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Abstract. We propose a methodology based on testing as a framework
to capture the interactions of a machine represented in a denotational
model and the data it manipulates. Using a duality that models machines
on the one hand, and the data they manipulate on the other, testing is
used to capture the interactions of each with the objects on the other
side: just as the data that are input into a machine can be viewed as tests
that the machine can be subjected to, the machine can be viewed as a
test that can be used to distinguish data. While this approach is based
on duality theories that now are common in semantics, it accomplishes
much more than simply moving from one side of the duality to the other;
it faithfully represents the interactions that embody what is happening
as the computation proceeds.
Our basic philosophy is that tests can be used as a basis for modeling
interactions, as well as processes and the data on which they operate. In
more abstract terms, tests can be viewed as formulas of process logics,
and testing semantics connects processes and process logics, and assigns
computational meanings to both.

1 Introduction: The problem of testing

Testing a family Ξ of systems by a family Θ of tests, or process logic formulas,
is a map

Ξ × Θ
T // Ω

where Ω is the type of observations, or truth values. The simplest case is Ω =
{0, 1}, where 1 represents “accept”, or “succeed”, or “truth”, and 0 is “reject”, or
“fail”, or “diverge”, or “false”. A richer semantics can be achieved if one replaces
the truth values {0, 1} by the interval [0, 1], and interprets the result of a test as
the probability a process passes it. But the problem with either approach is that
once the test is performed, we have only the result. Making tests more dynamic
requires taking a slightly different view.

The goal of testing is to find bugs, which distinguish an implemented, real
system R ∈ Ξ from an ideal reference system S ∈ Ξ, or to demonstrate that they

4 The support of the NSF and the US Office of Naval Research is gratefully acknowl-
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are indistinguishable. A bug can be construed as a test b ∈ Θ, which leads to
an observation R |= b, different from the observation S |= b. On the other hand,
if (R |= t) = (S |= t) for all tests t ∈ Θ, then the systems are computationally
indistinguishable, modulo testing equivalence

R ∼ S ⇐⇒ ∀t ∈ Θ. (R |= t) = (S |= t)

The basic methods of studying computation in terms of tests on automata go
back to the 1950s and E.P. Moore’s seminal paper [1]. Moore introduced dis-
tinguishing sequences of tests, as well as testing equivalence, and several other
fundamental ideas, which later led to a broad range of methods of conformance
testing, which is the discipline of proving that an implementation R conforms to
a standard S. Other problems resolved through testing include determining the
current or the final state of a given automaton, or characterizing an unknown
automaton.5 One of Moore’s most interesting contributions was the method of
extracting minimal automata, i.e. the canonical representatives of computational
behaviors, from equivalence classes of states modulo testing equivalence.

The starting point of the present work is a small modification of Moore’s idea:
we represent equivalent states, which form a state of a minimal automaton, not
as equivalence classes of states, but as the maps from tests to observations that
they induce: two states are equivalent if and only if they induce the same map.
Either way, the computational behaviors arise as the elements in the image L of
the semantic map, in the form

Ξ
|=
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�� ��?
??

??
??

? ΩΘ

L
.

�

>>||||||||

The choice of representatives, of course, does not matter for abstract theory, but
it turns out to make a lot of difference when it comes to analyzing state-based
systems which arise in the design of reactive and embedded systems, involv-
ing stochastic, continuous, temporal or hybrid dynamics. The study of labelled
Markov processes [4] provides a striking example. On the other hand, a generic
categorical framework where states are represented as truth assignments of log-
ical formulas has been used in [5–7]. In this paper, we will confine our presen-
tation to the possibilistic setting, leaving the probabilistic setting for further
work. For this setting the categorical trace semantics of finite state automata
[8] and context-free languages [9] are clear examples, and are close conceptual
predecessors of testing semantics. What appears to be new is our ability to bring
Turing machines into the same setting.

5 Excellent surveys of testing methodologies (albeit a bit outdated in applications) are
[2, 3].



2 Logical connections

A logical connection is a contravariant adjunction Mop ⊣ P : Sop // T be-
tween a category of “spaces” and a category of “types” or “theories”. In one
direction, a space X is mapped to the type PX of “predicates” over it; in the
other direction, a type A is mapped to the space MA of its models. Among the
many dualities that are examples of logical connections, we mention just a few:

Self-duality of sets : ℘op ⊣ ℘ : Setop // Set, which can be viewed as du-
ality of discrete spaces and complete atomic Boolean algebras (the category
of which is equivalent to Setop). In more detail, the functor associates to a
set A the family ℘(A) of all subsets of A, and to a mapping f : A // B
between sets, the mapping f−1 : ℘(B) // ℘(A). The power set of a set
is a complete, atomic Boolean algebra, and the mapping f−1 preserves all
unions, intersections and complements. Thus our duality identifies each set
with the complete atomic Boolean algebra it generates, and to each algebra,
its set of atoms.

Here are some other notable connections, many of them dualities:

Stone duality: More generally, if we let T be Boolean algebras (viewed as
propositional theories), then S becomes Stone spaces (whose points are the
ultrafilters, i.e. models of Boolean propositional theories),

Topological spaces and complete Heyting algebras: Generalizing to intu-
itionistic logic, we can let pt ⊣ O : Espop // Frm [10], At this level, we
get a logical connection; to obtain a duality, a restriction to sober spaces
and spatial frames, respectively, is needed, but that is not required for our
results,

Various spectral correspondences: C ⊣ S : Espop // Rng, connecting
topological spaces and rings (and leading to significant extensions of the
notion of a logical theory)

Denotational semantics: and connections of domains and spaces with pro-
gram logics [11]

The Schizophrenic object The power set of a set can equally be represented
as the family of functions from the set to the two-point set, 2 = {0, 1}, where one
identifies a subset with its characteristic function. Dually, 2 is a Boolean algebra,
and the set of atoms of a Boolean algebra B is in one-to-one correspondence
with the Boolean algebra maps from B to 2. Thus, 2 is a primary example of
a schizophrenic object, one which lives in both categories and that gives rise to
a duality using the morphisms of the category. In general, when S and T have
enough limits and colimits, and in particular a final object 1, then a connection
between them can be viewed as homming into a “schizophrenic object” Ω, that
lives in both categories, as the type P1 and space M1. Indeed, it is easy to see
that these two objects have the same underlying set Obs = |P1| = |M1|.6 For

6 We write |C| = C(1, C) for any object C of a category C.



every space X we also have the canonical maps
∐

|X|

1 // X

PX // P (
∐

|X|

1)
∼ //

∏

|X|

P1

where the isomorphism arises from the fact that P : Sop // T is a right
adjoint. Similarly, for every type A there is a canonical map MA // ∏

|A| M1.

These maps are usually monic, which means that Ω is a cogenerator7 both
in S and in T . Abusing notation, we define the functors ΩX =

∏
|X| P1 and

ΩA =
∏

|A| M1, and arrive at monic natural transformations

PX // // ΩX and MA // // ΩA

3 Process logics as test algebras

Process logics are modal logics for describing the behavior of computational
processes. Process formulas can be viewed as tests: a process satisfies a formula
if and only if it passes the test that the formula represents.

The first and probably best known process logic is Hennessy-Milner logic [12],
which will be presented in section 6.2. In fact, computational traces can be viewed
as degenerate process formulas, with no logical operations, only modalities. On
the other hand, dynamic logics can be viewed as a natural extension of process
logics, where modalities are generated over arbitrary programs, and not just
atomic actions.

In this work, process modalities are generated over a given alphabet Σ, rep-
resenting atomic actions. Sometimes we distinguish the input alphabet Σ and
the output alphabet Γ ; or Σ represents the external actions (terminal symbols),
and Γ the internal ones.

Besides modalities, process formulas are generated by various logical sig-
natures, i.e. sets of logical connectors represented by the theory monad T :
T // T . If a type A ∈ T is thought of as a set of propositional letters, then
the type TA is the free propositional theory, containing all formulas generated
by A in the given signature. E.g., if the only logical connector is conjunction,
then TA is the free semilattice over A; but it has proven useful to also consider
free commutative groups, rings, and even C∗-algebras of a certain type, as “log-
ical” theories, generating tests for certain process behaviors. In all cases, the
considered algebraic theories have a distinguished constant, denoting “truth”,

represented by a natural transformation 1
⊤ // T .

Assumption: Ω is T -algebra. It is assumed that the schizophrenic object Ω
comes equipped with a canonical algebraic structure TΩ // Ω, which lifts to
all TPX // PX along the inclusion PX // // ΩX .

7 In fact, the duality of S and T is usually built by restricting them to the parts
injectively cogenerated by the object Ω, embodying their connection.



3.1 Test theories

Test theories are obtained by extending T -algebras (“propositional theories”) by
the modal operators generated by Σ. For example, if T is the power set functor,
then we generate the so-called modal Boolean algebras by lifting actions of Σ
on a transition system to modal operators for the power set of its state space.
In general, a test theory is a (weak) algebra for either of the functors

F0X = TX + Σ × X or F1X = T (Σ × X)

In both cases the universal test theory is obtained as the initial weak algebra

Θi = µX. FiX

Tests are thus generated by the grammars

t0 ::= ⊤ | f(t0, . . . , t0) | a.t0 and t1 ::= ⊤ | f(a.t1, . . . , a.t1)

where f a logical connector from the signature of T . By pre-composing with the
monad T , we see that the weak F0-algebra Θ0 is a weak algebra for the functor
T , while Θ1 is just the free T -algebra for the monad T generated by Σ. In fact,
Θ1 is the initial action algebra:

Definition 1. An action algebra for a monad T : T // T and alphabet Σ

is an algebra TA
α // A for the monad T , together with a map Σ×A

· // A,
called prefixing. An action algebra homomorphism is a T -algebra homomorphism
which also preserves prefixing.

Proposition 1. The free action algebra for the monad T and the alphabet Σ
generated by B is the initial weak algebra ΘB = µX. T (B + Σ × X).

4 Automata and processes as coalgebras

Nondeterminism and more recently probabilistic choice are staples of compu-
tation. The constructors for choice operators are represented by a monad S :
S // S.

Definition 2. A (state) machine with inputs from Σ, outputs from Γ and final
states predicated over Υ is represented by

– a coalgebra X // GX where GX = Υ × (S(Γ × X))
Σ

– an initial state x ∈ X.

A process is a machine where any state may be final, i.e. Υ = 1. A process
thus boils down to a coalgebra ∂ : X // (S(Γ × X))Σ and the initial state
x ∈ X. A machine where Υ 6= 1 is often called an automaton. When the coalgebra
X // GX is clear from the context, we speak of the automaton or process
x ∈ X.



A coalgebra structure of a machine consists of a pair X
〈Φ,∂〉// Υ × (S(Γ × X))

Σ
,

where Φ : X // Υ is the characteristic function of the final states, and ∂ :
X // (S(Γ × X))

Σ
assigns to each state a choice of an output and a next

state.8 Final states are usually evaluated in the type of truth values Υ = L. For
the possibilistic automata, Υ = 2, and Φ : X // 2 is just the characteristic
function of the set of final states. In general, Υ may be different from L, e.g. an
arbitrary semiring [13].

The computational differences between reactive (or reading) machines, where
Γ = 1, and generating (or writing) machines are discussed in [14]. Coalgebras

X // (S(Γ × X))Σ thus represent processes that both read and write, which
is perhaps clearer in the transposed form Σ × X // S(Γ × X).

Initially we focus on reactive processes, which are represented by the final
weak coalgebra Ξ = νX. (SX)Σ .

Assumption: Ω is S-algebra. It is assumed that Ω comes equipped with
a canonical algebraic structure SΩ // Ω, which lifts to all SMA // MA
along the inclusion MA // // ΩA.

5 Testing semantics

The behaviors of processes from Ξ are captured by testing whether they satisfy

formulas from Θ and observing the results in Ω via Ξ × Θ
T // Ω. However,

since Ξ and Θ generally live in the different universes S and T , respectively, their
interaction can only be observed using the connection between these universes,
in one of the two forms:

Ξ
|= // ΩΘ

Θ
=| // ΩΞ

In general, given a coalgebra X // GX , and an algebra A oo FA, we define
two semantic maps

X
|= // MA

A
=| // PX

connected by the adjunction. Each state x ∈ X induces a map x |= (−) :
A // Ω which maps each piece of data a ∈ A to the observation (x |= a) ∈ Ω
in which the computation of x on a will result. Dually, each piece of data a ∈ A
induces a map

a =| (−) ∈ PX // ΩX

8 Anticipating semantics, we point out that the execution is always allowed to con-
tinue beyond a final state. This is in contrast with the deadlock states, which are
represented by a choice functor G of the form G = 1 + G′. The deadlock states of a
coalgebra X // 1 + G′X are those that get mapped into 1.



which gives for each state x ∈ X the observation a =| x. Theorem 1 below
describes how these various views of semantics transform the algebraic structure
of tests and the coalgebraic structure of processes.

5.1 Connecting algebras and coalgebras: Representation theorem

Logical view. The logical operation of negation can be viewed as a very special
case of a connection: if A is a pseudocomplemented lattice (Heyting algebra),
then ¬op ⊢ ¬ : A

op // A is clearly a connection. Indeed, for every ω ∈ A, the
operation (−) ⇒ ω : A

op // A is self adjoint. In posets and lattices, functors
F, G : A // A are monotone operators, algebras are super-fixpoints a ≥ Fa,
and colagebras are sub-fixpoints a ≤ Ga; the initial algebra µx.Fx is the least
fixpoint, and the final coalgebra νx.Gx is the greatest fixpoint.

For logical intuition, connections can be thought of as generalisations of nega-
tion. From that perspective, the following theorem can be viewed as a categorical
elaboration of the fact that

Gx ≤ ¬F¬x

νx.Gx ≤ νx.¬F¬x ≤ ¬µa.Fa

What is the relevance of this fact? As explained in the introduction, the goal of
this work is to explore the interplay of algebra and coalgebra in the theory of
processes and in the practice of system specification. In practice, the behavior of
a system is often specified as a quotient of a final coalgebra νX.GX of processes
using an initial algebra µA.FA of tests. The connection Mop ⊣ P : Sop // T

now allows deriving the semantics νX.GX
|= // MµX.FX if there is a distribu-

tive law FP // PG, i.e.

G // MFP

νX.GX // νX.MFPX // MµA.FA

The specified behavior is then the MFP -coalgebra L which is the image of
νX.GX in νX.MFPX . Furthermore, the carrier L can be conveniently repre-
sented as a subobject of MµA.FA. Informally, this is the content of the next
theorem.

Relating a MFP -coalgebra and a M -image of a F -algebra requires a homo-
morphism which is consistent with the algebra and coalgebra structures both
on the covariant and on the contravariant side of the correspondence (i.e., the
“negation”). This is captured by the notion of twisted coalgebra homomorphisms,
defined in the statement of the theorem.

Theorem 1. 9 For a connection Mop ⊣ P : Sop // T , endofunctors G :
S // S and F : T // T , and a distributive law λ : FP // PG the
following hold.
9 For simplicity and generality of the statement of the theorem, we avoid the finality

and the initiality requirements, and spell out just the relations of F -algebras, and
G− and MFP -coalgebras.



(a) The predicate functor P : Sop // T lifts to P̂ : (SG)op //
FT , map-

ping

X
∂ // GX

P̂∂ : FPX
λ // PGX

P∂ // PX

(b) P̂ does not generally have an adjoint, but there is a correspondence of
algebra homomorphisms and of twisted coalgebra homomorphisms

α // P̂ ∂

Λ∂ // Mα

where Λ : SG
// SMFP is the functor mapping the coalgebra X

∂ // GX to

X
∂ // GX

λ′

// MFPX.

FA

α

��

Ff // FPX

λ

��

MFPX
MFf // MFA

PGX

P∂

��

GX

λ′

OO

A
f

// PX X

∂

OO

f ′

// MA

Mα

OO

(c) If T is a regular category, and F : T // T preserves reflective coequaliz-
ers, then FT is a regular category. In particular, every F -algebra homomorphism

α
f // P̂ ∂ has a regular epi-mono factorisation.

(d) If S is a regular category, and MFP preserves weak pullbacks, then every

twisted coalgebra homomorphism Λ∂
f ′

// Mα has a regular epi-mono factori-
sation, which induces a coalgebra ℓ : L // MFPL as the image of Λ∂.

MFPX
MFPe // MFPL

MFm′

// MFA

GX

λ′

OO

X

∂

OO

e
// // L

ℓ

OO�
�

�

�

�

�

�

�

�

m
// MA

Mα

OO

(e) If the coalgebra X // GX is final, then the coalgebra L // MFPL is
final if and only if the functor Λ : SG

// SMFP is essentially surjective.



Comment. The correspondence T /P ∼= S/Mop thus lifts to FT /P̂ ∼= Λ/M ,
where the last denotes the comma construction for twisted homomorphisms.
Abstractly, this does not seem like a very natural construction; the examples
show that this is the ubiquitous framework where quotienting of the G-coalgebras
∂ induced by testing semantics takes place.

Definition 3. A duality is a connection where the functors M and P are equiv-
alences.

Corollary 1. Suppose that the connection Mop ⊣ P : Sop // T is a duality.
Then the following are true.

(f) The algebra α : FA // A is initial if and only if the coalgebra M(α ◦
ε) : MA // MFPMA is final. When that is the case, then the behavior ℓ :
L // MFPL is a subcoalgebra of the final MFP -coalgebra.

(g) If F ∼= PGM (equivalently G ∼= MFP ), then the behavior ℓ : L // MFPL,
constructed in Theorem 1, is isomorphic to the coalgebra ∂ : X // GX. If
∂ : X // GX is final and α : FA // A is initial, then ∂ ∼= Mα and
α = P∂.

In many cases, the functor F = PGM has a simpler representation than G,
and the initial algebra Θ = µA.FA is easier to construct in T than the final
coalgebra of Ξ = νX.GX is in S. In such cases, the isomorphism Ξ = MΘ
offers significant technical advantages [4].

5.2 Specifying semantics

Given a coalgebra X
∂ // GX and the initial test algebra FΘ

̺ // Θ, we

define a semantics X
|= // MΘ by induction over Θ, using the fact that Ω is a

T -algebra in T and an S-algebra in S — i.e. that each PX is a T -algebra in T ,
whereas each MΘ is an S-algebra in S. Given an initial state x of a machine X ,
we define a map x |= (−) : Θ // Ω.

Loose tests Since an element of Θ0 = µX. TX + Σ × X is in the form

t ::= ⊤ | f(t0 . . . tn) | a.t

where ⊤ is the distinguished constant of the algebraic theory of the monad T ,
and f is an operation from that theory

(
x |= ⊤

)
= ⊤ (1)

(
x |= f(t0 . . . tn)

)
= f

(
(x |= t0) . . . (x |= tn)

)
(2)

(
x |= a.t

)
=

(
δ(x, a) |= t

)
(3)

where δ : X × Σ // SX is the transpose of X
∂ // GX = (SX)Σ, and |=

extends along X
|=

// SX // MΘ0
// ΩΘ0 .



Remark. Clauses (1) and (2) say that x |= (−) : A // Ω is a T -algebra
homomorphism. Clause (3) extends x |= (−) beyond TΘ0 to Σ × Θ0, using

the fact that Ω (viz MΘ0) is an S-algebra, and extending X
|= // MΘ0 to an

S-algebra homomorphism SX
|= // MΘ0.

Tight tests Since an element of Θ1 = µX. T (Σ × X) is in the form

t ::= ⊤ | f(a0.t0 . . . an.tn)

the semantics retains clause 1, deletes clause 3, and replaces clause 2 with

(
x |= f(a0.t0 . . . an.tn)

)
= f

(
(δ(x, a0) |= t0) . . . (δ(x, an) |= tn)

)

Note further that testing a coalgebra X
〈Φ,∂〉// Ω × GX , where Φ : X // Ω

denotes the final states, changes the base clause of semantics to
(
x |= ⊤

)
= Φ(x).

6 Possibilistic semantics

Possibilistic semantics is evaluated in Ω = {0, 1}. In the simplest case, both
state spaces and data types are modeled in the same universe S = T = Set of
sets and functions. The contravariant powerset functor is self-adjoint ℘op ⊣ ℘ :
Setop // Set, and maps a state to the type of predicates over it, and a type
to the space of its models.10

Possibilistic systems Possibilistic nondeterminism means that there can be
several possible transitions from a state x ∈ X , for a given action a ∈ Σ. The
choice monad is thus based on the (covariant) finite powerset functor S = ℘

f
:

S // S. Simple processes are thus coalgebras in the form X // (℘
f
X)Σ ,

or X // ℘
f
(Σ × X).

6.1 Linear semantics: trace testing

A trace semantics describes computations over strings of symbols. The tests are
thus pure modal formulas, with no logical operations except the constant ⊤. The
logic monad is thus the smallest possible: TA = ⊤, for all A ∈ T = Set. The
loose and the tight semantics for it coincide, and the test algebra Θ is initial for
FA = 1+Σ×A, i.e. the free monoid Σ∗. Trace semantics have been investigated
as an extension of coalgebraic methods in [8, 9]. We describe three examples.
10 In the Hennessy-De Nicola [15] style testing semantics, tests are a special class of

processes. In our testing framework, this means that tests and processes live in the
same universe S = T , and moreover that the test algebra FΘ // Θ is contained
in (can be completed to) a choice coalgebra Ξ // GΞ. Indeed, the trace algebra
Θ = Σ∗ is a coalgebra Σ∗ // Σ × Σ∗ // ℘

f
(Σ × Σ∗).



Finite state automata Possibilistic automata are coalgebras in the form

X
〈Φ,∂〉// 2 × ℘

f
(Σ × X). The trace semantics of finite state automata is ob-

tained by instantiating (1-3)

(x |= ⊤) = Φ(x) (4)

(x |= a.t) =
∨

x
a

→y

(y |= t) (5)

where x
a
→ y means that y ∈ δ(x, a). Note that (4) says that x |= (−) : Θ // Ω

only preserves ⊤ where Φ holds. The final states Φ are an explicit relativisation
of the ⊤-preservation requirement; the semantics x |= (−) : Θ // Ω is a
T -algebra homomorphism up to Φ.

Let Aut denote bisimulation classes of finite-state automata, let GX = 2 ×
℘

f
(Σ × X) ∼= ℘

f
(1 + Σ × X), and let Aut // G(Aut) be final for all finite

G-coalgebras. Then the trace semantics Aut
|= // ℘Σ∗ maps each automaton

x ∈ Aut to the language Lx = {σ ∈ Σ∗ | x |= σ}.

Pushdown automata While finite state automata behaviors were obtained by
structuring the alphabet Σ, pushdown automata are obtained by structuring the
state spaces X . Fix a set Γ , to be used as “non-terminal” symbols, and extend
each state space X by the free monoid action to X×Γ ∗. A pushdown automaton
is a coalgebra for the functor G : S // S, defined

GX = 2 ×℘
f
(X × Γ ∗)Σ+1

where the “blank” symbol ⊔ ∈ 1 allows pure non-terminal rewrites. A start non-
terminal symbol Z0 ∈ Γ is assumed to be distinguished, or freely added. The
test algebra is still the same, Θ = Σ∗.

Turing Machines Turing machines act on tapes. The obvious idea is to view
the contents of a tape as a test. The problem is that the essential property of
the tape is that it can be extended in both directions, so at the first sight, the
Turing machine interaction does not seem not fit naturally into the inductive
testing framework.

Another look at the acceptance condition for Turing machines offers a solu-
tion. A Turing machine X accepts a word t ∈ Σ∗ if and only if reaches a final
state, in any configuration, after having started a computation with the head
just to the left of the word t, presented on the tape. — So the accepted words
initially extend to the right of the head. The left part of the tape is only used
for intermediary computation.

A Turing machine can thus be modeled following the idea of a pushdown au-
tomaton: the tape to the left of the head can be viewed as a stack, and treated as
a part of the state; the tape to the right of the head can be construed as another
stack, containing the actual test. Unlike a pushdown automaton, a Turing ma-
chine allows words in the same alphabet in both stacks. A pushdown automaton
had two disjoint alphabets, Γ and Σ for the left and the right stack, respectively.



Moreover, the right “stack” of a pushdown automaton is not a real stack, since
it only allows popping.

A Turing machine can thus be viewed as a machine with two real stacks,
representing the two parts of its tape, on the two sides of the head. Just like a
pushdown automaton, besides the alphabet Σ, it may allow non-terminal sym-
bols, at least ⊔, used in computation, but not in the tested words.

A nondeterministic Turing machine is thus a coalgebra X
〈Φ,∂〉// 2×℘

f
(X ×

Γ × {⊳, ⊲})Γ , where Γ ⊇ Σ + {⊔}. As before, the component X
Φ // 2 marks

the final states, whereas the transition function X×Γ
δ // ℘

f
(X×Γ×{⊳, ⊲})

assigns to each state and each input the possible next states, outputs, and the
direction for the move of the head. We represent the move of the head by popping
a symbol from one stack and pushing it onto the other.

6.2 Branching semantics: set-tree testing

Here not only are the universes S and T identical, but we also take the logic
monad T on to be the same as the choice monad S: they are both the finite
powerset ℘

f
: Set // Set. So both the space of the choices ℘

f
X and the logic

of tests ℘
f
A are free semilattices. But the two lattices will be used differently:

the former as a join semilattice (because the process can continue with this
computation or with that computation. . . ), and the latter as a meet semilattice
(because the testing formula is a conjunction).

Remark. The same class of computational behaviors could be formalized by
taking either of the monads T and S, or both of them, to be the diagonal functor
∆X = X × X . This would just mean that nondeterministic branching would
always be binary, and that tests would be just binary conjunctions. Associativity,
commutativity and idempotence of these operations would be imposed later. The
intermediary options would be to take the functor ℘≤2X = {x0, x1} of (at most)
two-element subsets, imposing commutativity and idempotence, and leaving out
associativity.

Two-way simulation In the simplest case TA = ℘
f
A. The tests are thus in

the form

t ::= ⊤ | t ∧ t · · · ∧ t | a.t

where ∧ is an associative, commutative, idempotent operation with unit ⊤. The
semantics (1-3) becomes

(x |= ⊤) = ⊤

(x |=
n∧

i=1

ti) =
n∧

i=1

(x |= ti)

(x |= a.t) =
∨

y∈δκ(x,a)

(y |= t)



The functors generating data and processes are thus

FA = ℘
f
A + Σ × A

GX = ℘
f
(Σ × X)

Proposition 2. Let Θ be the initial F -algebra and Ξ the final G-coalgebra. Let
the partial order on X be defined by

x ≤ y ⇐⇒ ∀t ∈ Θ. (x |= t) ≤ (y |= t) (6)

Then the process x can be simulated by the process y if and only if x ≤ y, i.e.

x ≤ y ⇐⇒ ∀a ∈ Σ∀x′ ∈ δ(x, a)∃y′ ∈ δ(y, a). x′ ≤ y′ (7)

Bisimulation Adding negation to the logic

t ::= ⊤ | t ∧ t · · · ∧ t | ¬t | a.t

i.e. testing by

FA = ℘
f
A + A + Σ × A

the semantics is extended by the clause

(x |= ¬t) = ¬(x |= t)

This gives an interesting strengthening of the testing power.

Proposition 3. The equivalence

x ∼ y ⇐⇒ ∀t ∈ Θ. (x |= t) = (y |= t)

means just that the processes x and y are bisimilar

x ∼ y ⇐⇒ ∀a ∈ Σ

(∀x′ ∈ δ(x, a)∃y′ ∈ δ(y, a). x′ ∼ y′) ∧

(∀y′ ∈ δ(y, a)∃x′ ∈ δ(y, a). x′ ∼ y′)

Strong bisimulation by Stone duality Strong bisimilarity is classified by
the final coalgebra Ξ // ℘

f
(Σ × Ξ). Using the restriction of the Stone du-

ality S ⊣ C : Setop // caBa from Stone spaces and Boolean algebras to sets
(discrete spaces) and complete atomic Boolean algebras, allows applying Corol-
lary 1. Setting FA = C℘

f
(Σ × SA) allows a representation of the bisimulation

classes as characters of the boolean algebra Θ = µA.FA.



7 Summary, Related and Future Work

We have proposed combining algebras as denotational models of processes with
coalgebras as models of their testing regimes via logical connections between the
two, in order to realize models that capture the interactions of processes with
the data on which they operate, as well as to model the processes themselves.
Our Main Thereom 1 is the key to this approach. In addition, we have illustrated
our approach with standard examples: finite automata, pushdown automata and
Turing machines, as well as results that show how our approach captures simu-
lation and strong bisimulation of processes in concurrency.

Of course, there is a wealth of work using duality theory – especially Stone
Duality – emanating from the seminal work of Abramsky [16] and the work on
coalgebras exemplified by Rutten’s [17] and the work of Plotkin and Turi [18].
None of these works has the same aims as our work. Indeed, the work along
this line has been aimed at achieving a setting in which both operational and
denotational models of the same language or process algebra could be presented
and related.

The closest work – in theory at least – to what we have presented is that of
Kupke, Kurz and Pattinson [19] and of Bonsangue and Kurz [20]. The former uses
similar theoretical machinery – but restricted to duality theories, and applies it
to the study of finitary modal logics as specification languages for Set-coalgebras.
The latter also models transition systems as coalgebras, and then uses a duality
to arrive at a logic for the transition system. Their main result is the soundness,
completeness and expressiveness of the logic. They also extend to the setting of
Vietoris coalgebras on topological spaces, and apply it to derive adequate logics
on posets, sets, spectral spaces and Stone spaces. The logics in these works
employ the usual modalities, possibility and necessity. In addition, the results
rely heavily on the duality theory to transfer initial algebras to final coalgebras
and back.

As we stated above, our approach has a rather different goal, and employs
weaker assumptions. Our goal is to understand the interactions of a state ma-
chine and the data on which it operates during computation. These are fun-
damentally different objects – programs are executed, but data are not. Our
work is based on logical connections, and does not require a duality theory. In
fact, one could argue that our results begin when the connection used is not a
duality. In addition, we are dealing with process logics where process formulas
are a possible interpretation of tests: a process modality 〈a〉 is a test assigned
to the action a ∈ Σ. That said, we believe the present paper has just begun to
scratch the surface, and a lot remains to do. A primary goal is to present prob-
abilistic systems from this perspective, and, in particular to apply it to extend
the work in [4], as well as to explore the relationship between probability and
nondeterminism, as presented, e.g., in [21].
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