
A Truly Concurrent Semantics for aSimple Parallel Programming LanguagePaul Gastin1 and Michael Mislove2 ?1 LIAFA, Universit�e Paris 7, 2, place Jussieu, F-75251 Paris Cedex 05, FrancePaul.Gastin@liafa.jussieu.fr2 Department of Mathematics, Tulane University, New Orleans, LA 70118mwm@math.tulane.eduAbstract. This paper represents the beginning of a study aimed at de-vising semantic models for true concurrency that provide clear distinc-tions between concurrency, parallelism and choice. We present a simpleprogramming language which includes (weakly) sequential composition,asynchronous and synchronous parallel composition, a restriction op-erator, and that supports recursion. We develop an operational and adenotational semantics for this language, and we obtain a congruencetheorem relating the behavior of a process as described by the transitionsystem to the meaning of the process in the denotational model. Thisimplies that the denotational model is adequate with respect to the op-erational model. Our denotational model is based on the resource tracesof Gastin and Teodesiu, and since a single resource trace represents allpossible executions of a concurrent process, we are able to model eachterm of our concurrent language by a single trace. Therefore we obtaina deterministic semantics for our language and we are able to modelparallelism without introducing nondeterminism.1 IntroductionThe basis for building semantic models to support parallel composition of pro-cesses was laid out in the seminal work [6]. That work showed how power domainscould be used to provide such models, but at the expense of introducing nonde-terminism in the models, and also into the language. In this paper, we present analternative approach to modeling parallelism that avoids nondeterminism. Ourapproach relies instead on true concurrency. True concurrency had its begin-nings in the seminal work of Mazurkiewicz [7], who developed trace theory (asthe area is called) in order to devise models for Petri nets, themselves a modelof nondeterministic automata [11]. A great deal of research has been carried outin this area (cf. [3]), but programming semantics has not bene�ted from thisresearch. The reasons are twofold: �rst, research in trace theory has focused onautomata theory, for obvious reasons. The second reason is perhaps more telling:? Partial support provided by the National Science Foundation and the US O�ce ofNaval Research

the traditional models which were developed for the concatenation operator oftrace theory do not support a partial order relative to which concatentation iscontinuous (in the sense of Scott), nor are they metric spaces relative to whichconcatenation is a contraction. This means that the standard methods for mod-eling recursion are not available in these models, and so their use in modelingprogramming language constructs is limited.Even so, domain-theoretic connections to trace theory abound in the litera-ture, owing mainly to Winskel's insight that certain domains { prime event struc-tures { provide models for concurrency [12]. There also is the work of Pratt [9]that introduced pomsets, which are models for trace theory. But none of thiswork has developed a programming semantics approach in which there is anabstract language based on the concatenation operator.Recently Diekert, Gastin and Teodesiu have developed models for trace the-ory that are cpos relative to which the concatenation operator is Scott con-tinuous [2, 4]. This opens the way for studying a trace-theoretic approach toconcurrency, using these structures as the denotational models for such a lan-guage. This paper reports the �rst research results into this area. It presentsa truly concurrent language which supports a number of interesting operators:the concatenation operator of trace theory, a restriction operator that con�nesprocesses to a certain set of resources, a synchronization operator that allowsprocesses to execute independently, synchronizing on those actions which sharecommon channels in the synchronization set, and that includes process variablesand recursion.The basis for our language is the concatenation operator from trace theory.In trace theory, independent actions can occur concurrently while dependentactions must be ordered. Therefore the concatenation of traces is only weaklysequential : it allows the beginning of the second process to occur independentlyof the end of the �rst process provided they are independent. We think this isa very attractive feature that corresponds to the automatic parallelization ofprocesses. We also can model purely sequential composition by ending a processwith a terminating action which depends on all other actions.The rest of the paper is organized as follows. In the Section 2 we provide somepreliminary background on domain theory, on trace theory generally, and on theresource traces model of Gastin and Teodesiu [4]. These are the main ingredientsof the semantic models for our language. The syntax of our language is thesubject of the Section 3, and this is followed by Section 4 in which we explore theproperties of the resource mapping that assigns to each action its set of resources;the results of this section are needed for both the operational and denotationalsemantics. Section 5 gives the transition system and the resulting operationalsemantics of our language, and also shows that the operational transition systemis Church-Rosser. Section 6 is devoted to the denotational model, and the seventhsection presents the congruence theorem.Due to space limitations we cannot include all lemmas and most proofs areomitted as well. A full version can be found at the URLhttp://www.liafa.jussieu.fr/�gastin/gastmis99.ps.2

2 PreliminariesIn this section we review some basic results from domain theory, and then someresults from trace theory. A standard reference for domain theory is [1], andmost of the results we cite can be found there. Similarly, for the theory of tracesthe reader is refered to [3]; speci�c results on resource traces can be found in [4].2.1 Domain theoryTo begin, a poset is a partially ordered set, usually denoted P . The least elementof P (if it exists) is denoted ?, and a subset D � P is directed if each �nitesubset F � D has an upper bound in D. Note that since F = ; is a possibility,a directed subset must be non-empty. A (directed) complete partial order (dcpo)is a poset P in which each directed set has a least upper bound. If P also hasa least element, then it is called a cpo. If P and Q are posets and f : P ! Qis a monotone map, then f is (Scott) continuous if f preserves sups of directedsets: if D � P is directed and x = _D 2 P exists, then _f(D) 2 Q exists andf(_D) = _f(D).If P is a dcpo, the element k 2 P is compact if, for each directed subsetD � P , if k v _D, then (9d 2 D) k v d. The set of compact elements ofP is denoted K(P), and for an element x 2 P , K(x) = K(P) \ #x, where#x = fy 2 P j y v xg. P is algebraic if K(x) is directed and x = _K(x) for eachx 2 P .2.2 Resource tracesWe start with a �nite alphabet �, a �nite set R of resources, and a mappingres: � ! P(R) satisfying res(a) 6= ; for all a 2 A. We can then de�ne adependence relation on � by (a; b) 2 D i� res(a) \ res(b) 6= ;. The dependencerelation is re
exive and symmetric and its complement I = (���)nD is calledthe independence relation on �.A real trace t over (�;D) is the isomorphism class of a labeled, directedgraph t = [V;E; �], where V is a countable set of events, E � V � V is thesynchronization relation on V , and � : V ! � is a node-labelling satisfying{ 8p 2 V , #p = fq 2 V j (q; p) 2 E�g is �nite,{ 8p; q 2 V , (�(p); �(q)) 2 D , (p; q) 2 E [E�1 [�(V)The trace t is �nite if V is �nite and the length of t is jtj = jV j. The set ofreal traces over (�;D) is denoted by R(�;D), and the set of �nite traces byM (�;D).The alphabet of a real trace t is the set Alph(t) = �(V) of letters whichoccur in t. We also de�ne the alphabet at in�nity of t as the set alphinf(t) ofletters which occur in�nitely often in t. We extend the resource mapping to realtraces by de�ning res(t) = res(Alph(t)). The resources at in�nity of t is the setresinf(t) = res(alphinf(t)). A real trace is �nite i� alphinf(t) = resinf(t) = ;.A partial concatenation operation is de�ned on real traces as follows: Let t1 =[V1; E1; �1] and t2 = [V2; E2; �2] be real traces such that resinf(t1) \ res(t2) = ;,3

then the concatenation of t1 and t2 is the real trace t1 � t2 = [V;E; �], whereV = V1 :[V2, � = �1 :[�2, and E = E1 :[E2 :[(V1 � V2 \ ��1(D)). In this repre-sentation, the empty trace 1 = [;; ;; ;] is the identity.The monoid of �nite traces (M (�;D); �) is isomorphic to the quotient monoid��=� of the free monoid �� of �nite words over �, modulo the least congruencegenerated by f(ab; ba) j (a; b) 2 Ig.The pre�x ordering is de�ned on real traces by r � t i� there exists a realtrace s such that t = rs. When r � t, then the trace s satisfying t = rs is uniqueand is denoted by r�1t. (R(�;D);�) is a dcpo with the empty trace as leastelement. The compact of (R(�;D);�) are exactly the �nite traces.Just as in the case of the concatenation of words, the concatenation operationon M (�;D) is not monotone with respect to the pre�x order. It is for thisreason that M (�;D) cannot be completed into a dcpo on which concatenationis continuous, and so it is not clear how to use traces as a basis for a domain-theoretic model for the concatenation operator of trace theory.This shortcoming was overcome by the work of Diekert, Gastin and Teodesiu[2, 4]. In this paper, we will use the latter work as a basis for the denotationalmodels for our language. The resource trace monoid over (�;R; res) is thende�ned to be the familyF(�;D) = f(r; R) j r 2 R(�;D); R � R and resinf(r) � Rg:For a resource trace x = (r; R) 2 F(�;D), we call Re(x) = r the real part of x andIm(x) = R the imaginary part of x. We endow F(�;D) with the concatenationoperation (r; R) � (s; S) = (r � �R(s); R [S [�R(s));where �R(s) is the largest pre�x u of s satisfying res(u) \ R = ; and �R(s) =res(�R(s)�1s). The resource trace monoid F(�;D) is also endowed with a partialorder called the approximation order:(r; R) v (s; S) , r � s and R � S [res(r�1s).It turns out that (F;v) is a dcpo with least element (1;R), where 1 is the emptytrace. Moreover, the concatenation operator de�ned above is continuous withrespect to this order. In other words, (F;v; �) is a continuous algebra in thesense of domain theory. The dcpo (F;v) is also algebraic and a resource tracex = (r; R) is compact if and only if it is �nite, that is, i� its real part r 2 M (�;D)is �nite.We close this section with a simple result about the resource mapping.Proposition 1. The resource mapping res: � ! P(R) extends to a continuousmapping res : F(�;D) ! (P(R);�) de�ned by res(r; R) = res(r) [R. ut2.3 Alphabetic mappingsThe results presented in this section are new. They are useful for the denotationalsemantics of our parallel composition operator.Let res : � ! P(R) and res0 : �0 ! P(R) be two resource maps over thealphabets � and �0. The associated dependence relations over � and �0 aredenoted by D and D0. 4

Let ' : � ! �0[f1g be an alphabetic mapping such that res0('(a)) � res(a)for all a 2 �. We extend ' to real traces: If r = [V;E; �] 2 R(�;D), then wede�ne '(r) = [V 0; E0; �0] by V 0 = fe 2 V j ' � �(e) 6= 1g, �0 = ' � � andE0 = E \ �0�1(D0) = f(e; f) 2 E j �0(e)D0 �0(f)g.Proposition 2.1. ' : (R(�;D); �) ! (R(�0 ; D0); �) is a morphism.2. ' : (R(�;D);�) ! (R(�0 ; D0);�) is continuous. utWe now extend ' to a mapping over resource traces of F(�;D) simply byde�ning '(r; R) = ('(r); R). Since res0('(a)) � res(a) for all a 2 �, we deducethat resinf 0('(r)) � resinf(r) � R and so ('(r); R) is a resource trace over �0.Hence, ' : F(�;D) ! F(�0 ; D0) is well de�ned.Proposition 3.1. ' : (F(�;D);v) ! (F(�0 ; D0);v) is continuous.2. If res0('(a)) = res(a) (8a 2 �), then ' : (F(�;D); �) ! (F(�0 ; D0); �) is anon-erasing morphism. ut3 The LanguageIn this section we introduce a simple parallel programming language. We beginonce again with a �nite set � of atomic actions, a �nite set R of resources, anda mapping res: � ! P(R) which assigns to each a 2 � a non-empty set ofresources. We view res(a) as the set of resources { memory, ports, etc. { thatthe action a needs in order to execute. Two actions a; b 2 � may be executedconcurrently if and only if they are independent { i.e. i� they do not share anyresource.We de�ne the BNF-like syntax of the language L we study asp ::= STOP j a j p � p j pjR j p kC p j x j recx:pHere{ STOP is the process capable of no actions but claiming all resources; it isfull deadlock.{ a 2 � denotes the process which can execute the action a and then terminatenormally.{ p� q denotes the weak sequential composition of the two argument processeswith the understanding that independent actions commute with one another:a � b = b � a if a; b 2 I . We call � weak sequential composition because itenforces sequential composition of those actions which are dependent, whileallowing those which are independent of one another to execute concurrently.{ pjR denotes the process p with all resources restricted to the subset R � R.Only those actions a from p can execute for which res(a) � R; all otheractions are disabled. 5

{ p kC q denotes the parallel composition of the component processes, synchro-nizing on all actions a which satisfy res(a) \ C 6= ;, where C � R. Thoseactions from either component which do not have any resources in commonwith any of the actions in the other component nor any resources lying in Care called local and can execute independently. Since our semantics is deter-ministic, this process can only make progress as long as there are no actionsfrom either component that use resources that some action from the othercomponent also uses, except in the case of synchronization actions. If thiscondition is violated, the process deadlocks.{ x 2 V is a process variable.{ recx:p denotes recursion of the process body p in the variable x.One of the principal impetuses for our work is the desire to understand thedi�erences between parallel composition, choice and nondeterminism. Histori-cally, nondeterministic choice arose as a convenient means with which to modelparallel composition, namely, as the set of possible interleavings of the actionsof each component. We avoid nondeterminism, and in fact our language is deter-ministic. But we still support parallel composition { that in which the actionsof each component are independent.A parallel composition involves choice whenever there is a competition be-tween con
icting events. Since we use a truly concurrent semantic domain, ourevents are not necessarily con
icting and we can consider a very natural and im-portant form of cooperative parallel composition which does not require choiceor nondeterminism. Each process consists of local events which occur indepen-dently of the other process and of synchronization events which are executed inmatching pairs. These synchronization events may introduce con
ict when thetwo processes o�er non-matching synchronization events. Since nondetermin-istic choice is unavailable, con
icting events result in deadlock in our parallelcomposition. Note that this situation does not occur in a cooperative parallelcomposition, e.g. in a parallel sorting algorithm.We view the BNF-like syntax given above as the signature,
 = [n
n, ofa single sorted universal algebra, where the index n denotes the arity of theoperators in the subset
n. In our case, we haveNullary operators:
0 = fSTOPg [� [V ,Unary operators:
1 = f�jR j R � Rg [frecx:� j x 2 V g,Binary operators:
2 = f�g [f kC j C � Rg, and
n = ; for all other n;then L is the initial
-algebra. This means that, given any other
-algebra A,there is a unique
-algebra homomorphism �A : L ! A, i.e., a unique composi-tional mapping from L to A.4 The Resource MappingIn this section we de�ne the resources which may be used by a process p 2 L. Thisis crucial for de�ning the operational semantics of weak sequential composition6

and of parallel composition. We extend the mapping res : � ! P(R) to thefull language L with variables and recursion. In order to de�ne the resource setassociated with a process with free variables, we use a resource environment, amapping � : V ! P(R) assigning a resource set to each variable. Any resourceenvironment � 2 P(R)V can be locally overridden in its value at x:�[x 7! R](y) = R; if y = x, and �[x 7! R](y) = �(y); otherwise,where R 2 P(R) is any resource set we wish to assign at x.Now, we de�ne inductively the resources of a process p 2 L in the resourceenvironment � 2 P(R)V by:{ res(STOP; �) = R,{ res(a; �) = res(a) for all a 2 �,{ res(pjR; �) = res(p; �) \ R for all R � R,{ res(p � q; �) = res(p; �) [res(q; �),{ res(p kq ; �) = res(p; �) [res(q; �),{ res(x; �) = �(x) for all x 2 V ,{ res(recx:p; �) = res(p; �[x 7! ;]).For instance, we have res(STOPjR; �) = R, res(recx:(a�x�b; �) = res(a)[res(b)and res((recx:(x � a)) kC (rec y:(b � y))) = res(a) [res(b).It is easy to see that for each process p 2 L, the map res(p;�) : (P(R);�)V ! (P(R);�) is continuous. A crucial result concerning the resource mapstates that the de�nition of recursion is actually a �xed point.Proposition 4. Let p 2 L be a process and � 2 P(R)V be a resource environ-ment. Then, res(recx:p; �) is the greatest �xed point of the mappingres(p; �[x 7! �]) : (P(R);�)! (P(R);�): utIn fact, we can endow the set of continuous maps [P(R)V ! P(R)] witha structure of a continuous
-algebra. The constants STOP and a (a 2 �)are interpreted as constant maps � 7! R and � 7! res(a), the process x isinterpreted as the projection � 7! �(x), restriction jR is intersection with R, thetwo compositions � and kC are union, and �nally, recursion recx is the greatest�xed point: it maps f 2 [P(R)V ! P(R)] to the mapping � 7! (�R:f(�[x 7!R])). With this view, the mapping p 7! res(p;�) is the unique
-algebra mapfrom L to [P(R)V ! P(R)].We use p[q=x] to denote the result of substituting q for the variable x in p.We now show how to compute the resource map at the process p[q=x] in termsof the resource map at p.Lemma 1. Let p; q 2 L be two processes and � 2 P(R)V be a resource environ-ment. Then res(p[q=x]; �) = res(p; �[x 7! res(q; �)]): ut7

5 Operational SemanticsIn this section we present an operational semantics for all terms p 2 L, even thosewith free variables. This is necessitated by our use of something other than theusual least �xed point semantics of recursion that domain theory o�ers. Thereason for this will be clari�ed later on { for now, we con�ne our discussion topresenting the transition rules for our language, and deriving results about theresulting behavior of terms from L under these rules. The key is to use environ-ments. We rely on the mappings � : V ! P(R) to aid us, and so our transitionrules tell us what next steps are possible for a term in a given environment �.We must make an additional assumption to de�ne our transition rules. Weare interested in supporting synchronization over a set C � R which we view asthe channels over which synchronization can occur. We therefore assume thatthe alphabet � has a synchronization operation k : � � � ! � that satis�esres(a1ka2) = res(a1) [res(a2) for all (a1; a2) 2 �2. Moreover, for p1; p2 2 L,� 2 P(R)V and C � R we de�ne the set SyncC;�(p1; p2) of pairs (a1; a2) 2 �2such thatres(a1) \ res(p2; �) = res(a2) \ res(p1; �) = res(a1) \ C = res(a2) \ C 6= ;:SyncC;�(p1; p2) consists of all pairs which may be synchronized in p1 kC p2. Wepresent the transition rules which are the basis for the operational semantics forour language L in Table 1 below. We denote by SKIP the process STOPj;.We need a number of results about the rules in Table 1 before we can de�nethe operational behaviour of a term p 2 L. Some of the results presented here areeasier to prove once we have de�ned the denotational semantics of our languagein the following section, but we have chosen to state the results now to improvethe readability of the presentation.Proposition 5. In the following, p; p0; p00; q 2 L are processes, �; �0 2 P(R)Vare syntactic environments, x 2 V , and s 2 ��.Property I p s�!� p0) res(p; �) = res(p0; �) [res(s).Property II p a�!�0 p0; �0 = �[x 7! res(q; �)]) p[q=x] a�!� p0[q=x].Property III p a�!� p0 and p a�!� p00 imply p0 = p00.Property IV p a�!� p0 and p b�!� p00, a 6= b imply aIb and 9p000 2 L with p0 b�!� p000and p00 a�!� p000.Property V p a�!� p0, p0 b�!� p00, and a I b imply 9p000 2 L with p b�!� p000 andp000 a�!� p000. utProperty III means that our transition system is deterministic. Adding Prop-erty IV, we know that it is strongly locally con
uent, whence Church-Rosser.Since we want a truly concurrent semantics, it should be possible for a process toexecute independent events concurrently { i.e., independently. This is re
ectedby Property V in our transition system. From this we derive by induction8

(1) a a�!� SKIP(2a) p1 a�!� p01p1 � p2 a�!� p01 � p2 (2b) p2 a�!� p02; res(a) \ res(p1; �) = ;p1 � p2 a�!� p1 � p02(3) p a�!� p0; res(a) � RpjR a�!� p0jR(4a) p1 a�!� p01; res(a) \ (res(p2; �) [C) = ;p1 kC p2 a�!� p01 kC p2(4b) p2 a�!� p02; res(a) \ (res(p1; �) [C) = ;p1 kC p2 a�!� p1 kC p02(4c) p1 a1�!� p01; p2 a2�!� p02; (a1; a2) 2 SyncC;�(p1; p2)p1 kC p2 a1ka2�!� p01 kC p02(5) p a�!�0 p0; �0 = �[x 7! res(recx:p; �)]recx:p a�!� p0[recx:p=x]Table 1. The Transition Rules for LCorollary 1. Let u; v 2 �� with u � v. Then p u�!� q i� p v�!� q. Hence p s�!� qis well-de�ned for �nite traces s 2 M (�;D). utIn an interleaving semantics, the possible operational behaviors of a processp in the environment � 2 P(R) would consist of the setX��(p; �) = fu 2 �� j 9q 2 L; p u�!� qg:Thanks to Corollary 1, we actually can de�ne the possible concurrent behaviorsas XM (p; �) = ft 2 M (�;D) j 9q 2 L; p t�!� qg:But, knowing only a possible real (�nite) trace that can be executed does notallow us to know how the process can be continued or composed with anotherprocess. Hence we need to bring resources into the picture, and so we de�ne theresource trace behaviors byXF(p; �) = f(s; res(q; �)) 2 F j 9q 2 L; p s�!� qg:The meaning is that (s; S) 2 XF(p; �) if p can concurrently execute the trace sand then still claim the resources in S. 9

Actually, we can prove that the set XF(p; �) is directed. The interpretationis that p has a unique maximal behavior in the environment � which is the leastupper bound of XF(p; �): BF(p; �) = tXF(p; �). This is exactly what tells usthat our semantics of parallelism does not involve nondeterministic choice.6 Denotational semanticsThe denotational semantics for our language takes its values in the family [FV !F] of continuous maps from FV to the underlying domain F = F(�;D) of resourcetraces. As was the case with the resources model of Section 4, the semantics ofa �nitary process (i.e., one without variables) p 2 L is a constant map, whichmeans it is a resource trace. More generally, the semantics of any closed processp 2 L is simply a resource trace. But, as in the case of the semantics based onthe mapping res : � ! P(R), in order to give the semantics of recursion, we alsohave to consider terms with free variables.We begin by de�ning the family of semantic environments to be the mappings� : V ! F, and we endow this with the domain structure from the target domainF, regarding FV as a product on V -copies of F. The semantics of an arbitraryprocess p 2 L is a continuous map from FV to F, and the semantics of a recursiveprocess recx:p is obtained using a �xed points of the semantic map associatedwith p.We obtain a compositional semantics by de�ning the structure of a continuous
-algebra on [FV ! F]. We de�ne the interpretations constants and variablesin [FV ! F] directly, but with the other operators, we instead de�ne theirinterpretations on F, and then extend them to [FV ! F] in a pointwise fashion.This approach induces on [FV ! F] the structure of a continuous
-algebra(cf. [1]).6.1 Constants and variablesThe denotational semantics of constants and of variables are de�ned by themaps: [[STOP]] 2 [FV ! F] by [[STOP]](�) = (1;R)[[a]] 2 [FV ! F] by [[a]](�) = (a; ;)[[x]] 2 [FV ! F] by [[x]](�) = �(x)The �rst two clearly are continuous, since they are constant maps. The lastmapping amounts to projection of the element � 2 FV onto its x-component, andsince we endow FV with the product topology, this mapping also is continuous.6.2 Weak sequential compositionWe de�ne the semantics of weak sequential composition using the following resultabout the concatenation of resource traces.Proposition 6 ([4]). Concatenation over resource traces is a continuous oper-ation. Moreover, res(x1 � x2) = res(x1) [res(x2) for all (x1; x2) 2 F2 . ut10

The denotational semantics of � is then de�ned by:� : [FV ! F]2 ! [FV ! F] by (f1 � f2)(�)(x) = f1(�)(x) � f2(�)(x):6.3 RestrictionFor restriction and parallel composition, we need to de�ne new operations ontraces that have not been introduced so far. We start with restriction, whichwe obtain as the composition of two continuous maps. Let R � R be a �xedresource set. We �rst introduceFR = fx 2 F j res(Re(x)) � Rg;the set of resource traces whose real parts use resources from R only. Note thatif some set X � FR is pairwise consistent in F, then its sup in F exists andactually belongs to FR . Therefore, FR is also a consistently complete domain.Recall also that "x = fy 2 F j x v yg denotes the upper set of x 2 F. Now wede�ne f : F ! FR by x 7! tfy 2 FR j y v xg;and g : FR ! "(1; R) � F by (s; S) 7! (s; S \ R);and �nally, jR = g � f : F ! F:Note �rst that all these mappings are well-de�ned. Indeed, the set Y = fy 2FR j y v xg is bounded above in F, so its sup exists and belongs to FR . Toshow that g is well-de�ned, one only has to observe that resinf(s) � S \R when(s; S) 2 FR . Therefore, jR is well-de�ned, too.Proposition 7. The mapping jR : F ! F de�ned by xjR = g � f(x) is continu-ous. Moreover, we have res(xjR) = res(x) \ R for all x 2 F. utFrom this, we obtain the semantics of the restriction operator byjR : [FV ! F] ! [FV ! F] by (f jR)(�) = f(�)jR:6.4 Parallel compositionWe require some preliminary de�nitions and results before we can de�ne theparallel composition of resource traces. We use the results from Section 2.3 tode�ne the semantics of this operation. Recall �rst that we assumed the existenceof a parallel composition over actions of the alphabet: k : �2 ! � that satis�esres(a1ka2) = res(a1) [res(a2) for all (a1; a2) 2 �2. The action a1ka2 representsthe result of synchronizing a1 and a2 in a parallel composition.We introduce the alphabet �0 = (� [f1g)2 n f(1; 1)g with the resource mapres0(a1; a2) = res(a1)[res(a2) and the associated dependence relation D0. Thenwe consider the sets R(�0 ; D0) and F(�0 ; D0) of real traces and of resource tracesover the resource alphabet res0 : �0 ! P(R). We de�ne the alphabetic mappings�i : �0 ! � [f1g by �i(a1; a2) = ai; i = 1; 2 and� : �0 ! � by �(a1; a2) = a1ka2:11

where we set ak1 = 1ka = a. Note that res(�i(a1; a2)) � res0(a1; a2), i =1; 2, and res(�(a1; a2)) = res0(a1; a2). Therefore, the three mappings extendto continuous morphisms over real traces (Proposition 2) and to continuousmaps over resource traces. Moreover, � also is a morphism of resource traces(Proposition 3).We consider a subset C � R of resources on which we want to synchronize; wecall these resources channels. We �x two resource traces x1 = (s1; S1) and x2 =(s2; S2) of F(�;D) and we want to de�ne a resource trace x1 kC x2 which repre-sents the parallel composition of x1 and x2 with synchronization on the channelsof C. We �rst de�ne a resource trace '(x1; x2) 2 F(�0 ; D0) which represents theparallel composition of x1 and x2. Then we set x1 kC x2 = �('(x1; x2)). Since themapping � is continuous, in order to obtain a continuous semantics for parallelcomposition, we only need to show that the mapping ' : F(�;D)2 ! F(�0 ; D0)is continuous as well.In analogy to the set SyncC;�(p1; p2) for terms p1; p2 2 L, given resourcetraces xi = (si; Si), i = 1; 2, we can de�ne the synchronization set SyncC;�(x1; x2)as the set of pairs (a1; a2) 2 Alph(s1)�Alph(s2) satisfyingres(a1) \ C = res(a2) \ C = res(a1) \ res(x2) = res(a2) \ res(x1) 6= ;:Then the set �0C(x1; x2) of actions which may occur in '(x1; x2) is de�ned as�0C(x1; x2) = f(a1; 1) 2 Alph(s1)� f1g j res(a1) \ (C [res(x2)) = ;g[f(1; a2) 2 f1g �Alph(s2) j res(a2) \ (C [res(x1)) = ;g[f(a1; a2) 2 Alph(s1)�Alph(s2) j SyncC;�(x1; x2)g;The �rst two sets in this union correspond to local events: these should not useany channel on which we want to synchronize (res(a1) \ C = ;). In addition,the condition res(a1) \ res(x2) = ; implies that a local event does not con
ictwith any event of the other component, which ensures parallel composition doesnot involve nondeterministic choice. The last set corresponds to synchronizationevents. In order to synchronize, two events must use exactly the same channelsand, in order to assure determinism, neither should con
ict with resources of theother component.Now we introduce the setXC(x1; x2) = f(t; T) 2 F(�0 ; D0) j Alph(t) � �0C(x1; x2) and�i(t; T) v xi for i = 1; 2gProposition 8. The set XC(x1; x2) has a least upper bound x = (r; R) given byr = tfr 2 R(�0C (x1; x2)) j �i(r) � si for i = 1; 2g;R = S1 [S2 [res(r�11 s1) [res(r�12 s2); where ri = �i(r).Moreover, XC(x1; x2) = #x and res(x) = res(x1) [res(x2). ut12

Proposition 9. The mapping ' : F(�;D)2 ! F(�0 ; D0) de�ned by '(x1; x2) =tXC(x1; x2) is continuous. utAs announced earlier, we de�ne the semantics of parallel composition bykC = � � ' and the above results imply:Corollary 2. kC : F(�;D)2 ! F(�;D) by x1 kC x2 = (� � ')(x1; x2) is continu-ous. Moreover, res(x1 kC x2) = res(x1) [res(x2) for all (x1; x2) 2 F2 . utThe semantics of parallel composition is de�ned bykC : [FV ! F]2 ! [FV ! F] by (f1 kC f2)(�) = f1(�) kC f2(�):6.5 RecursionIn order to have a compositional semantics for recursion, we need to de�ne foreach variable x 2 V an interpretation recx : [FV ! F] ! [FV ! F], and then wewill set [[recx:p]] = recx:[[p]]. For f 2 [FV ! F], recx:f will be de�ned as a �xedpoint of a continuous selfmap from F to F, but we do not use the classical least�xed point semantics. Hence, we need to describe our approach in some detail.Starting with a continuous map f 2 [FV ! F], we �rst consider the maps' : [FV ! F] � FV ! [F ! F] by (f; �) 7! 'f;� : [FV ! F] � FV ! [(P(R);�)! (P(R);�)] by (f; �) 7! f;�de�ned by 'f;�(y) = f(�[x 7! y]); f;�(R) = res(f(�[x 7! (1; R)])):Proposition 10. The two maps ' and are well-de�ned and continuous. utFor � 2 FV , we de�ne (recx:f)(�) as a �xed point of the continuous map'f;� . Instead of using the least �xed point of 'f;� , we start the iteration yieldingthe �xed point from a resource trace ?f;� which depends on f and �.We de�ne the mapping R : [FV ! F] � FV ! P(R) by (f; �) 7! Rf;� =FIX(f;�) which assigns to each pair (f; �) the greatest �xed point of the mono-tone selfmap f;� . The starting point for the iteration is simply the resourcetrace ?f;� = (1; Rf;�). Therefore, we also have a mapping ? : [FV ! F] � FV !F by (f; �) 7! ?f;� = (1; Rf;�):Lemma 2. The maps R : [FV ! F] � FV ! P(R) and ? : [FV ! F] � FV ! Fare continuous. utWe de�ne the semantics of recursion byrecx : [FV ! F] ! [FV ! F] by f 7! recx:f : � 7! Fn�0 'nf;�(?f;�):Proposition 11. The mapping recx : [FV ! F] ! [FV ! F] is well de�ned andcontinuous. ut13

6.6 SummaryWe have de�ned our denotational semantics as a compositional mapping [[�]] : L ![FV ! F]; the work in this section has validated that such a mapping exists,since L is the initial
-algebra, and we have given a continuous interpretationin [FV ! F] for each of the operators ! 2
 in the signature of our language. Tosummarize, the semantics of a process p 2 L is the continuous map [[p]] de�nedinductively by: [[STOP]](�) = (1;R)[[a]](�) = (a; ;)[[x]](�) = �(x)[[p � q]](�) = [[p]](�) � [[q]](�)[[p kC q]](�) = [[p]](�) kC [[q]](�)[[pjR]](�) = ([[p]](�))jR[[recx:p]](�) = (recx:[[p]])(�) = Gn�0'n[[p]];�(?[[p]];�):7 The Congruence TheoremIn this section we complete the picture by showing that the operational behaviorof a process de�ned in Section 5 is the same as the
-algebra map we de�nedfor the denotational model in the last section.To begin, we relate the semantic resources of a process to the syntactic re-source of the process. The semantic resource set of the process p 2 L in someenvironment � 2 FV is given by res([[p]](�)). In order to relate this semanticresource set to the syntactic resource set de�ned in Section 4, we introduce themap resV : FV ! P(R)V by resV (�)(x) = res(�(x)).Proposition 12. Let p 2 L and � 2 FV , then res([[p]](�)) = res(p; resV (�)): utThe following result is the key lemma for the congruence theorem. It requiresan extended sequence of results to derive.Proposition 13. Let p; q 2 L, a 2 �, � 2 FV and � 2 P(R)V . Then1. p a�!resV (�) q) [[p]](�) = a � [[q]](�),2. [[p]](�) = a � [[q]](�)) p a�!� q. utUsing the above proposition, we can show that each possible operationalbehavior of p in some environment � 2 P(R) corresponds to some compactresource trace below [[p]](�), and, conversely, that each compact resource tracebelow [[p]](�) approximates some operational behavior of p in �. From this, thecongruence theorem follows.Theorem 1. For all p 2 L and � 2 P(R)V , we have BF(p; �) = [[p]](�). Moreprecisely, XF(p; �) � K([[p]](�)) � #XF(p; �): ut14

8 Closing RemarksWe have presented a simple language that includes a number of interesting re-lated operators: weak sequential composition, deterministic parallel composition,restriction and recursion. We also have presented a congruence theorem relatingits operational semantics to its denotational semantics. The novel feature of ourlanguage is that the semantics of parallel composition does not involve nondeter-ministic choice, as in other approaches. We believe this language will have someinteresting applications, among them the analysis of security protocols (wheredeterminism has proved to be an important property) and model checking, wheretrace theory has been used to avoid the state explosion problem.What remains to be done is to expand the language to include some ofthe missing operators from the usual approach to process algebra. Chief amongthese are the hiding operator of CSP and a deterministic choice operator. Bothof these appear to require more abstract models than resource traces provide {for example, if aDbDc but aI c, then hiding b in the trace a � b � c does not yielda trace. Our research to this point indicates that pomsets may be useful here;these are a generalization of traces which provide a potential setting in whichto model both hiding and deterministic choice. The latter is needed in order tomodel some of the most basic situations { Hoare's vending machines provideobvious examples. We hope to extend the language to include these operators,and to obtain a congruence theorem for the extended language just as we havedone for the simple language we presented here.References1. Abramsky, S and A. Jung, Domain Theory, in: \Handbook of Computer Scienceand Logic," Volume 3, Clarendon Press, 1995.2. Diekert, V. and P. Gastin, Approximating traces, Acta Informatica (1997), pp.3. Diekert, V. and G. Rozenberg, editors, \The Book of Traces," World Scienti�c,Singapore (1995).4. Gastin, P. and D. Teodesiu, Resource traces: a domain for process sharing exclusiveresources, Theoretical Computer Science, submitted.5. Gierz, G., K. H. Hofmann, K. Keimel, J. Lawson, M. Mislove and D. Scott, \ACompendium of Continuous Lattices," Springer-Verlag, Berlin, Heidelberg, NewYork (1980), 376pp.6. Hennessy, M. and G. D. Plotkin, Full abstraction for a simple parallel programminglanguage, Lecture Notes in Computer Science 74 (1979), Springer-Verlag7. Mazurkiewicz, A., Trace theory, Lecture Notes in Computer Science 255 (1987),pp. 279{324.8. Mislove, M. W. and F. J. Oles, Full abstraction and recursion, Theoretical Com-puter Science 158 (1995), pp.9. Pratt, V., On the composition of processes, Proceedings of the Ninth POPL (1982).10. Plotkin, G. D., Structures operational semantics, DIKU Technical Report.11. Reisig, W., \Petri Nets," EATCS Monographs in Theoretical Computer Science 4(1985), Springer-Verlag.12. Winskel, G., \Events in Computation," Ph.D. Thesis, University of Cambridge,1980. 15

