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Abstract. In this paper we describe how to build semantic models that
support both nondeterministic choice and probabilistic choice. Several
models exist that support both of these constructs, but none that we
know of satisfies all the laws one would like. Using domain-theoretic tech-
niques, we show how models can be devised using the “standard model”
for probabilistic choice, and then applying modified domain-theoretic
models for nondeterministic choice. These models are distinguished by
the fact that the expected laws for nondeterministic choice and proba-
bilistic choice remain valid. We also describe some potential applications
of our model to aspects of security.

1 Introduction

The most widely employed method for modeling concurrent computation is to
take sequential composition as a primitive operator, and then to use nondeter-
ministic choice to generate an interleaving semantics for parallel composition.
This approach is well-supported by the models of computation, including both
the standard domain-theoretic models (cf. [10]), and the metric space approach
(cf. [3]). These and similar approaches to modeling nondeterminism satisfy the
basic assumption that nondeterministic choice is a commutative, associative and
idempotent operation. In fact, the results from [10] characterize the three fun-
damental power domains in terms of their universal properties as ordered semi-
lattices 1i.e., that they each are the object-level of a left adjoint to a forgetful
functor from an appropriate category.

More recently, probabilistic choice has been added as a family of operators
in the syntax of the language under study. One can trace this research in deno-
tational semantics to the work of Saheb-Dharjomi [24]. While this work was the
first to consider modeling probabilistic choice as a domain, the most influential
work along this line is without question the PhD thesis of Jones [11], where it was
shown that Saheb-Dharjommi’s construction could be extended to “measures”
having total variation less than 1, and that the probabilistic power domain of
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a continuous domain is again continuous. Perhaps more importantly, Jones pro-
vided a finitary characterization of the probabilistic power domain in terms of
equations the operators should satisfy. If these equations hold, then her model
is universal.

One issue that causes problems in the regard is that the difference between
nondeterministic choice and probabilistic choice is not clearly delineated. In-
deed, the title of [11] reveals an identification of probabilistic choice as a form
of nondeterminism. Yet probabilistic choice operators are not associative. For
example,!

(pst+q) s+r=post (q2/3+r).

Still, several authors have attempted to incorporate both nondeterministic choice
and probabilistic choice within one model. None that we know of has accom-
plished that goal completely satisfactorily. For example, in [20] a model incorpo-
rating probabilistic choice is built by simply applying Jones’ probabilistic power
domain to the standard failures-divergences model for CSP. But, the natural
extension of nondeterministic choice to this model is not idempotent, so a fun-
damental law of nondeterminism fails in the model. To explain this anomaly, it is
argued in [21] that the probability that the process (p s+¢)M(p 5+¢) actually acts
like p is .25, since each branch resolves the probabilistic choice independently.
On the other hand, one might argue that the process in question is supposed to
act like one branch, not like both ie, the probabilistic choice should be resolved
after the nondeterministic choice is resolved. But models for CSP typically do
not discriminate closely enough to keep track of the order in which choices are
resolved, something that is reflected by the fact that the nondeterministic choice
operator distributes through the probabilistic choice operators.

This brings us to the issue we are interested in confronting: how to build de-
notational models for more general process algebras which support both nonde-
terministic choice and probabilistic choice, so that the laws for nondeterministic
choice and for probabilistic choice that one expects to hold actually are valid.
Our construction relies heavily on domain theory and some of the constructs
it provides. The work here is closely related to the emerging area of devising
semantic models using coalgebraic techniques (cf., e.g., [23] for an introduction).

There are several approaches that have been put forward for modeling prob-
abilistic choice, including

— approaches such as [16, 18] that focus on state-based models and use proba-
bilistic transition systems to reflect the operational behavior of the system
under study. In these approaches, discrete probabilistic models are consid-
ered, and the focus is on the probability of a process being in a given state
after it has executed a given action.

! We will use the notation p x4 ¢ to denote a probabilistic choice in which the process
has probability A of acting like p, and probability 1 — A of acting like g, where
0<A<1.



— approaches such as [7] and [17] that use a process algebra in which prob-
abilistic choice is substituted for nondeterministic choice. Here, and in the
next case, the focus is on the probability that the process in question acts
like one branch or the other from the choices listed.

— approaches such as [20, 4, 8] that extend a process algebra by adding prob-
abilistic choice operators. If the branches have distinct initial actions, then
the focus is on the probability of the process executing a given action, rather
than on the state after a given action is executed.

The approach nearest our own is the last, but, as just remarked, none of these
approaches provides a semantic model in which the laws we are interested in hold.
Moreover, there are close links between all these approaches, so they should be
viewed as variants of one another. Our goal in this paper is to show how a model
supporting both nondeterministic choice and probabilistic choice can be devised,
so that the expected laws for nondeterministic choice and for probabilistic choice
all hold.

Some more extensive comments about the nature of our results are in order.
As stated above, we use domain theory as the basis for the constructions we
devise. There is a long history of modeling probabilistic choice in this area, dat-
ing back to the seminal work of Saheb-Djarhomi [24] in which a now standard
construction of a cpo supporting probabilistic choice was given, beginning with
an underlying cpo. This work led to the results in [11,12] that clarified and ex-
panded the nature of Saheb-Djarhomi’s construction, and also showed that this
construction, when applied to a continuous domain, yields a continuous domain.
This is the construction used in [20] for probabilistic CSP, which is simply the
probabilistic power domain Pp,.(FD) of the failures-divergences model FID for
untimed CSP. As we noted above, the extension of the nondeterministic choice
operation from FD to Pp,(FD) is not idempotent. In fact, there is no affine
idempotent operation on Pp,.(FD) that extends the nondeterministic choice op-
erator on (the image of) FD (in Pp,(FD)), since the extension used in [20] is
one such, and the splitting lemma implies there is only one such. There is no
obvious candidate for a nondeterministic choice operator on this model, even if
one drops the affinity hypothesis.

Our approach to remedying this problem is to take the construction one
step further: we apply a power domain operator to Pp,.(FD). In fact, there
are three such power domains - the lower, the upper and the convex power
domains. While these produce new nondeterministic choice operators, one soon
discovers that the probabilistic choice operators on Pp,. (FD), when extended to
any of these power domains do not satisfy the expected laws — once again the
model fails to satisfy all the laws expected. However, we are not far from our
desired model. We simply consider the family of affine closed sets in each of the
respective power domains, and we find that in each case, these do provide models
where all the laws — both those of nondeterminism and of probabilistic choice
— are valid. What is more, in the case of the lower or upper power domains,
the models we construct yield a bounded complete domain, when applied to a
Scott domain. In particular, the compositions Ppy, o Pp, and Ppy o Pp, are



continuous endofunctors of the category BCD of continuous, bounded complete
domains  the continuous analogues of Scott domains. Since this category is
cartesian closed, one can in principle construct models for the lambda calculus
extended to include both probabilistic choice operators and nondeterministic
choice operators. Unfortunately, as far as we know, this result does not extend
to the case of the convex power domain: while Ppc o Pp, is continuous, we
are unable to show it lands back in RB, the category of retracts of bifinite
domains. Even so, our models have the added bonus that the probabilistic choice
operators do not distribute through the nondeterministic choice operators, which
has important implications for the application of the models we build to the area
of security. We outline this application in the last section of the paper.

The rest of the paper is organized as follows. In the next section we review
some background in domain theory and we review the principal construction of
a model for probabilistic choice in domains — the probabilistic power domain,
followed by a description of PCSP from [20]. This serves to present a motivating
example for our work, which demonstrates how the failure of an expected law in
a semantic model can lead to unexpected results in the behavior of a process.
Actually, such results are inevitable if one uses the model constructed in [20]
because of the way in which the CSP operators are defined on their model. The
next section gives our construction, showing how one can build a model sup-
porting both nondeterministic choice and probabilistic choice over any bounded
complete domain. Finally, in the last section, we review our results and point out
how they relate to some of the other constructions that have been put forward.

2 Domains and the Probabilistic Power Domain

In this section, we review some of the basics we need to describe our results. A
good reference for most of this can be found in [2]. To begin, a partial order is a
non-empty set endowed with a reflexive, antisymmetric and transitive relation.
If P is a partial order, then a subset D C P is directed if every finite subset of D
has an upper bound in D. We say P is directed complete if every directed subset
of D has a least upper bound, LID, in P. Such partial orders we call depos, and
we use the term cpo for a dcpo that also has a least element, usually denoted L.
Dcpos can be endowed with a topology that plays a fundamental role in the
theory. A subset U C P is Scott open f U =1U = {z € P | (Ju € U)u < z}
is an upper set, and, for every directed set D, if UD € U, then D NU # (). The
Scott continuous functions f: P — @ between dcpos are easy to characterize
order-theoretically: they are exactly the maps that preserve the order and also
preserve suprema of directed sets — f(LD) = Uf(D) for all D C P directed.
The category DCPO of (d)cpos and Scott continuous maps is a cartesian
closed category. More precisely, the product of (d)cpos is another such, there is
a terminal object among dcpos — the one point dcpo — and there is an internal
hom: for dcpos P and @, the family [P — ()] of continuous maps between them
is a dcpo in the pointwise order, and [P x ) — R] ~ [P — [@ — R]] for dcpos
P, () and R. What is just as important is that we can find minimal solutions to



domain equations within these categories, assuming the equations are defined
by continuous endofunctors defined on DCPO.

Continuous domains: If P is a dcpo and z < y € P, then we write z < y if
and only if (VD C P directed)y <UD = (3d € D)z < d. P is continuous if
Jy ={z € P |z <y} is directed and y = L}y for all y € P. Unfortunately, the
category CON of continuous domains and Scott continuous maps is not cartesian
closed. In fact, a classification of the maximal cartesian closed subcategories of
CON is given in [2]. Of particular interest to us is the category COH of coherent
domains and Scott continuous maps (cf. [2]).

Continuous domains admit standard models for nondeterminism, each of
which is the object level of a left adjoint to an appropriate forgetful functor.
In the case of coherent domains, these power domains can be defined as:

The Lower Power Domain is defined as PL(P) = {X C D | § # X =
14X Scott closed}, ordered by inclusion.

The Upper Power Domain is defined as Py(D) = {X C P | 0 # X =
1X Scott compact} ordered by reverse inclusion.

The Convex Power Domain can then be defined as Po(P) ={X C P | X =
IXN1tX A X € Pr(P) AN tX € Py(P)}, ordered by X CY iff [ X C Y
and TX D 1Y.

Each of these constructs is an ordered semilattice, in that each admits an asso-
ciative, commutative and idempotent operation that preserves directed suprema
(in the first two cases, the operation is simply union, while in the last it is ob-
tained by taking the convez hull of the union of the components. Moreover, each
is the object level of a left adjoint to a forgetful functor from an appropriate cat-
egory of ordered semilattice domains and Scott continuous maps to the category
of coherent domains and Scott continuous maps.

The probabilistic power domain: We now describe the construction that allows
probabilistic choice operators to be added to a domain. This construction was
first investigated by Saheb-Djarhomi [24], who showed that the family he defined
yields a cpo. The construction later was refined by Jones [11,12] where it also
was shown that the probabilistic power domain of a continuous domain is again
continuous. The definition of the more general construction goes as follows.

Definition 1. If P is a dcpo, then a continuous valuation on P is a mapping
w: XD — [0,1] defined on the Scott open subsets of P that satisfies:

n(®) = 0.

pUUV) =pU) +pu(V)+plUnV),

u is monotone, and

w(U;U;) = sup,; uw(U;), if {U; | i € I} is an increasing family of Scott open
sets.

B Lo~

We order this family pointwise: uy < v < wlU) < v(U) (YU € XP), and we
denote the family of continuous valuations on P by Pp,.(P).



It was Lawson [15] who first showed the connection between continuous valua-
tions and measures on the cpo P indeed, he showed that, in the case P has
a countable basis, there is a one-to-one correspondence between regular Borel
measures on P and continuous valuations on X P. This result has recently been
generalized to a much larger category of topological spaces.

The probabilistic power domain construction has been fraught with problems
almost from its inception. An excellent discussion of this can be found in [14]. One
of the key properties of domain theory has been the ample supply of cartesian
closed categories that are closed under each of the constructs the theory has to
offer. For example, the constructions needed to build Scott’s Dy, model all leave
the category of continuous, bounded complete domains invariant (a domain is
bounded complete if every non-empty subset has an infimum). It was the fact
that the convex power domain does not leave this category invariant that led
to the discovery of the cartesian closed category of bifinite domains and Scott
continuous maps. Bifinite domains are those that can be expressed as the limit
of a directed family of finite posets under embedding-projection pairs; they all
are algebraic, while the category RB of retracts of bifinite domains is a cartesian
closed category containing continuous domains such as the unit interval. Since
Pp.(P) is continuous if P is, but never algebraic, the natural question is whether
the cartesian closed category RB is closed under this construction. The answer
remains unknown. More generally, there is no know cartesian closed category of
continuous domains that is closed under the probabilistic power domain operator.
This means, in particular, that the only cartesian closed categories which are
known to be closed under this construct are CPO and DCPO, the categories
of cpos (dcpos) and Scott continuous maps, respectively. This is unsatisfactory,
since so little is known about the structure of the objects in these categories.

Among the continuous valuations on a dcpo, the simple valuations are partic-
ularly easy to describe. They are of the form y = X,cpr, - d,, where FF C Pis a
finite subset, d, represents point mass at x (the mapping sending an open set to 1
precisely if it contains z, and to 0 otherwise), and r,, € [0, 1] satisfy X, cpr, < 1.
In this case, the support of u is just the family F'. The so-called Splitting Lemma
of [11] is a fundamental result about the order on simple measures:

Lemma 1 (Splitting Lemma [11]). If p = Yycpry - 6, and v = Zycasy - 0y
are simple valuations, then p < v if and only if there is a family of non-negative
real numbers {t, , | © € F,y € G} satisfying

1. Forallz € F, Xycgty y =Ta.
2. Forally € G, Xycrtay < sy, and
3. Iftyy #0, then x < y.

Moreover, u < v if and only if < is replaced by < in 2), and by < in 3). |

It follows from this result that the probabilistic power domain of a continuous
domain is again continuous. But nothing much more is known about the structure
of Pp,.(P); in particular, a simple example is given in [11] of a bounded complete
domain P for which Pp,(P) is not bounded complete.



One fact about the probabilistic power domain that has been established is
that it leads to an endofunctor on continuous domains. That is, each continuous
map f: P — () between (continuous) domains can be lifted to a continuous
maps Pry(f): Pry(P) = Prr(@Q) by Pe(£)(1)(U) = u(f~(U)). In fact, [11]
shows that the resulting functor is a left adjoint, which means that Pp,.(P) is a
free object over P in an appropriate category. The category in question can be
described in terms of probabilistic choice operators satisfying certain laws. The
relevant laws are the following (cf. [11]):

Definition 2. A probabilistic algebra is a depo A endowed with a family of
Scott continuous operators x+: Ax A — A, 0 < XA < 1 such that (A, a,b) —
ax+b:[0,1] x Ax A— A is continuous and so that the following laws hold for
all a,b,c € A:

—axtb=>bi_\+ a,

—(ax+b) j+ c=a 4+ (b ,on+ ¢ (if Ap<1).
1—Ap

—axta=a, and

— a1+ b=a.

The operations x+ are defined on Pp,.(P) in a pointwise fashion, so for instance,
wxtv=Au+ (1 —XNw. It then is routine to verify that Pp,.(P) is a probabilistic
algebra over P for each dcpo P.

2.1 Probabilistic CSP

The model for probabilistic CSP — PCSP as it is denoted — that was devised
in [20] is now easy to describe. It is built by simply applying the probabilistic
power domain operator to the failures-divergences model for CSP. But some
extra information is provided to allow a better understanding of the structure
of the model.

First, it is shown in [20] that FID is an algebraic cpo: indeed, the compact
elements are the “truncated processes” {pl, | p € FD & n > 0}, where p|,, is
the process that acts like p for at most n steps, and then diverges (recall that
DIV is the least element of FD). In fact, in [20] it is shown that the n-step
truncations of any process form an increasing sequence whose supremum is the
original process, and it is easy to show that p|,, is compact for every n. Moreover,
the very definition of FID allows one to conclude that the union of any non-empty
family processes in FID is another such, which combined with the result just cited
shows that FID is a Scott domain ie, a bounded complete, algebraic cpo. As such,
applying the probabilistic power domain operator to FID results in a continuous
probabilistic algebra, and this is the model for probabilistic CSP used in [20].

The syntax of PCSP is not much different from that of CSP. Indeed, PCSP
simply adds the family of operators x for 0 < A < 1 to the usual family of
operators of untimed CSP. So, for example, we can reason about processes such
as (a » STOP) »+ (b - STOP O ¢ — STOP), which will act like a - STOP
A percent of the time, and offer the external choice of doing a b or a ¢ the rest of



the time. The approach provided in [20] to reasoning about such processes is via
weakest precondition semantics, where weakest preconditions for probabilistic
processes are represented as random variables.

An obvious question is how to interpret the operators of CSP in Pp,.(FD).
This is accomplished by analyzing the construction itself. Namely, Pp,(FD) is
a set of continuous mappings from the set of Scott open sets of FID to the unit
interval. So, for example, given a unary operator f: FD — FID, we can extend this
t0 Prr(FD) by Pp,(f): Per(FD) — Ppy(FD) by Pry(f)(n)(U) = p(f~L(U)).
Similar reasoning shows how to extend operators of higher arity (this relies on
the fact that the product of Scott open sets is again Scott open). Two facts
emerge from this method:

— If we embed FD into Pp,(FD) via the mapping p + dp, then the interpre-
tation of each CSP operator on FD extends to a continuous operator on
Pp-(FD): this means that the mapping from FD into Pp,(FD) is composi-
tional for all the operators of CSP. This has the consequence that any laws
that the interpretation of CSP operators satisfy on FID still hold on the image
of FD in Pp,(FD).

— The way in which the operators of CSP are extended to the model of PCSP
forces all the CSP operators to distribute through the probabilistic choice
operators. For example, we have

a— (patq) = (a = p)rt+(a—q),

for any event a and any processes p and ¢g. This has the result that some of
the laws of CSP fail to hold on all of Pp,(FD).

Here is an example illustrating the second point:

Ezample 1. Consider the process

(p s+ q) N (p 5+ q)

The internal choice operator MM is supposed to be idempotent, but using the fact
that, when lifted to PCSP, the CSP operators distribute through the probabilistic
choice operators, we find that

(pst @) (psta) =past ((PNa),,+ ),

which means that the probability that the process acts like p is somewhere be-
tween .25 and .75, depending on how the choice pMgq is resolved. This unexpected
behavior can be traced to the fact that M distributed through s+ (and through
xt for all A\). One way to view this is that the resolution of the probabilistic
choice in p 5+ ¢ is like an internal event, and using the CSP paradigm of maz-
imal progress under which internal events are always on offer and happen as
soon as possible, the probabilistic choice then is resolved at the same time as
the internal nondeterministic one. From this viewpoint, the processes on either
side of M represent distinct instances of the same processes, but because they are



distinct, the probabilistic choice is resolved independently in each branch. In any
case, this shows that the interplay of probabilistic choice and nondeterministic
choice can lead to unexpected results which require careful, analysis. In [20], the
term duplication is used for the phenomenon that this example illustrates.

We are unable to assign a precise probability to this process acting like p, since
we have no way to assign a probability to how M resolves its choices, precisely
since it is not a probabilistic choice operator. Further work in [21] addresses the
question of duplication arising where it is not desired. Two possible solutions
are presented there. Our interest is in studying how to overcome duplication at
the nondeterministic choice level.

Since it is the fact that M distributes through x+ that causes M not to be
idempotent, one way to avoid this issue would be to craft a model which forces
us to resolve M first, before the probabilistic choices are resolved. This should
remind the reader of bisimulation, where the question of when nondeterministic
choices are resolved changes the meaning of the process, as the following example
demonstrates:

a.(p+q) # (a.p) + (a.q),

(where ~ denotes bisimulation).

3 Constructing New Models

In this section we show how, given an continuous cpo P, we can construct a
domain () which supports nondeterministic choice and probabilistic choice, so
that the choice operator is idempotent. In fact, we can construct three such
domains @, each of which is an analog of one of the power domains. Moreover,
if P is bounded complete, then in the first two cases, there is an e-p pair from
P into Q. We start with an arbitrary coherent cpo P. We want to construct a
coherent domains which contains a copy of P and that admits a projection onto
P, and that simultaneously supports both a nondeterministic choice operation
+ and probabilistic choice operations x+ satisfying the laws of a probabilistic
algebra.

We begin our discussion by considering once again FI, the failures-divergences
model for CSP. As remarked earlier, this is a Scott domain a bounded com-
plete algebraic cpo. By forming Pp,(FD), [20] construct a model for PCSP.
Their method for defining interpretations of the operators from CSP on this
model is simply to extend them to Pp,(FD) in the “natural fashion”. Actually,
this is a categorical construction, which can be traced through the construction
of Pp,(FD) C [Z(FD) — [0, 1]]. It follows from the method of construction that
the lifting of the operations from FD to this family all distribute through the
probabilistic choice operators. This is why certain laws from CSP fail in the
extension, such as the failure of the extension M to PCSP to be idempotent.

But this still begs the question of whether the idempotence of nondetermin-
istic choice can be retrieved. One approach might be to search for an alternative



method for extending the operations of CSP  in particular, of extending M

to Ppr(FD). The search is in vain if we also require that the extension be
affine (ie, that it preserve affine combinations of processes such as p \+ ¢), since
the categorical extension already satisfies this property, and there cannot be two
such extensions (because the Splitting Lemma implies the image of FID generates
Ppr(FD)). So, we must seek to extend the construction so as to accommodate
another internal choice operator.

A somewhat more esoteric question revolves around the structure of the
model Pp,(FD). Indeed, all that one can confidently assert about the proba-
bilistic power domain of a continuous domain is that it is again continuous, and
that the probabilistic power domain of a coherent continuous domain is again
coherent (cf. [13]). In particular, the probabilistic power domain is not bounded
complete, and it remains an open question whether this operator leaves any
cartesian closed category of continuous domains invariant.

In the case of the lower and upper power domains, our approach is to avoid
this issue entirely by “dragging” Pp,(FD) back into the category of bounded
complete domains by applying another functor. This is possible because of the
following result:

Theorem 1. If P is a continuous domain, then P (D), Py (D) € BCD, and if
P is coherent, then so is Pc(P). In particular, for any continuous domain P,
Pr(Ppy(P)) and Py(Pp,(P)) are both bounded complete and continuous, and
P (Pp(P)) is coherent.

Proof. One can find a proof that Pr(P) and Py (P) are both bounded complete
and continuous if P is continuous, and that Pc(P) is coherent if P is in [2]. The
last part then follows from [13]. O

Jones [11] showed that the probabilistic power domain functor is continuous,
and it is well known that the power domain functors Pr, Py and Pe are con-
tinuous, we conclude that the compositions Py, o Pp,., Py o Pp, and Pc o Pp,
are all continuous. Moreover, the theorem above yields:

Corollary 1. The compositions P, o Pp, and Py o Pp, are continuous endo-
functors of BCD, and P o Pp, is a continuous endofunctor of COH. O

However, this is not exactly what we want. The reason is that, if we use
the standard approach to extending the operations from P to Py, (P), Py(P) or
Pc(P) in the case P is a probabilistic algebra, we find that the laws we want no
longer are valid. For example, for X, Y € Py (P)

Xyt Y={arxty|lzeX,yeY}, soX\+ X ={zrty]|z,ye X},

and this is not equal to X. In general, X x+ X will be larger than X. To remedy
this, we proceed as follows.

Definition 3. Let P be a probabilistic algebra, and let X C P. We define
(X)={zxrtylz,ye X A 0<AL1)
We say that X is affine closed if X = (X). We let

10



— Pra(P)={X € P(P) | X =(X)}.
— Pua(P) ={X € Py(P) | X = (X)}.
— Pca(P) ={X € Pc(P) | X = (X)}.

We call these nondeterministic probability domains.

Theorem 2. Let P be a probabilistic algebra which is also a coherent domain.
Then there are continuous kernel operators

kvt (Pu(P),2) = (Pua(P),2) given by ky(X) = {Y € Pu(P)| X CY}.
kc: (Pc(P),CE) = (Pca(P),C) given by ko(X) = ﬂ{Y € Pc(P)| X CY}.

kit (PL(P),C) = (Pra(P),C) given by k., (X) = ({Y € PL(P) | X CV}.

Furthermore, Pyr(P) and Pya(P) are bounded complete domains which also are
probabilistic algebras, and P a(P) is a coherent domain. Finally, each of the first
two extend to a continuous functor Pya: COH — BDC, and Pc 4 extends to a
continuous functor Pc4: COH — COH.

Proof. We confine our argument to the case of Pya. If X € Py(P), then the
family A(X) = {Y € Py(P) | X CY = (Y)} is non-empty (since P is in
the family), and it is closed under all intersections (that the intersection of
compact sets is again compact follows from the coherence of P). It follows that
ku(X) = A(X) is well-defined, and it is routine to argue that x is continuous
and idempotent, from which it follows that (Py a(P), D) is a continuous coherent
domain.
The probabilistic choice operators can be defined on Py 4(P) by

XxtY={z+ylze X yeY},

and it follows from the rectangle law (cf. [9]) for P that X x+Y € Pya(P)
for X,Y € Pya(P). The continuity of these operations also is easily seen. One
can argue that Py (P) with these operations satisfies the laws of Mean Values
(cf. [9]), which are equivalent to the probabilistic algebra laws of [11]. Since
the operations are easily seen to be continuous, it follows that Pya(P) is a
probabilistic algebra.

We note that (Pya(P), D) also is an inf-semilattice, being the image of one
under a kernel operator. If f: P — () is a continuous morphism of probabilistic
domains (ie, if P and @ are domains with continuous interpretations of the
operators x-, A € [0, 1] which also are probabilistic algebras), then we can define
Poualf): Pua(P) = Pua(Q) by Pua(f) = (ku o Pu)(f). It is routine to show
that Py a(f) is again a morphism of probabilistic algebras, and that the functor
P4 is locally continuous. It follows that P4 is a continuous functor. O

In the case of CSP, we consider the domain Py a(Pp,-(FD)): Because the
upper power domain is the power domain of demonic choice, we have chosen to
focus on the the nondeterministic probability domain analogous to the upper

11



power domain, since this underlies (internal) nondeterministic choice in CSP.
We begin with FD to build our model. The following shows the properties of the
associated model.

Theorem 3.

1. If P is any bounded complete, continuous domain, then there is an e-p pair
from P to Pp,.(P).

2. If P is a coherent domain that also is a probabilistic algebra, then the there is
an injection of P into Pya(P) that is a morphism of probabilistic algebras.

3. If P is a bounded complete continuous domain, then there is an e-p pair from
Per(P) to Pua(Ppr(P)). Moreover, the embedding e: Pp,.(P) — Pya(P)
is a morphism of probabilistic algebras.

Proof. Since Pp, is a left adjoint, we can use the unit of the adjunction for
the embedding. This is simply the mapping x — §,, which assigns the point
mass at x to each point x € P. For the projection mapping, we use the support
function: p — supp p. For simple measures X, cpr,0,, this is simply F. Since
each measure is the directed supremum of simple measures, for general u we
can form the “limit” of the family F;, where p = U; X, p,720,. (This limit can
be thought of as being taken in the convex power domain of P — cf. [19].) The
projection mapping then send p to A supp u, for which it is routine to verify the
required equations for an e-p pair.

For the second claim, we note that # — tz: P — Pya(P) is a morphism of
probabilistic algebras by the definition of the operations on P4 (P).

Finally, if P is bounded complete, we can derive an e-p pair from Pp,(P)
to Pya o Ppr(P), whose embedding is the composition of the units: z — 19,
and whose projection is X — A{suppp | p € X}. It is once again routine to
validate the required equations for an e-p pair. The embedding from Pp,(P)
is just the mapping x — tz; the projection is gotten via the previous result.
Namely, X = 0xfsupp ujucx}- Again, the validation of the required equations is
routine. ad

Thus, we can begin with FID and generate a bounded complete, continuous
domain Py 4(Pp,FD) that also is a probabilistic algebra.

Ezample 2. We show that the domain Pya(Pp,.FD) is a model for PCSP in
which internal choice does not distribute over probabilistic choice. First, using
the standard categorical approach, we can extend the interpretation of each CSP
operator on Pp,.(FD) to Pya(Pp.(FD)), and these extensions all are continu-
ous. Noting that Pya(Pp-(FD)) also has an internally defined inf-operation —
(X,Y) » k((X UY)), we then can conclude Py4(Pp,(FD)) is a continuous
algebra of the same signature as defines the syntax of CSP. Since we can re-
gard CSP as the initial algebra with this signature, it follows that there is a
(unique!) algebra homomorphism | [|[: CSP — Py a(Pp,(FD)), and we take this
as our semantic map. Actually, this extends to a semantic mapping from PCSP
to Pua(Pp,(FD)) since the latter is a probabilistic algebra.

12



To show that internal choice does not distribute over the probabilistic choices
Pua(Ppr(FD)) we simply note that we have chosen the internally defined inf-
operation on Pya(Pp,(FD)) as our interpretation of M, and since this operator
is idempotent on all of Py 4 (Pp,(FD)), we conclude that

Ppsta)N(psta) =pstq

for any elements of Pya(Pp,(FD)) in particular, this holds for p and ¢ the
denotations of processes from PCSP. But then M cannot distribute through s,
because we would then have the equality

psta=Pstq)N(pstq)=past(PNa),,+ q),

which would imply that p ™ q = p 5+ g, which certainly does not hold, as easy
examples show. O

4 Summary and further applications

We have investigated the possibility of building semantic models which support
nondeterministic choice and probabilistic choice operators, and in which all the
laws of nondeterministic choice and of probabilistic algebras hold. The mod-
els we constructed are obtained by following the probabilistic power domain of
Jones by modifications of the traditional power domains. We have focused in
our examples on CSP, and shown how this approach produces such a model for
untimed CSP with probabilistic choice operators added. Moreover, the failures-
divergences model, on which our model is built, is a retract of our model. This
shows that the model for probabilistic CSP devised in [20] can be improved so
that the expected laws hold. Our new domains support both nondeterminism
and probabilistic choice; they are the families of non-empty, affine, Scott closed
lower sets (affine, compact upper subsets, or affine, Lawson compact convex sub-
sets, respectively) of a coherent, continuous domain, show each of these families
also is a probabilistic algebra. These are the only models of this type we know of.
In particular, the models defined in several of the papers listed in the references
(except, of course, that of [11,12]) seem not to address this issue.

A question we have left unaddressed is what other laws our new model sat-
isfies. For example, we have not considered the “usual” laws of CSP for the case
of Pya(Pp,(FD)). This is a very important issue, especially given the tradition
of algebraic semantics for CSP and its related languages. And certainly the de-
terministic choice operator O of CSP has been altered in our model, since it
inherently depends on M — for example (a — p) O (a — q) = (a = p) N (a — q)
holds in CSP, but it is unclear whether it holds in our model.

There is another area that our model also should be of interest. In recent
work, Roscoe [22] has shown that the security of a multilevel system can be
analyzed using CSP. In particular, he shows that such a system (by which we
mean a process representing the functioning of the system that users of differing
levels of security clearance are using) is secure if the low level user’s view of the
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system is deterministic, once the high level user’s actions have been abstracted
away. This approach has the added advantage that secure systems cannot be
refined? by insecure ones, since deterministic processes are maximal in the models
of untimed CSP. The problem with this approach is that it is too restrictive.
There are processes representing system behavior that are accepted as being
secure, but which nonetheless fall outside this definition, precisely because low’s
view is nondeterministic.

The reason that nondeterministic processes are viewed as insecure is that
each process in models of CSP is the nondeterministic choice of its deterministic
refinements, and allowing low to have a nondeterministic view of the system
even with high’s actions abstracted away — allows for the possibility that low
could reliably refine what is seen to a less deterministic process that would
support a covert channel from high to low. For example, if low sees actions that
he can reason are one of two types sends or receives, for example he can then
draw conclusions about high level activity on the system.

The potential application of the work described here would be to implement
the system’s choice using probabilistic choice. Then it would be impossible for
low to reliably refine his seemingly nondeterministic view. But, if high could
predict the way in which the system were going to resolve its choices — for
example, if those choices could be viewed as having been resolved before high
makes his choices about which events to participate in, then a covert channel
could be set up between high and low. This is possible in a system where the
system’s choice distribute through those of high, and that is why the model of
[20] is viewed as unsatisfactory for this application. Since our model implements
nondeterministic (ie, high’s) choices, and probabilistic (ie, the system’s) choices,
and since the nondeterministic choices do not distribute through the probabilistic
choices, our model has the possibility of providing a setting in which the security
results of Roscoe could be extended to more general settings.
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