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Abstract

In this paper we show that there is no left adjoint to the inclusion functor from the full

subcategory C

0

of Scott domains (i.e., consistently complete !�algebraic cpo's) to SFP,

the category of SFP-objects and Scott-continuous maps. We also show there is no left

adjoint to the inclusion functor from C

0

to any larger category of cpo's which contains a

simple �ve-element domain. As a corollary, there is no left adjoint to the inclusion functor

from C

0

to the category of L-domains.

We also investigate adjunctions between categories which contain C

0

, such as SFP,

and subcategories of C

0

. Of course, it is well-known that each of the three standard power

domain constructs gives rise to a left adjoint. Since the Hoare and Smyth power domains

are Scott domains, we can regard each of these two adjunctions as left adjoints to inclusion

functors from appropriate subcategories of C

0

. But, our interest here is in adjunctions for

which the target of the left adjoint is a lluf subcategory of C; such a subcategory has

all Scott domains as objects, but the morphisms are more restrictive than being Scott

continuous. We show that three such adjunctions exist.

The �rst two of these are based on the Smyth power domain construction. One is a

left adjoint to the inclusion functor from the category C of consistently complete algebraic

cpo's and Scott-continuous maps preserving �nite, non-empty in�ma to the category of

coherent algebraic cpo's and Scott-continuous maps. The same functor has a restriction to

the subcategory of coherent algebraic cpo's whose morphisms also are Lawson continuous

to the lluf subcategory of C whose morphisms are those Scott-continuous maps which

preserve all non-empty in�ma.

The last adjunction we derive is a generalization of the Hoare power domain which

satis�es the property that, if D is a nondeterministic algebra, then the image of D under

the left adjoint enjoys an additional semigroup structure under which the original algebra

D is among the set of idempotents. In this way, we expand the Plotkin power domain

P(D) over the Scott domain D into a Scott domain.

1 Introduction

The category C

0

of consistently complete !-algebraic cpo's, or Scott domains, as they are

also called, and Scott-continuous maps is a cartesian closed category which is especially well-

suited for use in the denotational semantics of sequential, imperative languages. Scott [12,

82] has shown how this category can be used to provide models for computation. Larsen and

Winskel [7] explain how this category is equivalent to the category of information systems,

where domain equations can be solved exactly (not just up to isomorphism). But the study of

�
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languages supporting nondeterminism and concurrency led to new constructs not all of which

could be realized within the category of Scott domains. In particular, the Plotkin power

domain of a Scott domain is not necessarily consistently complete. Plotkin [11] proposed the

category SFP of SFP-objects and Scott-continuous maps as being better suited for investi-

gations of nondeterministic languages. He characterized SFP-objects as those algebraic cpo's

which can be expressed as the inverse limit of a sequence of �nite posets under embedding-

projection pairs, and he showed that the category SFP is closed under the formation of all the

usual domain-theoretic constructs, including the Plotkin power domain. Plotkin also conjec-

tured that SFP was the largest cartesian closed category of !�algebraic cpo's, a conjecture

which was proved correct by Smyth [14]. Later, Jung [5] showed that SFP is one of but

two maximal cartesian closed categories of algebraic cpo's, the other being the category LD

of L-domains. But SFP has remained the category of most interest for those working on

concurrency because it is the smallest cartesian closed category which accommodates all the

necessary constructs. Consequently, much work has been done in trying to explicate clearly

the structure of SFP-objects (see, e.g. [6]).

In this paper we investigate the relationship between the full subcategory C of consistently

complete algebraic cpo's and the larger category A of algebraic cpo's and Scott-continuous

maps. Our �rst result is a proof that there is no left adjoint to the inclusion functor from C

to A. This example also shows that there is no left adjoint to the inclusion functor from C

0

to any containing category which also contains a simple �ve-element domain, and this applies

to the \interesting" subcategories of A such as SFP and LD.

On the positive side, we investigate adjunctions between lluf subcategories of C and A.

Recall that a subcategory M of a category N is called a lluf subcategory if M contains all

the objects of N . After establishing the result that there is no left adjoint to the inclusion

functor from C to A, we investigate the existence of a left adjoint to the inclusion functor

from various lluf subcategories of C to appropriate subcategories of A. We show that the

Smyth power domain functor gives rise to two such left adjoints. The �rst is adjoint to

the inclusion functor from the lluf subcategory of C whose morphisms are Scott-continuous

maps preserving �nite, non-empty in�ma, to the category A; this is the usual Smyth power

domain construct which was shown by Hennessy and Plotkin ([3]) to be universal for a certain

class of nondeterministic algebras (this simply means that D has a commutative, idempotent

semilattice operation which is Scott continuous).

The second adjunction we present is a left adjoint to the inclusion functor from the lluf

subcategory of C whose morphisms are the Scott-continuous maps preserving all non-empty

in�ma, and whose target is the full subcategory of A of coherent domains. Recall that an

algebraic cpo is coherent if, for each pair of compact elements k and k

0

, there is a �nite set F

of compact elements "k \ "k

0

="F ; equivalently, D is coherent if and only if D is compact in

the Lawson topology.

Most of the paper is devoted to the presentation of a third adjunction between a lluf

subcategory of C and A. This adjunction generalizes the Hoare power domain construction,

and it is left adjoint to the inclusion functor from the lluf subcategory of C whose morphisms

preserve all existing non-empty suprema. The left adjoint uses a new construction which

associates to a domain D a certain family C(D) of Scott-closed subsets of D.

Each algebraic cpo D is completely determined by its set of compact elements, K(D).

Indeed, if we de�ne an order ideal of K(D) to be a directed lower set, then D is isomorphic

to (Id(K(D));�), the space of order ideals of K(D) endowed with the inclusion order, under

the mapping:

x 7! K(x) = fk 2 K(D) j k � xg:D! Id(K(D)):

Using the fact that the family of Scott-closed subsets of an algebraic cpo D is isomorphic to

the family of lower sets of the compact elements K(D), we can describe C(D) as

C(D) = fJ � K(D) j ; 6= J = #J & (9I 2 Id(K(D))) J � Ig;



the family of non-empty lower sets of K(D) which are contained in some order ideal, again

with the inclusion order.

In case that D is conditionally bounded (a term we de�ne below), then C(D) is the family

of bounded Scott-closed subsets of D. We show that the conditionally bounded domains are

exactly those which are compact in the lower topology; as a result, each coherent domain is

conditionally bounded, so SFP-objects are in this class.

In addition to describing C(D) in terms of the Scott-closed subsets of D, we also describe

C(D) as an information system [7], for the case that D is conditionally bounded. This

description is quite pleasing, since it is given in terms of the family P

<!

(K(D)) of non-empty,

�nite subsets of the set K(D) of compact elements of D. Thus, C(D) can be viewed in

much the same way that each of the standard power domains, the Hoare, Smyth and Plotkin

power domains over D is usually described (cf. [3]). Moreover, we describe the action of

C on morphisms in the category A in terms of approximable mappings, the information

system analogue of Scott-continuous maps between Scott domains. However, C(D) is not a

nondeterministic algebra, and so this is not a new power domain construction.

Power domains are the domain-theoretic analogue of the power set; they are needed to

model nondeterministic languages. In [3], Hennessy and Plotkin characterize each of the

standard power domains as a left adjoint; in each case, they construct an appropriate category

of nondeterministic algebras, and show that the power domain construct in question is a left

adjoint to an obvious inclusion functor. We show that, if (D;+) is a nondeterministic algebra

in the sense of [3], then C(D) carries an additional structure which is analogous to the

nondeterministic + operator on D. This operation on C(D) is commutative and associative,

but it is not idempotent. We characterize those elements of C(D) which are idempotent under

the induced operator; they include the image of D under the embedding of D into C(D). We

de�ne the notion of a nondeterministic semigroup, a generalization of a nondeterministic

algebra, and of a Scott semigroup, a Scott domain which is equipped with a Scott-continuous,

commutative semigroup operation. Then we show thatC induces a left adjoint to the inclusion

functor from the category of Scott semigroups and Scott semigroup maps to the category of

nondeterministic semigroups and nondeterministic semigroup maps. In this way, we construct

an analogue for the Plotkin power domain in the category of Scott domains, namely the Scott

semigroup C(P

P

(D)) over the Plotkin power domain P

P

(D) over D.

2 A Simple Counterexample

We begin our presentation with a review of the relevant facts concerning algebraic cpo's, and

then we present a simple example which shows that there is no adjunction to the inclusion

functor from the full subcategory C of consistently complete algebraic cpo's to the category

A of algebraic cpo's and Scott-continuous maps. In fact, this example shows that no such

adjunction can exist between any category of consistently complete algebraic cpo's and Scott-

continuous maps and any containing category of algebraic cpo's which also contains a simple

�ve-element domain.

To begin, a subset X � D of a partially ordered set D is directed if each �nite subset of

X has an upper bound in X . Note that directed sets are always non-empty, since the empty

set is �nite. A complete partial order (cpo) is a partially ordered set D in which each directed

subset has a least upper bound and which has a least element, which we denote by ?. An

element k 2 D is compact if, for every directed subset X � D with k �

F

X , there is some

x 2 X with k � x. The set of compact elements of D is denoted K(D), and clearly ?2 K(D).

If x 2 D, then we use the notation #x = fy 2 D j y � xg and "x = fy 2 D j x � yg. Also,

K(x) = #x\K(D) for each x 2 D. The cpo D is algebraic if K(x) is directed and x =

F

K(x)

for all x 2 D. A domain is an algebraic cpo whose set of compact elements is countable.

The algebraic cpo D is consistently complete if each subset of D which has an upper bound

has a least upper bound. A Scott domain is a consistently complete domain. Lastly, an L-



domain is a domain D in which #x is a complete lattice for each x 2 D. These domains were

introduced by Jung [5], where he showed that L-domains and Scott-continuous maps form a

maximal cartesian closed category of domains. We denote by A the category of algebraic cpo's

and Scott-continuous maps, and by C (respectively, C

0

, SFP, LD), the full subcategory of

consistently complete algebraic cpo's (respectively, Scott domains, SFP-objects, L-domains).

Lastly, by an algebraic lattice we mean a complete lattice which also is an algebraic cpo.

Example Let D

0

= f?; x; y; a; bg denote the �ve-element poset which satis�es?< x; y < a; b,

and no other pairs are related. Also, let E

0

= f?; x; y; z; a; bg denote the six-element poset

with ?< x; y < z < a; b, and no other pairs are related. The Hasse diagrams of these posets

are given below.
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De�nition Let D be an algebraic cpo and let E be a consistently complete algebraic cpo.

Then E is weakly universal for D if there is a Scott-continuous map e:D! E such that, given

any consistently complete algebraic cpo D

0

and any Scott-continuous map f :D ! D

0

, there

is a Scott-continuous map f

0

:E ! D

0

with f

0

� e = f . E is universal for D if E is weakly

universal and the �ll-in map f

0

is unique.

Lemma 2.1 The six-element poset E

0

is weakly universal for D

0

.

Proof Clearly E

0

is consistently complete, and the natural embedding e:D

0

! E

0

is Scott

continuous. If D is a consistently complete algebraic cpo, and f :D

0

! D a Scott-continuous

map, then f(x); f(y) � f(a) implies that ff(x); f(y)g has a least upper bound c 2 D. We can

then de�ne f

0

:E

0

! D by f

0

(e(d)) = f(d), for d 2 D

0

, and f

0

(z) = c. Clearly f

0

is monotone

(and hence Scott continuous), and f

0

� e = f also is clear. 2

Lemma 2.2 Let D

1

= f?; x; y; r; s; a; bg with the order ?< x; y < r < s < a; b. Then there

are two Scott-continuous maps f

i

:E

0

! D

1

, i = 1; 2 with f

i

� e = j, where j:D

0

! D

1

is the

natural embedding.

Proof There are two Scott-continuous maps f

i

:E

0

! D

1

which satisfy f

i

(e(d)) = d for each

d 2 D

0

; namely, f

1

(z) = r and f

2

(z) = s. 2

Theorem 2.3 There is no universal consistently complete algebraic cpo for D

0

.

Proof Suppose D

0

has a universal consistently complete algebraic cpo D, and let �:D

0

! D

be the Scott-continuous map from D

0

to D which extends uniquely. Since e:D

0

! E

0

is Scott

continuous and E

0

is consistently complete, there is a Scott-continuous map f

0

:D! E

0

such

that f

0

(�(d)) = e(d) for each d 2 D

0

. Then �(x); �(y) � �(a) implies t = �(x) _ �(y) exists in D,

and �(x); �(y) � �(a); �(b). Hence x = f

0

(�(x)); y = f

0

(�(y)) � f

0

(t) � a = f

0

(�(a)); b = f

0

(�(b)),

and so f

0

(t) = z. But, then f

i

� f

0

:D ! D

1

are two distinct Scott-continuous maps. This

contradicts the universality of D. 2



Corollary 2.4 Let B be a category of algebraic cpo's and Scott-continuous maps which con-

tains the consistently complete algebraic cpo's and the domain D

0

. Then there is no left

adjoint to the inclusion functor from C into B. In particular,

i) There is no left adjoint to the inclusion functor from C into A.

ii) There is no left adjoint to the inclusion functor from C

0

to SFP.

iii) There is no left adjoint to the inclusion functor from C

0

to LD. 2

Despite this negative result, it is appealing to believe that the Scott domain E

0

is somehow

universal for D

0

; indeed, Lemma 2.1 implies as much. And, it is clear that E

0

is the smallest

Scott domain into which D

0

can be embedded. The remaining results we present are an

outgrowth of our attempt to make this intuitive result mathematically precise. As we show,

there is a left adjoint to the inclusion functor from a lluf subcategory of C

0

if we restrict the

morphisms between Scott domains in any one of three ways:

1. Scott domains and Scott-continuous maps preserving �nite, non-empty in�ma,

2. Scott domains and Scott-continuous maps preserving all non-empty in�ma, and

3. Scott domains and Scott-continuous maps preserving existing non-empty suprema.

The �rst two of these results are achieved using the Smyth power domain, while the third uses

the family of bounded, Scott-closed subsets. And, on the object level, E

0

is the free Scott

domain associated to D

0

in each of these cases.

3 A Basic Adjunction

In this section we review the basic results about the Scott topology on an algebraic cpo.

We also take the opportunity to present the Hoare power domain as an adjoint using the

topological tools we construct. This adjunction is between the category A of algebraic cpo's

and Scott-continuous maps and the category AL

0

of (complete) algebraic lattices and maps

preserving all non-empty suprema. But this adjunction is not one of the types we are most

interested in, since the domain for the inclusion functor is a category of algebraic lattices,

rather than a category whose objects consist of all Scott domains (or, more generally, all

consistently complete algebraic cpo's). However, this result is still important for the ones to

come later, since it provides a motivation for the construction we give using the bounded,

Scott-closed subsets of an algebraic cpo D. The spectral theory of sober spaces and complete

Heyting algebras plays a central role in our development, so relevant portions of that theory

are also included.

De�nition Let D be an algebraic cpo. A subset U � D is Scott open if:

1. U ="U , and

2. (8X � D directed)

F

X 2 U ) X \ U 6= ;:

The family of Scott-open subsets of D is denoted �(D); dually, the family of Scott-closed

subsets of D is denoted �

0

(D).

The following result summarizes the basic facts about the Scott topology on a algebraic

cpo D; all the proofs are straightforward.

Theorem 3.1 Let D be an algebraic cpo. Then:

i) The family f"k j k 2 K(D)g is a base for the Scott topology on D. For all x 2 D,

fxg = #x, and "x 2 �(D) if and only if x 2 K(D).



ii) The Scott topology on D is T

0

, compact, and locally compact (i.e., each point has a

neighborhood basis of compact sets).

iii) If E is an algebraic cpo, then the function f :D ! E is Scott continuous if and only if

f(

F

X) =

F

f(X) for all X � D directed.

iv) If X = #X � D is a lower set in D, then

X = fx 2 D j K(x) � Xg: 2

Now, consider the lattice �(D) of non-empty Scott-closed subsets of the algebraic cpo

D. Since D has a least element, ?, �(D) has as least element f?g; consequently, �(D) is a

complete lattice. And, �(D) is a coHeyting algebra or Brouwerian lattice; i.e., it satis�es the

in�nite distributivity law:

C [ (

\

i2I

C

i

) =

\

i2I

(C [ C

i

);

for any subset fC

i

j i 2 Ig � �(D). Moreover, the map �

D

:D ! �(D) de�ned by �

D

(x) =

fxg = #x is a one-to-one map of D into �(D). In fact, each closed set from D of the form

fxg is a [�prime in �(D): if A and B are Scott-closed sets and fxg � A [B, then fxg � A

or fxg � B (such sets are also called irreducible). If we denote by Pr

[

�(D) the family of

[�primes of �(D) (including f?g!), then �

D

(D) � Pr

[

�(D).

De�nition The topological space X is sober if, for each [�prime A in the lattice C(X) of

closed subsets of X , there is a unique x 2 X with A = fxg. In other words, the space X

is sober if and only if the map x 7! fxg:X ! C(X) is a bijection from X onto the set of

[�primes of C(X).

Since each [�prime of C(X) is the closure of a unique point, it is clear that a sober space

is T

0

, but the converse may fail.

Proposition 3.2 If D is an algebraic cpo, then D is a sober space in the Scott topology.

Proof Let C � D be an irreducible closed set, and let K(C) = K(D) \ C denote the

family of compact elements in C. Then part iv) of Theorem 3.1 implies that C = K(C).

We claim that K(C) is directed. Indeed, if k; k

0

2 K(C) have no upper bound in C, then

"k\ "k

0

\ C = ;. But, then C = (Cn "k) [ (Cn "k

0

) is the union of proper closed subsets,

since "k and "k

0

are Scott open. Thus K(C) is directed. But, then x =

F

K(C) exists in

D since D is a cpo, and x 2 C since C is Scott closed. But, K(C) �#x implies C �#x, so

C = #x = fxg. Hence D is sober. 2

The subset Pr

[

�(D) of �(D) can be given a topology directly from �(D), called the

hull-kernel topology. De�ne the closed subsets of Pr

[

�(D) to be the family of sets of the form

#C \ Pr

[

�(D) = ffxg j fxg � Cg;

for C 2 �(D). For C 2 �(D), we calculate what this closed set is:

#C \ Pr

[

�(D) = f�

D

(x) j �

D

(x) � Cg

= f�

D

(x) j x 2 Cg

= �

D

(C):

That is, the hull-kernel topology on Pr

[

�(D) from �(D) is the Scott topology on D, and so

the map �

D

:D ! Pr

[

�(D) is a homeomorphism. (This actually holds for all sober spaces,

but we restrict our attention to those of interest, algebraic cpo's endowed with the Scott

topology.)

A lattice L is bialgebraic if L is algebraic in both its given order, �, and in the dual order,

�

op

. The following result shows that �(D) is rather special in that it is bialgebraic. The

compact elements for both orders also are singled out.



Proposition 3.3 If D an algebraic cpo, then �(D) is a bialgebraic lattice:

i) K(�(D);�) = f#F j F � K(D) is �niteg.

ii) K(�(D);�) = fDn"F j F � K(D) is �niteg.

Moreover, the hull-kernel topology on Pr

[

�(D) is the inherited Scott topology from �(D).

Proof It is routine to verify that #F 2 K(�(D);�) for any �nite subset F � K(D).

Furthermore, given any X 2 �(D), it is easy to see that

X =

[

f#F j F � X \K(D) �niteg =

G

f#F j F � X \K(D) �niteg:

This set also is directed for each X 2 �(D), and it follows that

K(�(D);�) = f#F j F � K(D) is �niteg:

Thus, (�(D);�) is an algebraic lattice.

Dually, if F � K(D) is �nite, then the subset Dn"F is a Scott-closed set with the property

that:

\

i2I

X

i

� Dn"F & fX

i

g

i2I

directed ) (9i 2 I) X

i

� Dn"F:

That is, Dn "F is a compact element of (�(D);�). Again, it is easy to show that each

X 2 �(D) is the �ltered intersection of the subsets Dn"F which contain X , and so (�(D);�)

also is algebraic. Thus, �(D) is a bialgebraic lattice.

We have already noted that the hull-kernel topology on Pr

[

�(D) is the image of the Scott

topology on D via the mapping �

D

. And, clearly this topology is contained in the topology

Pr

[

�(D) inherits from the Scott topology on �(D), since fB 2 �(D) j B � Cg is Scott closed

for each C 2 �(D). Conversely, if U � �(D) is a basic Scott-open set, then U =*(#F ), where

*(#F ) = fX 2 �(D) j#F � Xg

denotes the upper set of #F 2 �(D), and F � K(D) is �nite. Then

U =*(#F ) = fX 2 �(D) j#F � Xg = fX 2 �(D) j F � Xg:

Hence,

Pr

[

�(D) n U = f#x j#F 6�#xg = f#x j F 6�#xg =

n

[

i=1

f#x j k

i

6� xg

=

n

[

i=1

(Pr

[

�(D)\ #(Dn"k

i

)) ;

where F = fk

1

; : : : ; k

n

g. Since k

i

2 K(D), Dn"k

i

is closed, and so Pr

[

�(D) n U is a �nite

union of hull-kernel closed sets, hence itself is hull-kernel closed. 2

Since �(D) also is distributive, it follows that �(D) is completely distributive; in fact,

�(D) is a complete ring of sets (see, e.g., [9]).

Given a Scott-continuous map f :D! E between algebraic cpo's, it is easy to see that the

map �(f): �(D)! �(E) by �(f)(C) = f(C) is Scott continuous, and it also is easy to show

that this map preserves union-closures, which are non-empty suprema in �(D). This mapping

also preserves [-primes, since �(f)(fxg) = ff(x)g. Since the Scott topology on Pr

[

�(D) is

the inherited topology from the Scott topology on �(D), it follows that the restriction of �(f)

to Pr

[

�(D) is Scott continuous. In fact, these results can be formulated as an equivalence; to

state the result precisely, we �rst de�ne CDA

0

to be the category of completely distributive

algebraic lattices and maps preserving all non-empty suprema and all sup-primes.



Theorem 3.4 ([10]) The functor �:A ! CDA

0

is equivalent to the functor

Pr

[

: CDA

0

! A which assigns to a completely distributive algebraic lattice L its family of

_-primes and to the morphism �:L!M the restriction of � to Pr

_

L and Pr

_

M . 2

As we explain more fully in Section 7, Hennessy and Plotkin [3] de�ne a nondeterministic

algebra to be a domain D which has a Scott-continuous semilattice operation �:D�D ! D.

A morphism of nondeterministic algebras is a Scott-continuous map which preserves binary

sums. They single out two subcategories of such algebras:

ND

H

{ the full subcategory of nondeterministic algebras D satisfying x � x � y for all

x; y 2 D.

ND

S

{ the full subcategory of nondeterministic algebras D satisfying x � x � y for all

x; y 2 D.

The �rst of these, ND

H

arises via the Hoare power domain, which can be de�ned via the

functor � (cf. [15]). Thus, if D is a domain, then the Hoare power domain �(D) for D is an

ND

H

-object, and as Hennessy and Plotkin noted, it is the free ND

H

-object over D. It has

been observed in [PL81] that the categoryND

H

is simply the categoryAL of algebraic lattices

and maps preserving all non-empty suprema. By using the inclusion functor J : CDA

0

! AL,

we can relate the Hoare power domain to the equivalence we gave above; indeed, the �rst

adjunction in the following result is the universal property of the Hoare power domain.

Theorem 3.5

i) The functor J � �:A! AL is left adjoint to the inclusion functor from AL to A.

ii) If A

?

denotes the subcategory of A of algebraic cpo's and strict Scott-continuous maps,

then the restriction functor J � �

?

:A

?

! AL is left adjoint to the inclusion functor.

Proof Proposition 3.3 shows that �(D) is an algebraic lattice, and our comments preceding

Theorem 3.4 show that, for each continuous map f :D ! E between algebraic cpo's, the

induced mapping �(f): �(D)! �(E) by G(f)(X) = f(X) preserves all non-empty suprema.

Moreover, our remarks following Theorem 3.1 show that the mapping �

D

:D ! �(D) is

continuous since it is continuous into Pr

[

�(D) in the inherited topology. Now, it is an easy

exercise to show that the sup map X 7!

W

X : �(L) ! L preserves all suprema for any

algebraic lattice L. So, given a Scott-continuous map f :D! L from the algebraic cpo D to

the algebraic lattice L, we can de�ne the map

^

f : �(D) ! L by

^

f(X) =

W

X , and this is the

unique map from �(D) to L preserving all suprema and satisfying

^

f � �

D

= f . This shows

the �rst adjunction.

The second statement follows from the observation that strict maps f :D ! E between

algebraic cpo's are characterized by the fact that the associated map

^

f : �

0

(D)! �

0

(E) takes

the supremum of the empty set in �

0

(D), namely f?

D

g, to f?

E

g, which is the supremum of

the empty set in �

0

(E). 2

4 The Smyth Power Domain as an Adjoint

We now show how to use the Smyth power domain to construct a left adjoint to the in-

clusion functor from the lluf subcategory C

^

of Scott domains and Scott-continuous maps

preserving �nite, non-empty in�ma to A, and from C

u

, the category of Scott domains and

Scott-continuous maps preserving all non-empty in�ma, to the full subcategory ofA consisting

of coherent algebraic cpo's.



De�nition Let X be a topological space and let A � X . The saturation of A is the set

sat(A) =

T

fU � X j A � U is openg. The subset A of X is saturated if A = sat(A). We

denote by Q(X) the family of non-empty saturated compact subsets of X , i.e.

Q(X) = fC � X j ; 6= C is saturated and compactg:

Since sat(A) � U if and only if A � U , for every open set U , the saturation of a set is

compact if and only if the set is compact. If D is an algebraic cpo, then C � D is saturated if

and only if C ="C is an upper set; this follows from the fact that every Scott-open subset is

an upper set and the intersection of upper sets is an upper set. The following result is crucial

to our development.

Theorem 4.1 ([4] Proposition 2.09) Let X be a sober space. Then the family Q(X) is a

complete partial order under reverse containment. Moreover, if F is a �lter basis in Q(X)

and

T

F � U and U is open, then F � U for some F 2 F . 2

Since the empty set is open, it follows that if X is sober and F is a �lter basis of compact

saturated sets whose intersection is empty, then one of the sets in F must be empty.

Corollary 4.2 ([15]) If D is an algebraic cpo, then Q(D) is an algebraic cpo whose compact

elements are the sets

"F = fd 2 D j (9x 2 F ) x � dg;

where F � K(D) is �nite and non-empty.

Proof According to Theorem 4.1, (Q(D);�) is closed under the formation of directed

suprema, and D is clearly the smallest element of Q(D) under reverse containment, so Q(D)

is a cpo.

We now show that "F 2 K(Q(D)) for each F � K(D) �nite and non-empty. Indeed, since

F � K(D) is �nite and non-empty, it follows that "F 2 Q(D). Suppose that X is a directed

subfamily of Q(D) with "F �

F

X . Since the order of Q(D) is reverse containment and X is

directed, X is a �lter-basis, and

F

X =

T

X . Moreover, since "F is open in D, it follows from

Theorem 4.1 that X �"F for some X 2 X . Hence "F 2 K(Q(D)) for each F � K(D) �nite

and non-empty.

Let C � D be saturated and compact, and let x 2 D n C. Since C is saturated, C is the

intersection of open sets, so C ="C. Since x 62 C ="C, it follows that for each c 2 C, there is

some k 2 K(D) with k � c and k 6� x, and the compactness of C implies we can �nd �nitely

many such k

i

, i = 1; ::; n, with C �

S

i

"k

i

and k

i

6� x for each i. Then F = fk

1

; :::; k

n

g is a

�nite non-empty subset of K(D) with C �"F and x 62"F . It follows that

C =

\

f"F j C �"F & F � K(D) is �nite and non-emptyg;

and it is routine to show this family is directed. Thus K(C) is a directed subset of Q(D)

whose supremum in Q(D) is C. Since C is an arbitrary element of Q(D), it follows that Q(D)

is an algebraic cpo and that K(Q(D)) = f"F j ; 6= F � K(D) is �niteg. 2

De�nition Let P be a poset. If x; y 2 P , then a complete set of upper bounds for fx; yg

is a family M � P such that "x \ "y ="M . An algebraic cpo D is coherent if each pair of

compact elements of D has a �nite, complete set of minimal upper bounds.

It is easy to show that, in an algebraic cpo D, a minimal upper bound of a pair of compact

elements is again compact. Thus, for a coherent domain D, the set of minimal upper bounds

of a pair of compact elements consists of compact elements. It's an easy exercise to show



that the class of coherent domains contains all consistently complete domains. Somewhat

harder to show is the fact that SFP-objects also fall within this class (cf. [5]). However,

not all L-domains are coherent, as simple examples demonstrate (cf., e.g., the example at the

beginning of Section 5).

Lemma 4.3 Let D be an algebraic cpo, and let "F; "G 2 K(Q(D)) be compact elements of

Q(D). Then "F _ "G exists in Q(D) if and only if "F _ "G ="F \ "G.

Proof Suppose that "F; "G 2 K(Q(D)) have an upper bound C 2 Q(D). Then C �"F \ "G.

Conversely, let x 2"F \ "G. Since D is algebraic and "F \ "G is Scott open, there is some

compact element k 2 K(x) with x 2"k �"F \ "G. And, since "k 2 Q(D), it follows that

"F; "G v"k in Q(D). Thus, x 2"k �"F _ "G. Since x 2"F \ "G is arbitrary, we have

"F _ "G ="F \ "G, as claimed.

Conversely, if "F \ "G 2 K(Q(D)), then clearly "F _ "G ="F \ "G, so "F _ "G exists

in Q(D). 2

Proposition 4.4 For an algebraic cpo D, the following are equivalent:

1. D is coherent.

2. Q(D) is consistently complete.

3. The intersection of compact, saturated subsets of D is compact.

Proof Suppose that D is coherent. To show 2) holds, we �rst consider the case of two com-

pact elements of Q(D). Corollary 4.2 shows that K(Q(D)) = f"F j ; 6= F � K(D) is �niteg.

If "F; "G 2 K(Q(D)) have an upper bound in Q(D), then "F \ "G 6= ;. Since D is co-

herent, the set F [ G has a �nite, complete set H of minimal upper bounds, as a simple

induction on the size of F [ G shows. It is clear that "F \ "G ="H , and since minimal

upper bounds of compact elements are again compact, it follows that "H 2 Q(D). Thus,

"F _ "G ="F \ "G ="H , so bounded pairs of compact elements in Q(D) have sups. But, in

an algebraic cpo, if every pair of compact elements having an upper bound has a supremum,

then every pair of elements having some upper bound also has a supremum. Furthermore, any

cpo in which every pair of elements having an upper bound has a supremum is consistently

complete. Thus, Q(D) is consistently complete, so 2) holds.

Suppose now that 2) holds. To show 3), we �rst consider the case of a pair of compact,

open subsets of D; i.e., of compact elements of Q(D). If "F; "G 2 K(Q(D)), then Lemma 4.3

implies that "F _ "G ="F \ "G if "F _ "G exists. Now, every element of Q(D) is the �ltered

intersection of elements of the form "F , for "F 2 K(Q(D)). Since the supremum of any

pair of elements of K(Q(D)) is their intersection, when the supremum exists, it follows from

Theorem 4.1 that the supremum of any pair of elements ofQ(D) is their intersection, when the

supremum exists. Thus 3) holds for pairs of compact, saturated sets whose intersection is non-

empty. But, for a pair of compact, saturated sets with empty intersection, their intersection

{ the empty set { is clearly compact and saturated. Thus 3) holds.

Finally, if 3) holds, then Lemma 4.3 implies that the intersection of the sets "k and "k

0

, for

k; k

0

2 K(D), has the form "H for some �nite, non-empty subset H � K(D), if "k \ "k

0

6= ;.

But, then H contains a set of minimal upper bounds for k and k

0

, and so D is coherent. 2

Proposition 4.5 If D be a consistently complete algebraic cpo, then (x; y) 7! x^y:D�D!

D is Scott continuous. Moreover, the mapping C 7!

V

C:Q(D) ! D is a Scott-continuous

mapping which preserves �nite, non-empty in�ma.



Proof Since D is consistently complete, given x; y 2 D, the set K(x) \K(y) is a directed

subset of D, and so it has a least upper bound, z. Clearly z � x; y, and if w � x; y, then

K(w) � K(x) \ K(y) implies that w =

W

K(w) �

W

(K(x) \ K(y)) = z. Thus z = x ^ y

exists for each x; y 2 D.

Since k = k ^ k for each k 2 K(D), it follows that

f(x; y) 2 D �D j k � x ^ yg = f(x; y) j k � x; yg = "k� "k;

and this set is clearly Scott open in D � D if k is compact. Thus (x; y) 7! x ^ y is Scott

continuous.

Next, suppose that C 2 Q(D). Then Corollary 4.2 implies that

C =

\

f"F j C �"F & F � K(D) �nite and non-emptyg;

and this family is directed. Since

V

F =

V

"F for any �nite subset of D,

^

C =

_

f

^

F j C �"F & F � K(D) is �nite and non-emptyg;

so

V

C is well-de�ned. Moreover, this same argument shows that the mappingC 7!

V

C:Q(D)!

D is Scott continuous.

If C;C

0

2 Q(D), then C ^

Q(D)

C

0

= C [ C

0

, so

^C ^ ^C

0

� ^(C [ C

0

)

is clear. But, if C;C

0

�"(^(C [ C

0

)), so ^C;^C

0

� ^(C [ C

0

), from which it follows that

^(C [ C

0

) � ^C ^ ^C

0

. Hence the two are equal, and ^:Q(D) ! D preserves �nite,

non-empty in�ma. 2

Theorem 4.6 Let C

^

denote the category of consistently complete algebraic cpo's and Scott-

continuous maps preserving �nite, non-empty in�ma. The inclusion functor from C

^

to A

has a left adjoint Q: C

^

! A which associates to an algebraic cpo D the family Q(D) of

Scott-compact saturated subsets of D, and to a Scott continuous map f :D! E the mapping

Q(f):Q(D)! Q(E) given by Q(f)(X) ="f(X).

Proof If D is an algebraic cpo, then the map �

D

:D ! Q(D) by �

D

(x) ="x is Scott

continuous: indeed, if k 2 K(x), then �

D

(k) ="k �"x = �

D

(x), and �

D

(k) 2 K(Q(D)) by

Corollary 4.2.

If E is an algebraic cpo and f :D ! E is Scott continuous, then f(C) is compact for

each C 2 Q(D) since f is Scott continuous, and so Q(f)(C) ="f(C) 2 Q(E) follows. The

characterization of the compact elements of Q(D) in Corollary 4.2 also implies that the map

Q(f) is Scott continuous. Indeed, if F � K(E) is �nite and non-empty, then

Q(f)

�1

("F ) = fC 2 Q(D) j f(C) �"Fg

= fC 2 Q(D) j C � f

�1

("F )g;

which is Scott open in Q(D), by Corollary 4.2 and the fact that f is Scott continuous.

Next we show that Q(f) preserves �nite, non-empty in�ma. Indeed, if C;C

0

2 Q(D), then

Q(f)(C ^ C

0

) = Q(f)(C [ C

0

) = "f(C [ C

0

)

= "(f(C) [ f(C

0

))

= "f(C) [ "f(C

0

)

= Q(f)(C) ^ Q(f)(C

0

):



Now, given a Scott-continuous map f :D! E with E consistently complete, we can de�ne

the mapping

^

f :Q(D) ! E by

^

f(X) =

V

f(X). Our arguments above show that this map

is Scott continuous and preserves �nite, non-empty in�ma, since it is the composition of

mappings with these properties. Moreover,

^

f(�

D

(x)) =

^

f("x) = f(x);

and

^

f is the unique map from Q(D) to E with this property, since each non-empty compact

saturated subset of D is the in�mum in Q(D) of sets of the form "F , for F � D �nite, and f

uniquely determines

^

f on these sets. 2

Our presentation of the adjunction between C

^

and A is in terms of the compact saturated

subsets of the algebraic cpo D, but this is just another representation of the Smyth power

domain. This object was originally de�ned as the ideal completion of the family P

<!

(K(D)

of �nite, non-empty subsets of the domain D under the preorder F v G if and only if

(8y 2 G)(9x 2 F ) x � y. In fact, Smyth [15] also has given the topological representation of

the Smyth power domain that we have presented; for completeness sake, we include a proof

that this representation is the same as the one via the �nite non-empty subsets of the compact

elements.

Theorem 4.7 ([15]) The functor Q: C

^

! A is equivalent to the Smyth power domain func-

tor.

Proof Recall that the Smyth power domain P

S

(D) over D is the ideal completion of the

family of �nite, non-empty subsets of K(D) in the order given by F v G if and only if

(8y 2 G)(9x 2 F ) x � y, which is equivalent to G �"F . Thus, the map sending such a set

F to "F is an order isomorphism of K(P

S

(D)) onto K(Q(D)), according to Corollary 4.2. It

follows that the mapping extends to an order-isomorphism of P

S

(D) onto Q(D). 2

The next adjunction we present relates a second lluf subcategory of C. This time the

morphisms are those Scott-continuous maps which preserve all non-empty in�ma. This is a

reasonable family of morphisms to consider, since consistently complete cpo's are closed under

the formation of all such in�ma. In fact, this observation makes clear the remark that the

only di�erence between consistently complete algebraic cpo's and algebraic lattices is whether

there is a largest element. Indeed, every consistently complete algebraic cpo gives rise to an

algebraic lattice whose largest element is compact, by simply adding such a largest element

to the domain. Conversely, each consistently complete algebraic cpo arises from such an

algebraic lattice by deleting the largest element.

If D and E are coherent algebraic cpo's and f :D ! E is Scott continuous, then we can

characterize in completely topological terms when f preserves �ltered in�ma. This may not

seem so surprising when one realizes that preservation of �ltered in�ma is the same as saying

f :D

op

! E

op

is Scott continuous. Nonetheless, the result which we obtain does not refer to

the dual Scott topology at all. We �rst bring some additional topological tools to bear.

De�nition Let D be an algebraic cpo. The lower topology on D has the family f"x j x 2 Dg

as a subbasis for the family of closed sets; this topology is denoted !(D). The Lawson topology

on D, denoted �(D), is the common re�nement of �(D) and !(D).

It is well-known that the Lawson topology on an algebraic cpo D is Hausdor�, and it can

be shown using Theorem 4.1 that the Lawson topology is compact if and only if D is coherent

(cf. [5]).

Proposition 4.8 Let f :D! E be a Scott-continuous map between algebraic cpo's. Consider

the following conditions:

1. For each k 2 K(E), the set f

�1

("k) is Scott compact.



2. The mapping f is Lawson continuous.

Then 1) implies 2), and if D is coherent, then the conditions are equivalent. In any case,

if either of these conditions are satis�ed, then the mapping f preserves those �ltered in�ma

which exist.

Proof Suppose that 1) holds. If k 2 K(E), then f

�1

("k) is Scott compact. But since f is

Scott-continuous and k is compact, this set also is Scott-open. The only Scott-clopen subsets

of an algebraic cpo are the sets of the form "F for some �nite subset F � K(D), and so

f

�1

("k) has this form. But, this means that f

�1

("k) is closed in the lower topology of D,

and hence it is closed in the Lawson topology. Now, if x 2 E is an arbitrary element, then

x =

F

K(x) implies that "x =

T

f"k j k 2 K(x)g. Thus,

f

�1

("x) = f

�1

(

\

f"k j k 2 K(x)g

=

\

ff

�1

("k) j k 2 K(x)g;

which means that f

�1

("x) is the intersection of closed set, and so it also is closed in the

lower, hence Lawson topology. Alexander's Subbasis Theorem then implies that f is Lawson

continuous, which shows 2) holds.

Conversely, suppose that 2) holds and that D is coherent. Then D is Lawson compact.

Now, given k 2 K(E), the set f

�1

("k) is Scott open since f is Scott continuous, and it is

Lawson closed since f is Lawson continuous. But, since D is Lawson compact and Hausdor�,

the closed subset f

�1

("k) is also compact in the Lawson topology. Since f is monotone,

this set also is an upper set, and it is then an easy exercise to show that f

�1

("k) is Scott

compact. That is, f

�1

("k) is Scott open and Scott compact. The former property means that

f

�1

("k) =

S

f"k

0

j k

0

2 K(D) \ f

�1

("k)g, and since each of these sets is Scott open, there is

some �nite subfamily F � K(D) \ f

�1

("k)g such that f

�1

("k) ="F . Thus 1) holds.

Finally, we show that 2) also implies that f preserves �ltered in�ma. Indeed, since f is

monotone, if F � D is a �ltered set and ^F exists, then f(^F ) � f(x) for every x 2 F . But,

if y 2 E is a lower bound for f(F ), then "y is Lawson closed in E, so the same is true of

f

�1

("y). Since f is monotone, this set also is an upper set, and it contains the set F . So, we

will be done if we show that �ltered sets which have an in�mum converge to their in�mum in

the Lawson topology. And, since principal upper sets are closed, any limit point of a �ltered

set must be in the upper set of the in�mum of the set. But, if G is �ltered and ^G exists,

then any Lawson-open set containing ^G has the form "kn"B, where B is some �nite subset

of D. Since ^G =2"B and B is �nite, it follows from the fact that G is �ltered that G 6�"B,

and this means there is some g 2 G such that g

0

2 G and g � g

0

imply g

0

=2"B. But, k � ^G

implies that G �"k, and so g

0

2"kn"B for all g

0

2 G with g

0

� g. Thus G converges to ^G in

the Lawson topology, which concludes our proof. 2

Corollary 4.9 If D is a consistently complete domain, then ^:Q(D)! D preserves �ltered

in�ma.

Proof Proposition 4.5 implies that ^:Q(D) ! D is Scott continuous, so ^

�1

("k) is Scott

open for each k 2 K(D). And, Proposition 4.8 implies that, to complete the proof, we only

need to show that for each k 2 K(D), there is some �nite set of F compact elements of Q(D)

such that ^

�1

("k) ="F . But, for each x 2 D, the set

fC 2 Q(D) j ^C 2"xg = fC 2 Q(D) j x � ^Cg

= fC 2 Q(D) j C �"xg:

So, if x 2 K(D), then "x 2 K(Q(D)), and so this set is nothing more than fC 2 Q(D) j"x v

Cg, which is the upper set of "x in Q(D). 2



Theorem 4.10 If C

u

denotes the lluf subcategory of C whose morphisms are those Scott-

continuous maps preserving all non-empty in�ma, then the restriction of the functor Q to the

subcategory COH of coherent algebraic cpo's and monotone, Lawson continuous maps is left

adjoint to the inclusion functor from C

u

to COH.

Proof We only need to show that Q actually restricts to the named categories. Propo-

sition 4.8 implies this amounts to showing that Q(f) is Lawson continuous for each COH-

morphism f . If f :D! E is a monotone, Lawson continuous map between coherent domains,

then K(Q(E)) = f"F j ; 6= F � K(E) is �niteg. Given such a set, "F , we calculate

f

�1

(fC 2 Q(E) j C �"Fg) = fC 2 Q(D) j f(C) �"Fg

= fC 2 Q(D) j C � f

�1

("F )g:

But, for any such F ,

f

�1

("F ) = f

�1

([

k2F

"k) = [

k2F

f

�1

("k);

and each f

�1

(" k) is of the form " F

k

for some �nite set of compact elements of D, by

Proposition 4.8. It follows that

f

�1

("F ) = fC 2 Q(D) j C � [

k2F

"F

k

g = fC 2 Q(D) j C �"([

k2F

F

k

)g;

which is the upper set in Q(D) of a compact element of Q(D). Thus, Proposition 4.8 implies

that Q(f) is Lawson continuous. 2

5 A Generalization of the Hoare Power Domain

As we have pointed out in Section 3, the Hoare power domain functor is a left adjoint to the

inclusion functor from the category of algebraic lattices and maps preserving all non-empty

suprema to the category of algebraic cpo's. In this section, we generalize this construction by

constructing a free functor whose target domain is the lluf subcategory of C whose morphisms

preserve all existing non-empty suprema. For an algebraic cpo D, if we wish to associate to

D an algebraic sub-cpo of �(D), an obvious subset of �(D) to try (other than D itself, which

buys us nothing), is the collection of bounded, non-empty Scott-closed subsets:

#�

D

(D) = fX 2 �(D) j (9x 2 D) X �#xg:

Unfortunately, this is not necessarily a cpo.

Example Let D = (f0; 1g� N) [ f?g with the order:

(i;m) v (j; n) if and only if (i = 0 & j = 1 & m � n) or (i = j & m = n);

with ?v d (8d 2 D), of course. Then the sets

X

n

= #f(0; m) j m � ng; n > 0

form an increasing family of Scott-closed sets, and X

n

�#(1; n) (8n > 0). Thus, X

n

2 #

�

D

(D) (8n > 0), but

G

n

X

n

= #(f0g � N) =2 #�

D

(D);

since there is no element of D which dominates all of f0g � N. 2

But, the Scott closure of �

D

(D) is certainly a sub-cpo of �(D), and it is an algebraic cpo,

as we now show.



Theorem 5.1 Let D be an algebraic cpo, Then the following hold:

i) The set

C(D) = #�

D

(D) = fX 2 �(D) j (9x 2 D) X �#xg

is an algebraic sub-cpo of (�(D);[). In particular, C(D) is consistently complete.

ii) K(C(D)) = C(D) \ K(�(D)), and there is a natural map �

D

:D ! C(D) which is a

homeomorphism of D onto its image in C(D).

iii) C(D) is !�algebraic if and only if D is.

Proof Theorem 3.1 implies �(D) is an algebraic lattice, and this implies that the Scott-

closed subset (and hence, lower set)C(D) is an algebraic sub-cpo of �(D) whose set of compact

elements is C(D) \ K(�(D)). Thus C(D) is consistently complete since it is a Scott-closed

subset of the complete lattice �(D). This shows that i) and the �rst part if ii) hold.

We conclude the rest of ii) by de�ning �

D

to be the corestriction of �

D

to C(D). This is

a homeomorphism from D into C(D), since �

D

is a homeomorphism and the Scott topology

on C(D) is the inherited topology from the Scott topology of (�(D);[) (this follows from the

relation of the compact elements of C(D) and those of (�(D);[)). Finally, iii) follows from

the description of K(�(D);[) in Theorem 3.1, which implies this set is countable if and only

if K(D) is. 2

Of course, we want more of the cpo C(D) than that it exists. It also is to be universal for

D among consistently complete algebraic cpo's and Scott continuous maps preserving existing

non-empty suprema. To show this, we �rst establish the following result:

Proposition 5.2 If D and E are algebraic cpo's and f :D ! E is a Scott-continuous map,

then there is a map C(f):C(D)! C(E) preserving all existing non-empty suprema such that

C(f) � �

D

= �

E

� f .

Proof We commented in Section 3 that the map �(f): �(D)! �(E) given by �(f)(X) =

f(X) for each X 2 �(D) preserves all non-empty suprema. We also showed that �(f)

has a (Scott-continuous) restriction and corestriction �(f): Pr

[

�(D) ! Pr

[

�(E) such that

�(f)��

D

= �

E

�f . But, we can also restrict and corestrict �(f) to a mapC(f):C(D)! C(E):

indeed, Pr

[

�(D) � C(D) � �(D) and Pr

[

�(E) � C(E) � �(E). So, to show that this

mapping preserves all existing non-empty suprema in C(D), we only need to show that

�(f)(C(D)) � C(E). But, if X 2 C(D), then there is some x 2 D with X �#x, and then

�(f)(X) �#f(x). Finally, the condition C(f) � �

D

= �

E

� f follows from the corresponding

condition of �(f) and the fact that �

D

is a corestriction of �

D

. 2

In the case that D already is consistently complete, we can conclude more about the

relation between D and C(D).

Proposition 5.3 If D be a consistently complete algebraic cpo, then there is a retraction

�

D

:C(D) ! D such that �

D

� �

D

= 1

D

and �

D

� �

D

� 1

C(D)

. That is, D is the image of

C(D) under a closure operator on C(D).

Proof Let D be consistently complete, and let X 2 �(D). By de�nition, C(D) = #�

D

(D),

and Theorem 5.1 states that K(C(D)) �#�

D

(D). Now, Y 2 #�

D

(D) implies there is some

x 2 D with Y �#x, so, for each Y 2 K(C(D)), there is an element x 2 D with Y �#x. Since

D is consistently complete, it follows that _Y exists in D. We can therefore de�ne a monotone

map �

0

:K(C(D)) ! D by �

0

(Y ) = _Y . And this map then extends to a continuous map

�

D

:C(D)! D. It is routine to verify that �

D

� �

D

= 1

D

and �

D

� �

D

� 1

C(D)

. 2



Theorem 5.4 If C

_

is the category of consistently complete algebraic cpo's and maps pre-

serving all existing non-empty suprema, then the functor C:A ! C

_

is left adjoint to the

inclusion functor from C

_

to A.

Proof Given D an algebraic cpo, the mapping �

D

:D ! C(D) is Scott continuous by

Theorem 5.1. Given f :D! E from D to the Scott domain E, Propositions 5.2 and 5.3 imply

the mapping

^

f = �

E

�C(f): C(D)! E preserves all existing non-empty suprema, since it is

a composition of maps with this property. Moreover, these results also show that

^

f � �

D

= f ,

and

^

f is the unique map from C(D) to E with this property, since �

D

(D) sup-generates C(D).

2

If D is an algebraic cpo with a largest element, then clearlyC(D) =�(D), and the converse

also is easy to establish.

Corollary 5.5 i) If C

0;_

is the subcategory of C

0

of Scott domains and maps preserving

all existing non-empty suprema, then the restriction and corestriction C:SFP ! C

0;_

is left adjoint to the inclusion functor from C

0

to SFP.

ii) Similarly, if LD is the full subcategory of A of algebraic L-domains (i.e., of those al-

gebraic cpo's D such that #x is a complete lattice for each x 2 D), then the restriction

and corestriction C:LD ! C

0;_

is left adjoint to the inclusion functor from C

0

to LD.2

Jung [5] has shown that the only maximal cartesian closed categories of A are the full

subcategory SFP of SFP-objects and Scott-continuous maps, and the full subcategory LD

of algebraic L-domains and Scott-continuous maps.

Our next result gives an improved characterization of C(D) for certain algebraic cpo's D.

De�nition Let D be an algebraic cpo. We say D is conditionally bounded if, for each set

X � D, whenever every �nite subset of X has an upper bound, then X has an upper bound.

It is not hard to show that an algebraic cpo D is conditionally bounded if and only if for

each lower set X = #X in D, X has an upper bound whenever every �nite set of compact

elements of X has an upper bound. Our interest in conditionally bounded cpo's is made clear

by the following.

Proposition 5.6 Let D be an algebraic cpo. The following are equivalent:

i) D is conditionally bounded.

ii) C(D) = #�

D

(D).

iii) If X � K(D) satis�es each �nite subset of X has an upper bound in D, then there is

an order-ideal I of K(D) for which X � I.

Proof The equivalence of the �rst two conditions follows from part ii) of Theorem 5.1.

Indeed, that result says that a Scott-closed set X � D is in C(D) if and only if #F is in

# �

D

(D) for every �nite set F of compact elements from X , and this is equivalent to the

property that every �nite subset F of compact elements from X has an upper bound. Now,

an arbitrary lower set X has an upper bound if and only if its closure does, and so the remarks

just prior to this Proposition imply thatD is conditionally bounded if and only if every Scott-

closed set X has an upper bound whenever each of its �nite subsets of compact elements has

an upper bound, which is equivalent to X 2 #�

D

(D).

Now, if D is conditionally bounded and X � K(D) satis�es each �nite subset of X has

an upper bound in D, then X has an upper bound x 2 D. Then X � K(x), and K(x) is the

desired order-ideal of K(D), so iii) holds.

Conversely, if condition iii) holds and X � D satis�es the property that each �nite subset

of X has an upper bound, then the same is true of Y = #X \ K(D). Then there is an

order-ideal I � K(D) with Y � I , and since D is a cpo, y =

F

Y exists. Since D is algebraic,

X �#Y �#y, so y is the desired upper bound of X . 2



We now show that the class of conditionally bounded algebraic cpo's is reasonably large,

and we begin with the following result gives a topological characterization of these cpo's.

Proposition 5.7 (Keimel) An algebraic cpo D is conditionally bounded if and only if D is

compact in the lower topology.

Proof The closed subsets for the lower topology on D have the family f"x j x 2 Dg for

a subbasis, so D is compact in the lower topology if and only if every non-empty family of

principal upper sets satisfying the �nite intersection property has a non-empty intersection.

But, this condition is clearly the same as the condition that D be conditionally bounded. 2

Corollary 5.8 Any coherent domain is conditionally bounded.

Proof A coherent domain is one which is compact in the Lawson topology. Since the

Lawson topology re�nes the lower topology, any domain which is Lawson compact also is

lower compact, so Proposition 5.7 implies such a domain also is conditionally bounded. 2

Not all conditionally bounded domains are coherent; for example, the L-domain D = f?

; a; bg [ N where ?< a; b < n for all n 2 N, and no other points are related is conditionally

bounded, but not coherent. Likewise, not all L-domains are conditionally bounded; indeed,

the example at the beginning of this section is an L-domain D for which C(D) 6= #�

D

(D).

6 C(D) as an Information System

One of the advantages of working with Scott domains is their convenient representation in

terms of information systems. In this representation, one can solve recursive domain equations

up to equality, rather than simply up to isomorphism. In this section we give the information

system representation of the Scott domain C(D) for any !�algebraic cpo D.

De�nition An information system is a quadruple A = (A;?; Con;`), where A is a countable

set, ? is an element of A, Con is a family of non-empty �nite subsets of A, and `� Con�A

is the entailment relation, satisfy the following properties:

i) a 2 A ) fag 2 Con.

ii) X 2 Con & Y � X ) Y 2 Con.

iii) X 2 Con implies X `?.

iv) X ` a ) X [ fag 2 Con:

v) X 2 Con & a 2 X ) X ` a.

vi) X; Y 2 Con & ((8b 2 Y ) X ` b) & Y ` c ) X ` c.

A subset x � A is consistent if X 2 Con for each �nite subset X � x, and x is deductively

closed if, for X � x �nite and a 2 A with X ` a, it follows that a 2 x. If X 2 Con and

F � A is a �nite subset satisfying X ` a for each a 2 F , then we write X ` F . The elements

jAj of the information system A is the family

jAj = fx � A j x is consistent and deductively closedg:



Theorem 6.1 (Larsen and Winskel [7])

i) If A is an information system, then the elements jAj form a Scott domain under set

inclusion, and the set of compact elements of jAj is

K(jAj) = fX j X 2 Cong;

where X = fy � A j (8F � y �nite) X ` Fg is the deductive closure of X.

ii) Conversely, if D is a Scott domain, then A

D

= (K(D);?

D

; Con

D

;`

D

) is an information

system, where Con

D

= fF � K(D) j F has an upper boundg, `

D

= f(X; a) j a v _Xg,

and x 7! _x: jAj ! D is an isomorphism of domains. 2

Theorem 6.2 Let D be an !�algebraic cpo, and de�ne

i) P

<!

(K(D)) to be the family of non-empty �nite subsets of K(D),

ii) Con

C(D)

= fF 2 P

<!

(K(D))j (9k 2 K(D)) F �#kg to be the family of bounded,

non-empty, �nite subsets of K(D), and

iii) `

C(D)

= f(X; k) 2 P

<!

(K(D))�K(D) j k 2 #Xg.

Then the quadruple A

C(D)

= (P

<!

(K(D));?; Con

C(D)

;`

C(D)

) is an information system, and

the map

x 7! x

�

: jA

C(D)

j ! C(D)

sending each x 2 jA

C(D)

j to its Scott closure in D is an isomorphism.

Proof It is routine to verify that A

C(D)

is an information system. For each F 2 Con

C(D)

,

the subset #F is Scott closed in D, and it is an element of K(�(D)). So, the map F 7! #

F :Con

C(D)

! �(D) is a monotone map, and its image is within C(D) since F is bounded.

If #F = #G for elements F;G 2 Con, then F = G by the de�nition of `

C(D)

. Thus the map

also is one-to-one. This map is clearly a surjection onto K(C(D)), so it is an isomorphism.

Therefore the map extends to an isomorphism x 7! x

�

: jA

C(D)

j ! C(D). 2

In the information system approach, Scott-continuous functions between Scott domains

can be encoded into the information systems themselves, as approximable relations, rather

than as functions.

De�nition If A = (A;Con

A

;`

A

) and B = (B;Con

B

;`

B

) are information systems, then an

approximable relation R � Con

A

� Con

B

satis�es

i) ;R;.

ii) XRY & XRZ ) XR (Y [ Z) (8X 2 Con

A

& 8Y; Z 2 Con

B

).

iii) X `

A

Y; Y RZ; &Z `

B

W ) XRW (8X; Y 2 Con

A

& 8Z;W 2 Con

B

).

Proposition 6.3 (Larsen and Winskel [7])

i) If A = (A;?

A

; Con

A

;`

A

) and B = (B;?

B

; Con

B

;`

B

) are information systems and

R � Con

A

� Con

B

is an approximable relation, then the function

f

R

: jAj ! jBj by f

R

(x) =

[

fY 2 Con

B

j (9X � x �nite) XRY g

is a Scott-continuous map.



ii) Conversely, given a Scott-continuous map f :D ! E between Scott domains D and E,

the relation

R

f

= f(X; Y ) 2 Con

D

� Con

E

j Y `

E

f(X)g

is an approximable relation which gives rise to f . 2

Proposition 6.4 Let D and E be algebraic cpo's and let f :D ! E be a Scott-continuous

map. Then the relation R

^

f

� Con

C(D)

� Con

C(E)

is given by

R

^

f

= f(X; Y ) 2 Con

C(D)

� Con

C(E)

j Y � f(X)g

is an approximable relation from A

C(D)

to A

C(E)

which gives rise to the Scott-continuous

extension

^

f :C(D)! C(E).

Proof Routine. 2

7 Nondeterministic Algebras and Nondeterministic Semigroups

In order to give semantic models for languages which support nondeterminism, some construct

analogous to the power set operator is required. The constructs which have emerged as being

the most useful are the three power domains: the Hoare power domain, the Smyth power

domain, and the Plotkin power domain. While the Hoare and Smyth power domains over a

Scott domain D are again Scott domains, this is not true of the Plotkin power domain over D.

This led Plotkin [11] to investigate the category SFP of SFP-objects and Scott-continuous

maps, a category which is somewhat larger and a great deal more complicated (structurally)

than the category C

0

. In [3], Hennessy and Plotkin characterize the three power domain

constructs in terms of free functors, i.e., in terms of left adjoints to various inclusion functors.

De�nition A nondeterministic algebra is an algebraic cpo D together with an added

operation +:D � D ! D which is commutative, associative and idempotent, and con-

tinuous with respect to the Scott topologies. For nondeterministic algebras (D;+

D

) and

(E;+

E

), a nondeterministic algebra map is a Scott-continuous map f :D ! E such that

f(x+

D

y) = f(x) +

E

f(y); (8x; y 2 D). We denote by ND the category of nondeterministic

algebras and nondeterministic algebra maps.

Theorem 7.1 (Hennessy and Plotkin [3])

i) LetND

H

be the full subcategory of ND of all nondeterministic algebras (D;+) satisfying

x � x+y; (8x; y 2 D). Then the functor P

H

which associates to an algebraic cpo D the

Hoare power domain P

H

(D) is left adjoint to the inclusion functor from ND

H

to A.

ii) Let ND

S

denote the full subcategory of ND of all nondeterministic algebras (D;+)

satisfying x+ y � x; (8x; y 2 D). Then the functor P

S

which associates to an algebraic

cpo D the Smyth power domain P

S

(D) is left adjoint to the inclusion functor from ND

S

to A.

iii) The functor P

P

which associates to an algebraic cpo D the Plotkin power domain P

P

(D)

is left adjoint to the inclusion functor from ND to A. 2

To be a nondeterministic algebra, a domain D must have a continuous binary operation

which is commutative, associative and idempotent; i.e., D must be a topological semilattice in

the Scott topology. The typical example is the Hoare power domain of a domain D, which is

simply the family �(D) of non-empty Scott-closed subsets ofD, with the semilattice operation

being the union operation. The binary operation onD is to be used to give a semantic meaning



to the nondeterministic choice operator in the language which D is to model. For reasons

which will become apparent below, we need to generalize the concept of nondeterministic

algebra somewhat.

De�nition A nondeterministic semigroup is an algebraic cpo D together with a Scott-

continuous binary operation �:D �D ! D which is commutative and associative. A Scott-

continuous map f :D ! E between nondeterministic semigroups (D;�

D

) and (E;�

E

) is a

nondeterministic semigroup map if f(x�

D

y) = f(x)�

E

f(y), for all x; y 2 D.

For a domain D, the Scott domain C(D) is a subfamily of the Scott-closed subsets of D,

but it is not closed under union; indeed, if x; y 2 D have no common upper bound, then

#x; #y 2 C(D), but #x [ #y 62 C(D). However, if D is a nondeterministic semigroup, then

the binary operation on D does induce a binary operation on C(D). To understand how this

works, we introduce the concept of a tensor product of Scott domains.

De�nition Let D;E and F be consistently complete algebraic cpo's. A bi-semilattice map

is a Scott-continuous map �:D � E ! F such that, for each x

0

2 D and each y

0

2 E,

the mappings x 7! �(x; y

0

):D ! F and y 7! �(x

0

; y):E ! F preserve existing non-empty

suprema.

De�nition Let D and E be consistently complete algebraic cpo's. A C

_

�tensor product of D

and E is a consistently complete algebraic cpo D
E and a bi-semilattice map i

(D;E)

:D�E !

D
E such that, for each consistently complete algebraic cpo F and each bi-semilattice map

f :D� E ! F , there is a unique map F :D
 E ! F in C such that F � i

(D;E)

= f .

Theorem 7.2 For algebraic cpo's D and E, the consistently complete algebraic cpo C(D�E)

together with the embedding

i:C(D)�C(E) ,! C(D �E) given by i(X;Y ) = X � Y

is a C

_

�tensor product of the consistently complete algebraic cpo's C(D) and C(E).

Proof Given algebraic cpo's D and E, the mapping i:C(D) � C(E) ,! C(D � E) by

i(X; Y ) = X � Y is readily seen to preserve directed suprema, since the closed and bounded

subsets of D � E which are products of closed and bounded subsets of D with those of E

are closed under all intersections and closures of increasing unions. This mapping also is a

bi-semilattice map, for if we restrict, say, the �rst coordinate toX

0

2 C(D), then the mapping

Y 7! X

0

� Y :C(E)! C(D� E)

is easily seen to preserve existing non-empty suprema. Thus, i:C(D)�C(E) ,! C(D�E) is

a bi-semilattice map.

Now, let D

0

be an Scott domain, and let f :C(D)�C(E)! D

0

be a bi-semilattice map.

Then, the map �

D

� �

E

:D�E ! C(D)�C(E) de�ned by (�

D

� �

E

)(x; y) = (#x; #y) is Scott

continuous, being the product of such maps. Hence,

f � (�

D

� �

E

):D�E ! D

0

is Scott continuous, and so Theorem 5.4 implies there is a unique Scott-continuous map

F :C(D � E) ! D which preserves existing non-empty suprema and satisfying F � �

D�E

=

f � (�

D

� �

E

). Since i � (�

D

� �

E

) = �

D�E

(as is readily veri�ed), it follows that F � i = f , as

required. 2



Proposition 7.3 Let (D;+) be a nondeterministic semigroup. Then there is a Scott-continuous

binary operation �:C(D)�C(D)! C(D) such that �

D

(x)��

D

(y) = �

D

(x+y) for all x; y 2 D.

Moreover, if D is a nondeterministic algebra and if X 2 C(D), then X �X = X if and only

if X � D is a Scott-closed, bounded +�ideal of D.

Proof If we are given a Scott-continuous binary operation +:D�D! D, then the previous

Theorem implies there is a Scott-continuous operation �:C(D)� C(D) ! C(D). The fact

that � is commutative and associative is easy to derive.

Finally, assume that D is a nondeterministic algebra, and let X 2 C(D). Then, X is

idempotent under � if and only ifX�X = X , which is true if and only if fx+ y j x; y 2 Xg =

X . Since x = x + x 2 fx+ y j x; y 2 Xg for each x 2 X , this is clearly amounts to the

property that x+ y 2 X for each x; y 2 X . Thus, X 2 C(D) is idempotent if and only if X

is a Scott-closed and bounded +�ideal of D. 2

De�nition A Scott semigroup is a Scott domain D with a commutative, associative and

Scott-continuous operation �:D�D! D. A Scott-semigroup map is a Scott-continuous map

f :D! E between Scott semigroups (D;�

D

) and (E;�

E

) such that f(x�

D

y) = f(x)�

E

f(y)

for all x; y 2 D.

Corollary 7.4 If D is a Scott semigroup, then the map �

D

:C(D) ! D of Proposition 5.3

is a semigroup homomorphism, and so D is the image of a closure operator on C(D) which

preserves the semigroup operation.

Proof Proposition 7.3 implies that C(D) is a Scott semigroup for any nondeterministic

semigroup D, and the inclusion �

D

:D ! C(D) satis�es �

D

(x) � �

D

(y) = �

D

(x + y), for

all x; y 2 D. It is routine to verify that, if D is a Scott semigroup, then the retraction

�

D

:C(D)! D also is a semigroup homomorphism. 2

Of course, this allows us to conclude the universal property of C(D) for Scott semigroups.

Theorem 7.5 The functor C induces a left adjoint to the inclusion functor from the category

SS

_

of Scott semigroups and Scott-semigroup maps preserving existing non-empty suprema

to the category NS of nondeterministic semigroups and nondeterministic semigroup maps.

Proof The universal property for C(D) follows in the same manner as in the proof of

Theorem 5.4. 2
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