From Haar to Lebesgue via Domain Theory

Michael Mislove Tulane University

Topology Seminar CUNY Queensboro Thursday, October 15, 2015 Joint work with Will Brian Work Supported by US NSF & US AFOSR

Lebesgue Measure and Unit Interval

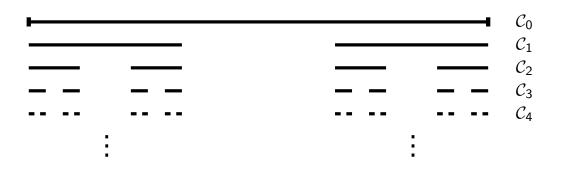
- $[0,1] \subseteq \mathbb{R}$ inherits Lebesgue measure: $\lambda([a,b]) = b a$.
- Translation invariance: λ(x + A) = λ(A) for all (Borel) measurable A ⊆ ℝ and all x ∈ ℝ.
- Theorem (Haar, 1933) Every locally compact group G has a unique (up to scalar constant) left-translation invariant regular Borel measure µ_G called *Haar measure*.

If G is compact, then $\mu_G(G) = 1$.

Example: $\mathbb{T} \simeq \mathbb{R}/\mathbb{Z}$ with quotient measure from λ .

If G is finite, then μ_G is normalized counting measure.

The Cantor Set



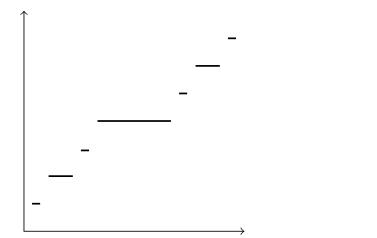
 $C = \bigcap_n C_n \subseteq [0, 1]$ compact 0-dimensional, $\lambda(C) = 0$.

Theorem: C is the unique compact Hausdorff 0-dimensional second countable perfect space.

Cantor Groups

 Canonical Cantor group: C ≃ Z₂^N is a compact group in the product topology.

 $\mu_{\mathcal{C}}$ is the product measure $(\mu_{\mathbb{Z}_2}(\mathbb{Z}_2)=1)$



Theorem: (Schmidt) The Cantor map $\mathcal{C} \to [0,1]$ sends Haar measure on $\mathcal{C} = \mathbb{Z}_2^{\mathbb{N}}$ to Lebesgue measure.

Goal: Generalize this to *all* group structures on C.

Cantor Groups

 Canonical Cantor group: C ≃ Z₂^N is a compact group in the product topology.

 $\mu_{\mathcal{C}}$ is the product measure $(\mu_{\mathbb{Z}_2}(\mathbb{Z}_2)=1)$

• $G = \prod_{n>1} \mathbb{Z}_n$ is also a Cantor group.

 $\mu_{\mathcal{G}}$ is the product measure $(\mu_{\mathbb{Z}_n}(\mathbb{Z}_n)=1)$

- $\mathbb{Z}_{p^{\infty}} = \varprojlim_{n} \mathbb{Z}_{p^{n}} p$ -adic integers. $x \mapsto x \mod p \colon \mathbb{Z}_{p^{n+1}} \to \mathbb{Z}_{p^{n}}.$
- $H = \prod_{n} S(n) S(n)$ symmetric group on *n* letters.

Definition: A *Cantor group* is a compact, 0-dimensional second countable perfect space endowed with a topological group structure.

- Theorem: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.
- ► Proof:
 - G is a Stone space, so there is a basis O of clopen neighborhoods of e.
 If O ∈ O, then e · O = O ⇒ (∃U ∈ O) U · O ⊆ O
 U ⊆ O ⇒ U² ⊆ U · O ⊆ O. So Uⁿ ⊆ O.

Assuming $U = U^{-1}$, the subgroup $H = \bigcup_n U^n \subseteq O$.

2. Given H < G clopen, $\mathcal{H} = \{xHx^{-1} \mid x \in G\}$ is compact.

 $G \times \mathcal{H} \to \mathcal{H}$ by $(x, K) \mapsto xKx^{-1}$ is continuous.

 $K = \{x \mid xHx^{-1} = H\}$ is clopen since H is, so G/K is finite.

Then $|G/K| = |\mathcal{H}|$ is finite, so $L = \bigcap_{x \in G} xHx^{-1} \subseteq H$ is clopen and normal.

- Theorem: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.
- **Corollary:** If G is a Cantor group, then $G \simeq \varprojlim_n G_n$ with G_n finite for each n.
- ► Theorem: (Fedorchuk, 1991) If X ≃ lim_{i∈1} X_i is a strict projective limit of compact spaces, then Prob(X) ≃ lim_{i∈1} Prob(X_i).
- Lemma: If $\varphi \colon G \to H$ is a surmorphism of compact groups, then $Prob(\varphi)(\mu_G) = \mu_H$.

Proof:
$$A \subseteq H$$
 measurable \Rightarrow
 $Prob(\varphi) \mu_G(hA) = \mu_G(\varphi^{-1}(hA))$
 $= \mu_G(\varphi^{-1}(h)\varphi^{-1}(A))$
 $= \mu_G((g \ker \varphi) \cdot \varphi^{-1}(A))$ (where $\varphi(g) = h$)
 $= \mu_G(g \cdot (\ker \varphi \cdot \varphi^{-1}(A)))$
 $= \mu_G(\ker \varphi \cdot \varphi^{-1}(A))$
 $= \mu_G(\varphi^{-1}(A)) = Prob(\varphi) \mu_G(A).$

- Theorem: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.
- **Corollary:** If G is a Cantor group, then $G \simeq \varprojlim_n G_n$ with G_n finite for each n.
- **Theorem:** (Fedorchuk, 1991) If $X \simeq \varprojlim_{i \in I} X_i$ is a strict projective limit of compact spaces, then $Prob(X) \simeq \varprojlim_{i \in I} Prob(X_i)$.

In particular, if X = G and $X_i = G_i$ are compact groups,

then $\mu_{G} = \lim_{i \in I} \mu_{G_i}$ in $Prob(\prod_i G_i)$.

- Theorem: If G is a compact 0-dimensional group, then G has a neighborhood basis at the identity of clopen normal subgroups.
- ► Corollary: If G is a Cantor group, then G ≃ lim_n G_n with G_n finite for each n. Moreover, µ_G = lim_n µ_n, where µ_n is normalized counting measure on G_n.

It's all about Abelian Groups

► Theorem: If G = lim_n G_n is a Cantor group, there is a sequence (Z_{k_i})_{i>0} of cyclic groups so that H = lim_n(⊕_{i≤n}Z_{k_i}) has the same Haar measure as G.

Proof: Let $G \simeq \varprojlim_n G_n$, $|G_n| < \infty$. Assume $|H_n| = |G_n|$ with H_n abelian. Define $H_{n+1} = H_n \times \mathbb{Z}_{|G_{n+1}|/|G_n|}$. Then $|H_{n+1}| = |G_{n+1}|$, so $\mu_{H_n} = \mu_n = \mu_{G_n}$ for each n, and $H = \varprojlim_n H_n$ is abelian. Hence $\mu_H = \lim_n \mu_n = \mu_G$.

Combining Domain Theory and Group Theory $\mathcal{C}=\varprojlim_n H_n,\ H_n=\oplus_{i\leq n}\mathbb{Z}_{k_i}$ Endow H_n with *lexicographic order* for each *n*; then $\pi_n: H_{n+1} \to H_n$ by $\pi_n(x_1, \ldots, x_{n+1}) = (x_i, \ldots, x_n)$ & $\iota_n \colon H_n \hookrightarrow H_{n+1}$ by $\iota_n(x_1, \ldots, x_n) = (x_i, \ldots, x_n, 0)$ form embedding-projection pair: $\pi_n \circ \iota_n = 1_{H_n}$ and $\iota_n \circ \pi_n \leq 1_{H_{n+1}}$. $\mathcal{C} \simeq \text{bilim}(H_n, \pi_n, \iota_n)$ is bialgebraic total order: $\varphi \colon K(\mathcal{C}) \to [0,1]$ by $\varphi(x_1, \ldots, x_n) = \sum_{i \le n} \frac{x_i}{k_1 \cdots k_i}$ strictly monotone induces $\widehat{\varphi} \colon \mathcal{C} \to [0, 1]$ monotone, Lawson continuous. $\mu_{\mathcal{C}} = \lim_{n} \mu_{n}$ implies for $0 \le m \le p \le k_{1} \cdots k_{n}$: $\mu_{\mathcal{C}}(\widehat{\varphi}^{-1}[\frac{m}{k_1\cdots k_n}, \frac{p}{k_1\cdots k_n}]) = \frac{p-m}{k_1\cdots k_n} = \lambda([\frac{m}{k_1\cdots k_n}, \frac{p}{k_1\cdots k_n}])$ Then inner regularity implies $Prob(\widehat{\varphi})(\mu_{\mathcal{C}}) = \lambda$. If $C' = \lim_{n \to \infty} G'_n$ with G'_n finite, then $\widehat{\varphi}^{-1} \circ \widehat{\varphi}' \colon \mathcal{C}' \setminus \mathcal{K}(\mathcal{C}') \to \mathcal{C} \setminus \mathcal{K}(\mathcal{C})$ is a Borel isomorphism.

In 1985 S. Saeki and K. Stromberg published the following question: Does every infinite compact group have a subgroup which is not Haar measurable?

Some known results: • Every infinite compact abelian group has a non-measurable subgroup (Comfort, Raczkowski, and Trigos-Arrieta 2006)

• With the possible exception of metric profinite groups, every infinite compact group has a non-measurable subgroup (Hernández, Hofmann and Morris 2014)

Proposition (Brian & M. 2014) Let G be an infinite compact group.

- **1.** It is consistent with ZFC that G has a non-measurable subgroup.
- **2.** If G is an abelian Cantor group, then G has a nonmeasurable subgroup.

Proposition (Brian & M. 2014) Let G be an infinite compact group.

- **1.** It is consistent with ZFC that G has a non-measurable subgroup.
- **2.** If G is an abelian Cantor group, then G has a nonmeasurable subgroup.

Ad 1: By Hernández, *et al.*, we can assume G is metric and profinite, so G is a Cantor group. Our results show Haar measure on $G \simeq C$ is the same as for an abelian group structure, for which $\hat{\phi} \colon C \to [0, 1]$ takes Haar measure to Lebesgue measure.

Fact: There is a model of ZFC that admits a countable subset $X \subseteq [0, 1]$ that is not Lebesgue measurable (cf. Kechris).

Then $Y = \widehat{\phi}^{-1}(X) \subseteq \mathcal{C}$ is not Haar-measurable.

 $H = \langle Y \rangle$ is a countable subgroup of G. Then H is not measure 0 since then Y would be measurable, while $\mu_G(H) > 0$ implies H is open, which implies $|H| = 2^{\aleph_0}$. Thus H is not Haar measurable.

Proposition (Brian & M. 2014) Let G be an infinite compact group.

- 1. It is consistent with ZFC that G has a non-measurable subgroup.
- **2.** If G is an abelian Cantor group, then G has a nonmeasurable subgroup.

Ad 2: We first prove something stronger:

1.) If G is an infinite abelian group and $p \in G \setminus \{e\}$, then there is a maximal subgroup $M < G \setminus \{p\}$ satisfying $p \in \langle x, M \rangle$ for all $x \in G \setminus M$.

2.) G/M abelian $\Longrightarrow \exists \phi \colon G/M \to \mathbb{R}/\mathbb{Z}$ with $\phi(p) \neq e$.

 $\ker \phi < G/M, M \text{ maximal wrt not containing } p + M \implies \ker \phi = M.$ Thus $G/M \simeq K < \mathbb{R}/\mathbb{Z}.$

 $p \in \langle x, M \rangle \implies pM \in \langle xM \rangle \ (\forall x \in G) \implies pM = (xM)^{n_x} \ (\exists n_x \in \mathbb{Z}).$ $g \in \mathbb{R}/\mathbb{Z} \implies g$ has countably many roots, so G/M is countable.

Choosing Q < C dense and proper and then Q < M implies M is proper, dense and has countable index.

In 1985 S. Saeki and K. Stromberg published the following question: Does every infinite compact group have a subgroup which is not Haar measurable?

Some known results: • Every infinite compact abelian group has a non-measurable subgroup (Comfort, Raczkowski, and Trigos-Arrieta 2006)

• With the possible exception of metric profinite groups, every infinite compact group has a non-measurable subgroup (Hernández, Hofmann and Morris 2014)

Proposition (Brian & M. 2014) Let G be an infinite compact group.

- 1. It is consistent with ZFC that G has a non-measurable subgroup.
- **2.** If G is an abelian Cantor group, then G has a nonmeasurable subgroup.

A result of Hofmann and Morris implies the remaining case is $C = \varprojlim_n G_n$, G_n nonabelian simple groups for each n > 0.