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Abstract

Jean Goubault-Larrecq pointed out an error in the proof of Proposition 4.45 of the published version of this
paper [2]. In this corrigendum, I give a corrected proof, and I also give a simpler proof of Corollary 4.48.

We begin this corrigendum by recalling some definitions. First, a domain is a
continuous cpo, i.e., a dcpo with least element in which ⇓ y = {x ∈ P | x � y} is
directed and y = t⇓ y for each y ∈ P . P is coherent if the Lawson topology on P

is compact. For subsets X,Y ⊆ P , we write

• X vL Y iff X ⊆ ↓Y = {x ∈ P | (∃y ∈ Y ) x v y}.
• X vU Y iff Y ⊆ ↑X = {y ∈ P | (∃x ∈ X) x v y}.
• X vD Y iff X ⊆L Y & X vU Y .

We define

• PL(P ) = (Γ0(P ),vL), the family of non-empty Scott-closed subsets of P in the
lower order,

• PU (P ) = (C(P ),vU ), where C(P ) is the family of non-empty Scott-compact upper
sets of P .

• PD(P ) = (D(P ),vD), where

D(P ) = {X ⊆ P | X = 〈X〉 ≡ ↓X ∩ ↑X & ↓X ∈ Γ0(P ) & ↑X ∈ C(P )}

consists of order-convex subsets of P ; if P is coherent, then these sets are Lawson
compact.

Proposition 4.45 of [2] is incorrect both in its statement and in its proof. Here is
the correct version.
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Proposition 4.45. If P is a coherent continuous dcpo, then (D(P ),vD) is a
continuous dcpo in which

C � D iff (∃F ⊆ P finite) C vD 〈F 〉 vD D,D ⊆ ⇑F & F ⊆ ⇓D,

and for which the operation

(C,D) 7→ 〈C,D〉 ≡ ↑(C ∪D) ∩ ↓(C ∪D) : D(P )×D(P )→ D(P )

is continuous.

Proof. First assume that F ⊆ D(P ) is vD-directed and let A =
⋃
{↓C | C ∈ F}σ

be the Scott closure of the union of the lower sets of the members of F . Then A

is Scott closed, and hence also Lawson closed. Now, the sets {A ∩ ↑C | C ∈ F}
form a filtered intersection, and each is non-empty and Lawson compact since P
is coherent, so their intersection also is non-empty and Lawson compact (e.g., by
Theorem 4.35). Let B be that intersection. We claim that B =

⊔
D(P )F . Indeed,

it is obvious that B ⊆ ↑C for all C ∈ F . For the other direction, that C ⊆ ↓B
for each C ∈ F , given x ∈ C ∈ F , the fact that F is vD-directed implies that
↑x ∩ (A ∩ ↑C ′) is non-empty and compact for each C ′ ∈ F , so Theorem 4.35
shows the same is true of the ↑x ∩ B. Thus B is an upper bound for F , and a
similar argument shows that B is the least upper bound of F in the order vD, and
so (D(P ),vD) is a dcpo.

Next, if C ∈ D(P ), then C is a convex Lawson-closed subset of P , and ↑C is
Scott compact. So, we can write ↑C as the filtered intersection of sets ↑F where
C ⊆ ⇑F and F is finite. Clearly we can arrange it so that F ⊆ ⇓C for each such F ,
by restricting to those x ∈ F for which ⇑x∩C 6= ∅. Then 〈F 〉 = ↓F ∩↑F ∈ D(P ),
and 〈F 〉 vD C. Moreover, since ↑C ⊆ ⇑F , if F ⊆ D(P ) is directed and C vD

⊔
F ,

then
⊔
F ⊆ ↑C ⊆ ⇑F . The first part of the proof implies

⊔
F =

⋂
{A ∩ ↑C ′ |

C ′ ∈ F}, where A =
⋃
{↓C ′ | C ′ ∈ F}. Since this expresses

⊔
F as a filtered

intersection, Theorem 4.35 implies there is some D0 ∈ F with ↑D0 ∩ ↓A ⊆ ⇑F .
Thus, D0 ⊆ ↑D0 ∩ ↓A ⊆ ⇑F ⊆ ↑〈F 〉.

On the other hand, C vD
⊔
F also implies that C v ↓

⊔
F , and so F ⊆ ⇓C ⊆

⇓
⊔
F . The first part of the proof shows that

⊔
F =

⋂
C′∈F (↓

⋃
F ∩ ↑C ′). Now

F ⊆ ⇓
⊔
F , and since F is finite, there is some D1 ∈ F with F ⊆ ⇓D1. Since F

is directed, we can choose a D2 ∈ F such that D0, D1 vD D2, and it then follows
that 〈F 〉 vD D2, D2 ⊆ ⇑F and F ⊆ ⇓D2. This all goes to show that 〈F 〉 � C in
D(P ).

We next show that the family

FC = {〈F 〉 | 〈F 〉 vD C,C ⊆ ⇑F & F ⊆ ⇓C}

is vD-directed for each C ∈ D(P ). First, note that if F ∈ FC , then F ⊆ ⇓C & C ⊆
⇑F , and this implies F ⊆ ↓C & C ⊆ ↑F , which in turn implies 〈F 〉 ⊆ ↓F ⊆
↓C & C ⊆ ↑F = ↑〈F 〉. Hence 〈F 〉 vD C if C ⊆ ⇑F & F ⊆ ⇓C. Next, suppose
that F1, F2 ∈ FC . Then C ⊆ ⇓F1∩⇓F2 is Scott open, and since C is compact, there
is a finite set G0 with C ⊆ ↑G0 ⊆ ⇓F1∩⇓F2. Conversely, if x1 ∈ F1, then F1 ⊆ ⇓C
implies there is some c ∈ C with c � cx. Since C ⊆ ⇓F2 ,, there is some x2 ∈ F2
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with x2 � c. Then there is some x with x1, x2 � x� c. Since F1 is finite, we can
choose finitely many such x, and call the resulting set G1. Then F1 ⊆ ⇓G1 ⊆ ⇓C
and G1 ⊆ ⇓F1 ∩ ⇓F2. Dually, there is a finite set G2 with F2 ⊆ ⇓G2 ⊆ ⇓C. If
G = G0 ∪G1 ∪G2, it follows that F1, F2 ⊆ ⇓G ⊆ ⇓C, and C ⊆ ⇑G ⊆ ⇑F1 ∩ ⇑F2.
This shows FC is directed.

It now follows that D(P ) is continuous and that FC is a basis for the way-below
set of each C in D(P ). Hence, if C ′ � C in D(P ), then there is some F ⊆ P finite
with C ′ vD 〈F 〉 vD C, C ⊆ ⇑F and F ⊆ ⇓C.

The proof that (C,D) 7→ 〈C,D〉 : D(P )×D(P )→ D(P ) is continuous is straight-
forward. 2

Corollary 4.48 of [2] shows that PD(P ) is coherent if P is. The proof presented
there had two purposes: first, show that PD(P ) is coherent, but second, that the
Lawson topology on PD(P ) with respect vD is the same as the Lawson topology
PD(P ) inherits from the family of non-empty Lawson compact subsets of P in
the order of reverse containment. While this latter is an interesting (remarkable?)
result, it makes for a rather difficult proof. For those who just want to see a proof
that PD(P ) is coherent, we present an alternate proof. This proof can also be found
in [1]

Corollary 4.48. If P is a coherent dcpo, then so is PD(P ).

Proof. Recall that PL(P ) and PU (P ) are Scott domains, where
X �L Y ∈ PL(P ) iff there is a finite set F with X ⊆ ↓F ⊆ ⇓Y , and
X �U Y ∈ PU (P ) iff there is a finite set F with Y ⊆ ⇑F ⊆ ↑F ⊆ X.

Then PL(P ) × PU (P ) is a Scott domain, where (X,Y ) v (X ′, Y ′) iff X ⊆ X ′ and
Y ′ ⊆ Y . Since this is a Scott domain, it is compact in its Lawson topology. Let

C = {(X,Y ) ∈ PL(P )× PU (P ) | X ∩ Y 6= ∅}.

Then C is closed in the Lawson topology, hence it is a compact, Hausdorff space
in the inherited topology. We define a retraction r : C → C by r(X,Y ) = (↓(X ∩
Y ), ↑(X ∩ Y )). By assumption, (X,Y ) ∈ C implies X ∩ Y 6= ∅, so r(X,Y ) is well-
defined. It is routine to verify this is a retraction, so r(C) is a compact Hausdorff
space in the inherited topology. On the other hand, for (X,Y ) ∈ r(C), X = ↓(X∩Y )
and Y = ↑(X∩Y ). So, if (X,Y ) ∈ U ⊆ PL(P )×PU (P ) and U is Lawson open, then
there are finite subsets F1, G1 ⊆ P and elements X1, . . . , Xm ∈ PL(P ), Y1, . . . , Yn ∈
PU (P ) satisfying (X,Y ) ∈ (⇑F1 \ (∪i≤m ↑Xi)× (⇑G1 \ (∪j≤n ↑Yj). This means

• F1 ⊆ ⇓X = ⇓(X ∩ Y ), and Xi \ (X ∩ Y ) 6= ∅ for 1 ≤ i ≤ m,
• X ∩ Y ⊆ Y ⊆ ⇑G1, and (X ∩ Y ) \ Yj 6= ∅ for i ≤ j ≤ n.

We define a map φ : r(C)→ PD(P ) by φ(X,Y ) = X ∩ Y . φ also has an inverse,
namely X 7→ (↓X, ↑X) : PD(P ) → PL(P ) × PU (P ) actually has its image in C.
It is routine to show that these mappings both preserve the order (the order on
r(C) being the one it inherits from PL(P )× PU (P )), so φ and its inverse are order
isomorphisms, and hence they are Lawson continuous.
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