A Primer on Domains and Measure Theory

Michael Mislove Tulane University

Logical Structures in Computation Program Simons Institute for the Theory of Computing August 30, 2016

Supported by US AFOSR

- I. Primer on Domain Theory
- II. Classical Approaches to Measures and Probability
- **III. Domain Theory Approach to Probability Measures**
- **IV.** Applications

Informatic partial order

 $p \sqsubseteq q$ if q contains more information than p.

Example: Zero finding

 $[a,b] \sqsubseteq [c,d] \in \mathbb{IR} \text{ iff } [c,d] \subseteq [a,b].$

Directed completeness

 $\emptyset \neq D \subseteq P$ directed if $x, y \in D \Rightarrow (\exists z \in D) x, y \leq z$. *P* directed complete: *D* directed \Rightarrow sup *D* exists.

 $D \subseteq \mathbb{IR} \text{ directed} \Rightarrow \sup D = \bigcap D.$

Approximation

$$\begin{aligned} x \ll y \text{ iff } y \leq \sup D \implies (\exists d \in D) x \leq d. \\ Domain: & \downarrow y = \{x \mid x \ll y\} \text{ directed and } y = \sup \downarrow y \\ & [a, b] \ll [c, d] \text{ iff } [c, d] \subseteq (a, b); \\ & [c, d] = \bigcap \{[a, b] \mid [c, d] \subseteq (a, b)\}. \end{aligned}$$

Morphisms

- $f: P \rightarrow Q$ *D-continuous* if :
- f monotone, and
- D directed $\Rightarrow f(\sup D) = \sup f(D)$.

DCPO - directed complete partial orders and D-continuous maps

Theorem: TARSKI, KNASTER, SCOTT $D \in \mathsf{DCPO}$ with least element, \bot , $f: D \to D$ monotone. Then:

- Fix $f = \sup_{\alpha \in Ord} f^{\alpha}(\bot)$ is the least fixed point of f.
- f D-continuous \implies Fix $f = \sup_{n>0} f^n(\bot)$.

Least fixed point semantics:

 $\operatorname{rec} x.p \longrightarrow p[\operatorname{rec} x.p/x] \implies [\operatorname{rec} x.p]] = \operatorname{Fix} [p]].$

Morphisms

- $f: P \rightarrow Q$ *D-continuous* if :
- f monotone, and
- D directed \Rightarrow $f(\sup D) = \sup f(D)$.

Properties:

- $f: P \times Q \rightarrow R$ jointly D-continuous iff f is separately D-continuous.
- [P → Q] ordered pointwise: f ⊑ g iff f(x) ≤ g(x) (∀x ∈ P).
 [P → Q] is a DCPO if P, Q are DCPOs.
- Cartesian closed categories of domains: $\mathsf{BCD} \subseteq \mathsf{RB} \subseteq \mathsf{FS}$.

Morphisms

- $f: P \rightarrow Q$ *D-continuous* if :
- f monotone, and
- D directed $\Rightarrow f(\sup D) = \sup f(D)$.

Scott Topology

U Scott open if:

- $U = \uparrow U = \{x \in P \mid (\exists u \in U) \ u \le x\}$ and
- D directed, sup $D \in U \Rightarrow D \cap U \neq \emptyset$.

Always T_0 , in fact, *sober*; $T_1 \Rightarrow$ flat order.

 $\lim D = \sup D$ for D directed.

 $f: P \rightarrow Q$ D-continuous iff f is Scott continuous.

 $\begin{array}{ll} D \text{ domain} \Rightarrow & \mathcal{B}_D = \{ \Uparrow \mid x \in D \} \text{ basis for } \sigma_D = \{ U \mid U \text{ Scott open} \}. \\ \hline \textit{Transitivity:} & x \leq y \ll y' \leq z \Rightarrow x \ll z; & \text{Implies } \uparrow(\Uparrow x) = \Uparrow x. \\ \hline \textit{Interpolation:} & x \ll z \Rightarrow (\exists y) x \ll y \ll z. & \text{Implies } \Uparrow x \text{ Scott open.} \end{array}$

Morphisms

- $f: P \rightarrow Q$ *D*-continuous if :
- f monotone, and
- D directed $\Rightarrow f(\sup D) = \sup f(D)$.

Scott Topology

U Scott open if:

- $U = \uparrow U = \{x \in P \mid (\exists u \in U) \ u \le x\}$ and
- D directed, sup $D \in U \Rightarrow D \cap U \neq \emptyset$.

Lawson Topology

Basis: { $\uparrow x \setminus \uparrow F \mid F \in \mathcal{P}_{<\omega}D$ }

Hausdorff refinement of Scott topology.

D is coherent if Lawson topology is compact.

All CCCs of domains consist of coherent domains, but Coh is not a CCC.

Basic Models

Unit interval: $([0,1], \leq)$, $x \ll y$ iff x = 0 or x < y

Interval domain: $(\mathbb{I}[0,1],\supseteq)$ – restriction of $(\mathbb{I}\mathbb{R},\supseteq)$

Topology

Upper space: X – locally compact Hausdorff space $\Gamma(X)$ – nonempty compact subsets of X under reverse inclusion: $A \sqsubseteq B$ iff $B \subseteq A$. $A \ll B$ iff $B \subseteq A^{\circ}$.

EDALAT: Used $\Gamma(X)$ to model fractals, weakly hyperbolic Iterated Function Systems, neural nets...

Generalizes to the *upper power domain*: $\mathcal{P}_U(D) = (\{X \subseteq D \mid \emptyset \neq X = \uparrow X \text{ Scott compact}\}, \supseteq).$

Basic Models

Unit interval: $([0,1], \leq)$, $x \ll y$ iff x = 0 or x < y

Interval domain: $(\mathbb{I}[0,1],\supseteq)$ – restriction of $(\mathbb{I}\mathbb{R},\supseteq)$

Topology

Upper space: X – locally compact Hausdorff space $\Gamma(X)$ – nonempty compact subsets of X under reverse inclusion: $A \sqsubseteq B$ iff $B \subseteq A$. $A \ll B$ iff $B \subseteq A^{\circ}$.

Generalizes to the upper power domain: $\mathcal{P}_U(D) = (\{X \subseteq D \mid \emptyset \neq X = \uparrow X \text{ Scott compact}\}, \supseteq).$

Hofmann-M.:

Scott-open filters in $\sigma(D) \simeq$ Scott-compact upper sets.

$$\begin{array}{cccc} \mathcal{F} & \longrightarrow & \bigcap \mathcal{F} \\ \mathcal{U}(\mathcal{C}) & \longleftarrow & \mathcal{C} \end{array}$$

It follows that $X \ll Y \in \mathcal{P}_U(D)$ iff $Y \subseteq X^\circ$.

Basic Models

Unit interval: $([0,1], \leq), x \ll y \text{ iff } x = 0 \text{ or } x < y$

Interval domain: $(\mathbb{I}[0,1],\supseteq)$ – restriction of $(\mathbb{I}\mathbb{R},\supseteq)$

Topology

Upper space: X – locally compact Hausdorff space $\Gamma(X)$ – nonempty compact subsets of X under reverse inclusion: $\mathcal{P}_U(D) = (\{X \subseteq D \mid \emptyset \neq X = \uparrow X \text{ Scott compact}\}, \supseteq).$

Domain Environments

Maximal Point Spaces: (LAWSON)

Domain P is bounded complete if each pair of elements has an infimum.

Example: $(\Gamma(X), \supseteq)$; $X \simeq Max \Gamma(X)$ by $x \mapsto \{x\}$.

Countably-based bounded complete domains are computational models.

Basic Models

Unit interval: $([0,1], \leq), x \ll y \text{ iff } x = 0 \text{ or } x < y$

Interval domain: $(I[0,1],\supseteq)$ – restriction of $(I\mathbb{R},\supseteq)$

Topology

Upper space: X – locally compact Hausdorff space $\Gamma(X)$ – nonempty compact subsets of X under reverse inclusion:

Domain Environments

- X metrizable space;
- M countably-based bounded complete domain.

LAWSON; CIESIELSKI, FLAGG & KOPPERMAN:

 $(\exists M) (X, \tau_M) \simeq (\operatorname{Max} M, \sigma_M|_{\operatorname{Max} M})$ iff X is a Polish space.

Banach (1933)

X complete metric space

 $C_b(X,\mathbb{R})$ - Banach space; $C_b(X,\mathbb{R})^*$ – dual space

Riesz Representation Theorem implies $\mathcal{M}(X) \simeq C_b(X,\mathbb{R})^*$

Prob X – unit sphere of $C_b(X, \mathbb{R})^*$ in weak *-topology.

Banach-Alaoglu: Unit ball is weak *-compact.

Weak *-topology is same as weak topology, so:

 $\mu_n \to \mu$ weakly if $\int f \, d\mu_n \to \int f \, d\mu$ for $f: X \to \mathbb{R}$ bounded, continuous

Banach (1933)

X complete metric space

 $C_b(X,\mathbb{R})$ - Banach space; $C_b(X,\mathbb{R})^*$ – dual space

Riesz Representation Theorem implies $\mathcal{M}(X) \simeq C_b(X,\mathbb{R})^*$

Prob X – unit sphere of $C_b(X, \mathbb{R})^*$ in weak *-topology.

Banach-Alaoglu: Unit ball is weak *-compact.

Weak *-topology is same as weak topology, so:

 $\mu_n \to \mu$ weakly if $\int f \, d\mu_n \to \int f \, d\mu$ for $f: X \to \mathbb{R}$ bounded, continuous

Simple Measures Weak *-dense $\{\sum_{x \in F} r_x \delta_x \mid r_x \ge 0, \sum r_x = 1, F \subseteq X \text{ finite}\}$ weak *-dense in Prob X.

Kolmogorov (1936)

Developed abstract theory of measure spaces and probability: $(\Omega, \Sigma_{\Omega}, \mu)$ – Probability space; $X : \Omega \to \mathbb{R}$ random variable Probability measures on infinite product spaces; 0–1 Laws Probability measure as a set function: $\mu : \Sigma_{\Omega} \to [0, 1]$ satisfying: $(i) \quad \mu(\emptyset) = 0$ and $\mu(\Omega) = 1$;

(ii) $\mu(\bigcup_{n\in\mathbb{N}} A_n) = \sum_{n\in\mathbb{N}} \mu(A_n)$ if $\{A_n\}_{n\in\mathbb{N}} \subseteq \Sigma_{\Omega}$ pairwise disjoint. Note: Condition (ii) implies:

- $\mu(A) \leq \mu(B)$ if $A \subseteq B$, and
- $\mu(\bigcup_n A_n) = \sup_n \mu_n(A_n)$ if $m \le n \Rightarrow A_m \subseteq A_n$.

Portmanteau Theorem

Let $\mu_n, \mu \in \operatorname{Prob} X$ for X complete metric space. TAE:

- $\mu_n \rightarrow \mu$ in the weak topology
- $\int f \, d\mu_n \to \int f \, d\mu$ for all $f \colon X \to \mathbb{R}$ bounded, uniformly continuous
- $\limsup_{n} \mu_n(F) \le \mu(F)$ for all $F \subseteq X$ closed
- $\liminf_n \mu_n(O) \ge \mu(O)$ for all $O \subseteq X$ open
- $\lim_{n} \mu_n(A) = \mu(A)$ for all $A \subseteq X$ μ -continuity sets

Measures on Domains

Valuations

Let D be a domain and let σ_D denote its family of Scott-open sets. A *continuous valuation* is a mapping $\mu : \sigma_D \to [0, 1]$ satisfying:

Strictness $\mu(\emptyset) = 0$

Modularity
$$\mu(U \cup V) + \mu(U \cap V) = \mu(U) + \mu(V)$$

$$\textbf{Monotonicity} \hspace{0.2cm} U \subseteq V \hspace{0.2cm} \Longrightarrow \hspace{0.2cm} \mu(U) \leq \mu(V)$$

Continuity $\{U_i\} \subseteq \sigma_D$ directed implies $\mu(\bigcup_i U_i) = \sup_i \mu(U_i)$.

Clearly every Borel subprobability measure induces a valuation on σ_D ;

The converse was shown by LAWSON for countably-based bounded complete domains, and by ALVAREZ-MANILLA, EDALAT AND SAHEB-DJARHOMI for general domains.

Probabilistic power domain:

 $\mathbb{V}D$ - valuations on D, ordered pointwise:

 $\mu \sqsubseteq \nu$ iff $\mu(U) \le \nu(U)$ ($\forall U \in \sigma_D$).

 $\mathbb{V}D \subseteq [D \rightarrow [0,1]]$ is a subdcpo, but domain structure is elusive.

Measures on Domains

The Domain Order from the Classical Approach

Recall for a compact space X and $\mu, \nu \in \operatorname{Prob} X$,

$$\int f \, d\mu \leq \int f \, d\nu \, (\forall f \colon X \to \mathbb{R}) \iff \mu = \nu.$$

Theorem: If D is a coherent domain and $\mu, \nu \in \mathbb{V}D$, then TAE:

•
$$\mu \sqsubseteq \nu$$
, i.e., $\mu(U) \le \nu(U) \; (\forall U \in \sigma(D)).$

- $\int f d\mu \leq \int f d\nu$ for all $f: D \to \mathbb{R}_+$ Scott continuous.
- $\int f \, d\mu \leq \int f \, d\nu$ for all $f: D \to \mathbb{R}_+$ monotone Lawson continuous.

The Splitting Lemma and Simple Measures

Splitting Lemma (Jones 1989)

Let $\mu = \sum_{x \in F} r_x \delta_x, \nu = \sum_{y \in G} s_y \delta_y$ in $\mathbb{V}D$. Then

 $\mu \leq \nu$ iff there are *transport numbers* $\{t_{x,y}\}_{(x,y)\in F\times G} \subseteq \mathbb{R}_+$ satisfying:

$$r_x = \sum_y t_{x,y} \; (\forall x \in F)$$

$$2 \sum_{x} t_{x,y} \leq s_y \; (\forall y \in G)$$

$$3 \ t_{x,y} > 0 \ \Rightarrow \ x \leq y$$

Moreover, $\mu \ll \nu$ iff

The proof is an application of the Max Flow – Min Cut Theorem.

In addition to being a useful tool for proving results about subprobability measures on domains, the expectation was that the Splitting Lemma would provide insights into the domain structure of $\mathbb{V}D$.

The Splitting Lemma and Simple Measures

 $B_D \subseteq D$ is a *basis* if

- $\downarrow x \cap B_D$ is directed, and
- $x = \sup(\downarrow x \cap B_D)$

for all $x \in D$.

Simple Measures are Dense

Let D be a domain with basis B_D , and let \mathcal{B} be a basis for [0,1]. Then:

$$B_{\mathbb{V}D} = \{ \sum_{x \in F} r_x \delta_x \mid r_x \in \mathcal{B}, \sum_x r_x \le 1 \& F \subseteq B_D \text{ finite} \}$$
 is a basis for $\mathbb{V}D$.

As a consequence, $\mu = \sup (\downarrow \mu \cap B_{\mathbb{V}D})$ for all $\mu \in \mathbb{V}D$.

When Scott is Weak on the Top (Edalat 1996)

If D is a countably-based domain and $\mu_n, \mu \in \mathbb{V}D$, then TAE:

1
$$\mu_n \to \mu$$
 in the Scott topology on $\mathbb{V}D$.

2 $\liminf_{n \to \infty} \mu_n(U) \ge \mu(U) \ (\forall U \in \sigma_D).$

Proof of (i) \Rightarrow (ii): We know $\mu = \sup_{m} \nu_{m}, \nu_{m} \ll \mu$.

Fix U open, $\epsilon > 0$; then $\mu = \sup_{m} \nu_{m} \Rightarrow (\exists m > 0) \nu_{m}(U) > \mu(U) - \epsilon$. Then $\uparrow \nu_{m}$ open and $\mu_{n} \rightarrow \mu$ implies $(\exists N) n \ge N \Rightarrow \mu_{n} \in \uparrow \nu_{m}$.

Then $\mu(U) - \epsilon < \nu_m(U) \le \mu_n(U)$, so $\liminf_n \mu_n(U) \ge \mu(U) - \epsilon$. \Box

When Scott is Weak on the Top (Edalat 1996)

If D is a countably-based domain and $\mu_n, \mu \in \mathbb{V}D$, then TAE:

$$0 \ \mu_n \to \mu \text{ in the Scott topology on } \mathbb{V}D.$$

2 $\liminf_{n \to \infty} \mu_n(U) \ge \mu(U) \ (\forall U \in \sigma_D).$

Corollary: If X is a separable metric space and $e: X \hookrightarrow \operatorname{Max} D$ is a topological embedding of X as a G_{δ} in the relative Scott topology, then Prob $e: \operatorname{Prob} X \to \operatorname{Max} \mathbb{V}D$ is a topological embedding wrt the weak topology.

When Scott is Weak on the Top (Edalat 1996)

If D is a countably-based domain and $\mu_n, \mu \in \mathbb{V}D$, then TAE:

$$\ \, \mathbf{0} \ \, \mu_n \to \mu \text{ in the Scott topology on } \mathbb{V}D.$$

2 lim inf_n
$$\mu_n(U) \ge \mu(U) \ (\forall U \in \sigma_D).$$

Application: Iterated Function Systems.

An IFS with probabilities consists of:

- X compact metric space,
- $f_i: X \to X, i = i, \ldots, N.$
- $p_i > 0$ with $\sum_{i \le N} p_i = 1$.

The system is *hyperbolic* if f_i is a contraction for each *i*.

Markov operator T: Prob $X \rightarrow$ Prob X:

$$T(\mu)(B) = \sum_{i \leq N} p_i \cdot \mu(f_i^{-1}(B)) = \sum_{i \leq N} p_i \cdot f_{i*} \mu(B).$$

HUTCHINSON: T is a contraction in the Kantorovich-Wasserstein metric, so it has a unique fixed point $\mu \in \operatorname{Prob} X$.

When Scott is Weak on the Top (Edalat 1996)

If D is a countably-based domain and $\mu_n, \mu \in \mathbb{V}D$, then TAE:

$$\ \, \textbf{0} \ \, \mu_n \to \mu \text{ in the Scott topology on } \mathbb{V}D.$$

2
$$\liminf_{n \to \infty} \mu_n(U) \ge \mu(U) \ (\forall U \in \sigma_D).$$

Application: Iterated Function Systems.

An IFS with probabilities consists of:

- X compact metric space,
- $f_i: X \to X, i = i, \ldots, N.$

•
$$p_i > 0$$
 with $\sum_{i \le N} p_i = 1$.

The IFS is weakly hyperbolic if

 $(\forall i_1, i_2, \ldots \in \{1, \ldots, N\}^{\omega})(\exists x \in X) \implies \bigcap_{n \ge 1} f_{i_1}f_{i_2}\cdots f_{i_n}(X) = \{x\}.$

When Scott is Weak on the Top (Edalat 1996)

Application: Iterated Function Systems.

The IFS is weakly hyperbolic if

 $(\forall i_1, i_2, \ldots \in \{1, \ldots, N\}^{\omega})(\exists x \in X) \implies \bigcap_{n \ge 1} f_{i_1}f_{i_2} \cdots f_{i_n}(X) = \{x\}.$

Theorem: For any weakly hyperbolic IFS with probabilities, there is a unique $\mu^* \in \operatorname{Prob} X$ satisfying the sequence $T^n(\mu) \to \mu^*$ weakly for every $\mu \in \operatorname{Prob} X$.

Proof: Prob $\Gamma(X)$ is a domain with least element δ_X . Then show

Fix $T = \sup_n T^n(\delta_X) = \mu^* \in \text{Max} \operatorname{Prob}(\Gamma(X), \supseteq)$, so μ^* is unique fixed point of T. Then

 $X \hookrightarrow (\Gamma(X), \supseteq) \Rightarrow \operatorname{Prob} X \hookrightarrow \operatorname{Max} \operatorname{Prob}(\Gamma(X), \supseteq)$ implies $T^n(\delta_X) \sqsubseteq T^n(\mu)$, so $T^n(\mu) \to_w \mu^*$ for each $\mu \in \operatorname{Prob} X$. \Box

Testing LPMs (van Breugel, M., Ouaknine & Worrell 2003)

Theorem: If D is a countably-based coherent domain, and $\mu_n, \mu \in \mathbb{V}D$, then $\mu_n \to \mu$ in the Lawson topology on $\mathbb{V}D$ iff:

- $\liminf_{n} \mu_n(U) \ge \mu(U) \ (\forall U \in \sigma_D)$, and
- $\limsup_n \mu_n(\uparrow F) \leq \mu(\uparrow F) \ (\forall F \subseteq D \text{ finite}).$

Corollary: If *D* is coherent and countably-based, then $\mathbb{V}D$ is coherent and the Lawson topology on $\mathbb{V}D$ agrees with the weak topology.

Proof: In light of the Theorem, the Portmanteau Theorem implies the Lawson topology is coarser than the weak topology, but both are compact Hausdorff.

This provides an alternative to Jung & Tix's proof that $\mathbb{V}D$ is coherent if D is.

Applications in Domain Theory

 \mathbb{V} extends to a monad on DCPO by $f: P \to Q \mapsto \mathbb{V}f: VP \to \mathbb{V}Q$ by $\mathbb{V}f\nu(U) = \nu(f^{-1}(U))$, the push forward of ν by f. Denote $\mathbb{V}f(\nu)$ by $f_*\nu$

Our Knowledge of \mathbb{V} (Jung & Tix 1988)

- $\mathbb{V}: Coh \to Coh$ is a monad.
- $\mathbb{V}T \in BCD$ for any rooted tree T.
- $\mathbb{V}T^{rev} \in RB$ for any finite reverse tree T.

 $\mathbb{V}D$ was devised to model *probabilistic choice*: $p +_r q$, which chooses p with probability r and q with probability 1 - r.

 $\mathbb{V}D$ has seen limited success, because:

- \mathbb{V} is not known to leave any CCC of domains invariant.
- V doesn't satisfy a distributive law wrt any of the models of nondeterminism.

The Cantor Tree

$$CT := \{0,1\}^* \cup \{0,1\}^{\omega} - \text{ use prefix order.}$$

$$s \ll t \text{ iff } s \leq t \& s \in \{0,1\}^*.$$

$$C := \{0,1\}^{\omega} - \text{Cantor set of infinite words, with inherited Scott topology.}$$

$$C_m = \{0,1\}^m - m\text{-bit words.} \quad \text{Outcomes of } m\text{-flips of a coin.}$$

$$\pi_m : CT \to \downarrow C_m; \quad \pi_{mn} : C_n \to C_m \text{ projections.}$$

$$FAC(CT) = \{M \subseteq CT \mid M \text{ is a } full \text{ Lawson-closed antichain}\};$$

$$M \text{ full iff } C \subseteq \uparrow M$$

$$M \sqsubseteq N \quad \text{iff} \quad M \sqsubseteq_{EM} N \quad \text{iff} \quad \exists \pi_{MN} : N \to M.$$
For a domain D , we define:

$$\begin{aligned} & RC(D) &:= \{(M,X) \in FAC(CT) \times [M \to D]\} \\ & (M,X) \sqsubseteq (N,Y) \quad \text{iff} \quad M \sqsubseteq_{EM} N \& X \circ \pi_{MN} \leq Y. \end{aligned}$$

RC is a monad (T. Barker 2016)

RC defines a monad on BCD, the category of bounded complete domains. Moreover, RC enjoys a distributive law wrt the upper power domain.

Random Variable Monads

DANA'S model of the *stochastic lambda calculus* uses a random variable $X : [0,1] \rightarrow \mathcal{P}(\mathbb{N})$ to model randomness in the lambda calculus.

 $\operatorname{Tyler}\,\operatorname{Barker}'s$ monad provides a general approach:

Randomized PCF

Simply typed lambda calculus with ground types *Nat* and *Bool*, and probabilistic choice:

Standard semantics in a domain $D \in BCD$ for PCF, but with additional *tree structure* to replicate branching of nested choices in $M \oplus M$.

A random variable $(M, X) \in RC(D)$ models probabilistic choice.

Random Variable Monads

Randomized PCF

Simply typed lambda calculus with ground types *Nat* and *Bool*, and probabilistic choice:

Construction models randomized algorithms; feeds results of coin tosses to both instances:

E.g., in Miller-Rabin, test $p \lor q$ prime with $X(t) \lor Y(t)$ Implementation available on Github.

Domain environments $X \hookrightarrow M_X$ seek to approximate continuous maps $f: X \to Y$ with Scott-continuous approximants $f_n: M_X \to M_Y$.

Random variables are measurable maps. We illustrate how to approximate measurable maps using domain-theoretic techniques.

A stochastic process is a family $\{X_t \mid t \in T \subseteq \mathbb{R}_+\}$ of random variables $X_t \colon \Omega \to S$, where $(\Omega, \Sigma_{\Omega}, \mu)$ is a probability space, and S is a Polish space.

Skorohod's Theorem

Let S be a Polish space, let $\nu \in \operatorname{Prob} S$, and let λ denote Lebesgue measure on [0,1]. Then there is a random variable $X : [0,1] \to S$ satisfying $X_* \lambda = \nu$.

Moreover, if $\nu_n, \nu \in \operatorname{Prob} S$ satisfy $\nu_n \to_w \nu$, then the random variables $X_n, X \colon [0,1] \to S$ with $X_* \lambda = \nu, X_{n*} \lambda = \nu_n$ satisfy $X_n \to X \lambda$ -a.e.

Skorohod's Theorem

Let S be a Polish space, let $\nu \in \operatorname{Prob} S$, and let λ denote Lebesgue measure on [0,1]. Then there is a random variable $X : [0,1] \to S$ satisfying $X_* \lambda = \nu$.

Moreover, if $\nu_n, \nu \in \operatorname{Prob} S$ satisfy $\nu_n \to_w \nu$, then the random variables $X_n, X \colon [0,1] \to S$ with $X_* \lambda = \nu, X_{n*} \lambda = \nu_n$ satisfy $X_n \to X \lambda$ -a.e.

Proof Outline: Basic set up:

- $S \hookrightarrow M_S$ countably-based bounded complete domain environment.
- Prob S → Max Prob M_S ⊆ VM_S; weak topology is the inherited Scott topology.
- $B_S \subseteq M_S$ countable basis $\mathcal{B} = \{\sum_{x \in F} r_x \delta_x \mid r_x \text{ dyadic}, \sum_x r_x = 1, F \subseteq B_S\}$ countable basis for Prob M_S

Skorohod's Theorem

Moreover, if $\nu_n, \nu \in \operatorname{Prob} S$ satisfy $\nu_n \to_w \nu$, then the random variables $X_n, X \colon [0,1] \to S$ with $X_* \lambda = \nu, X_{n*} \lambda = \nu_n$ satisfy $X_n \to X \lambda$ -a.e.

Proof Outline: Now, given $\nu \in \text{Prob } S$:

- Choose $\nu_n \ll \nu_{n+1} \ll \nu$ with $\nu = \sup_n \nu_n \& \nu_n \in \mathcal{B}$.
- Let $\nu_n = \sum_{x \in F_n} r_x \delta_x \ll \sum_{y \in F_{n+1}} s_y \delta_y = \nu_{n+1}$.
- Since r_x, s_y are dyadic, the transport numbers {t_{x,y}}<sub>(x,y)∈F_n×F_{n+1} also are dyadic. Because ν_n, ν_{n+1} are probability measures,
 </sub>

Skorohod's Theorem

Moreover, if $\nu_n, \nu \in \operatorname{Prob} S$ satisfy $\nu_n \to_w \nu$, then the random variables $X_n, X \colon [0,1] \to S$ with $X_* \lambda = \nu, X_{n*} \lambda = \nu_n$ satisfy $X_n \to X \lambda$ -a.e.

Skorohod's Theorem

Moreover, if $\nu_n, \nu \in \operatorname{Prob} S$ satisfy $\nu_n \to_w \nu$, then the random variables $X_n, X \colon [0,1] \to S$ with $X_* \lambda = \nu, X_{n*} \lambda = \nu_n$ satisfy $X_n \to X \lambda$ -a.e.

Proof Outline:

The inductive step is the same idea, complicated by the repeated subdivisions of subintervals. In the end, we have

$$\begin{split} &f_{m_i} : \{0,1\}^{m_i} \to S \text{ with } f_{m_i} \circ \pi_{m_i} \sqsubseteq f_{m_{i+1}} \circ \pi_{m_{i+1}}, \text{ and} \\ &f_{m_i} \circ \pi_{m_1} : \{0,1\}^{\mathbb{N}} \to S \text{ with } (f_{m_i} \circ \pi_{m_1}) \mu_{\{0,1\}^{\mathbb{N}}} = \nu_{n_i}. \\ &\text{Then, } f := \lim_i (f_{m_i} \circ \pi_{m_1}) : \{0,1\}^{\mathbb{N}} \to S \text{ satisfies } f \, \mu_{\{0,1\}^{\mathbb{N}}} = \nu. \\ &\text{Finally, if } \lambda \text{ denotes Lebesgue measure on } [0,1]: \\ &\iota : [0,1] \stackrel{\leftarrow}{\hookrightarrow} \{0,1\}^{\mathbb{N}} : \pi \Rightarrow \iota \lambda = \mu_{\{0,1\}^{\mathbb{N}}}, \text{ so} \\ &(f \circ \iota) : [0,1] \to S \text{ satisfies } (f \circ \iota) \lambda = \nu. \end{split}$$

Skorohod's Theorem

Let S be a Polish space, let $\nu \in \operatorname{Prob} S$, and let λ denote Lebesgue measure on [0,1]. Then there is a random variable $X : [0,1] \to S$ satisfying $X_* \lambda = \nu$.

Moreover, if $\nu_n, \nu \in \operatorname{Prob} S$ satisfy $\nu_n \to_w \nu$, then the random variables $X_n, X \colon [0,1] \to S$ with $X_* \lambda = \nu, X_{n*} \lambda = \nu_n$ satisfy $X_n \to X \lambda$ -a.e.

Proof Outline:

The last statement follows by an argument showing

$$\lambda(\{x\in[0,1]\mid X_n(x)\not\to_{\Lambda} X(x)\})=0.$$

Actually, the Theorem also holds for $\nu_n, \nu \in \mathbb{V}S$. In fact,

Corollary: (to the Proof:)

Let $S \hookrightarrow M_S$ be a Polish space with domain environment M_S , and let $f: [0,1] \to S$ be a measurable map. Then: there is a measurable map $g: [0,1] \to S$ with $f = g \lambda$ -a.e. satisfying $g = \sup_n g_n$, with $g_n: [0,1] \to M_S$ piecewise constant.

- Abramsky, S. and A. Jung, Domain Theory, in: Handbook of Logic in Computer Science, Clarendon Press (1994), pp. 1–168.
- Alvarez-Manilla, M., A. Edalat and N. Saheb-Djarhomi, An extension result for continuous valuations, ENTCS 13 (1998), pp. 2–11.
- Barker, T., A monad for randomized algorithms, Tulane PhD dissertation, May, 2016.
- Bilokon, P. and A. Edalat, A domain-theoretic approach to Brownian motion and general continuous stochastic processes, Proceedings of CSL-LICS 2014, IEEE Press, pp. 15:1 – 15:10.
- van Breugel, F., M. Mislove, J. Ouaknine, J. Worrell, Domain theory, testing and simulations for labelled Markov processes, Theoretical Computer Science 333 (2005), pp 171–197.
- Brian, W. and M. Mislove, From Haar to Lebesgue via Domain Theory, Lecture Notes in Computer Science **8464** (2014), pp. 214-228.

- Ciesielski, K., R. C. Flagg and R. Kopperman, Characterizing topologies with bounded complete computational models, in: Proceedings of MFPS XV, ENTCS 20 (1999).
- Edalat, A., Domain theory and integration, Proceedings of LICS 1994, Paris, France, IEEE Press, pp. 115-124.
- Edalat, A., Domain theory in stochastic processes, Proceedings of LICS 1995, Paris, France, IEEE Press, pp. 244–254.
- Edalat, A., Dynamical systems, measures and fractals in domain theory, Information and Computation **120** (1995), pp. 32–48.
- Edalat, A., When Scott is weak on the top, Mathematical Structures for Computer Science **7** (1997), pp. 401–417.
- Edalat, A. and R. Heckmann, A computational model for metric spaces, Theoretical Computer Science **193** (1998), pp. 53–73.

- Gierz, G., K. H. Hofmann, J. D. Lawson, M. Mislove and D. S. Scott, Continuous Lattices and Domains, Cambridge University Press, 2003.
- Goubault-Larrecq, J., Non-Hausdorff Topology and Domain Theory: Selected Topics in Point-Set Topology, Cambridge University Press, 2013.
- Jones, C., Probabilistic nondeterminism, PhD Thesis, University of Edinburgh, (1988).
- Jung, A. and R. Tix, The troublesome probabilistic powerdomain, ENTCS **13** (1998) pp. 70–91.
- Lawson, J. D., Spaces of maximal points, Mathematical Structures in Computer Science **7** (1997), pp. 543–555.
- Mislove, M., Nondeterminism and probabilistic choice: Obeying the laws, in: *Proceedings of CONCUR 2000*, Lecture Notes in Computer Science 1877 (2000), pp. 350–365.

- Mislove, M., Discrete random variables over domains, Theoretical Computer Science **380**, July 2007, pp. 181-198.
- Mislove, M., Anatomy of a Domain of Continuous Random Variables I, Theoretical Computer Science **546** (2014), pp. 176–187.
- Mislove, M., Anatomy of a Domain of Continuous Random Variables II, in: Bob Coecke, Luke Ong, Prakash Panangaden, editors, *Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky*, Lecture Notes in Computer Science **7860** (2013), pp. 225–245.
- Mislove, M, Domains and random variables, preprint, http://arxiv.org/abs/1607.07698
- Scott, D., Stochastic λ-calculi: Extended Abstract, Journal of Applied Logic 12 (2014), pp. 369–376.
- Skorohod, A. V., Limit theorems for stochastic processes. Theory of Probability & Its Applications, 1 (1956), pp. 261–290.