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Abstract

In this paper we study the family of thin probability measures on the domain A∞

of finite and infinite words over a finite alphabet A. This structure is inspired
by work of Jean Goubault-Larrecq and Daniele Varacca, who recently proposed
a model of continuous random variables over bounded complete domains. Their
presentation leaves out many details, and also misses some motivations. In
this and a related paper we attempt to fill in some of these details, and in the
process, we reveal some features of their model. Our approach to constructing
the thin probability measures uses domain theory, and we show the family forms
a bounded complete algebraic domain over A∞. In the second paper in this
series, we explore using the thin probability measures to reconstruct the bounded
complete domain of continuous random variables over any bounded complete
domain due originally to Goubault-Larrecq and Varacca.

Keywords: Random variable, bounded complete domain, Lawson-compact
antichain, thin probability measure

1. Introduction

Domains are perhaps the most widely-used models of computational pro-
cesses (cf. [2, 4, 25]). This is due to the remarkably simple basis for their
structure – a partial order closed under directed suprema and supporting an
approximation relation – that allows an equally simple description of the rele-
vant morphisms – maps that preserve the order and that also preserve suprema
of directed sets. There is a wealth of Cartesian closed categories of domains,
the maximal ones of which have been charted in the seminal work of Achim
Jung [14]. The approach proposed by Moggi [22] in which computational ef-
fects [12, 23] such as continuations, nondeterminism, etc., should be modeled
as monads has largely been successful, with CCCs of domains demonstrating
that various combinations of these monads all can be accommodated “under
one roof”.

The singular exception to this program has been models of probabilistic
choice. To be sure, there is a natural model for probabilistic choice over a
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domain – the family of (Borel) probability measures over the domain is again a
domain (cf. [24, 13]), where one uses the Scott topology to define the Borel sets,
and uses the lattice of Scott-open sets to define the partial order on probability
measures. But this construct suffers from two flaws, one irreparable, and the
other inscrutable:

• While the probabilistic power domain (as the family of probability mea-
sures over a domain is called) forms a monad on the category of directed
complete partial orders, there is no distributive law between this monad
and any of the three nondeterminism monads over domains (cf. [27]),
so according to Beck’s Theorem [3] the composition of the probabilistic
power domain and any of the nondeterminism power domains will not be
a monad. This means that one must add new laws to form a monad when
combining these two effect models, an approach that has been studied in
[19, 17]. The result is a model in which the nondeterministic choice of
processes p and q is generated by the set of probabilistic choices p+r q, for
r ∈ [0, 1] (where p+r q denotes choosing p with probability r and choosing
q with probability 1− r, for 0 ≤ r ≤ 1).1

• Even though the probabilistic power domain leaves the CCC of directed
complete posets (dcpos, for short) and Scott-continuous maps invariant,
there is no Cartesian closed category of domains – dcpos that satisfy the
usual approximation assumption – that is known to be invariant under
this construct. The best that is known is that the category of coherent
domains is invariant under the probabilistic choice monad [15], but this
category is not Cartesian closed.

In response to the irreparable flaw that there is no distributive law between the
probabilistic power domain and any of the power domains for nondeterminism,
Varacca and Winskel [27, 28] explored weakening the laws of probabilistic choice,
and discovered three monads for probabilistic choice based on weakened laws –
p ≤ p+r p; p ≥ p+r p; and last p and p+r p are unrelated – which they called
indexed valuation monads (because probability measures over domains can be
viewed equally as continuous valuations on the lattice of Scott-open subsets of
the underlying domain). Moreover, each of these monads enjoys a distributive
law with respect to the monads for nondeterminism (at least over Set).

This author took this work a bit further, showing in [20] that one could use
one of the indexed valuation models to define a monad of finite random variables
over either the domain RB or the domain FS, the latter of which is a maximal
CCC of domains, and both of which are closed under all three nondeterminism
monads. More recently, Goubault-Larrecq and Varacca proposed a monad of
continuous random variables over the CCC of bounded complete domains [10].

1To be more precise, the angelic choice of p and q is the supremum of {p+r q | r ∈ [0, 1]},
the demonic choice is the infimum of {p+r q | r ∈ [0, 1]}, and the convex choice of p and q is
the closed, order-convex hull of {p+r q | r ∈ [0, 1]}.
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Bounded complete domains are more general forms of Scott domains, the cat-
egory used by Dana Scott in devising the first model of the untyped lambda
calculus [25]. While BCD is a CCC, it is not closed under the convex power do-
main monad, and it also is not a maximal CCC. The results of Goubault-Larrecq
and Varacca inspired the work we report here.

1.1. The model of Goubault-Larrecq and Varacca

In a nutshell, the model of continuous random variables proposed by
Goubault-Larrecq and Varacca is based on a simple premise: By restricting
probability measures to one particular domain C, and then modeling probabilis-
tic choice on an arbitrary domain D as the family of (Scott) continuous maps
f : suppµ → D, where µ ∈ Prob(C) is a probability measure on C, one could
achieve a better behaved model for probabilistic choice. For C, they choose the
Cantor tree, which is the ideal completion of the rooted full binary tree. Then
given a bounded complete domain D, they define

RV(D) = {(µ, f) | µ ∈ Prob(C) & f : suppµ→ D Scott continuous},

ordered by

(µ, f) ≤ (ν, g) iff πsuppµ(ν) = µ ∧ f ◦ πsuppµ ≤ g.

They then restrict their attention to

ΘRV(D) = {(µ, f) | (µ, f) ∈ RV(D) & suppµ a Lawson-compact antichain}

in the inherited order. This is the family of continuous random variables over
D. At the heart of the model is the family of thin probability measures over
C – those probability measures µ ∈ Prob(C) that are supported on Lawson-
compact antichains in C. This is the structure that we focus on in this paper.
In another paper [18], we examine the rest of the construction of continuous
random variables over a bounded complete domain D.

1.2. Our contribution

In this and a succeeding paper [18], we elaborate the construction devised
by Goubault-Larrecq and Varacca. For example, the Cantor tree C is the order
ideal completion of the full binary tree, from which it follows that Prob(C) is
a bounded complete domain (cf. [15]), but this is not the order that is used
in ΘRV(D). Explaining this relies on a fundamental example of probabilistic
computation – the model of trace distributions generated by a probabilistic
automaton. The order induced from this model informs the order on ΘRV(D)
for bounded complete domains D.

In their presentation, Goubault-Larrecq and Varacca first include all proba-
bility measures on the Cantor tree in their construction, but then they impose
the restriction that the only simple measures – affine combinations of finitely
many point masses – in ΘRV(D) are those supported on antichains. They then
define ΘRV(D) to be the least subset of RV(D) containing these measures in
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the first component, and also satisfying the property that ΘRV(D) is closed
under directed suprema; in effect, they give a basis for the allowable measures,
and capture the rest by taking directed suprema.

Clarifying which probability measures qualify for the family of thin measures
requires a completely different presentation of ΘRV(D) from the one given in
[10]. We show that their definition of thin measures is the same thing as defining
thin measures in the model to be those that are supported on Lawson closed
antichains, but we need Stone duality to prove this result. Further, our results
show that the order on the thin measures allows one to show all measures in the
model have the form πX(µ) where X ⊆ C is a Lawson-closed subset and µ is
a probability measure that is supported on a Lawson-closed subset of Max(C),
the Cantor set which forms the set of maximal elements of C. To complete
the picture, we justify this order by showing it arises naturally on probabilistic
automata.

Our results also are more general than those in [10], since ours hold for A∞

for an arbitrary finite alphabet A, whereas they restrict themselves to the case
A = {0, 1}. Our hope is that this may allow researchers in modeling probabilistic
process calculi to use the model being devised here and in [18].

1.3. The plan of the paper

In the next section, we review some background material from domain the-
ory and other areas we need. The latter includes a version of Stone duality and
and some results about the monad of probability measures on various categories,
including the category of compact Hausdorff spaces and continuous maps. Sec-
tion 3 contains some technical results about Lawson-compact antichains in A∞

for a finite alphabet A. A motivating example that informs the order we use to
define our model of thin probability measures occupies Section 4. This example
is one of the most fundamental from computer science, that of a (probabilistic)
automaton: we show the natural order on the so-called trace distributions of
a probabilistic automation that reflects how the computation evolves over time
is the same as the order on thin measures. The final Section 5 constitutes the
main part of the paper, where we develop the main results, which culminate in
a proof that the thin measures over A∞ form a bounded complete domain. In
Section 6 we summarize our results and pose some questions for future research,
most of which will be addressed in the second paper in this series.

2. Background

In this section we present the background material we need for our main
results.

2.1. Domains

Our results rely fundamentally on domain theory, an area that arose from
Dana Scott’s models of the untyped lambda calculus. Most of the results that
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we quote below can be found in [2] or [7]; we give specific references for those
that are not in these references.

To start, a poset is a partially ordered set. Antichains play a major role in
our development: a subset A ⊆ P of a poset is an antichain if any two distinct
elements in A are incomparable in the order.

A poset is directed complete if each of its directed subsets has a least upper
bound; here a subset S is directed if each finite subset of S has an upper bound
in S. A directed complete partial order is called a dcpo. The relevant maps
between dcpos are the monotone maps that also preserve suprema of directed
sets; these maps are usually called Scott continuous.

These notions can be presented from a purely topological perspective: a
subset U ⊆ P of a poset is Scott open if (i) U = ↑U ≡ {x ∈ P | (∃u ∈ U) u ≤ x}
is an upper set, and (ii) if supS ∈ U implies S ∩U 6= ∅ for each directed subset
S ⊆ P . It is routine to show that the family of Scott-open sets forms a topology
on any poset; this topology satisfies ↓x ≡ {y ∈ P | y ≤ x} = {x} is the closure
of a point, so the Scott topology is always T0, but it is T1 iff P is a flat poset.
In any case, a mapping between dcpos is Scott continuous in the order-theoretic
sense iff it is continuous with respect to the Scott topologies on its domain and
range. We let DCPO denote the category of dcpos and Scott-continuous maps;
DCPO is a Cartesian closed category.

If P is a poset, and x, y ∈ P , then x approximates y iff for every directed set
S ⊆ P , if supS exists and if y ≤ supS, then there is some s ∈ S with x ≤ s. In
this case, we write x� y and we let ↓↓y = {x ∈ P | x� y}. A basis for a poset
P is a family B ⊆ P satisfying ↓↓y ∩B is directed and y = sup(↓↓y ∩B) for each
y ∈ P . A continuous poset is one that has a basis, and P is a domain if P is a
continuous dcpo. An element k ∈ P is compact iff x� x, and P is algebraic iff
KP = {k ∈ P | k � k} forms a basis. Domains are sober spaces in the Scott
topology.

We let DOM denote the category of domains and Scott continuous maps;
this is a full subcategory of DCPO, but it is not Cartesian closed. Nevertheless,
DOM has several Cartesian closed full subcategories. Two of particular interest
to us are the full subcategory SDOM of Scott domains, and BCD its continuous
analog. Precisely, a Scott domain is an algebraic domain for which KP is
countable and that also satisfies the property that every non-empty subset of P
has a greatest lower bound. An equivalent statement to the last condition is that
every subset of P with an upper bound has a least upper bound. A domain is
bounded complete iff it satisfies this last property that every non-empty subset
has a greatest lower bound; BCD denotes the category of bounded complete
domains and Scott-continuous maps.

Example 2.1. A prototypical example of a bounded complete domain is the
free monoid A∞ = A∗ ∪ Aω of finite and infinite words over a finite alphabet
A, where we use the prefix order on words: s ≤ t ∈ A∞ iff (∃w ∈ A∞) sw = t.
Two words compare iff one is a prefix of the other, and the infimum of any set
of words is their longest common prefix. As a domain, KA∞ = A∗, so A∞ is a
Scott domain if A is finite.
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Note that this same reasoning applies to any Scott-closed subset of A∞ –
examples here are the traces from a finite state automaton, where the “alphabet”
is the product S ×Act of the set of states and the set of actions.

Domains also have a Hausdorff refinement of the Scott topology which will play
a role in our work. The weak lower topology on P has the sets of the form
O = P \ ↑F as a basis, where F ⊂ P is a finite subset. The Lawson topology on
a domain P is the common refinement of the Scott- and weak lower topologies
on P . This topology has the family

{U \↑F | U Scott open & F ⊆ P finite}

as a basis. The Lawson topology on a domain is always Hausdorff.
A domain is coherent if its Lawson topology is compact. We denote the

closure of a subset X ⊆ P of a coherent domain in the Lawson topology by X
Λ

.

Example 2.2. A basic example of a coherent domain is A∞ for A finite. If P
is an algebraic domain, then the family {↑k \ ↑F | k ∈ KP & F ⊆ KP finite}
is a base for the Lawson topology (cf. Exercise III-1.14 and proof in [7]), so this
holds for the case P = A∞ in particular. The fact that ↑k is clopen in the
Lawson topology for each compact element k implies that the Lawson topology
on an algebraic domain is totally disconnected.

A non-algebraic example is the unit interval; here x� y iff x = 0 or x < y.
The Scott topology on the [0, 1] has basic open sets [0, 1] together with ↑↑x =
(x, 1] for x ∈ (0, 1). Since DOM has finite products, [0, 1]n is a domain in the
product order, where x � y iff xi � yi for each i; a basis of Scott-open sets is
formed by the sets ↑↑x for x ∈ [0, 1]n (this last is true in any domain).

The Lawson topology on [0,1] has basic open sets (x, 1] \ [y, 1] for x < y –
i.e., sets of the form (x, y) for x < y, which is the usual topology. Thus, the
Lawson topology on [0, 1]n is the product topology from the usual topology on
[0, 1].

Since [0, 1] has a least element, the same results apply for any power of [0, 1],
where x� y in [0, 1]J iff xj = 0 for almost all j ∈ J , and xj � yj for all j ∈ J .
Thus, every power of [0, 1] is a coherent domain.

While coherent domains having least elements are closed under arbitrary
products, the category COH of coherent domains and Scott continuous maps is
not Cartesian closed. There is an inclusion of the category of coherent domains
and Lawson continuous monotone maps into the category of compact ordered
spaces and continuous monotone maps that is obtained by equipping coherent
domains with the Lawson topology. In this case, the Lawson topology on the
family of closed subsets of the domain is the topology the family inherits from
the Vietoris topology on the family of compact subsets of the underlying space.
For a compactum X, the Vietoris topology has a subbasis consisting of the sets
2U = {C ⊆ X | C ⊆ U} and 3U = {C ⊆ X | C ∩ U 6= ∅}; these correspond
to the Scott-open and lower-open subsets in case X is a domain. This and a
related adjunction are detailed in Examples VI-3.8 and VI-3.10 of [7].
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Finally, we need some results related to power domains, the convex power
domain in particular. Details for the following can be found in [21]. For a
coherent domain D, the convex power domain consists of the family

PC(D) = {X ⊆ D | ∅ 6= X = ↓X ∩ ↑X is Lawson closed}

under the Egli-Milner order:

X ≤ Y iff X ⊆ ↓Y & Y ⊆ ↑X.

PC(D) is a coherent domain if D is one, and in this case,

X � Y iff (∃F ⊆ D finite) X ≤ 〈F 〉 ≤ Y & Y ⊆ ↑↑F = (↑F )◦, (1)

where 〈F 〉 = ↓F ∩ ↑F .

2.2. Stone duality

In modern parlance, Marshall Stone’s seminal result states that the category
of Stone spaces – compact Hausdorff totally disconnected spaces – and continu-
ous maps is dually equivalent to the category of Boolean algebras and Boolean
algebra maps. The dual equivalence sends a Stone space to the Boolean algebra
of its compact-open subsets; dually, a Boolean algebra is sent to the set of prime
ideals, endowed with the hull-kernel topology. This dual equivalence was used
to great effect by Abramsky [1] where he showed how to extract a logic from
a domain constructed using Moggi’s monadic approach, so that the logic was
tailor made for the domain used to build it.

Our approach to Stone duality is somewhat unconventional, but one that
also has been utilized in recent work by Gehrke [8, 9]. The idea is to realize
a Stone space as a projective limit of finite spaces, a result which follows from
Stone duality, as we now demonstrate.

Theorem 2.3 (Stone Duality). Each Stone space X can be represented as
a projective limit X ' lim←−α∈AXα, where Xα is a finite space. In fact, each

Xα is a partition of X into a finite cover by clopen subsets, and the projection
X � Xα maps each point of X to the element of Xα containing it.

Proof. If X is a Stone space, then B(X), the family of compact-open subsets
of X is a Boolean algebra. Clearly B(X) ' lim−→α∈A Bα is the injective limit of

its family {Bα | α ∈ A} of finite Boolean subalgebras. For a given α ∈ A, we
let Xα denote the finite set of atoms of Bα. Then Bα ↪→ B(X) implies Bα is a
family of clopen subsets of X, and the set of atoms of Bα are pairwise disjoint,
and their sup – i.e., union – is all of X, so Xα forms a partition of X into clopen
subsets, Thus there is a continuous surmorphism X � Xα sending each element
of X to the unique atom in Xα containing it. The family {Bα | α ∈ A} is an
injective system, since given Bα and Bβ , the Boolean subalgebra they generate
is again finite. Dually the family {Xα | α ∈ A} is a projective system, and since
B(X) ' lim−→α∈A Bα, it follows that X ' lim←−α∈AXα. 2
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We note that a corollary of this result says that it is enough to have a basis
for the family of finite Boolean subalgebras of B(X) in order to realize X as
a projective limit of finite spaces, where by a basis, we mean a directed family
whose union generates all of B(X). The following example illustrates this point.

Example 2.4. Let C denote the middle third Cantor set from the unit interval.
This is a Stone space, and so it can be realized as a projective limit of finite
spaces C ' lim←−α∈A Cα. But since C is second countable, we can define a

countable family of finite spaces Cn for which C ' lim←−n Cn. Indeed, we can use

the construction of C from [0, 1] to define these finite spaces:

• C0 = [0, 1] is the entire space.

• C1 = {[0, 1
3 ], [ 2

3 , 1]} is the result of deleting the middle third from [0, 1].
...

• Cn = {[0, 1
3n ], . . . , [ 3n−1

3n , 1]}.
...

Note that Cn has 2n elements – this is the “top down” approach to building
C, as opposed the “bottom up” approach obtained by viewing C as the set of
maximal elements of the Cantor tree.

While the example considers the simplest non-degenerate case of a two-
element alphabet {0, 1} to produce the Cantor tree, in fact the same argument
applies to any finite alphabet A to show the set of infinite words over the alpha-
bet is a Stone space. In both instances, Stone Duality shows that the “bottom-
up” co-algebraic view of Aω as the colimit of the finite sets An also can be
realized by taking the (projective) limit of Ans. In categorical parlance, the ap-
proach via Stone duality realizes Aω as an F -algebra, whereas the “bottom-up”
approach realizes Aω as a (final) F -coalgebra, where F is the functor that sends

a space X to X
·
∪ · · ·

·
∪X, which takes the disjoint union of |A|-copies of X.

We will make use of these ideas in Section 3 which lay the basis for the main
results of the paper.

2.3. The Prob monad on Comp and DCPO

It is well known that the family of probability measures on a compact Haus-
dorff space is the object level of a functor which defines a monad on Comp, the
category of compact Hausdorff spaces and continuous maps (Theorem 2.13 of
[6]). As outlined in [11], this monad gives rise to several related monads:

• On Comp, it associates to a compact Hausdorff spaceX the free barycentric
algebra over X, the name deriving from the counit ε : Prob(S)→ S which
assigns to each measure µ on a probabilistic algebra S its barycenter ε(µ)
(cf. Theorem 5.3 of [16], which references [26]).

8



• A compact affine monoid is a compact monoid S for which there also is
a continuous mapping · : [0, 1] × S × S → S satisfying the property that
translations by elements of S are affine maps (cf. Section 1.1ff. of [11]).
On the category CompMon of compact monoids and continuous monoid
homomorphisms, Prob gives rise to a monad that assigns to a compact
monoid S the free compact affine monoid over S (cf. Corollary 7.4 of [11]).

• On the category CompGrp of compact groups and continuous homomor-
phisms, Prob assigns to a compact group G the free compact affine monoid
over G; in this case the right adjoint sends a compact affine monoid to
its group of units, as opposed to the inclusion functor, which is the right
adjoint in the first two cases (cf. Theorem 7.5 of [11]).

As we have already commented, Prob also defines a monad on DCPO. In
this case, probability measures are viewed as valuations: maps from the lattice
of Scott-open sets of the dcpo into the non-negative reals, and the order is then
pointwise: µ ≤ ν iff µ(U) ≤ ν(U) (∀U Scott open).

Remark 2.5. Theorem 2.3 gives a powerful tool for the constructions we will
devise in Sections 3 and 5. Theorem 2.3 shows that any Stone space arises as
an inverse limit of finite spaces, which allows us to conclude that Aω is a Stone
space, and to apply the constructions in Section 3 to A∞ and its approximation
via finite sets. We will see that some standard domain-theoretic arguments
then show that the family of probability measures supported on a Lawson-
closed antichain X in A∞ can be written as the inverse limit of the measures
supported on finite subsets πn(X) (cf. Theorem 3.7); this follows by showing
that X = supn πn(X) and the fact (quoted from [21]) that the Lawson topology
on the family of antichains is the same as the Vietoris topology, which coincides
with the topology used to form the inverse limit.

3. Lawson compact antichains in A∞

We now develop some results about Lawson-closed sets and Lawson-closed
antichains in coherent domains. We then use these results to show the family of
Lawson-closed antichains in A∞ is a Scott domain for a finite alphabet A, and
this in turn is used in developing the model of thin measures over A∞.

Lemma 3.1. Let A be a finite alphabet. If X ⊆ A∞ is a Lawson-compact
subset, then ↓X is Scott closed. Moreover there is a canonical map π↓X : A∞ →
↓X that is both Scott- and Lawson continuous.

Proof. The first claim is a corollary of Lemma 6.6.20 of [2], but we include a
proof for completeness sake. By definition, ↓X = {y ∈ D | (∃x ∈ X) y ≤ x} is
a lower set, so we only need to show ↓X is closed under directed suprema. If
S ⊆ ↓X is a directed set, then ↑s∩X 6= ∅ for each s ∈ S. Moreover, the set ↑s∩X
is closed in X, so {↑s ∩ X | s ∈ S} is a filterbasis of nonempty closed subsets
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of the compact space X, so the intersection is nonempty. If x ∈
⋂
s∈S(↑s ∩X),

then clearly s ≤ x for all s ∈ S, so supS ≤ x; i.e., supS ∈ ↓X.
We next show the mapping πC : A∞ → C is Scott- and Lawson continuous for

each Scott-closed subset C ⊆ A∞: Indeed, since C is Scott closed, each s ∈ A∞
has a longest prefix in C, which means πC is well-defined. The map is clearly
monotone, so if S ⊆ A∞ is directed, then πC(supS) ≥ supπC(S). Conversely, if
supπC(S) ∈ Aω, then supπC(S) = supS since Aω consists of maximal elements.
On the other hand, if supπC(S) ∈ A∗, then supπC(S) = πC(s) for some s ∈ S,
and then πC(s′) = πC(s) for all s′ ≥ s, whence πC(supS) = πC(s) as well. Thus
πC is Scott continuous.

Since we have just shown that πC is Scott continuous, the proof that πC
is Lawson continuous is complete if we show π−1

C (↑Cx) = ↑F for some finite
F ⊆ A∞, for each x ∈ C. But π−1

C (↑Cx) = ↑A∞x.
The first part shows that ↓X is Scott closed if X is Lawson compact, so π↓X

is Scott- and Lawson continuous. 2

Corollary 3.2. Let A be a finite alphabet. If X ⊆ A∞ is a Lawson-compact
antichain, then there is a Lawson compact subset Y ⊆ Aω (which is necessarily
an antichain) for which π↓X(Y ) = X.

Proof. Of course, Aω =
⋂
n ↑An is the intersection of a filterbasis of Scott-

compact saturated sets, each of which is therefore also Lawson compact, so their
intersection is as well.

Since π↓X is Lawson continuous, π−1
↓X(X) ⊆ A∞ is Lawson closed, and so the

same is true of Y = π−1
↓X(X)∩Aω. Now, for any word x ∈ X, there is an infinite

word x′ ∈ Aω satisfying π↓X(x′) = x, and so π↓X(Aω) ⊇ X. Thus π↓X(Y ) = X.
2

For the following, we let

AC(A∞) = {X ⊆ A∞ | ∅ 6= X = X
Λ

is an antichain}

denote the family of non-empty Lawson-closed antichain in A∞, endowed with
the Egli-Milner order inherited from PC(A∞).

Lemma 3.3. AC(A∞) is a dcpo. In fact, if {Xi}i∈I ⊆ AC(A∞) is a directed
family of Lawson-compact antichains in the A∞, then supiXi =

⋂
i(Y ∩ ↑Xi),

where Y =
⋃
i ↓Xi

σ
be the Scott-closure of the union of the lower sets of the

Xi’s.

Proof. Before we begin the proof, we note that we are assuming that the
directed family {Xi}i∈I satisfies the property that I is directed and that the
mapping i 7→ Xi is monotone.

If we define Z ≡
⋂
i(Y ∩ ↑Xi), where Y =

⋃
i ↓Xi

σ
, then Z = supPC(A∞)Xi

by Proposition 4.45 of [21]. To conclude the proof, we show Z ∈ AC(A∞).
Suppose that x, y ∈ A∞ with y < x. Then y ∈ KA∞, so ↑y is Scott open. If

x ∈ Z, then Proposition 4.47 of [21] implies that limiXi = Z, where the limit is
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taken in the Lawson topology on PC(A∞), which is the Vietoris topology from
the Lawson topology on A∞. Thus, Xi ∈ 3↑y, or equivalently y ∈ ↓Xi, for
residually many i.

If y ∈ Z also holds, then y ∈ ↑Xi for residually many i, by definition of Z.
So y ∈ ↑Xi ∩ ↓Xi = Xi for residually many i.

Now since y < x, there is some z ∈ A∗ with y < z ≤ x, which implies ↑z
is Scott open. Then y < z implies z ∈ ↑Xi, since y ∈ Xi, for residually many
i. On the other hand x ∈ ↑↑z and x ∈ Z implies z ∈ ↓Xi for residually many i,
just as in the case of y. So z ∈ ↑Xi ∩ ↓Xi = Xi for residually many i. But then
we have y < z and y, z ∈ Xi for residually many i, which contradicts Xi being
an antichain.

We conclude that at most one of x and y is in Z = supXi. This shows
Z ∈ AC(A∞), so AC(A∞) is a subdcpo of PC(A∞). 2

Proposition 3.4. Let A be a finite alphabet. Then X ⊆ A∞ is Scott closed iff
MaxX is Lawson closed and X = ↓(MaxX).

Proof. We showed in Lemma 3.1 that MaxX Lawson closed implies ↓MaxX =
X is Scott closed. Conversely, suppose that X is Scott closed. Then ↓MaxX =
X by Zorn’s Lemma. So we only need to show that MaxX is Lawson closed.

Since X is Scott closed, it also is Lawson closed, so MaxX
Λ ⊆ X. Let y ∈

MaxX
Λ

. If y ∈ X ∩Aω, then y ∈ MaxA∞, so y ∈ MaxX. On the other hand,
if y ∈ X∩A∗, then y ∈ KA∞, and since A is finite, we have {y} = ↑y\↑{ya | a ∈
A} is Lawson open. So, y ∈ MaxX

Λ
implies MaxX ∩ {y} 6= ∅, so y ∈ MaxX.

Thus MaxX
Λ ⊆ MaxX, so they are equal. 2

Corollary 3.5. If A is a finite alphabet, then for all X,Y ∈ AC(A∞), if X
and Y have an upper bound in AC(A∞), then X ∨ Y = Max(X ∪ Y ).

Proof. Since X and Y are Lawson-closed antichains, the proposition implies
↓X and ↓Y are Scott-closed sets, so the same is true of ↓(X ∪ Y ) = ↓X ∪ ↓Y .
Then Max ↓(X ∪ Y ) = Max (X ∪ Y ) is also a Lawson-closed antichain.

If X,Y ≤ Z ∈ AC(A∞), then ↓(X∪Y ) ⊆ ↓Z, and this implies Max(X∪Y ) ≤
Z. So we only have to show that Max (X ∪ Y ) is an upper bound for X and Y
in AC(A∞).

It is clear that X,Y ⊆ ↓Max (X∪Y ), so we only need to show that Max (X∪
Y ) ⊆ ↑X ∩ ↑Y . Let m ∈ Max (X ∪ Y ). If m ∈ X, then clearly m ∈ ↑X. And
if m 6∈ ↑X, then m ∈ Y ∩Max (X ∪ Y ). Now m ∈ ↓Z, so there is some z ∈ Z
with m ≤ z, and then X ≤ Z implies there is some x ∈ X with x ≤ z. Then
m and x are prefixes of z, so they must compare. But m ≤ x is impossible,
since X is an antichain would then imply m ∈ X. Hence x ≤ m. This shows
Y ∩Max (X ∪ Y ) ⊆ ↑X, so Max (X ∪ Y ) ⊆ ↑X. The argument for Y is similar,
so Max, (X ∪ Y ) is an upper bound for the pair {X,Y }, which completes the
proof that Max (X ∪ Y ) = X ∨ Y . 2
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Theorem 3.6. Let A be a finite alphabet and consider the domain A∞ in the
prefix order, and let (AC(A∞),≤) denote the family of Lawson-compact an-
tichains in A∞ endowed with the Egli-Milner order. Then AC(A∞) is a subdo-
main of PC(A∞) that also is a Scott domain, and KAC(A∞) = {F ⊆ K(A∞) |
Fa finite antichain}.

Proof. Lemma 3.3 shows that AC(A∞) is a dcpo. To show AC(A∞) is an
algebraic domain, we first show that given X ∈ AC(A∞) and a finite set F
satisfying 〈F 〉 � X, there is a finite antichain G ⊆ 〈F 〉 consisting of compact
elements from A∞ with G = 〈G〉 � X:

Indeed, Equation 1 implies 〈F 〉 � X iff F ⊆ ↓X and X ⊆ ↑↑F , which in turn
implies that X ⊆ ↑(F ∩KA∞) since KA∞ is a lower set. We can then select a
subset G0 ⊆ F ∩KA∞ with X ⊆ ↑G0 and G0 ⊆ ↓X. From this subset G0 we
can then select an antichain G as desired, and then G = 〈G〉 and G� X.

Next, given two finite antichains F,G � X, Corollary 3.5 implies F ∨ G =
Max (F ∪ G), which clearly is in AC(A∗), and obviously F ∨ G � X by the
observations above.

Finally, AC(A∞) ⊆ PC(A∞) and the latter is a domain, so the results just
shown imply that

X = sup{F | ∅ 6= F ⊆ KA∞ a finite antichain & F � X}.

Thus {F ∈ AC(A∗) | F � X} is directed and its supremum is X, so
KAC(A∞) = {F | F ⊆ A∗ a finite antichain} is a basis for AC(A∞), which
proves AC(A∞) is algebraic.

Since Corollary 3.5 shows AC(A∞) is closed under sups of bounded pairs,
AC(A∞) is bounded complete, and since A is finite, KAC(A∞) is countable,
so AC(A∞) is in fact a Scott domain. 2

The proof of Lemma 3.3 relies on some results from [21]: Proposition 4.47 of
[21] implies that the Lawson topology on PC(A∞) is the same as the topology
PC(A∞) inherits from the Vietoris topology on the family of compact subsets of
A∞, when A∞ is endowed with the Lawson topology. Since PC(A∞) is coherent
if D is, directed sets in PC(A∞) converge to their suprema in the Lawson
topology. This applies in particular to a directed family of Lawson compact
antichains, which we showed is closed under directed suprema in PC(A∞) for A
finite. These results can be applied further to deduce the following.

Theorem 3.7. Let A be a finite set, and for each n, let πn : A∞ → A≤n ≡
{s ∈ A∗ | |s| ≤ n} be the projection onto the set of words of length at most n.
Then πn is continuous for each n, where we endow A∞ and A≤n with either the
Scott- or Lawson topologies. Moreover,

1. Each Lawson-compact antichain X ⊆ A∞ satisfies {πn(X)}n is a directed
family of finite antichains satisfying supn πn(X) = X.

2. Conversely, each directed family of finite antichains Fn ⊆ A≤n satisfies
supn Fn = X is a Lawson-compact antichain in A∞ satisfying πn(X) = Fn
for each n.

12



Proof. That πn is Scott- and Lawson continuous follows from Lemma 3.1 by
observing that A≤n = ↓An is a Scott-closed set.

For (i), we first note that for a word s ∈ A≤n and any word t ∈ A∞,
πn(t) = s implies s ≤ t; in fact, s ≤ t iff π|s|(t) = s. From this it follows that
if X is an antichain, then any two words s, t ∈ X are incomparable, so for each
n, πn(s) = πn(t) or else πn(s) and πn(t) are incomparable. Hence πn(X) is
an antichain for each n, and since A≤n is finite, so is πn(X). If m ≤ n, there
is a projection πmn : A≤n → A≤m which satisfies πm = πmn ◦ πn. It follows
that {πn(X)}n is a directed family satisfying πn(X) ≤ X for each n. In fact
supn πn(X) = X since each word w ∈ A∞ satisfies w = supn πn(w). This proves
part (i).

For part (ii), if {Fn}n is a directed sequence of finite antichains with Fn ⊆
A≤n for each n, then supn Fn exists and is an antichain by Theorem 3.6. The
arguments in the previous part apply again to show that πm(supFn) = Fm for
each m. 2

Remark 3.8. The gist of the last few results is that Lawson-closed antichains
in A∞ are closed under directed suprema, and that each can be approximated
by its projections to the family {A≤n | n ≥ 0}. The last result shows further
that every Lawson-closed antichain is the projection of a Lawson-closed subset
of A∞, thus accounting for all such antichains.

Our interest in Lawson-closed antichains will become clear in our construc-
tion of the model of thin measures over A∞ – as we shall see, they form the
(Lawson) support of such measures.

4. A Motivating Example

In this section we present an example that provides motivation for how we
define the order on the thin measures over A∞. The example is one of the most
fundamental for computer science – that of a (probabilistic) automaton.

Definition 4.1. A probabilistic automaton is a tuple (S,A, q0, D) where S is
a finite set of states, A a finite set of actions, q0 ∈ S a start state, and D ⊆
S×Prob(A×S) a transition relation that assigns to each state s0 a probability
distribution

∑
A×S r(s0,(a,s))δ(a,s) on A× S.

Remark 4.2. This is a very restrictive notion of a probabilistic automaton,
but it suffices for our purposes. More general notions include transition rela-
tions D that are truly relational, rather than being functional, as our definition
requires. There also is a dichotomy of such automata into generative and re-
active automata, which we are eliding. But, our goal simply is to provide a
motivating example for the order on probability measures we define later, and
this is accomplished most easily without the distractions of the many possible
nuances of the large variety of probabilistic automata in the literature.

If we start such an automaton in its start state – which amounts to assigning
it the starting distribution δq0 , and follow the automaton as it evolves, then
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we see a sequence of global trace distributions that describe the step-by-step
evolution of the automaton:

1. δq0 ,

2.
∑

(a1,s1)∈A×S r(q0,(a1,s1))δq0a1s1 ,

3.
∑

(a1,s1)∈A×S r(q0,(a1,s1))(
∑

(a2,s2)∈A×S r(s1,(a2,s2))δq0a1s1a2s2),

...

If we strip away the probabilities, we have a nondeterministic finite state au-
tomaton (albeit one without final states), and the resulting automaton generates
a language that is a subset of (S×A)∞. This automaton generates the sequence

{q0}, {(q0s1a1 | r(q0,(s1,a1)) 6= 0}, {q0s1a1s2a2 | r(q0,(s1,a1)) 6= 0 6= r(s1,(a2,s2))}, . . . .

Note that the sequence of sets of states this automaton generates is a family
of finite antichains, which we showed in Section 2 is a Scott subdomain of
PC((S×A)∞) under the Egli-Milner order. Moreover, the projections πmn : (S×
A)≤n → (S × A)≤m for m ≤ n map the antichain of possible states at the nth

stage to those at the mth stage, by truncation.
Since Prob is a monad on Comp, the mappings πmn lift to map-

pings Prob(πmn) : Prob((S × A)≤n) → Prob((S × A)≤m). Using the
mappings πmm+1, we see that each succeeding distribution is projected
onto the previous distribution. For example, the second distribution∑

(a1,s1)∈A×S r(q0,(a1,s1))δq0a1s1 collapses to δq0 , and the third distribution∑
(a1,s1)∈A×S r(q0,(a1,s1))(

∑
(a2,s2)∈A×S r(s1,(a2,s2))δq0a1s1a2s2) collapses to the

second. Thus, Prob lifts the order on AC((S × A)∞) to Prob(AC((S × A)∞)),
and it is this order we will use in defining the order on the family of thin prob-
ability measures (and eventually on the domain of continuous random variables
over a bounded complete domain). Our next goal is to make this observation
precise.

Remark 4.3. We thank one of the anonymous referees for pointing out that a
similar example is given in [28].

5. A Bounded Complete Domain of Measures

In this section we develop the main results of the paper, which are a detailed
examination of the order used by Goubault-Larrecq and Varacca on the thin
probability measures that are used in their model of continuous random variables
over a bounded complete domain. Their presentation only sketches their model,
and here we have more space to develop the ideas in depth. Throughout this
section we assume that the alphabet A which we use to form A∞ is finite. We
begin with a fundamental notion for our approach.
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Definition 5.1. If Y is a compact Hausdorff space, X ⊆ Y is a compact sub-
space of Y and µ ∈ Prob(Y ), then we say µ has full support on X if suppµ = X.2

We denote by Prob†(X) the family of µ ∈ Prob(Y ) having full support on X.

Definition 5.2. For a finite alphabet A, we define

ΘProb(A∞) ≡ (
⊕

X∈AC(A∞)

Prob†(X),≤)

to be the direct sum of the family of probability measures in Prob†(X) as X
ranges over AC(A∞), ordered by µ ≤ ν iff π↓(suppµ)(ν) = µ. These are the thin
probability measures on A∞, those that are fully supported on Lawson-closed
antichains in A∞.

The next series of results are about the structure of ΘProb(A∞). We begin
with a simple result about mapping supports of measures.

Lemma 5.3. If f : X → Y is a continuous map between compacta, then f(µ) =
ν implies f(suppµ) = supp ν.

Proof. Indeed, f(suppµ) is a compact, hence closed subset of Y . Let C =
supp ν ∪ f(suppµ). If y ∈ supp ν∆ f(suppµ) (the symmetric difference), then
there is an open set U containing y and satisfying U ∩C ⊆ supp ν \ supp f(µ) or
U ∩ C ⊆ f(suppµ) \ supp ν. This means either ν(U) > 0 and f(µ)(U) = 0, or
ν(U) = 0 and f(µ)(U) > 0. In either case, we conclude f(µ) 6= ν if f(suppµ) 6=
supp ν. 2

Lemma 5.4. If A is a finite alphabet, then the mapping supp: ΘProb(A∞) →
AC(A∞) sending each measure µ to its support in the Lawson topology is mono-
tone.

Proof. The mapping µ 7→ suppµ clearly is well-defined and assigns to each
measure a Lawson-closed antichain in AC(A∞), by definition of ΘProb(A∞).

If µ ≤ ν, then πsuppµ(ν) = µ, and it follows that πsuppµ(supp ν) = suppµ by
Lemma 5.3. This in turn implies suppµ ≤ supp ν in AC(A∞), so the support
map is monotone. 2

Proposition 5.5. If A is a finite alphabet, then the family (ΘProb(A∞),≤) is
a dcpo.

Proof. Recall that µ ≤ ν iff π↓(suppµ)(ν) = µ. It is clear that this rela-
tion is reflexive. The relation also is antisymmetric: Indeed, if µ ≤ ν ≤ µ,
then π↓(suppµ)(ν) = µ and π↓(supp ν)(µ) = ν. Then Lemma 5.3 implies that
π↓(suppµ)(supp ν) = suppµ and π↓(supp ν)(suppµ) = supp ν. But the map-
pings π↓(suppµ) and π↓(supp ν) are projections, and their composition in ei-
ther order must be the identity on suppµ and supp ν, respectively. This

2Recall that suppµ is the smallest closed set who complement has µ-measure 0.
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implies suppµ = supp ν, and then both projections are the identity map on
Prob†(suppµ). Hence µ = ν.

For transitivity, suppose µ ≤ ν ≤ ρ. Then π↓(suppµ)(ν) = µ and
π↓(supp ν)(ρ) = ν. Again, Lemma 5.3 implies π↓ suppµ(supp ν) = suppµ and
π↓ supp ν(supp ρ) = supp ν. But suppµ, supp ν and supp ρ are Lawson-compact
antichains, and π↓ suppµ(supp ν) = suppµ is equivalent to suppµ ≤ supp ν in
AC(A∞). Likewise supp ν ≤ supp ρ, and so suppµ ≤ supp ρ, which implies
π↓ suppµ(supp ρ) = suppµ. Recalling that Prob(π↓ suppµ)(ν) = π↓ suppµ(ν) and
applying the functoriality of Prob shows π↓ suppµ(ρ) = (π↓ suppµ ◦π↓ supp ν)(ρ) =
µ, so the relation is transitive.

This shows (ΘProb(A∞),≤) is a partial order. To show it is a dcpo, let
{µi}i∈I is a directed family in ΘProb(A∞). Then Prob(A∞) is a dcpo, so there
is a µ ∈ Prob(A∞) with µ = supi µi. To complete the proof,, we must show
that suppµ ∈ AC(A∞), and for that we apply Lemma 3.3. Indeed, Lemma 5.4
implies ν 7→ supp ν is a monotone map, so {suppµi}ı∈I ⊆ AC(A∞) is directed
and then Lemma 3.3 implies supi suppµi =

⋂
i(Y ∩↑ suppµi) ∈ AC(A∞), where

Y =
⋃
i ↓ suppµi

σ
is the Scott-closed set generated by {suppµi}i. Now Y is

Scott closed and suppµi ⊆ Y for each i, so µi(A
∞ \ Y ) = 0 for each i, from

which it follows that µ(A∞ \ Y ) = 0. This implies suppµ ⊆ Y .
Further, given i ∈ I, if j ≥ i, then suppµj ⊆ Y ∩ ↑(suppµi) ⊆ ↑ suppµi, so

µj(U) = 1 for each Scott-open subset U containing suppµi. Since µ = supj≥i µj ,
it follows that µ(U) = 1 as well, and since U is arbitrary we conclude that
suppµ ⊆ ↑ suppµi. Now i is arbitrary, which means suppµ ⊆

⋂
i ↑ suppµi.

Thus suppµ ⊆
⋂
i(Y ∩ ↑(suppµi)) = supi suppµi, where the supremum is

taken in AC(A∞). Then Lemma 3.3 implies supi suppµi is an antichain, so
the same is true of suppµ, and so suppµ ∈ AC(A∞). Thus µ = supi µi ∈
ΘProb(A∞), so ΘProb(A∞) is a dcpo. 2

Proposition 5.6. If A is a finite alphabet, then the mapping
supp: ΘProb(A∞) → AC(A∞) sending each measure µ to its support in
the Lawson topology is Scott continuous.

Proof. We showed in Lemma 5.4 that the mapping is well-defined and mono-
tone.

If {µi}i∈I ⊆ ΘProb(A∞) is a directed family, then the previous Proposition
implies there is µ ∈ ΘRV(A∞) with supi µi = µ. Moreover, as in its proof,
Y = supi suppµi satisfies suppµ ⊆ Y .

Claim: suppµ = Y .
To start, note that Proposition 4.47 of [21] implies the Lawson topology on
PC(A∞) is the same as the Vietoris topology. So, if y ∈ Y , then there is
a net {xk}k∈K ⊆

⋃
i suppµi with limk xk = y in the Lawson topology. But

↓ suppµ is Scott-, hence Lawson closed, and for each k, xk ∈ ↓ suppµ because
πsuppµi(suppµ) = suppµi for each i ∈ I. Since suppµ is compact, there is some
z ∈ suppµ with y ≤ z. But Y is an antichain and suppµ ⊆ Y , so y ∈ Y , so
y = z ∈ suppµ. This proves the claim.
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The claim implies that suppµ = Y = supi∈I suppµi ∈ AC(A∞). So supp is
Scott continuous. 2

Proposition 5.7. If A is a finite alphabet, and if µ ∈ ΘProb(A∞) and F ⊆ A∗
is a finite antichain with πF (suppµ) = F , then πF (µ)� µ in ΘProb(A∞).

Proof. If F ⊆ A∗ is a finite antichain with πF (suppµ) = F , then we know
from Theorem 3.6 that F � suppµ in AC(A∞). Now, suppose S ⊆ ΘProb(A∞)
is directed with µ = supS. Then suppµ = supσ∈S suppσ by Proposition 5.6,
and πF (suppµ) = F implies suppµ ⊆ ↑↑F . Since ↑↑F is Scott open, (∃σ0 ∈
S) suppσ ⊆ ↑↑F for σ0 ≤ σ.

We next show that F ⊂ ↓ suppσ for residually many σ ∈ S.3 To start, let
x ∈ F and consider U = ↑x. Since F ⊆ A∗ is an antichain, U is a Scott-open set
containing only x from F . Since πF (suppµ) = F , (∃y ∈ suppµ)πF (y) = x ∈ U ,
so y ∈ U . But limσ∈S suppσ = suppµ then implies suppσ∩U 6= ∅ for residually
many σ ∈ S4. For these σ, we have x ∈ πF (suppσ). Iterating this process for
the finitely many elements of F implies πF (suppσ) = F , so F ⊆ ↓ suppσ for
residually many σ ∈ S, as we wanted.

The last two results imply that F ≤ suppσ in AC(A∞) for residually many
σ ∈ S. To complete the proof, we note that F ≤ suppσ implies πF (suppσ) = F ,
and then

πF (σ) = πF (πsuppσ(µ)) = πF ◦ πsuppσ(µ) = πF (µ)

which implies πF (µ) ≤ σ for residually many σ ∈ S. This implies πF (µ)� µ.
2

The main result of the paper is the following:

Theorem 5.8. If A is a finite alphabet, then ΘProb(A∞) is a bounded complete
algebraic domain.

Proof. If µ ∈ ΘProb(A∞), then Proposition 5.7 implies that πF (µ) � µ for
each finite antichain F ⊆ A∗ satisfying F � suppµ. According to Theorem 3.6,
AC(A∞) is a bounded complete algebraic domain in which F ∨G = Max (F ∪G)
for any pair F,G ∈ AC(A∗) of finite antichains with an upper bound. Given
F,G� suppµ, we now show how to form πF (µ) ∨ πG(µ) using this result.

In fact, Max (F ∪ G) = F ∨ G in AC(A∞) by the result just cited. Since
F and G are finite we can write πF (µ) =

∑
a∈F raδa and πG(µ) =

∑
b∈G sbδb,

where
∑
a∈F ra = 1 =

∑
b∈G sb. If ν ∈ ΘProb(A∞) satisfies πF (µ), πG(µ) ≤ ν,

then πF (ν) = πF (µ) and πG(ν) = πG(µ). Hence πF (ν) =
∑
a∈F raδa and

πG(ν) =
∑
b∈G sbδb. If we define H ≡ Max (F ∪ G) and let HF = H ∩ F and

HG = H ∩G, then by Corollary 3.5, F,G� suppµ implies that

(∀a ∈ F \H)(∃b ∈ HG) a ≤ b and (∀b ∈ G \H)(∃a ∈ HF ) b ≤ a.

3I.e., (∃σ0 ∈ S)σ ≥ σ0 ⇒ F ⊆ ↓ suppσ.
4Recall that 3U = {C | C∩U 6= ∅} is open in the Vietoris, hence also the Lawson topology.
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Now, for a ∈ F \H, we let HG(a) = ↑a ∩HG, and we note that each b ∈ HG

can belong to HG(a) for at most one a ∈ F \H since A∗ is a tree and F is an
antichain. Similarly, for b ∈ G \H, we let HF (b) = ↑b ∩HF .

Next, H is finite, so πH(µ) is a simple measure, which means

πH(µ) =
∑
x∈H

txδx =
∑
a∈HF

raδa +
∑

b∈HG\F

sbδb,

where HG \ F in the second summand avoids double-counting F ∩ G. Since
F ≤ H, we have πF = πF ◦ πH , so we conclude that∑

a∈F
raδa = πF (µ) = πF ◦ πH(µ)

= πF

 ∑
a∈HF

raδa +
∑

b∈HG\F

sbδb


= πF

( ∑
a∈HF

raδa

)
+ πF

 ∑
b∈HG\F

sbδb


=

∑
a∈F

raδa + πF

 ∑
b∈HG\F

sbδb


=

∑
a∈F

raδa +
∑

b∈HG\F

sbδπF (b)

=
∑
a∈F

raδa +
∑

a∈F\H

 ∑
b∈HG(a)

sbδa

 ,

where the second line follows because πF is a convex map, and the third because
πF is a projection. From this, we conclude that

(∀a ∈ F \H) ra =
∑

b∈HG(a)

sb and similarly (∀b ∈ G \H) sb =
∑

a∈HF (b)

ra.

Since πF (ν) = πF (µ) =
∑
a∈F raδa and πG(ν) = πG(µ) =

∑
b∈G sbδb, we can

write

πF (ν) =
∑
a∈HF

raδa+
∑

a∈F\H

raδa and πG(ν) =
∑

b∈HG\F

sbδb+
∑

b∈G∩F

sbδb+
∑

b∈G\H

sbδb.

Since F,G ≤ supp ν it follows that H ≤ supp ν. Then H = HF

·
∪ HG \F , which

implies

πH(ν) =
∑
a∈HF

raδa +
∑

b∈HG\F

sbδb = πH(µ)

so πH(µ) ≤ ν. This shows πH(µ) = πF (µ) ∨ πG(µ), which proves the result. 2
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6. Summary and Future Work

In this paper we have used domain theory and Stone duality, as well as other
components, to give a detailed construction of the bounded complete domain of
thin probability measures on A∞ for a finite alphabet A. This family plays a
fundamental role in the domain of continuous random variables over a bounded
complete domain, a construction proposed by Goubault-Larrecq and Varacca
in [10]. Applying the results we presented here to complete the reconstruction
of Goubault-Larrecq’s and Varacca’s model is the focus of the second paper in
this series [18].

Our reconstruction of the thin probability measures over A∞ relies on the
Lawson-closed antichains in A∞. Our main result is that the family is a bounded
complete algebraic domain. While our results require some technical develop-
ment, the proofs are fairly straightforward, relying on domain theory to single
out the compact elements in the model, and using them to prove the order
is bounded complete. We also clarifed how the order on the thin measures is
motivated by the example of trace distributions of a probabilistic automaton.

In addition to completing this line of work elaborating the random vari-
ables of Goubault-Larrecq and Varacca, we are also interested in applying these
constructions for other applications. We believe the thin probability measures
could be useful to model probabilistic automata. We also believe the construc-
tion could be used to move from finite and totally disconnected state spaces (e.g.,
ones that are Stone spaces) to continuous state spaces, including for example
the unit interval. Exploring this line will require understanding the mapping
from the Cantor set onto the interval, for example.
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