A Truly Concurrent Semantics for a
Simple Parallel Programming Language

Paul Gastin' and Michael Mislove? *

! LIAFA, Université Paris 7, 2, place Jussieu, F-75251 Paris Cedex 05, France
Paul.Gastin@liafa. jussieu.fr
2 Department of Mathematics, Tulane University, New Orleans, LA 70118
mwm@math.tulane.edu

Abstract. This paper represents the beginning of a study aimed at de-
vising semantic models for true concurrency that provide clear distinc-
tions between concurrency, parallelism and choice. We present a simple
programming language which includes (weakly) sequential composition,
asynchronous and synchronous parallel composition, a restriction op-
erator, and that supports recursion. We develop an operational and a
denotational semantics for this language, and we obtain a congruence
theorem relating the behavior of a process as described by the transition
system to the meaning of the process in the denotational model. This
implies that the denotational model is adequate with respect to the op-
erational model. Our denotational model is based on the resource traces
of Gastin and Teodesiu, and since a single resource trace represents all
possible executions of a concurrent process, we are able to model each
term of our concurrent language by a single trace. Therefore we obtain
a deterministic semantics for our language and we are able to model
parallelism without introducing nondeterminism.

1 Introduction

The basis for building semantic models to support parallel composition of pro-
cesses was laid out in the seminal work [6]. That work showed how power domains
could be used to provide such models, but at the expense of introducing nonde-
terminism in the models, and also into the language. In this paper, we present an
alternative approach to modeling parallelism that avoids nondeterminism. Our
approach relies instead on true concurrency. True concurrency had its begin-
nings in the seminal work of Mazurkiewicz [7], who developed trace theory (as
the area is called) in order to devise models for Petri nets, themselves a model
of nondeterministic automata [11]. A great deal of research has been carried out
in this area (cf. [3]), but programming semantics has not benefited from this
research. The reasons are twofold: first, research in trace theory has focused on
automata theory, for obvious reasons. The second reason is perhaps more telling;:

* Partial support provided by the National Science Foundation and the US Office of
Naval Research

the traditional models which were developed for the concatenation operator of
trace theory do not support a partial order relative to which concatentation is
continuous (in the sense of Scott), nor are they metric spaces relative to which
concatenation is a contraction. This means that the standard methods for mod-
eling recursion are not available in these models, and so their use in modeling
programming language constructs is limited.

Even so, domain-theoretic connections to trace theory abound in the litera-
ture, owing mainly to Winskel’s insight that certain domains prime event struc-
tures provide models for concurrency [12]. There also is the work of Pratt [9]
that introduced pomsets, which are models for trace theory. But none of this
work has developed a programming semantics approach in which there is an
abstract language based on the concatenation operator.

Recently Diekert, Gastin and Teodesiu have developed models for trace the-
ory that are cpos relative to which the concatenation operator is Scott con-
tinuous [2,4]. This opens the way for studying a trace-theoretic approach to
concurrency, using these structures as the denotational models for such a lan-
guage. This paper reports the first research results into this area. It presents
a truly concurrent language which supports a number of interesting operators:
the concatenation operator of trace theory, a restriction operator that confines
processes to a certain set of resources, a synchronization operator that allows
processes to execute independently, synchronizing on those actions which share
common channels in the synchronization set, and that includes process variables
and recursion.

The basis for our language is the concatenation operator from trace theory.
In trace theory, independent actions can occur concurrently while dependent
actions must be ordered. Therefore the concatenation of traces is only weakly
sequential: it allows the beginning of the second process to occur independently
of the end of the first process provided they are independent. We think this is
a very attractive feature that corresponds to the automatic parallelization of
processes. We also can model purely sequential composition by ending a process
with a terminating action which depends on all other actions.

The rest of the paper is organized as follows. In the Section 2 we provide some
preliminary background on domain theory, on trace theory generally, and on the
resource traces model of Gastin and Teodesiu [4]. These are the main ingredients
of the semantic models for our language. The syntax of our language is the
subject of the Section 3, and this is followed by Section 4 in which we explore the
properties of the resource mapping that assigns to each action its set of resources;
the results of this section are needed for both the operational and denotational
semantics. Section 5 gives the transition system and the resulting operational
semantics of our language, and also shows that the operational transition system
is Church-Rosser. Section 6 is devoted to the denotational model, and the seventh
section presents the congruence theorem.

Due to space limitations we cannot include all lemmas and most proofs are
omitted as well. A full version can be found at the URL
http://www.liafa.jussieu.fr/~gastin/gastmis99.ps.

2 Preliminaries

In this section we review some basic results from domain theory, and then some
results from trace theory. A standard reference for domain theory is [1], and
most of the results we cite can be found there. Similarly, for the theory of traces
the reader is refered to [3]; specific results on resource traces can be found in [4].

2.1 Domain theory

To begin, a poset is a partially ordered set, usually denoted P. The least element
of P (if it exists) is denoted L, and a subset D C P is directed if each finite
subset F' C D has an upper bound in D. Note that since F' = {) is a possibility,
a directed subset must be non-empty. A (directed) complete partial order (decpo)
is a poset P in which each directed set has a least upper bound. If P also has
a least element, then it is called a cpo. If P and @) are posets and f: P — @
is a monotone map, then f is (Scott) continuous if f preserves sups of directed
sets: if D C P is directed and # = VD € P exists, then Vf(D) € @ exists and
F(VD) = Vf(D).

If P is a dcpo, the element k € P is compact if, for each directed subset
D C P,if k C VD, then (3d € D) k C d. The set of compact elements of
P is denoted K(P), and for an element z € P, K(z) = K(P) N |z, where
le={y € P|yC z}. Pis algebraic if K(x) is directed and = = VK (x) for each
r € P.

2.2 Resource traces

We start with a finite alphabet X, a finite set R of resources, and a mapping
res: X — P(R) satisfying res(a) # 0 for all a € A. We can then define a
dependence relation on X by (a,b) € D iff res(a) Nres(b) # 0. The dependence
relation is reflexive and symmetric and its complement I = (X x X')\ D is called
the independence relation on X.

A real trace t over (X, D) is the isomorphism class of a labeled, directed
graph t = [V, E, A], where V is a countable set of events, E C V x V is the
synchronization relation on V, and A: V — X is a node-labelling satisfying

- VpeV,lp={qe V| (qgp) € E*} is finite,
—Vp.ga €V, (Ap),Aq)) €D & (p,g) € EUETUA(V)

The trace t is finite if V' is finite and the length of ¢ is |¢| = |V|. The set of
real traces over (X, D) is denoted by R(X, D), and the set of finite traces by
M(Z, D).

The alphabet of a real trace ¢ is the set Alph(#) = A(V) of letters which
occur in ¢t. We also define the alphabet at infinity of t as the set alphinf(¢) of
letters which occur infinitely often in ¢t. We extend the resource mapping to real
traces by defining res(t) = res(Alph(t)). The resources at infinity of t is the set
resinf(t) = res(alphinf(t)). A real trace is finite iff alphinf(¢) = resinf(¢) = 0.

A partial concatenation operation is defined on real traces as follows: Let t; =
[Vi, E1, A\1] and 5 = [Va, Ea, As] be real traces such that resinf (1) Nres(tz) = 0,

then the concatenation of ¢; and ¢, is the real trace t; - to = [V, E,], where
V =ViUVa, A=A Uy, and E = E; UE,U(V; x Vo N A"1(D)). In this repre-
sentation, the empty trace 1 = [0, 0, 0] is the identity.

The monoid of finite traces (M(X, D), -) is isomorphic to the quotient monoid
X* /= of the free monoid X* of finite words over X', modulo the least congruence
generated by {(ab,ba) | (a,b) € I}.

The prefix ordering is defined on real traces by r < t iff there exists a real
trace s such that ¢ = rs. When r < ¢, then the trace s satisfying ¢t = rs is unique
and is denoted by r~'t. (R(X, D), <) is a dcpo with the empty trace as least
element. The compact of (R(X, D), <) are exactly the finite traces.

Just as in the case of the concatenation of words, the concatenation operation
on M(X, D) is not monotone with respect to the prefix order. It is for this
reason that M(X, D) cannot be completed into a dcpo on which concatenation
is continuous, and so it is not clear how to use traces as a basis for a domain-
theoretic model for the concatenation operator of trace theory.

This shortcoming was overcome by the work of Diekert, Gastin and Teodesiu
[2,4]. In this paper, we will use the latter work as a basis for the denotational
models for our language. The resource trace monoid over (X, R,res) is then
defined to be the family

F(X,D) ={(r,R) |r € R(¥,D), RC R and resinf(r) C R}.
For a resource trace z = (r, R) € F(X, D), we call Re(z) = r the real part of x and
Im(z) = R the imaginary part of z. We endow F(X, D) with the concatenation
operation

(r,R) - (s,5) = (r- pr(s), RUSUog(s))
where pg(s) is the largest prefix u of s satisfying res(u) N R = 0 and og(s) =
res(upr(s) "1s). The resource trace monoid F(X, D) is also endowed with a partial
order called the approzimation order:

(r,R)C (s5,5) & r<sand RD SUres(r 's).
It turns out that (F, C) is a dcpo with least element (1, R), where 1 is the empty
trace. Moreover, the concatenation operator defined above is continuous with
respect to this order. In other words, (F,C,-) is a continuous algebra in the
sense of domain theory. The dcpo (F,C) is also algebraic and a resource trace
x = (r, R) is compact if and only if it is finite, that is, iff its real part r € M(X, D)
is finite.
We close this section with a simple result about the resource mapping.

Proposition 1. The resource mapping res: ¥ — P(R) extends to a continuous
mapping res: F(X, D) — (P(R),D) defined by res(r, R) = res(r) U R. O

2.3 Alphabetic mappings

The results presented in this section are new. They are useful for the denotational
semantics of our parallel composition operator.

Let res : ¥ — P(R) and res' : X' — P(R) be two resource maps over the
alphabets X and X'. The associated dependence relations over X and X' are
denoted by D and D'.

Let ¢ : ¥ — X'U{1} be an alphabetic mapping such that res’(¢(a)) C res(a)
for all a € X. We extend ¢ to real traces: If r = [V, E,\] € R(Y, D), then we

define o(r) = [V, E' N by V' ={e € V| poA(e) # 1}, N = po X and
E'=EnN (D) ={(e,f) € E| N(e) D' N(f)}.

Proposition 2.

1. ¢ : (R(X, D),) = (R(X',D’),-) is a morphism.
2. ¢: (R(X,D), <) = (R(X',D"), <) is continuous. u

We now extend ¢ to a mapping over resource traces of F(X, D) simply by
defining ¢(r, R) = (¢(r), R). Since res’(p(a)) C res(a) for all a € X', we deduce
that resinf’(o(r)) C resinf(r) C R and so (p(r), R) is a resource trace over %'.
Hence, ¢ : F(X, D) — F(X', D") is well defined.

Proposition 3.

1. ¢: (F(X,D),C) - (F(X',D"),C) is continuous.
2. If res'(p(a)) = res(a) (Va € X), then ¢ : (F(X,D),-) — (F(X',D"),-) is a
non-erasing morphism. 0

3 The Language

In this section we introduce a simple parallel programming language. We begin
once again with a finite set X' of atomic actions, a finite set R of resources, and
a mapping res: ¥ — P(R) which assigns to each a € X a non-empty set of
resources. We view res(a) as the set of resources memory, ports, etc. that
the action a needs in order to execute. Two actions a,b € X may be executed
concurrently if and only if they are independent — i.e. iff they do not share any
resource.
We define the BNF-like syntax of the language £ we study as

p:=STOP |a|pop|plr \p(l/jp | @ | reca.p

Here

— STOP is the process capable of no actions but claiming all resources; it is
full deadlock.

— a € X denotes the process which can execute the action a and then terminate
normally.

— pog denotes the weak sequential composition of the two argument processes
with the understanding that independent actions commute with one another:
aob="boaif a,b € I. We call o weak sequential composition because it
enforces sequential composition of those actions which are dependent, while
allowing those which are independent of one another to execute concurrently.

— p|r denotes the process p with all resources restricted to the subset R C R.
Only those actions a from p can execute for which res(a) C R; all other
actions are disabled.

— p|| g denotes the parallel composition of the component processes, synchro-
c

nizing on all actions a which satisfy res(a) N C # 0, where C C R. Those
actions from either component which do not have any resources in common
with any of the actions in the other component nor any resources lying in C'
are called local and can execute independently. Since our semantics is deter-
ministic, this process can only make progress as long as there are no actions
from either component that use resources that some action from the other
component also uses, except in the case of synchronization actions. If this
condition is violated, the process deadlocks.

— x € V is a process variable.

— recz.p denotes recursion of the process body p in the variable z.

One of the principal impetuses for our work is the desire to understand the
differences between parallel composition, choice and nondeterminism. Histori-
cally, nondeterministic choice arose as a convenient means with which to model
parallel composition, namely, as the set of possible interleavings of the actions
of each component. We avoid nondeterminism, and in fact our language is deter-
ministic. But we still support parallel composition that in which the actions
of each component are independent.

A parallel composition involves choice whenever there is a competition be-
tween conflicting events. Since we use a truly concurrent semantic domain, our
events are not necessarily conflicting and we can consider a very natural and im-
portant form of cooperative parallel composition which does not require choice
or nondeterminism. Each process consists of local events which occur indepen-
dently of the other process and of synchronization events which are executed in
matching pairs. These synchronization events may introduce conflict when the
two processes offer non-matching synchronization events. Since nondetermin-
istic choice is unavailable, conflicting events result in deadlock in our parallel
composition. Note that this situation does not occur in a cooperative parallel
composition, e.g. in a parallel sorting algorithm.

We view the BNF-like syntax given above as the signature, 2 = U, (2,, of
a single sorted universal algebra, where the index n denotes the arity of the
operators in the subset (2,. In our case, we have

Nullary operators: 29 = {STOP}U X UV,

Unary operators: (4 ={—|gp| RC R} U {recz.— |z € V},

Binary operators: 25 = {o}U{]|| | C C R}, and

2,, = 0 for all other n;
then £ is the initial 2-algebra. This means that, given any other (2-algebra A,

there is a unique (2-algebra homomorphism ¢4: £ — A, i.e., a unique composi-
tional mapping from £ to A.

C

4 The Resource Mapping

In this section we define the resources which may be used by a process p € L. This
is crucial for defining the operational semantics of weak sequential composition

and of parallel composition. We extend the mapping res: X — P(R) to the
full language £ with variables and recursion. In order to define the resource set
associated with a process with free variables, we use a resource environment, a
mapping o : V. — P(R) assigning a resource set to each variable. Any resource
environment o € P(R)Y can be locally overridden in its value at a:

olz = Rl(y) =R, ify==2, and o[z — R](y) = o(y), otherwise,
where R € P(R) is any resource set we wish to assign at z.

Now, we define inductively the resources of a process p € £ in the resource
environment o € P(R)" by:

(

(a,0) =res(a) for all a € X,

(p|r,o) =res(p,o) N R for all R C R,
— res(poq,o) =res(p,o) Ures(q, o),

(

(

(

For instance, we have res(STOP|g,0) = R, res(recz.(acxob, o) = res(a)Ures(b)
and res((recz.(z o a)) || (recy.(boy))) = res(a) U res(b).

It is easy to see that for each process p € L, the map res(p,—) : (P(R),D
)V = (P(R),D) is continuous. A crucial result concerning the resource map
states that the definition of recursion is actually a fixed point.

Proposition 4. Let p € L be a process and o € P(R)V be a resource environ-
ment. Then, res(recx.p, o) is the greatest fixved point of the mapping

res(p, o > —) : (P(R), 2) — (P(R), 2). 0

In fact, we can endow the set of continuous maps [P(R)Y — P(R)] with
a structure of a continuous f2-algebra. The constants STOP and a (a € X)
are interpreted as constant maps ¢ — R and o — res(a), the process z is
interpreted as the projection o — o(z), restriction |g is intersection with R, the
two compositions o and || are union, and finally, recursion rec x is the greatest
c
fixed point: it maps f € [P(R)V — P(R)] to the mapping o — (vR.f(o[z —
R])). With this view, the mapping p — res(p, —) is the unique {2-algebra map
from £ to [P(R)Y — P(R)].
We use p[q/z] to denote the result of substituting ¢ for the variable z in p.
We now show how to compute the resource map at the process p[g/z] in terms
of the resource map at p.

Lemma 1. Let p,q € L be two processes and o € P(R)V be a resource environ-
ment. Then

res(plq/x], o) = res(p, o[z > res(q, 7)]). o

5 Operational Semantics

In this section we present an operational semantics for all terms p € £, even those
with free variables. This is necessitated by our use of something other than the
usual least fixed point semantics of recursion that domain theory offers. The
reason for this will be clarified later on — for now, we confine our discussion to
presenting the transition rules for our language, and deriving results about the
resulting behavior of terms from £ under these rules. The key is to use environ-
ments. We rely on the mappings o: V' — P(R) to aid us, and so our transition
rules tell us what next steps are possible for a term in a given environment o.

We must make an additional assumption to define our transition rules. We
are interested in supporting synchronization over a set C' C R which we view as
the channels over which synchronization can occur. We therefore assume that
the alphabet X has a synchronization operation ||: ¥ x ¥ — X that satisfies
res(aq||az) = res(a;) U res(az) for all (a1,a2) € X2. Moreover, for p1,ps € L,
o € P(R)V and C C R we define the set Synce ,(p1,p2) of pairs (a1, a;) € X2
such that

res(ai) Nres(ps, o) = res(az) Nres(pr, o) =res(a;) N C = res(az) N C # 0.

Synce , (p1,p2) consists of all pairs which may be synchronized in p; || po. We

present the transition rules which are the basis for the operational semgntics for
our language £ in Table 1 below. We denote by SKIP the process STOP]|g.

We need a number of results about the rules in Table 1 before we can define
the operational behaviour of a term p € £. Some of the results presented here are
easier to prove once we have defined the denotational semantics of our language
in the following section, but we have chosen to state the results now to improve
the readability of the presentation.

Proposition 5. In the following, p,p',p",q € L are processes, 0,0’ € P(R)V
are syntactic environments, x € V, and s € X*.

Property I p -5 p' = res(p,0) = res(p', o) Ures(s).
a
Property II p p p',o' = oz = res(q,0)] = plg/z] 7} p'lq/z].
Property III p %» p' and p %» p" imply p' = p".
Property IV p % p andp % p", a #£bimply alb and Ip"" € L with p’ 7} p"!
o a "
and p —p b b
Property V p % p,p — p", and a I b imply Ip"" € L with p — p'" and
pm % pm. 0
Property III means that our transition system is deterministic. Adding Prop-
erty IV, we know that it is strongly locally confluent, whence Church-Rosser.
Since we want a truly concurrent semantics, it should be possible for a process to

execute independent events concurrently — i.e., independently. This is reflected
by Property V in our transition system. From this we derive by induction

(1)

a 2, SKIP
P15 P p2 -5 po, res(a) Nres(pr, o) =0
(2a) ——— T (2b) —= a ;
piop: - piop piop: -5 pioph
) p-%p, res(a) CR
3 z —
plr = p'lr
(42) p1 = pi, res(a) N (res(p2, 0) UC) =0
a a
p1llp2 = Pl || p2
c 7 C
(4[)) D2 *:T’ p’?a res(a) N (res(pl, 0) U C) = w
p1llp2 % prllph
c 7 c
o P 5 phs p2 23 ph, (a1,a2) € Syncg , (p1,p2)
C
pllp 05) 1k
%) P 57 p', o = o[z — res(recz.p,o)]

recz.p -% p'[recz.p/x)

Table 1. The Transition Rules for £

Corollary 1. Let u,v € ¥* withu=v. Thenp % q iff p > q. Hence p > ¢
is well-defined for finite traces s € M(X, D). O

In an interleaving semantics, the possible operational behaviors of a process
p in the environment o € P(R) would consist of the set

Xy-(p.o) ={ue ¥ [3g€ Lp > q}.

Thanks to Corollary 1, we actually can define the possible concurrent behaviors
as
Xu(p,0) = {t € M(¥,D) |3g € L,p - q}.

But, knowing only a possible real (finite) trace that can be executed does not
allow us to know how the process can be continued or composed with another
process. Hence we need to bring resources into the picture, and so we define the
resource trace behaviors by

Xr(p. o) = {(s,1es(q,0)) € F[3g € L,p > q}.

The meaning is that (s, S) € Xy(p,0) if p can concurrently execute the trace s
and then still claim the resources in S.

Actually, we can prove that the set Xp(p, o) is directed. The interpretation
is that p has a unique maximal behavior in the environment ¢ which is the least
upper bound of Xg(p,0): Br(p,0) = UXg(p,o). This is exactly what tells us
that our semantics of parallelism does not involve nondeterministic choice.

6 Denotational semantics

The denotational semantics for our language takes its values in the family [FV —
IF] of continuous maps from FV to the underlying domain F = F(X, D) of resource
traces. As was the case with the resources model of Section 4, the semantics of
a finitary process (i.e., one without variables) p € £ is a constant map, which
means it is a resource trace. More generally, the semantics of any closed process
p € L is simply a resource trace. But, as in the case of the semantics based on
the mapping res: X' — P(R), in order to give the semantics of recursion, we also
have to consider terms with free variables.

We begin by defining the family of semantic environments to be the mappings
0:V — F, and we endow this with the domain structure from the target domain
F, regarding FV as a product on V-copies of F. The semantics of an arbitrary
process p € £ is a continuous map from FV to F, and the semantics of a recursive
process rec x.p is obtained using a fixed points of the semantic map associated
with p.

We obtain a compositional semantics by defining the structure of a continuous
-algebra on [F¥ — F]. We define the interpretations constants and variables
in [F¥ —] directly, but with the other operators, we instead define their
interpretations on F, and then extend them to [F¥ — F] in a pointwise fashion.
This approach induces on [FV — F] the structure of a continuous 2-algebra

(cf. [1]).
6.1 Constants and variables
The denotational semantics of constants and of variables are defined by the
maps:
[STOP] € [F¥ — F] by [STOP](c) = (1,R)
[a] € [F¥ = F] by [a](o) = (a,0)
] €[- F by [(0) =

o(x)

The first two clearly are continuous, since they are constant maps. The last
mapping amounts to projection of the element o € F¥ onto its z-component, and
since we endow FV with the product topology, this mapping also is continuous.

6.2 Weak sequential composition

We define the semantics of weak sequential composition using the following result
about the concatenation of resource traces.

Proposition 6 ([4]). Concatenation over resource traces is a continuous oper-
ation. Moreover, res(z1 - x2) = res(x1) Ures(xa) for all (z1,22) € F2. O

10

The denotational semantics of o is then defined by:
o [FV = F?* = [F¥ = F by (fiofo)(o)(z) = fi(o)(@) f(0) ().
6.3 Restriction

For restriction and parallel composition, we need to define new operations on
traces that have not been introduced so far. We start with restriction, which
we obtain as the composition of two continuous maps. Let R C R be a fixed
resource set. We first introduce
Fr = {z € F | res(Re(x)) C R},

the set of resource traces whose real parts use resources from R only. Note that
if some set X C Fg is pairwise consistent in F, then its sup in F exists and
actually belongs to Fg. Therefore, Fg is also a consistently complete domain.
Recall also that tz = {y € F | z C y} denotes the upper set of z € F. Now we
define

fiF>Fg by z— U{yeFr|yCa},
and
g:Fr > 1(1,R)CF by (5,5 — (s,SNR),
and finally,
lr=gof:F—>F
Note first that all these mappings are well-defined. Indeed, the set Y = {y €
Fr | y C z} is bounded above in F, so its sup exists and belongs to Fr. To

show that g is well-defined, one only has to observe that resinf(s) C SN R when
(s,S) € Fg. Therefore, | is well-defined, too.

Proposition 7. The mapping |g : F — F defined by x|p = g o f(x) is continu-
ous. Moreover, we have res(z|g) = res(z) N R for all x € F. O

From this, we obtain the semantics of the restriction operator by
r: [V = F] = [FY = F by (flr)(o) = f(0)l
6.4 Parallel composition

We require some preliminary definitions and results before we can define the
parallel composition of resource traces. We use the results from Section 2.3 to
define the semantics of this operation. Recall first that we assumed the existence
of a parallel composition over actions of the alphabet: || : 2 — X that satisfies
res(a;||as) = res(a;) Ures(ay) for all (a1, az) € £2. The action a,||ay represents
the result of synchronizing a; and as in a parallel composition.

We introduce the alphabet X' = (X U {1})?\ {(1,1)} with the resource map
res’ (a1, as) = res(a;) Ures(ag) and the associated dependence relation D’. Then
we consider the sets R(X', D') and F(X', D') of real traces and of resource traces
over the resource alphabet res’ : X' — P(R). We define the alphabetic mappings

I; : ¥ - ¥ u{1} by IH;(a1,a3) =a;i=1,2and
m.x—-x by I(ai,as) = aylas.

11

where we set al|l = 1|la = a. Note that res(Il;(a1,a2)) C res'(ar,az), i =
1,2, and res(II(ay,a2)) = res'(ai,as). Therefore, the three mappings extend
to continuous morphisms over real traces (Proposition 2) and to continuous
maps over resource traces. Moreover, IT also is a morphism of resource traces
(Proposition 3).

We consider a subset C' C R of resources on which we want to synchronize; we
call these resources channels. We fix two resource traces z; = (s1,51) and z2 =
(s2,S2) of F(X, D) and we want to define a resource trace z || 2 which repre-

sents the parallel composition of z; and x5 with synchronizatio(rjl on the channels
of C. We first define a resource trace ¢(z1,x2) € F(X', D') which represents the
parallel composition of z; and zo. Then we set z1 || x2 = IT(p(x1,22)). Since the
mapping II is continuous, in order to obtain a continuous semantics for parallel
composition, we only need to show that the mapping ¢ : F(X, D)2 — F(X', D')
is continuous as well.

In analogy to the set Syncc ,(pi,p2) for terms pi,pa € L, given resource
traces z; = (s4,5;),1 = 1,2, we can define the synchronization set Synce, , (1, 2)
as the set of pairs (a1, as) € Alph(sy) x Alph(s,) satisfying

res(a;) NC =res(az) N C = res(ar) Nres(za) = res(as) Nres(xr) # 0.
Then the set X, (x1,z2) of actions which may occur in ¢(x1,22) is defined as

Ye(x1,22) = {(a1,1) € Alph(s1) x {1} | res(a1) N (C Ures(z2)) = 0}
U {(1,a2) € {1} x Alph(ss) | res(az) N (C Ures(xq)) = 0}
U {(a1,a2) € Alph(s;) x Alph(sz) | Synce , (#1,%2)},

The first two sets in this union correspond to local events: these should not use
any channel on which we want to synchronize (res(a;) N C = (). In addition,
the condition res(a;) Nres(z2) = @ implies that a local event does not conflict
with any event of the other component, which ensures parallel composition does
not involve nondeterministic choice. The last set corresponds to synchronization
events. In order to synchronize, two events must use exactly the same channels
and, in order to assure determinism, neither should conflict with resources of the
other component.
Now we introduce the set

Xeo(x,29) = {(t,T) € F(X',D") | Alph(t) C X¢ (21, 72) and
Hl(tlT) E xT; for i = 1,2}

Proposition 8. The set Xc(x1,22) has a least upper bound x = (r, R) given by

r=U{r € R(Z, (z1,32)) | II;(r) < s for i = 1,2},
R=5USU res(r;lsl) U res(r;lsg) where r; = I1;(r).

3

Moreover, Xc(x1,x2) = Lo and res(z) = res(zy) Ures(zz). O

12

Proposition 9. The mapping p: F(X, D)?> — F(X',D") defined by o(x1,12) =
UXe(z1,xe) is continuous. O

As announced earlier, we define the semantics of parallel composition by
|| = II o ¢ and the above results imply:
c

Corollary 2. || : F(X,D)? = F(X, D) by xy || 22 = (II o p)(z1,22) is continu-
C C
ous. Moreover, res(xy || x9) = res(w1) Ures(z2) for all (z1,z2) € F2. O
c

The semantics of parallel composition is defined by
[:[F" = H? = [V = F by (fillf2)(0)=fi(o)] f2(0).
C C C
6.5 Recursion

In order to have a compositional semantics for recursion, we need to define for
each variable € V an interpretation recz : [FY — F| — [F¥ — F], and then we
will set [rec z.p] = recz.[p]. For f € [FY — F], recz.f will be defined as a fixed
point of a continuous selfmap from F to F, but we do not use the classical least
fixed point semantics. Hence, we need to describe our approach in some detail.
Starting with a continuous map f € [F¥ — F], we first consider the maps

@: [F" = F xF = [F—>F by (fio)— ¢,
Y[> F xF = [(P(R),2) = (P(R),2)] by (f0)w s,

defined by

©1.0) = flolz—y]),
V1.0 (R) =res(f(ofz = (1, R)])).

Proposition 10. The two maps ¢ and ¢ are well-defined and continuous. O

For 0 € FV, we define (recz.f)(o) as a fixed point of the continuous map
¢f,0- Instead of using the least fixed point of ¢y ,, we start the iteration yielding
the fixed point from a resource trace 1;, which depends on f and o.

We define the mapping R: [FV — F| x F¥ — P(R) by (f,0) = Rj, =
FIX(t¢,,) which assigns to each pair (f, o) the greatest fized point of the mono-
tone selfmap ¢ ,. The starting point for the iteration is simply the resource
trace Ly, = (1, Ry,). Therefore, we also have a mapping L: [FY — F] x FV —
F by (f, 0') = J_fyg = (1,Rf75).

Lemma 2. The maps R: [F¥ = F| xFY — P(R) and L : [F¥ - F xF - F
are continuous. |

We define the semantics of recursion by
recz: [FV - F — [FY - F by f = recz.f:o-], ¢t o (Lsa)

Proposition 11. The mapping recz: [FV — F| — [FY — F] is well defined and
continuous. O

13

6.6 Summary

We have defined our denotational semantics as a compositional mapping [-]: £ —
[FY" — F; the work in this section has validated that such a mapping exists,
since L is the initial {2-algebra, and we have given a continuous interpretation
in [V — T for each of the operators w € (2 in the signature of our language. To
summarize, the semantics of a process p € £ is the continuous map [p] defined
inductively by:

n>0

7 The Congruence Theorem

In this section we complete the picture by showing that the operational behavior
of a process defined in Section 5 is the same as the (2-algebra map we defined
for the denotational model in the last section.

To begin, we relate the semantic resources of a process to the syntactic re-
source of the process. The semantic resource set of the process p € £ in some
environment o € FV is given by res([p](¢)). In order to relate this semantic
resource set to the syntactic resource set defined in Section 4, we introduce the
map res” : Y — P(R)Y by resY (0)(z) = res(o(z)).

Proposition 12. Letp € £ and o € FV | then res([p](c)) = res(p,res¥ (7). O

The following result is the key lemma for the congruence theorem. It requires
an extended sequence of results to derive.

Proposition 13. Letp,qe L, a€ ¥, 0 € FV and 7 € P(R)V. Then
Lp iyt = Pllo)=a-ld(o),

2 [pl(r) =a-[d(r) = »->a o

Using the above proposition, we can show that each possible operational
behavior of p in some environment ¢ € P(R) corresponds to some compact
resource trace below [p](o), and, conversely, that each compact resource trace
below [p](o) approximates some operational behavior of p in o. From this, the
congruence theorem follows.

Theorem 1. For all p € £ and o € P(R)Y, we have Br(p,0) = [p](c). More
precisely,

14

8 Closing Remarks

We have presented a simple language that includes a number of interesting re-
lated operators: weak sequential composition, deterministic parallel composition,
restriction and recursion. We also have presented a congruence theorem relating
its operational semantics to its denotational semantics. The novel feature of our
language is that the semantics of parallel composition does not involve nondeter-
ministic choice, as in other approaches. We believe this language will have some
interesting applications, among them the analysis of security protocols (where
determinism has proved to be an important property) and model checking, where
trace theory has been used to avoid the state explosion problem.

What remains to be done is to expand the language to include some of
the missing operators from the usual approach to process algebra. Chief among
these are the hiding operator of CSP and a deterministic choice operator. Both
of these appear to require more abstract models than resource traces provide —
for example, if a Db D ¢ but a I ¢, then hiding b in the trace a-b- ¢ does not yield
a trace. Our research to this point indicates that pomsets may be useful here;
these are a generalization of traces which provide a potential setting in which
to model both hiding and deterministic choice. The latter is needed in order to
model some of the most basic situations — Hoare’s vending machines provide
obvious examples. We hope to extend the language to include these operators,
and to obtain a congruence theorem for the extended language just as we have
done for the simple language we presented here.

References

1. Abramsky, S and A. Jung, Domain Theory, in: “Handbook of Computer Science
and Logic,” Volume 3, Clarendon Press, 1995.

2. Diekert, V. and P. Gastin, Approzimating traces, Acta Informatica (1997), pp.

3. Diekert, V. and G. Rozenberg, editors, “The Book of Traces,” World Scientific,
Singapore (1995).

4. Gastin, P. and D. Teodesiu, Resource traces: a domain for process sharing exclusive
resources, Theoretical Computer Science, submitted.

5. Gierz, G., K. H. Hofmann, K. Keimel, J. Lawson, M. Mislove and D. Scott, “A
Compendium of Continuous Lattices,” Springer-Verlag, Berlin, Heidelberg, New
York (1980), 376pp.

6. Hennessy, M. and G. D. Plotkin, Full abstraction for a simple parallel programming
language, Lecture Notes in Computer Science 74 (1979), Springer-Verlag

7. Mazurkiewicz, A., Trace theory, Lecture Notes in Computer Science 255 (1987),
pp. 279 324.

8. Mislove, M. W. and F. J. Oles, Full abstraction and recursion, Theoretical Com-
puter Science 158 (1995), pp.

9. Pratt, V., On the composition of processes, Proceedings of the Ninth POPL (1982).

10. Plotkin, G. D., Structures operational semantics, DIKU Technical Report.

11. Reisig, W., “Petri Nets,” EATCS Monographs in Theoretical Computer Science 4
(1985), Springer-Verlag.

12. Winskel, G., “Events in Computation,” Ph.D. Thesis, University of Cambridge,
1980.

15

