. A measurement on P is a Scott-continuous mapping �:P ! ([0;1);�) satisfying1. ��1(0) = MAX(P), and2. � induces the Scott topology near the top of P :(8x 2 MAX(P))(8U � P open) x 2 U) (9� > 0) #x \ ��1([0; �)) � U:Numerous examples are available here, including:1. The space IR of compact intervals of real numbers, ordered by reverse inclu-sion, and with length as the measurement.2. The family LIST(A) of lists over a set A, ordered by reverse list containment,and again with length of the list as the measurement.In both of these cases { and in most others { the measurement actually inducesthe Scott topology on the whole domain, not just near the top.Theorem 7 (Martin [14]). Let (P; �) be a continuous poset with a measure-ment, and suppose that � satis�es:(8x; y 2 P) x"y) (9z 2 P) z v x; y & �(z) � 2 �maxf�(x); �(y)g.Then MAX(P) is metrizable. utNotice that the result makes no mention of the weak topology { it holds for anycontinuous poset with measurement.The converse of this result follows from Edalat's and Heckmann's result aboutthe formal ball model [9], since that model has a measurement, the function(x; r) 7! r.4.1 Modeling AlgorithmsThe inspiration for Martin's results was the intuition that two of the most com-mon algorithms had something domain-theoretic in common. Those algorithmsare:1. The bisection algorithm which seeks a root for a continuous selfmap f :R ! Ron an interval [a; b] � R. It proceeds by testing whether the function changessign, �rst on the left half of the interval and then on the right, and recursivelysubdivides the interval. The algorithm can be viewed as a partial mappingsplitf : IR* IR. Note that splitf is not monotone, let alone continuous.

XVI2. Any of the searching algorithms on LIST(A), the domain of lists over a setA. Here again, these algorithms give rise to partial selfmaps of LIST(A) thatare not generally monotone.These examples inspired the following:De�nition 8. Let P be a continuous poset. A partial mapping f :P * P is asplitting if x v f(x) (8x 2 dom(f)).Theorem 8 (Martin [14]). Let f :P ! P be a partial selfmap on a continuousdcpo P with measurement �. If � � f :P * [0;1) is continuous, and if f is asplitting, then tn2N fn(x) is a �xed point for f (8x 2 dom(f)). utA corollary of this result is that any continuous selfmap f :R ! R has a root onany interval [a; b] for which splitf ([a; b]) � [a; b]. Similarly, many of the familiarsearching algorithms can be built up from splittings on the domain of lists towhich the same result can be applied to do correctness proofs. Thus, the the-ory of continuous posets with measurements and splittings provides a commonenvironment to model both the \discrete" algorithms from searching and thecontinuous algorithms such as the bisection algorithm.4.2 Derivatives and Rates of ConvergenceSince the setting of continuous posets with measurements includes the intervaldomain IR, we can use this setting to generalize some results from numericalanalysis.De�nition 9. Let f :P * P be a partial mapping on a continuous poset P withmeasurement �. If p 2 P nK(P), then we de�ne the derivative of f at p bydfd� (p) = limx!p �(f(x))� �(f(p))�(x)� �(p) :For example, for a continuous selfmap f :R ! R, if f changes sign on the in-terval [a; b], then the above de�nition says that splitf has derivative 12 at [a; b],in keeping with the fact that the mapping splits the interval in half on eachiteration.The following shows this de�nition is sensible.Theorem 9 (Martin [14]). If f :R ! R is di�erentiable at x, thendFd� (fpg) = jf 0(p)j;where F : IR * IR is F ([a; b]) = f([a; b]) and �([a; b]) = b � a. Conversely, if fis locally monotone and F has a derivative at fpg, then so does f and the aboveequation holds. utThis result shows that the following theorem generalizes results from numer-ical analysis.

XVIIProposition 3 (Martin [14]). Let f :P * P be a partial mapping on a contin-uous poset P with measurement �. Suppose that limn>0 fn(x) = r 2 MAX(P)is a �xed point for f . Then limn>0 �(fn+1(x))�(fn(x)) = dfd� (r). utWe also can use dfd� (r) to give an estimate of how fast fn(x) converges to a �xedpoint r 2 MAX(P). If limn �(fn(x)) = 0, then for any given � > 0 there is somen for which �(fm(r)) < �, form � n. Now dfd� (r) can be used to give an estimatefor the number of iterations of f for which this inequality actually holds { i.e., itprovides an estimate for the number of iterations required to obtain the answerto within \� accuracy."5 SummaryWe have given three generalizations of domain theory along with outlines ofthe problems that inspired those generalizations. The applications range fromprocess algebra to models of computation, and include novel ideas that generalizesome of the basic tenets of the original theory. Namely, they include{ Relaxing the assumption that the objects under study are directed com-plete, but retain the structure of continuity. The result is a theory that helpsexplain how the models for CSP relate to standard domain-theoretic con-structions, and also makes clear that the hiding operator from CSP is the oneoperation that requires using a subfamily of the poset of non-empty Scottclosed sets.{ Relaxing the condition of directed completeness and continuity to considerlocal cpos and monotone maps. The theory developed provides a generalsetting for modeling unbounded nondeterminism, and includes using cpos\at the top" of such objects to generate (least) �xed point theorems toassure that process meanings are well-de�ned.{ Considering continuous posets and mapping which are not monotone in or-der to model examples from computation, but which include the notion of ameasurement. The theory provides a rich setting for devising computationalmodels that encompass both the continuous approach and the discrete ap-proach represented by list searching algorithms. In this setting, it also ispossible to generalize standard results from numerical analysis.We believe these applications only serve to scratch the surface in terms of the po-tential applications for domain theory, and indeed many existing results are notmentioned here. This rather cursory survey is meant only to pique the reader'sinterest, and to provide some examples which we believe make a convincing casethat domain theory is a rich theory whose potential applications range far fromthe setting that inspired it.

XVIIIReferences1. Abramsky, S. A domain equation for bisimulation. Information and Computation92 (1991), 161{218.2. Abramsky, S., Jung, A. Domain Theory. in: Handbook of Computer Science andLogic, Volume 3 (1994), Clarendon Press3. Brookes, S. D., Hoare, C. A. R., Roscoe, A. W. A theory of communicatingsequential processes. Journal ACM 31 (1984), 560{599.4. Brookes, S. D., Roscoe, A. W. An improved failures model for communicatingprocesses. Lecture Notes in Computer Science 197 (1985) 281{305.5. Edalat, A. Dynamical systems, measures and fractals via domain theory. Infor-mation and Computation 120 (1995), 32{48.6. Edalat, A. Domain theory in learning processes. Electronic Notes in Theo-retical Computer Science 1 (1995), URL: http://www.elsevier.com/locate/entcs/volume1.html.7. Edalat, A. Domain theory and integration. Theoretical Computer Science 151(1995), 163{193.8. Edalat, A. When Scott is weak at the top. Mathematical Structures in ComputerScience, to appear.9. Edalat, A., Heckmann, R. A computational model for metric spaces. TheoreticalComputer Science 193 (1998), 53{73.10. Edalat, A., Potts, P. A new representation for exact real numbers. Elec-tronic Notes in Theoretical Computer Science 6 (1997), URL: http://www.elsevier.com/locate/entcs/volume6.html.11. Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J., Mislove, M., Scott, D. \ACompendium of Continuous Lattices." Springer-Verlag, Berlin, Heidelberg, NewYork (1980) 326pp.12. Hennessy, M., Plotkin. G. Full abstraction for a simple parallel programminglanguage. Lecture Notes in Computer Science 74 (1979) Springer-Verlag.13. Lawson, J. Spaces of maximal points, Mathematical Structures in Computer Sci-ence, to appear.14. Martin, K. Ph.D. thesis, Tulane University, in preparation.15. Mislove, M. Algebraic posets, algebraic cpo's and models of concurrency. in:Topology and Category Theory in Computer Science. G. M. Reed, A. W. Roscoeand R. Wachter, editors, Clarendon Press (1991), 75{111.16. Mislove, M. Denotational models for unbounded nondeterminism. Elec-tronic Notes in Theoretical Computer Science 1 (1995), URL: http://www.elsevier.com/locate/entcs/volume1.html17. Mislove, M. Using duality to solve domain equations. Electronic Notesin Theoretical Computer Science 6 (1997), URL: http://www.elsevier.nl/locate/entcs/volume6.html.18. Mislove, M. Topology, domain theory and theoretical computer science. Topologyand Its Applications, to appear.19. Mislove. M., Roscoe, A. W., Schneider, S. A. Fixed points without completeness.Theoretical Computer Science 138 (1995), 273{314.20. Plotkin, G. D. A powerdomain for countable nondeterminism. Lecture Notes inComputer Science 140 (1982).21. Smyth, M. E�ectively given domains. Theoretical Computer Science 5 (1977)257{274.

XIX22. Smyth, M. Power domains and predicate transformers: a topological view. LectureNotes in Computer Science 154 (1983) Springer-Verlag, 662{675.23. Reed, G. M., Roscoe, A. W. Metric spaces as models for real-time concurrency.Lecture Notes in Mathematics 298 (1988), 331{343.24. Roscoe, A. W., Barrett, G. Unbounded nondeterminism in CSP. Lecture Notesin Computer Science 442 (1990).25. Schneider, S. A. An operational semantics for timed CSP. Information and Com-putation 116 (1995).26. Stoltenberg-Hansen, A., Lindstr�om, I., Gri�or, E. B. \Mathematical Theory ofDomains." Cambridge Tracts in Theoretical Computer Science 22 (1994), Cam-bridge University Press, 349pp.

