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Abstract

This paper presents a domain model for a process algebra featuring both proba-
bilistic and nondeterministic choice. The former is modelled using the probabilistic
powerdomain of Jones and Plotkin, while the latter is modelled by a geometrically
convex variant of the Plotkin powerdomain. The main result is to show that the
expected laws for probability and nondeterminism are sound and complete with
respect to the model. We also present an operational semantics for the process
algebra, and we show that the domain model is fully abstract with respect to prob-
abilistic bisimilarity.

1 Introduction

By now there is a well-established subset of the concurrency literature dealing
with process algebras that feature probabilistic choice—either instead of, or
in addition to, nondeterministic choice. In giving an operational semantics to
such languages one must not only specify which transitions are possible, but
also the probabilities with which they are taken (see, e.g., [18]). In the presence
of unguarded recursion the resultant bookkeeping becomes quite complicated,
and arguably undermines the usual advantages of an operational approach.
On the other hand, in a domain model many technicalities can be hidden by
importing standard constructions and results from general domain theory.

This paper gives a domain-theoretic semantics for a probabilistic process
algebra. We use the probabilistic powerdomain [11] to model probabilistic
choice, and we use a geometrically convex variant of the Plotkin powerdomain,
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independently due to Mislove [15] and Tix [19], to model nondeterministic
choice. The main result of the paper is to present a set of laws for probabilis-
tic and nondeterministic choice which is sound and complete with respect to
our model. The completeness result applies to finite-state processes; thus we
restrict ourselves to considering a process algebra with prefixing, probabilistic
choice, nondeterministic choice and recursion. We also give an operational
semantics for the process algebra, and we show that our domain model is fully
abstract with respect to probabilistic bisimilarity. However, for the complete-
ness proof it turned out to be more convenient to work with the domain model
than the operational model.

The nondeterministic sum of terms E and F is written E + F , while, for
0 < p < 1, the probabilistic sum of p times E and 1 − p times F is written
E ⊕p F . The model we describe is non-alternating, that is, there is only one
type of process, and the operators + and ⊕p can be applied without restriction.
To accommodate both types of choice, following the probabilistic automaton
model of Segala and Lynch [17], we model the initial capabilities of a process
as a set of probability distributions. Nondeterministic choice is modelled by
union, and probabilistic choice by pointwise lifting the natural probabilistic
sum operator on probability distributions to sets of such distributions. This
last artifice entails that our semantics satisfies the following distributive law
of probabilistic choice over nondeterministic choice

(E + F ) ⊕p G = (E ⊕p F ) + (F ⊕p G) . (1)

Another consequence of our interpretation of probabilistic choice is that, in
order to ensure that the law E⊕pE = E holds, we model the initial capabilities
of a process as a geometrically convex 1 set of probability distributions. In turn
this entails the following convexity law for nondeterministic choice

E + (E ⊕p F ) + F = E + F . (2)

This says that the nondeterministic choice of E and F also includes any con-
vex combination of E and F . Operationally this corresponds to the idea of
Segala and Lynch [17] that a nondeterministic choice could be resolved into a
probabilistic choice by means of a randomized scheduler.

Next we give a simple example in order to illustrate some basic intuitions
about the interaction of probability and nondeterminism. Consider the fol-
lowing two processes

P = aP ⊕ 1
2

(P + bP ) (3)

Q = aQ + (aQ ⊕ 1
2

bQ) . (4)

1 A set S of probability distributions is geometrically convex if pσ +(1− p)ν ∈ S whenever
σ, ν ∈ S and 0 6 p 6 1. Later on we will also introduce the notion of order convexity for
such sets.
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If the nondeterministic sum P + bP in (3) is immediately resolved in favour
of the right-hand summand, then the initial behaviour of P is to do a with
probability one half and b with probability one half. On the other hand, if the
choice P + bP is resolved by a scheduler which selects the left-hand summand
n times and then selects the right-hand summand, then the initial behaviour
of P is to do a with probability 1 − 1

2n+1 and b with probability 1
2n+1 . More

generally one can consider randomized schedulers, but in any case the initial
behaviour of P is some convex combination of two extremes: perform a with
probability one, or make a fifty-fifty choice between a and b. Thus we argue
that P and Q should be equal.

In order to show that P = Q by equational reasoning we prove that Q
satisfies the defining equation of P and appeal to a unique fixed point principle.

aQ ⊕ 1
2

(Q + bQ) = aQ ⊕ 1
2

(aQ + (aQ ⊕ 1
2

bQ) + bQ) (defn. of Q)

= aQ ⊕ 1
2

(aQ + bQ) (convexity)

= (aQ ⊕ 1
2
aQ) + (aQ ⊕ 1

2
bQ) (distributivity)

= aQ + (aQ ⊕ 1
2

bQ)

= Q .

The distributive law (1) facilitates a semantics in which nondeterministic
choice and probabilistic choice satisfy the expected laws. On the other hand,
the dual requirement that nondeterministic choice distribute over probabilistic
choice would force us to revise some of these laws. For example, an instance
of this other distributive law is

(E ⊕ 1
2
F ) + (E ⊕ 1

2
F ) = E ⊕ 1

4
((E + F ) ⊕ 2

3
F ) .

It would seem undesirable to retain the idempotence of + in the presence of
such an identity. In particular, it would imply that the simple fifty-fifty choice
E ⊕ 1

2
F is equal to various weighted combinations of E, F and E + F .

The dual distributive law tends to arise in those models where the guiding
philosophy is that probabilistic choices should be resolved before nondeter-
ministic choices. Examples of such models can be found in [12,16].

1.1 Related Work

Stark and Smolka [18] and Baeten et al. [4] give complete axiomatizations of
probabilistic bisimilarity for calculi featuring probabilistic choice but not non-
deterministic choice. The development in [18] closely follows the treatment of
equations for bisimilarity in finite-state CCS by Milner [14]. Our completeness
proof follows the same pattern, except that arguments based on operational
semantics get replaced by domain theory.

Following Milner [14] and Stark and Smolka [18], we include a unique fixed
point rule for guarded recursion as part of our axiomatization. This is really
a schema of conditional equations. By contrast, a purely equational axiomati-
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zation of probabilistic bisimilarity has recently been obtained by Aceto, Ésik
and Ingólfsdóttir [2]. Their approach involved adding axioms for probabilistic
choice to an underlying equational formulation of iteration theories.

Bandini and Segala [6] give a complete axiomatization of strong and weak
probabilistic bisimilarity for an algebra including nondeterministic and prob-
abilistic choice, but not recursion. One significant difference between their
formulation and ours is that they introduce syntactic restrictions on the ap-
plication of probabilistic choice and nondeterministic choice. For instance, the
distributive law (1) would be ill-typed in their setting.

Baier and Kwiatkowska [5] consider the combination of probability and
nondeterminism from a domain-theoretic perspective. Like us they produce a
model for a process algebra by solving a domain equation involving the proba-
bilistic powerdomain. However they use the Hoare powerdomain, rather than
the geometrically convex Plotkin powerdomain. Furthermore they introduce
probability via an operator of action-guarded probabilistic choice rather than
the unrestricted probabilistic choice operator that we model. Finally they do
not axiomatize their semantics.

A radically different way to model probability and nondeterminism in do-
main theory has been investigated by Varacca [20]. He models probabilistic
choice using a monad of indexed valuations. This structure is more rigid
than the usual probabilistic powerdomain (which is a quotient), and allows a
categorical distributive law over the Hoare powerdomain. Using this distribu-
tive law he defines a combined monad of probabilistic and nondeterministic
choice. The corresponding equational theory however does not include the law
E ⊕p E = E.

Andova [3] considers the addition of probabilistic choice to the algebra
ACP , studied extensively by de Bakker and his students. The pivotal issue
in Andova’s work is how to extend the parallel composition operator of ACP
to the algebra extended to include probabilistic choice, an issue that requires
considerable delicate reasoning to resolve.

Finally, the paper den Hartog [10] presents an extensive consideration to
the interactions between differing forms of nondeterministic and probabilistic
choice, called local and global, and which correspond to internal and external
choice operators.

2 Powerdomains

In this section we bring together the results from domain theory that we re-
quire to build and analyze our model. In particular, we define the combined
powerdomain Pow(D) and the attendant probabilistic and nondeterministic
choice operators. The constructs themselves are what is important for under-
standing the paper. We carefully state some of the hypotheses required to
make the constructions work (e.g., continuity and coherence), but we think
that these technicalities may safely be omitted on a first reading.
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For us a domain is a particular type of ordered set, specifically a continuous
dcpo with a bottom element. A Scott-continuous map between domains is a
monotone function that preserves directed suprema. If (D,v) is a domain
and L ⊆ D, we write ↑L for the set {x ∈ D : (∃y ∈ L) y v x}, and we write
↓L for the set {x ∈ D : (∃y ∈ L) x v y}.

As usual, we will consider a domain D as a topological space in its Scott
topology. Recall that U ⊆ D is open in the Scott topology if it is an upper set
(U = ↑U) and is inaccessible by directed suprema: for each directed set A,⊔

A ∈ U implies A ∩ U 6= ∅. Another relevant topology for us is the Lawson
topology. This is a Hausdorff refinement of the Scott topology, obtained by
adding as sub-basic opens those sets of the form D \ ↑ d, where d ∈ D. We
will be particularly concerned with domains that are compact in the Lawson
topology: the so-called coherent domains. This class is important for us in that
it is closed under the probabilistic powerdomain and the Plotkin powerdomain,
and because the latter admits a nice characterization on coherent domains.

2.1 The Probabilistic Powerdomain

Next we introduce the probabilistic powerdomain VD of a domain D. The
elements of VD are valuations on D. These are like probability measures, but
can be defined using purely topological data. Technically, a valuation on D is
a mapping ν : ΣD → [0, 1] from the lattice (ΣD,⊆) of Scott open subsets of
D to the unit interval satisfying the following laws.

• strictness
ν∅ = 0 and νD = 1

• modularity
ν(U ∪ V ) + ν(U ∩ V ) = νU + νV for all U, V .

• Scott continuity
ν(

⋃
i∈I Ui) = supi∈I νUi for every directed family {Ui}i∈I .

The set of all valuations VD becomes a domain when equipped with the
pointwise order: σ v ν iff σU 6 νU for all U ∈ ΣD. Furthermore, VD is
coherent whenever D is coherent [8].

The Scott topology on VD can be described directly in terms of the Scott
topology on D using a probabilistic modality. The sub-basic opens are the
sets

♦pU = {ν ∈ VD : νU > p}

where 0 6 p 6 1 and U ⊆ D is Scott open.

Each element x ∈ D gives rise to a valuation δx defined by δx(U) = 1 if
x ∈ U , and δx(U) = 0 otherwise. A simple valuation has the form

∑
a∈A raδa

where A ⊆ D is finite, each ra is a non-negative real number, and
∑

a∈A ra = 1.
A central result about simple valuations is the Splitting Lemma; this will be
used in the proof of completeness of our equational axiomatization.
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Lemma 2.1 (Jones [11]) Let σ =
∑

a∈A raδa and ν =
∑

b∈B sbδb be simple
valuations on D. Then σ v ν if and only if there exists a family of transport
(or flow) numbers {ta,b | a ∈ A, b ∈ B} ⊆ [0, 1] satisfying

• For each a ∈ A,
∑

b∈B ta,b = ra,

• For each b ∈ B,
∑

a∈A ta,b = sb,

• ta,b 6= 0 implies a v b.

2.2 The Geometrically Convex Plotkin Powerdomain

Let D be a coherent domain. We say that L ⊆ D is a lens if L is nonempty,
compact in the Lawson topology and is order convex, i.e., L = ↑L ∩ ↓L. We
let PD denote the set of all such lenses together with the emptyset set, and
we denote a typical element of Pow(D) by X or Y . The set PD becomes a
coherent domain when equipped with the Egli-Milner order. This is defined
by

L v L′ iff ↓L ⊆ ↓L′ and ↑L′ ⊆ ↑L

for lenses L and L′, and {⊥} v ∅.

The Scott topology on PD can be described directly in terms of the Scott
topology on D using ‘may’ and ‘must’ modalities. The sub-basic opens are
the sets

� U = {X ∈ PD | X ⊆ U}

♦ U = {X ∈ PD | X ∩ U 6= ∅}

where U ⊆ D is Scott open.

Our model for probabilistic and nondeterministic choice is a retraction of
PVD. In order to define this we first need to recall the concepts of order-
convex closure and geometrically-convex closure. Given a Lawson compact
set S ⊆ VD, the order-convex closure of S is defined to be ↑S ∩ ↓S. The
geometrically-convex closure of S is defined to be {pσ + (1 − p)ν : σ, ν ∈
S, 0 6 p 6 1}. An important fact is that both closure operators preserve
Lawson compactness. We now define the composite closure operator

〈−〉 : PVD → PVD

by taking 〈X〉 is the order-convex closure of the geometrically-convex closure
of X. (Note that the order-convex closure of a geometrically convex set is still
geometrically convex.) Then 〈−〉 is a Scott continuous idempotent map whose
image, which we denote Pow(D), is precisely the collection of geometrically-
convex elements of PVD. It follows that Pow(D) is a retraction of PVD and
is thus a coherent domain in the inherited order.

Now we equip Pow(D) with operations for probabilistic and nondetermin-
istic sum. Given S and S ′ in Pow(D) the nondeterministic sum X + Y is
defined by

X + Y = 〈X ∪ Y 〉.
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The probabilistic sum X ⊕p Y is defined by

X ⊕p Y = 〈 {pσ + (1 − p)ν : σ ∈ S, ν ∈ S ′} 〉 .

Given a finite set F = {ν1, . . . , νn} ⊆ VD we define {|ν1, . . . , νn|} to be the
element of Pow(D) generated by L, that is,

{|ν1, . . . , νn|} = 〈↑F ∩ ↓F 〉 .

By standard arguments, both + and ⊕p are Scott continuous as maps from
Pow(D)×Pow(D) to Pow(D). We also note that for lenses L and L′, L⊕p L′

converges to L as p tends to 1 and it converges to L′ as p tends to 0. Lastly
we remark that the distributive law (1) holds in Pow(D), essentially because
the operation of probabilistic choice on Pow(D) is defined pointwise. We refer
the reader to Mislove [15] and Tix [19] for further explanation of these points.

2.3 Separated Sum

The remaining construction on domains that we use is separated sum. Let
Act be a finite set of actions fixed once and for all. Given a domain D write∐

a∈Act D for the Act-fold coproduct of D with itself, with a new bottom
element adjoined. Thus the elements of

∐
a∈Act D other than ⊥ are pairs

〈a, d〉 with a ∈ Act and d ∈ D, and 〈a, d〉 v 〈a′, d′〉 iff a = a′ and d v d′.

3 The Model

Next we introduce a calculus PE of probabilistic expressions. This is the lan-
guage of [18] augmented with a nondeterministic sum operator. The grammar
for PE terms is as follows.

E ::= X | 0 | aE | E + E | E ⊕p E | µXE

where a ∈ Act and 0 < p < 1.

Here X is a process variable, 0 is the inactive process, E +F is the nonde-
terministic choice of E and F , and E ⊕p F is the probabilistic choice of E and
F . While the index p is restricted to the open interval (0, 1), it is convenient
to allow E ⊕1 F as a synonym for E and E ⊕0 F as a synonym for F . We
write fv(E) for the set of free variables in a term E, and we write E{F/X}
to denote the term obtained by substituting F for all free occurrences of X in
E. A closed term is called a probabilistic agent.

It is convenient to have a notation for arbitrary finite nondeterministic
and probabilistic sums. We write the sum E1 + (E2 + (· · · + En ) · · · ) as∑n

i=1 Ei. The empty summation
∑0

i=1 stands for 0. We also write the sum
E1⊕p1

(E2⊕p2
(· · ·⊕pn−1

En ) · · · ) as
∑n

i=1◦ riEi, where ri = pi×
∏

j<i(1−pj) for
i<n and rn =

∏
j<n(1−pj). Thus ri is the probability that the i-th summand

is selected.
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We use Ω as an abbreviation for µXX, and we think of this as the divergent
process. Intentionally this is different from [18,2] where µXX is interpreted
as the inactive process, denoted 0. (Despite this difference in intentions we
claim that the axioms presented in Section 4 yield a conservative extension of
the theory presented in [18,2].)

To find a domain model of PE we solve a probabilistic version of Abram-
sky’s domain equation for bisimulation [1]. More precisely, we construct a
domain D such that there is an isomorphism

ι : D ∼= Pow(
∐

a∈Act

D ) . (5)

General domain theory [9] tells us that not only can we find such a domain,
but there is a canonical such choice—the so-called minimal invariant. We
think of this domain as a universal Segala-Lynch probabilistic automaton [17].
Following this intuition, if ν ∈ ι(d) we write d → ν—read d has capability ν.

Below we show how to interpret terms of the process algebra in the do-
main D. The semantics of a term E relative to an environment ρ (mapping
variables to elements of D) is denoted [[E]]ρ. Recursion is handled in the stan-
dard way using least fixed points. In the following definitions of the semantic
map we have elided the isomorphism ι : D → Pow(

∐
a∈Act D) for notational

transparency.

[[0]]ρ = ∅

[[aE]]ρ = {| δ〈a,[[E]]ρ〉 |}

[[E + F ]]ρ = [[E]]ρ + [[F ]]ρ

[[E ⊕p F ]]ρ = [[E]]ρ ⊕p [[F ]]ρ

[[µXE]]ρ =µθ[[E]](ρ[X 7→ θ]) .

Next we introduce a domain logic L for D. We use this logic as a tool
to show that one element of D is below another. In particular, it is used in
the proof of the soundness of some of the equational rules below. The logic
is based on the topological description on the various functors underlying the
construction of D. In order to fully capture a domain via a logic one should
also give a proof system for telling when two formulas represent the same open
set, cf. Abramsky [1]. For our purposes however this is unnecessary.

In the grammar for L there are two phrase types: state formulas and
probabilistic formulas. This corresponds to the alternation of nondeterministic
and probabilistic choice in the domain equation. State formulas are denoted
by Roman letters and probabilistic formulas by Greek letters.

(state formulas) f ::= f ∧ f | f ∨ f | ♦ϕ | �ϕ

(probabilistic formulas) ϕ ::=> | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈a〉pf

where a ∈ Act, and p ∈ [0, 1].
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The modal depth of formulas is defined by

md(�ϕ) = md(♦ϕ) = md(ϕ) + 1

md(〈a〉pf) = md(f) .

As usual, the modal depth of a conjunction (disjunction) is the maximum of
the modal depth of the conjuncts (disjuncts).

We define a satisfaction relation between elements of D and state formulas,
and between elements of V(

∐
a∈Act D) and probabilistic formulas.

d � ♦ϕ iff (∃ν)(d → ν ∧ ν � ϕ)

d � �ϕ iff (∀ν)(d → ν ⇒ ν � ϕ)

ν � 〈a〉pf iff ν{〈a, d〉 : d � f} > p .

Given d, d′ ∈ D, we say that d 4n d′ if d � f implies d′ � f for each
formula f with md(f) 6 n. Similarly, given ν, σ ∈ V(

∐
a∈Act D), we say that

ν 4n σ if ν � ϕ implies σ � ϕ for each formula ϕ with md(ϕ) 6 n.

Using the modal descriptions of the topologies on the powerdomains, and
the inductive construction of the domain D, one can prove the following result.

Theorem 3.1 Given d, d′ ∈ D, d v d′ iff d 4n d′ for all n ∈ N.

4 Equations

The following table gives a list of (in)equations between PE terms. These will
be shown to be sound and complete with respect to the domain model D.

The semilattice equations N1–N4 are exactly the axioms for strong bisim-
ilarity from [14]. The equations P1–P3 are the axioms for probabilistic bisim-
ilarity from [18]. Nondeterministic choice and probabilistic choice interact via
the distributive laws D1 and D2. The remaining equations concern recursion.
Rule F4 implies that guarded recursions have unique fixed points. (A variable
X is guarded in a term E if each free occurrence of X in E appears in a
subterm of the form aE ′.) Rules F1 and F2 show how to eliminate unguarded
variables from recursive definitions.

One can think of the distributive laws D1 and D2 as saying that in an
expression E ⊕p F the nondeterministic choices of E and F are resolved first,
and then combined probabilistically. In particular, if F represents the empty
choice, as in D2, then E ⊕p F is inert. On the other hand, if we are guided
by the dual distributive law, as in [12], then E ⊕p 0 denotes an agent which
behaves like E with probability p and 0 with probability 1 − p. We also note
that in the process algebras studied in [5,6] the nil process 0 cannot appear
as a summand in a probabilistic choice owing to certain syntatic restrictions.

We write ` E v F to indicate that there is a deduction of E v F . The
provability relation ` is extended pointwise to term vectors.
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Ω Ω v E

N1 E + F = F + E

E = E + E

N4 E + 0 = E

P1 E ⊕p E = E

P2 E ⊕p F = F ⊕1−p E

P3 E ⊕p (F ⊕q G) = (E ⊕ p

p+q−pq

F ) ⊕p+q−pq G

D1 (E + F ) ⊕p G = (E ⊕p G) + (F ⊕p G)

D2 E ⊕p 0 = 0

F1 µX(E + X) = µX(E + Ω)

F2 µX((E ⊕p X) + F ) = µX(E + F )

F3 µXE = E{µXE/X}

F4 From E = F{E/X} and F{E ′/X} v E ′, X guarded in F ,

infer E v E ′.

Fig. 1. (In)equations for PE terms

One straightforward but important consequence of axioms D1 and P1 is

` E + F = E + (E ⊕p F ) + F. (6)

A special case of this convexity equation occurs as an axiom in the presentation
of Bandini and Segala [6].

Following the pattern of [14,18] the completeness of this system hinges on
a couple of important transformations that can be effected by combinations
of the equations. The first of these is the standard de Bakker-Bekic-Scott
construction of solutions of mutually recursive definitions. This is embodied
in the following proposition, which is [14, Theorem 5.7].

Proposition 4.1 (Solution Lemma) Let X̃ = (X1, . . . , Xm) and Ỹ =

(Y1, . . . , Yn) be vectors of distinct variables, and G̃ = (G1, . . . , Gm) a vector of

terms with free variables in (X̃, Ỹ ) in which each Xi is guarded. Then there

exist expressions Ẽ = (E1, . . . , Em) with free variables in Ỹ such that

` Ẽ = G̃{Ẽ/X̃}.

Moreover, if F̃ = (F1, . . . , Fm) is a vector of terms with free variables in Ỹ

such that ` G̃{F̃ /X̃} v F̃ , then ` Ẽ v F̃ .
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Definition 4.2 A simple term is either Ω, a variable, or a prefix aE. A
standard form is a term of the form

m∑

i=1

n(i)∑

j=1

� rijEij

where each Eij is a simple term.

Thus a standard form is a nondeterministic sum, with each summand being
a probabilistic sum of simple terms. If a term aE occurs as one of the Eij

then we say that E is a derivative of the standard form.

The next proposition says that each PE term E is provably equal to the
first coordinate of term vector Ẽ which is the solution of a recursive definition.

Proposition 4.3 (Standard Forms) For any term E with free variables in

Ỹ , there are terms E1, . . . , Ek also with free variables in Ỹ such that ` E = E1

and each Ei is provably equal to a standard form where each derivative is taken
from the set {E1, . . . , Ek}. Thus, for instance,

` E1 =

m∑

i=1




n(i)∑

j=1

� rijaijEf(i,j) ⊕p(i)

n′(i)∑

j=1

� sijYg(i,j) ⊕q(i) Ω



 .

Similar equations hold for each of the Ei.

Proof. (Sketch) The proof is by structural induction on E. The distributive
laws D1 and D2 are used to handle the inductive case E ≡ F ⊕p G. The fixed
point equations F1–F3 are used to handle the inductive case E ≡ µXF . 2

5 Soundness and Completeness

The following theorem, the main result of this paper, asserts that the equations
above are sound and complete for the model D.

Theorem 5.1 ` E v F iff [[E]] v [[F ]].

The soundness of the axioms N1–N4, P1–P3, D1 and D2 follows imme-
diately from the relevant algebraic properties of the operations + and ⊕p on
Pow(D). We can now bootstrap the soundness of the fixed-point laws F1–F4.
We explain two cases in some detail in order to show how the domain-theoretic
underpinnings can be put to work.

5.1 Soundness of F2

For simplicity, to avoid mentioning environments, we assume that the only
free variable occurring in E and F is X. We also omit semantic brackets,
treating terms E and F directly as functions on our semantic domain D.
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Suppose d ∈ D is a fixed point of E + F , that is, d = E(d) + F (d). Then

(E(d) ⊕p d) + F (d)= (E(d) ⊕p (E(d) + F (d))) + F (d)

= E(d) + (E(d) ⊕p F (d)) + F (d) (distributivity)

= E(d) + F (d) (convexity)

= d .

Thus d is also a fixed point of (E ⊕p X) + F . Since recursion is modelled by
least fixed points, it follows that [[µX((E ⊕p X) + F )]] v [[µX(E + F )]].

On the other hand, suppose d = (E(d)⊕pd)+F (d). We show that d is also a
prefixed point of E+F and conclude that [[µX(E+F )]] v [[µX((E⊕pX)+F )]].
To this end, consider the following derivation.

d=(E(d) ⊕p d) + F (d)

= (E(d) ⊕p ((E(d) ⊕p d) + F (d))) + F (d)

= (E(d) ⊕p (E(d) ⊕p d)) + (E(d) ⊕p F (d)) + F (d)

= (E(d) ⊕2p−p2 d) + (E(d) ⊕p F (d)) + F (d) .

One can further transform the last expression above by rewriting the subterm
d to (E(d)⊕pd)+F (d) and then simplifying using distributivity and convexity
(2). By repeatedly performing these transformations one obtains a sequence
of expressions of the form

(E(d) ⊕rn
d) + (E(d) ⊕sn

F (d)) + F (d)

that are all equal to d and such that rn and sn tend to 1. From the continuity
properties of the operators + and ⊕p this sequence converges in the Scott
topology to E(d) + F (d). It follows that E(d) + F (d) v d. Thus d is indeed
a prefixed point of E + F .

5.2 Soundness of F4

Suppose that F is a term in which the variable X is guarded. Furthermore
suppose that E and E ′ are terms with [[E]] = [[F{E/X}]] and [[F{E ′/X}]] v
[[E ′]], that is, E is a fixed point of F and E ′ is a prefixed point of F . To
demonstrate the soundness of F4 we have to show that [[E]] v [[E ′]]. This
follows from the lemma below (by taking G ≡ X).

Lemma 5.2 Let G be a term with fv(G) ⊆ fv(F ); then [[G{E/X}]] v [[G{E ′/X}]].

Proof. We prove by induction that [[G{E/X}]] 4n [[G{E ′/X}]] for each n ∈
N. By Theorem 3.1 this entails the desired result. For simplicity, to avoid
mentioning environments, we suppose that X is the only variable occurring
free in F .

The variable X is guarded in G{F/X}. Thus G{F/X} has standard form

m∑

i=1




n(i)∑

j=1

� rijaijGij ⊕p(i) Ω


 .

12
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From the soundness of all the laws excepting F4 it follows that each term
has the same denotation as its standard form. Thus

[[G{E/X}]] = [[G{F{E/X}/X}]]

= [[G{F/X}{E/X}]]

= [[
m∑

i=1




n(i)∑

j=1

� rijaijGij{E/X} ⊕p(i) Ω



]] . (7)

Similarly one has

[[G{E ′/X}]] w [[

m∑

i=1




n(i)∑

j=1

� rijaijGij{E
′/X} ⊕p(i) Ω



]] . (8)

The induction hypothesis entails that [[Gij{E/X}]] 4n [[Gij{E
′/X}]] for

each pair i, j. The induction step relies on the structural similarities be-
tween the standard forms (7) and (8). In particular, for each capability ν of
[[G{E/X}]] there is a capability σ of [[G{E ′/X}]] with ν 4n σ. Conversely
for each capability σ of [[G{E ′/X}]] there is a capability ν of [[G{E/X}]] with
ν 4n σ. It immediately follows that [[G{E/X}]] 4n+1 [[G{E ′/X}]]. 2

5.3 Completeness

Although space does not permit more than a cursory treatment of complete-
ness, we would as least like to indicate which results are needed in the proof.

Suppose E and F are terms, which for simplicity are assumed to be closed,
such that [[E]] v [[F ]]. By Proposition 4.3 there is a vector of closed terms

Ẽ = (E1, . . . , Em) and a vector G̃ = (G1, . . . , Gm) of terms in free variables

X̃ = (X1, . . . , Xm) such that ` E = E1 and

` Ẽ = G̃{Ẽ/X̃} .

Similarly, there is a vector of closed terms F̃ , and a vector of terms H̃ in
variables Ỹ such that ` F = F1 and

` F̃ = H̃{F̃ /Ỹ } .

Thus Ẽ and F̃ can be seen as fixed points of two different term vectors
G̃ and H̃ . The heart of the completeness proof is to distill from G̃ and H̃ a
‘product vector’ P̃ which has Ẽ as a fixed point and F̃ as a prefixed point. One
then appeals to Proposition 4.1 to conclude that ` E v F . A key technical
ingredient in the construction of P̃ is the Splitting Lemma. This is used to
realize probability distributions occurring in G̃ and H̃ as marginals of joint
distributions in P̃ .

13
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6 Operational Semantics

In this section we define an operational semantics for PE, and we show that
the domain-theoretic semantics, presented above, is fully abstract with respect
to a form of probabilistic bisimilarity.

Let PE denote the set of all PE terms and PA the set of probabilistic
agents, i.e., the closed terms. We let

∐
a∈Act PE stand for the flat poset

of elements 〈a, E〉, where a ∈ Act and E ∈ PE , ordered discretely, and
with a bottom element ⊥ adjoined. The operational semantics of PE can
be seen as presenting a transition relation E → µ, where E is a term and
µ ∈ V(

∐
a∈Act PE) is a (necessarily simple) valuation. In actual fact we define

a function inits(E) which gives the initial behaviours of a term E, i.e., the set
{µ | E → µ}.

The set inits(E) is defined to always be geometrically convex. Since each
transition E → µ can be seen as arising from a scheduler resolving the nonde-
terminism in E, this last requirement corresponds to the possibility of having
probabilistic schedulers. As we have explained earlier, this feature is crucial
for our semantics to satisfy the distributive law of probabilistic choice over
nondeterministic choice. It will also be the case that inits(E) is order-convex;
given the notion of bisimulation presented in Definition 6.3 it is harmless to
identify a set with its order-convex closure in this context.

As we mentioned earlier, a complicating factor in defining an operational
semantics for PE is the presence of unguarded recursion. For a simple example
of this phenomenon, consider the term P ≡ µX((aX ⊕ 1

2
X) + bX). It is clear

that one possible transition is P → δ〈b,P 〉. Slightly less obviously, another
possible transition is P → δ〈a,P 〉. This transition corresponds to a scheduler
which always selects the right-hand summand in the body of the recursion;
under such a scheduler it is guaranteed that the action a will occur eventually.

In the purely probabilistic setting, Stark and Smolka [18] handle unguarded
recursion by separately calculating the possible transitions of a term and the
probabilities with which they occur. These probabilities are calculated as least
fixed points. Our approach is similar in spirit, but necessarily more complex
in the presence of nondeterminism.

To handle unguarded recursion we introduce environments in our opera-
tional semantics. Given a set of variables X̃ = {X1, . . . , Xn}, an environment
is a function

σ : {X1, . . . , Xn} → Pow(
∐

a∈Act PE)

giving the initial transitions of each variable Xi. We write inits(E, σ) for the

initials of a term E in free variables X̃ with respect to the environment σ; this
is an element of Pow(

∐
a∈Act PE). The definition of inits(E, σ) is by a nested

induction: first by induction on the number of occurrences in E of a subterm
of the form µXF which is not within the scope of a prefixing operator, and
then by structural induction on E. The clauses in the definition are as follows:

• inits(0, σ) = ∅

14
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• inits(X, σ) = σ(X)

• inits(aE, σ) = {δ〈a,E〉}

• inits(E + F, σ) = inits(E, σ) + inits(F, σ)

• inits(E ⊕p F, σ) = inits(E, σ) ⊕p inits(F, σ)

• inits(µXE, σ) = µθ inits(E ′, σ[X 7→ θ]), where E ′ arises by substituting
µXE for all guarded occurrences of X in E.

The last clause says that inits(µXE, σ) is the least solution of the equation

θ = inits(E ′, σ[X 7→ θ])

in the domain Pow(
∐

a∈Act PE). Observe that if X is guarded in E, then E ′

is just E{µXE/X}, so X does not occur free in E ′ and the given fixed point
is reached in one step. In fact the fixed point in this clause is solely directed
toward unguarded occurrences of the variable X.

Example 6.1 Consider the agent P ≡ µX((aX ⊕ 1
2
X) + bX). Then inits(P )

is the least solution of the equation

θ = inits((aP ⊕ 1
2

X) + bP, [X 7→ θ]) .

This can be constructed as the join in Pow(
∐

a∈Act PA) of the following chain

{| δ⊥ |}, {| δ〈b,P 〉,
1
2
δ〈a,P 〉 + 1

2
δ⊥ |}, {| δ〈b,P 〉,

3
4
δ〈a,P 〉 + 1

4
δ⊥, 1

2
δ〈a,P 〉 + 1

2
δ〈b,P 〉 |}, · · ·

Theorem 6.2 expresses the compatibility of the operational semantics de-
fined above with the denotational model D ∼= Pow(

∐
a∈Act D) from Section

3. Technically it says that the denotational map [[−]] : PA → D is a coalgebra
homomorphism, cf. [1].

Theorem 6.2 The following diagram commutes

PA

[[−]]

��

inits
// Pow(

∐
a∈Act PA)

Pow(
∐

a∈Act[[−]])

��

D ι
// Pow(

∐
a∈Act D)

Proof. (Sketch) The proof follows the inductive structure of the definition of
inits(P ). The induction cases for prefixing, nondeterministic choice and prob-
abilistic choice are immediate and exploit the similarity of the corresponding
clauses in the definitions of inits and [[−]]. The induction case for recursion
relies on a compatibility between the respective fixpoint constructions in the
operational and denotational semantics of recursion. 2

6.1 Bisimulation and Modal Logic

Our domain-theoretic semantics for probabilistic agents corresponds to a ver-
sion of probabilistic bisimulation. Definitions of bisimulation for agents fea-
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turing both probabilistic choice and nondeterministic choice have appeared
in [17,12]. The definition below is slightly different since we take account of
divergence in our operational semantics.

Let R be a relation on PA. We extend R to a relation on
∐

a∈Act PA by
defining

〈a, E〉R 〈b, F 〉 iff a = b and E R F

⊥R 〈b, F 〉 for all b, F

⊥R⊥

Next we define the relation 4R on V(
∐

a∈Act PA) by µ 4R ν if µ(O) 6 ν(R(O))
for all O ⊆

∐
a∈Act PA, where R(O) is the image of O under R.

Definition 6.3 We say that a relation R on PA is a partial probabilistic
bisimulation [1] if P R Q implies

• P → µ implies (∃ν)(Q → ν and µ 4R ν)

• Q → ν implies (∃µ)(P → µ and µ 4R ν).

If agents P and Q are related by a partial probabilistic bisimulation then we
write P v Q.

We can use the operational semantics for PE to define a satisfaction re-
lation between probabilistic agents and formulas of the logic L introduced
in Section 3. In fact this definition is almost syntactically identical to the
corresponding definition in Section 3. The three clauses are

P � ♦ϕ iff (∃ν)(P → ν ∧ ν � ϕ)

P � �ϕ iff (∀ν)(P → ν ⇒ ν � ϕ)

ν � 〈a〉pf iff ν{〈a, P 〉 : P � f} > p .

As a corollary of the compatibility of the operational and denotational
semantics for PE, as expressed in Theorem 6.2, we obtain the following result
relating the two semantics for the logic L.

Corollary 6.4 For each probabilistic agent P and formula f on L, P � f iff
[[P ]] � f .

Proof. By induction on the modal depth of f , using Theorem 6.2 for the
induction step. 2

The following result says that the logic L characterizes probabilistic agents
up to bisimilarity. It is a slight variant of [12, Theorem 8].

Theorem 6.5 Given probabilistic agents P and Q, P v Q iff P � f implies
Q � f for all formulas f ∈ L.

The following theorem is the main result of this section. It says that the
domain semantics for probabilistic agents is fully abstract with respect to
partial probabilistic bisimilarity.
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Theorem 6.6 Given probabilistic agents P and Q, P v Q iff [[P ]] v [[Q]].

Proof.

P v Q iff (∀f ∈ L)(P � f ⇒ Q � f) (by Theorem 6.5)

iff (∀f ∈ L)([[P ]] � f ⇒ [[Q]] � f) (by Corollary 6.4)

iff [[P ]] v [[Q]] (by Theorem 3.1) .

2

7 Summary

The main construction of this paper uses a powerdomain combining proba-
bilistic choice and nondeterminism as the basis for a domain equation whose
solution gives a denotational model that is sound and complete for the axioms
we listed in Section 4. The other main contribution of the paper is Theo-
rem 6.6 which asserts that the domain model is fully abstract with respect to
partial probabilistic bisimilarity. These results have their inspiration in two
preceding works: the development of a domain equation for bisimulation from
[1], and the presentation of a powerdomain combining nondeterminism and
probabilistic choice in [15,19].

Analogous results have been devised for other models for probabilistic
choice, a number of which have been mentioned in Subsection 1.1. While
some of these related works consider probabilistic choice and nondeterminism
together, we know of no presentation of a sound and complete logic for a model
combining both forms of nondeterminism with recursion. Furthermore, we use
a denotational model to reason about the algebra we study. We believe that
attempting to analyze our algebra directly in terms of a purely operational
semantics would significantly increase the complexity of many of the proofs.
A major feature of our approach is our ability to use “off-the-shelf” results
from domain theory, such as the topological representation of our powerdo-
main model, and the Splitting Lemma, which is a central result about the
probabilistic powerdomain.

There is a close link between our model and that of [18], which we have
already alluded to in Subsection 1.1 and elsewhere. In [18], Stark and Smolka
consider a variant of CCS in which probabilistic choice replaces nondetermin-
istic choice. If we restrict attention to the subalgebra of purely probabilistic
processes (i.e., those which do not employ nondeterminism), then two such
processes are equivalent in our semantics if and only if they are equivalent in
the Stark–Smolka semantics.

Furthermore, in the Stark–Smolka approach, the process µX X has no
transitions. This is reflected in their semantics by the fact that processes make
transitions to subprobability distributions – ones with total mass ≤ 1. On the
other hand, our semantics gives the process µX X a single transition, to the
probability measure δ⊥, and in our semantics, processes make transitions to
probability distributions. The link between the two is that a process P in the
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Stark–Smolka semantics with total mass v < 1 corresponds to the process in
our semantics that has component (1−v)δ⊥, and whose remaining distribution
is the same as in the Scott–Smolka approach.

References

[1] S. Abramsky. A Domain Equation for Bisimulation. Information and

Computation, 92:161–218, 1991.
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