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Lebesgue Measure and Unit Interval

» [0, 1] C R inherits Lebesgue measure: A([a, b]) = b — a.

» Translation invariance: \(x + A) = A(A) for all (Borel)
measurable A C R and all x € R.

» Theorem (Haar, 1933) Every locally compact group G has a
unique (up to scalar constant) left-translation invariant

regular Borel measure ¢ called Haar measure.
If G is compact, then ug(G) = 1.
Example: T ~ R/Z with quotient measure from \.

If G is finite, then ug is normalized counting measure.



The Cantor Set
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C =(),Cn € [0, 1] compact 0-dimensional, A(C) = 0.

Theorem: C is the unique compact Hausdorff O-dimensional
second countable perfect space.



Cantor Groups

» Canonical Cantor group: C ~ Z>" is a compact group in the
product topology.

e is the product measure (uz,(Z2) = 1)

Theorem: (Schmidt) The Cantor map C — [0, 1] sends Haar
measure on C = Z> N to Lebesgue measure.

Goal: Generalize this to all group structures on C.



Cantor Groups

» Canonical Cantor group: C ~ Z>" is a compact group in the
product topology.

e is the product measure (uz,(Z2) = 1)
» G =[],>1%n is also a Cantor group.
(G is the product measure (uz, (Z,) = 1)
> Lipo = |<i_'l1,, Zpn — p-adic integers.
X = xmod p: Zpnr — Lpn.
» H=1],S(n) — S(n) symmetric group on n letters.

Definition: A Cantor group is a compact, 0-dimensional
second countable perfect space endowed with a topological
group structure.



Two Theorems and a Corollary

» Theorem: If G is a compact O-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

» Proof:

1. G is a Stone space, so there is a basis O of clopen

neighborhoods of e.
f O €O, thene-0=0 = (FU€O)U-0CO

UCO = U>’CU-0CO0.SoU"CO.
Assuming U = U~!, the subgroup H =, U" C O.
2. Given H < G clopen, H = {xHx™! | x € G} is compact.
G x H — H by (x, K) — xKx~! is continuous.
K = {x | xHx™! = H} is clopen since H is, so G/K is finite.

Then |G/K| = |H]| is finite, so L = (), .c xHx™! C H is clopen
and normal.



Two Theorems and a Corollary

» Theorem: If G is a compact O-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

» Corollary: If G is a Cantor group, then G ~ Ii@n Gp
with G, finite for each n.

» Theorem: (Fedorchuk, 1991) If X ~ lim._, Xiis a
strict projective limit of compact spaces, then
Prob(X) ~ im._, Prob(X;).

» Lemma: If ¢o: G — H is a surmorphism of compact groups,
then Prob(¢)(pe) = pH-

Proof: A C H measurable =

Prob(¢) j16(hA) = pe(¢~(hA))
= pc(e M)y t(A))
= pc((gkerg) - 071(A))  (where p(g) = h)
= MG( - (ker @ - o7 1(A))
pe(ker o - p71(A))
= uc( “H(A)) = Prob() pe(A).



Two Theorems and a Corollary

» Theorem: If G is a compact O-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

» Corollary: If G is a Cantor group, then G ~ L@n Gp
with G, finite for each n.

» Theorem: (Fedorchuk, 1991) If X ~ lim._, Xj is a
strict projective limit of compact spaces, then
Prob(X) ~ im._, Prob(X;).

In particular, if X = G and X; = G; are compact groups,
then pg = limjes g, in Prob(] ]; Gj).



Two Theorems and a Corollary

» Theorem: If G is a compact O-dimensional group,
then G has a neighborhood basis at the identity of
clopen normal subgroups.

» Corollary: If G is a Cantor group, then G ~ ILmn Gn
with G, finite for each n.
Moreover, g = limp, 1, where p, is normalized counting
measure on G,,.



It’s all about Abelian Groups

» Theorem: If G = I@n G, is a Cantor group, there is a
sequence (Zy,)i>o of cyclic groups so that H = Lirgn(@,-gnzki)
has the same Haar measure as G.

Proof: Let G ~ |im G, |G| < 0.

Assume |H,| = |G,| with H,, abelian.

Define Hy11 = Hp X ZiG,,11/1G,- Then |Hny1| = [Gpyal,
SO Uy, = pn = pg, for each n, and H = ILmn H, is abelian.

Hence uy = lim, up = pg.



Combining Domain Theory and Group Theory

C=lim Hn, Hy = @icnZy

Endow H, with lexicographic order for each n; then

Tn: Hpp1 — Hp by ma(x1, . Xnt1) = (Xis - .-, xn) &

tn: Hy = Hpy1 by tn(x1, ..., xn) = (Xj, ..., Xn, 0) form
embedding-projection pair: 7,01, =1y, and tyom, < 1p, .

C ~ bilim (H,,, 7, tn) is bialgebraic total order:

p: K(C) = [0,1] by ¢(x1, ..., xn) = D, 115 strictly monotone
induces : C — [0, 1] monotone, Lawson continuous.

e = limp p, implies for 0 < m < p < ky -+ kp:

/LC(@_l[lekn7 kl.l?-kn]) — ﬁ — )\([lekn7 kl.l?-kn])

Then inner regularity implies Prob(p)(uc) = A.

If C' = lim_ G} with G/ finite, then

o tod:C'"\K(C'") — C\ K(C) is a Borel isomorphism.



Lagniappe: Non-measurable Subgroups

In 1985 S. Saeki and K. Stromberg published the following question:
Does every infinite compact group have a subgroup which is not Haar
measurable?

Some known results: e Every infinite compact abelian group has a
non-measurable subgroup (Comfort, Raczkowski, and Trigos-Arrieta

2006)

e With the possible exception of metric profinite groups, every infinite
compact group has a non-measurable subgroup (Herndndez, Hofmann
and Morris 2014)

Proposition (Brian & M. 2014) Let G be an infinite compact group.
1. It is consistent with ZFC that G has a non-measurable subgroup.

2. If G is an abelian Cantor group, then G has a nonmeasurable
subgroup.



Lagniappe: Non-measurable Subgroups
Proposition (Brian & M. 2014) Let G be an infinite compact group.

1. It is consistent with ZFC that G has a non-measurable subgroup.

2. If G is an abelian Cantor group, then G has a nonmeasurable
subgroup.

Ad 1: By Herndndez, et al., we can assume G is metric and profinite, so
G is a Cantor group. Our results show Haar measure on G >~ C is the
same as for an abelian group structure, for which ¢: C — [0, 1] takes
Haar measure to Lebesgue measure.

Fact: There is a model of ZFC that admits a countable subset X C [0, 1]
that is not Lebesgue measurable (cf. Kechris).

Then Y = ¢~1(X) C C is not Haar-measurable.

H = (Y) is a countable subgroup of G. Then H is not measure O since
then Y would be measurable, while ug(H) > 0 implies H is open, which
implies |[H| = 2%. Thus H is not Haar measurable.



Lagniappe: Non-measurable Subgroups
Proposition (Brian & M. 2014) Let G be an infinite compact group.

1. It is consistent with ZFC that G has a non-measurable subgroup.

2. If G is an abelian Cantor group, then G has a nonmeasurable
subgroup.

Ad 2: We first prove something stronger:

1.) If G is an infinite abelian group and p € G \ {e}, then there is a
maximal subgroup M < G \ {p} satisfying p € (x, M) for all x € G\ M.

2.) G/M abelian = J¢: G/M — R/Z with ¢(p) # e.

ker < G/M, M maximal wrt not containing p + M —> ker¢ = M.
Thus G/M ~ K < R/Z.

pe(x,M) = pMe (xM) (Vx € G) = pM = (xM)™ (In, € Z).
g € R/Z = g has countably many roots, so G/M is countable.

Choosing @ < C dense and proper and then Q@ < M implies M is proper,
dense and has countable index. O



Lagniappe: Non-measurable Subgroups

In 1985 S. Saeki and K. Stromberg published the following question:
Does every infinite compact group have a subgroup which is not Haar
measurable?

Some known results: e Every infinite compact abelian group has a
non-measurable subgroup (Comfort, Raczkowski, and Trigos-Arrieta

2006)

e With the possible exception of metric profinite groups, every infinite
compact group has a non-measurable subgroup (Herndndez, Hofmann
and Morris 2014)

Proposition (Brian & M. 2014) Let G be an infinite compact group.
1. It is consistent with ZFC that G has a non-measurable subgroup.

2. If G is an abelian Cantor group, then G has a nonmeasurable
subgroup.

A result of Hofmann and Morris implies the remaining case is
C = I<iLnn Gn, G, nonabelian simple groups for each n > 0.



