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Defining Domains

Informatic partial order

p v q if q contains more information than p.

Example: Zero finding

[a, b] v [c , d ] ∈ IR iff [c , d ] ⊆ [a, b].

Directed completeness

∅ 6= D ⊆ P directed if x , y ∈ D ⇒ (∃z ∈ D) x , y ≤ z .
P directed complete: D directed ⇒ supD exists.

D ⊆ IR directed ⇒ supD =
⋂
D.

Approximation

x � y iff y ≤ supD ⇒ (∃d ∈ D) x ≤ d .
Domain: ↓↓y = {x | x � y} directed and y = sup ↓↓y

[a, b]� [c , d ] iff [c , d ] ⊆ (a, b);

[c , d ] =
⋂
{[a, b] | [c , d ] ⊆ (a, b)}.



Defining Domains

Morphisms

f : P → Q D-continuous if :
• f monotone, and
• D directed ⇒ f (supD) = sup f (D).

DCPO – directed complete partial orders and D-continuous maps

Theorem: Tarski, Knaster, Scott
D ∈ DCPO with least element, ⊥, f : D → D monotone. Then:

• Fix f = supα∈Ord f
α(⊥) is the least fixed point of f .

• f D-continuous =⇒ Fix f = supn≥0 f
n(⊥).

Least fixed point semantics:

rec x .p −→ p[rec x .p/x ] =⇒ [[rec x .p]] = Fix [[p]].



Defining Domains

Morphisms

f : P → Q D-continuous if :
• f monotone, and
• D directed ⇒ f (supD) = sup f (D).

Properties:

• f : P × Q → R jointly D-continuous iff f is separately D-continuous.

• [P → Q] ordered pointwise: f v g iff f (x) ≤ g(x) (∀x ∈ P).

[P → Q] is a DCPO if P,Q are DCPOs.

• Cartesian closed categories of domains: BCD ⊆ RB ⊆ FS.



Defining Domains

Morphisms

f : P → Q D-continuous if :
• f monotone, and
• D directed ⇒ f (supD) = sup f (D).

Scott Topology

U Scott open if:

• U = ↑U = {x ∈ P | (∃u ∈ U) u ≤ x} and

• D directed, supD ∈ U ⇒ D ∩ U 6= ∅.
Always T0, in fact, sober; T1 ⇒ flat order.

limD = supD for D directed.

f : P → Q D-continuous iff f is Scott continuous.

D domain ⇒ BD = {↑↑x | x ∈ D} basis for σD = {U | U Scott open}.
Transitivity: x ≤ y � y ′ ≤ z ⇒ x � z ; Implies ↑(↑↑x) = ↑↑x .

Interpolation: x � z ⇒ (∃y) x � y � z . Implies ↑↑x Scott open.



Defining Domains

Morphisms

f : P → Q D-continuous if :
• f monotone, and
• D directed ⇒ f (supD) = sup f (D).

Scott Topology

U Scott open if:

• U = ↑U = {x ∈ P | (∃u ∈ U) u ≤ x} and

• D directed, supD ∈ U ⇒ D ∩ U 6= ∅.

Lawson Topology

Basis: {↑↑x \ ↑F | F ∈ P<ωD}
Hausdorff refinement of Scott topology.

D is coherent if Lawson topology is compact.

All CCCs of domains consist of coherent domains, but
Coh is not a CCC.



Examples of Domains

Basic Models
Unit interval: ([0, 1],≤), x � y iff x = 0 or x < y

Interval domain: (I[0, 1],⊇) – restriction of (IR,⊇)

Topology

Upper space: X – locally compact Hausdorff space
Γ(X ) – nonempty compact subsets of X under reverse inclusion:
A v B iff B ⊆ A. A� B iff B ⊆ A◦.

Edalat: Used Γ(X ) to model fractals, weakly hyperbolic Iterated
Function Systems, neural nets. . .

Generalizes to the upper power domain:
PU(D) = ({X ⊆ D | ∅ 6= X = ↑X Scott compact},⊇).



Examples of Domains

Basic Models
Unit interval: ([0, 1],≤), x � y iff x = 0 or x < y

Interval domain: (I[0, 1],⊇) – restriction of (IR,⊇)

Topology

Upper space: X – locally compact Hausdorff space
Γ(X ) – nonempty compact subsets of X under reverse inclusion:
A v B iff B ⊆ A. A� B iff B ⊆ A◦.

Generalizes to the upper power domain:
PU(D) = ({X ⊆ D | ∅ 6= X = ↑X Scott compact},⊇).

Hofmann-M.:
Scott-open filters in σ(D) ' Scott-compact upper sets.

F −→
⋂
F

U(C ) ←− C

It follows that X � Y ∈ PU(D) iff Y ⊆ X ◦.



Examples of Domains

Basic Models
Unit interval: ([0, 1],≤), x � y iff x = 0 or x < y

Interval domain: (I[0, 1],⊇) – restriction of (IR,⊇)

Topology

Upper space: X – locally compact Hausdorff space
Γ(X ) – nonempty compact subsets of X under reverse inclusion:
PU(D) = ({X ⊆ D | ∅ 6= X = ↑X Scott compact},⊇).

Domain Environments
Maximal Point Spaces: (Lawson)

Domain P is bounded complete if each pair of elements has an infimum.

Example: (Γ(X ),⊇); X ' Max Γ(X ) by x 7→ {x}.
Countably-based bounded complete domains are computational models.



Examples of Domains

Basic Models
Unit interval: ([0, 1],≤), x � y iff x = 0 or x < y

Interval domain: (I[0, 1],⊇) – restriction of (IR,⊇)

Topology

Upper space: X – locally compact Hausdorff space
Γ(X ) – nonempty compact subsets of X under reverse inclusion:

Domain Environments
X – metrizable space;

M – countably-based bounded complete domain.

Lawson; Ciesielski, Flagg & Kopperman:

(∃M) (X , τM) ' (MaxM, σM |Max M) iff X is a Polish space.



Measure Spaces and Probability

Banach (1933)

X complete metric space

Cb(X ,R) - Banach space; Cb(X ,R)∗ – dual space

Riesz Representation Theorem implies M(X ) ' Cb(X ,R)∗

ProbX – unit sphere of Cb(X ,R)∗ in weak ∗-topology.

Banach-Alaoglu: Unit ball is weak ∗-compact.

Weak ∗-topology is same as weak topology, so:

µn → µ weakly if
∫
f dµn →

∫
f dµ for f : X → R bounded, continuous



Measure Spaces and Probability

Banach (1933)

X complete metric space

Cb(X ,R) - Banach space; Cb(X ,R)∗ – dual space

Riesz Representation Theorem implies M(X ) ' Cb(X ,R)∗

ProbX – unit sphere of Cb(X ,R)∗ in weak ∗-topology.

Banach-Alaoglu: Unit ball is weak ∗-compact.

Weak ∗-topology is same as weak topology, so:

µn → µ weakly if
∫
f dµn →

∫
f dµ for f : X → R bounded, continuous

Simple Measures Weak ∗-dense

{
∑

x∈F rxδx | rx ≥ 0,
∑

rx = 1,F ⊆ X finite} weak ∗-dense in ProbX .



Measure Spaces and Probability

Kolmogorov (1936)

Developed abstract theory of measure spaces and probability:

(Ω,ΣΩ, µ) – Probability space; X : Ω→ R random variable

Probability measures on infinite product spaces; 0–1 Laws

Probability measure as a set function: µ : ΣΩ → [0, 1] satisfying:

(i) µ(∅) = 0 and µ(Ω) = 1;

(ii) µ(
·⋃
n∈N An) =

∑
n∈N µ(An) if {An}n∈N ⊆ ΣΩ pairwise disjoint.

Note: Condition (ii) implies:

• µ(A) ≤ µ(B) if A ⊆ B, and

• µ(
⋃

n An) = supn µn(An) if m ≤ n ⇒ Am ⊆ An.



Measure Spaces and Probability

Portmanteau Theorem
Let µn, µ ∈ ProbX for X complete metric space. TAE:

• µn → µ in the weak topology

•
∫
f dµn →

∫
f dµ for all f : X → R bounded, uniformly continuous

• lim supn µn(F ) ≤ µ(F ) for all F ⊆ X closed

• lim infn µn(O) ≥ µ(O) for all O ⊆ X open

• limn µn(A) = µ(A) for all A ⊆ X µ-continuity sets



Measures on Domains

Valuations
Let D be a domain and let σD denote its family of Scott-open sets.
A continuous valuation is a mapping µ : σD → [0, 1] satisfying:

Strictness µ(∅) = 0

Modularity µ(U ∪ V ) + µ(U ∩ V ) = µ(U) + µ(V )

Monotonicity U ⊆ V =⇒ µ(U) ≤ µ(V )

Continuity {Ui} ⊆ σD directed implies µ(
⋃

i Ui ) = supi µ(Ui ).

Clearly every Borel subprobability measure induces a valuation on σD ;

The converse was shown by Lawson for countably-based bounded
complete domains, and by Alvarez-Manilla, Edalat and
Saheb-Djarhomi for general domains.

Probabilistic power domain:

VD – valuations on D, ordered pointwise:

µ v ν iff µ(U) ≤ ν(U) (∀U ∈ σD).

VD ⊆ [D → [0, 1]] is a subdcpo, but domain structure is elusive.



Measures on Domains

The Domain Order from the Classical Approach

Recall for a compact space X and µ, ν ∈ ProbX ,∫
f dµ ≤

∫
f dν (∀f : X → R) ⇐⇒ µ = ν.

Theorem: If D is a coherent domain and µ, ν ∈ VD, then TAE:

• µ v ν, i.e., µ(U) ≤ ν(U) (∀U ∈ σ(D)).

•
∫
f dµ ≤

∫
f dν for all f : D → R+ Scott continuous.

•
∫
f dµ ≤

∫
f dν for all f : D → R+ monotone Lawson continuous.



The Splitting Lemma and Simple Measures

Splitting Lemma (Jones 1989)

Let µ =
∑

x∈F rxδx , ν =
∑

y∈G syδy in VD. Then

µ ≤ ν iff there are transport numbers {tx,y}(x,y)∈F×G ⊆ R+ satisfying:

1 rx =
∑

y tx,y (∀x ∈ F )

2
∑

x tx,y ≤ sy (∀y ∈ G )

3 tx,y > 0 ⇒ x ≤ y .

Moreover, µ � ν iff

4 tx,y > 0 =⇒
∑

x tx,y < sy and x � y (∀x , y).

The proof is an application of the Max Flow – Min Cut Theorem.

In addition to being a useful tool for proving results about subprobability
measures on domains, the expectation was that the Splitting Lemma
would provide insights into the domain structure of VD.



The Splitting Lemma and Simple Measures

BD ⊆ D is a basis if

• ↓↓x ∩ BD is directed, and

• x = sup (↓↓x ∩ BD)

for all x ∈ D.

Simple Measures are Dense

Let D be a domain with basis BD , and let B be a basis for [0, 1]. Then:

BVD = {
∑

x∈F rxδx | rx ∈ B,
∑

x rx ≤ 1 & F ⊆ BD finite}
is a basis for VD.

As a consequence, µ = sup (↓↓µ ∩ BVD) for all µ ∈ VD.



From Domains to Measures...

When Scott is Weak on the Top (Edalat 1996)

If D is a countably-based domain and µn, µ ∈ VD, then TAE:

1 µn → µ in the Scott topology on VD.

2 lim infn µn(U) ≥ µ(U) (∀U ∈ σD).

Proof of (i) ⇒ (ii): We know µ = supm νm, νm � µ.

Fix U open, ε > 0; then µ = supm νm ⇒ (∃m > 0) νm(U) > µ(U)− ε.
Then ↑↑νm open and µn → µ implies (∃N) n ≥ N ⇒ µn ∈ ↑↑νm.

Then µ(U)− ε < νm(U) ≤ µn(U), so lim infn µn(U) ≥ µ(U)− ε. 2



From Domains to Measures...

When Scott is Weak on the Top (Edalat 1996)

If D is a countably-based domain and µn, µ ∈ VD, then TAE:

1 µn → µ in the Scott topology on VD.

2 lim infn µn(U) ≥ µ(U) (∀U ∈ σD).

Corollary: If X is a separable metric space and e : X ↪→ MaxD is a
topological embedding of X as a Gδ in the relative Scott topology, then
Prob e : ProbX → MaxVD is a topological embedding wrt the weak
topology.



From Domains to Measures...

When Scott is Weak on the Top (Edalat 1996)

If D is a countably-based domain and µn, µ ∈ VD, then TAE:

1 µn → µ in the Scott topology on VD.

2 lim infn µn(U) ≥ µ(U) (∀U ∈ σD).

Application: Iterated Function Systems.

An IFS with probabilities consists of:

• X – compact metric space,

• fi : X → X , i = i , . . . ,N.

• pi > 0 with
∑

i≤N pi = 1.

The system is hyperbolic if fi is a contraction for each i .

Markov operator T : ProbX → ProbX :

T (µ)(B) =
∑

i≤N pi · µ(f −1
i (B)) =

∑
i≤N pi · fi∗ µ(B).

Hutchinson: T is a contraction in the Kantorovich-Wasserstein metric,
so it has a unique fixed point µ ∈ ProbX .



From Domains to Measures...

When Scott is Weak on the Top (Edalat 1996)

If D is a countably-based domain and µn, µ ∈ VD, then TAE:

1 µn → µ in the Scott topology on VD.

2 lim infn µn(U) ≥ µ(U) (∀U ∈ σD).

Application: Iterated Function Systems.

An IFS with probabilities consists of:

• X – compact metric space,

• fi : X → X , i = i , . . . ,N.

• pi > 0 with
∑

i≤N pi = 1.

The IFS is weakly hyperbolic if

(∀i1, i2, . . . ∈ {1, . . . ,N}ω)(∃x ∈ X ) =⇒
⋂

n≥1 fi1 fi2 · · · fin(X ) = {x}.



From Domains to Measures...

When Scott is Weak on the Top (Edalat 1996)

Application: Iterated Function Systems.

The IFS is weakly hyperbolic if

(∀i1, i2, . . . ∈ {1, . . . ,N}ω)(∃x ∈ X ) =⇒
⋂

n≥1 fi1 fi2 · · · fin(X ) = {x}.
Theorem: For any weakly hyperbolic IFS with probabilities, there is a
unique µ∗ ∈ ProbX satisfying the sequence T n(µ)→ µ∗ weakly for every
µ ∈ ProbX .

Proof: Prob Γ(X ) is a domain with least element δX . Then show

FixT = supn T
n(δX ) = µ∗ ∈ Max Prob (Γ(X ),⊇),

so µ∗ is unique fixed point of T . Then

X ↪→ (Γ(X ),⊇) ⇒ ProbX ↪→ Max Prob(Γ(X ),⊇)

implies T n(δX ) v T n(µ), so T n(µ)→w µ∗ for each µ ∈ ProbX . 2



From Domains to Measures...

Testing LPMs (van Breugel, M., Ouaknine & Worrell 2003)

Theorem: If D is a countably-based coherent domain, and µn, µ ∈ VD,
then µn → µ in the Lawson topology on VD iff:

• lim infn µn(U) ≥ µ(U)
(
∀U ∈ σD), and

• lim supn µn(↑F ) ≤ µ(↑F ) (∀F ⊆ D finite).

Corollary: If D is coherent and countably-based, then VD is coherent
and the Lawson topology on VD agrees with the weak topology.

Proof: In light of the Theorem, the Portmanteau Theorem implies the
Lawson topology is coarser than the weak topology, but both are
compact Hausdorff. 2

This provides an alternative to Jung & Tix’s proof that VD is coherent if
D is.



Applications in Domain Theory

V extends to a monad on DCPO by f : P → Q 7→ Vf : VP → VQ by
Vf ν(U) = ν(f −1(U)), the push forward of ν by f .

Denote Vf (ν) by f∗ ν

Our Knowledge of V (Jung & Tix 1988)

• V : Coh→ Coh is a monad.

• VT ∈ BCD for any rooted tree T .

• VT rev ∈ RB for any finite reverse tree T .

VD was devised to model probabilistic choice: p +r q, which chooses p
with probability r and q with probability 1− r .

VD has seen limited success, because:

• V is not known to leave any CCC of domains invariant.

• V doesn’t satisfy a distributive law wrt any of the models of
nondeterminism.



The Cantor Tree

CT := {0, 1}∗ ∪ {0, 1}ω – use prefix order.

s � t iff s ≤ t & s ∈ {0, 1}∗.
C := {0, 1}ω – Cantor set of infinite words, with inherited Scott topology.

Cm = {0, 1}m – m-bit words. Outcomes of m-flips of a coin.

πm : CT → ↓Cm; πmn : Cn → Cm projections.

FAC (CT ) = {M ⊆ CT | M is a full Lawson-closed antichain};
M full iff C ⊆ ↑M
M v N iff M vEM N iff ∃πMN : N → M.

For a domain D, we define:

RC (D) := {(M,X ) ∈ FAC (CT )× [M → D] }
(M,X ) v (N,Y ) iff M vEM N & X ◦ πMN ≤ Y .

RC is a monad (T. Barker 2016)

RC defines a monad on BCD, the category of bounded complete
domains. Moreover, RC enjoys a distributive law wrt the upper power
domain.



Random Variable Monads

Dana’s model of the stochastic lambda calculus uses a random variable
X : [0, 1]→ P(N) to model randomness in the lambda calculus.

Tyler Barker’s monad provides a general approach:

Randomized PCF
Simply typed lambda calculus with ground types Nat and Bool , and
probabilistic choice:

t ::= Nat | Bool | t → t

M ::= 0 | true | false |
succ(M) | pred(M) | zero?(M) | ifM thenM elseM

| x | λx : t.M | MM | µx : t.M | M ⊕M

Standard semantics in a domain D ∈ BCD for PCF, but with additional
tree structure to replicate branching of nested choices in M ⊕M.

A random variable (M,X ) ∈ RC (D) models probabilistic choice.



Random Variable Monads

Randomized PCF
Simply typed lambda calculus with ground types Nat and Bool , and
probabilistic choice:

t ::= Nat | Bool | t → t

M ::= 0 | true | false |
succ(M) | pred(M) | zero?(M) | ifM thenM elseM

| x | λx : t.M | MM | µx : t.M | M ⊕M

Construction models randomized algorithms; feeds results of coin tosses
to both instances:

E.g., in Miller-Rabin, test p ∨ q prime with X (t) ∨ Y (t)

Implementation available on Github.



Domains and Random Variables

Domain environments X ↪→ MX seek to approximate continuous maps
f : X → Y with Scott-continuous approximants fn : MX → MY .

Random variables are measurable maps. We illustrate how to
approximate measurable maps using domain-theoretic techniques.

A stochastic process is a family {Xt | t ∈ T ⊆ R+} of random variables
Xt : Ω→ S , where (Ω,ΣΩ, µ) is a probability space, and S is a Polish
space.

Skorohod’s Theorem
Let S be a Polish space, let ν ∈ ProbS , and let λ denote Lebesgue
measure on [0, 1]. Then there is a random variable X : [0, 1]→ S
satisfying X∗ λ = ν.

Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then the random variables
Xn,X : [0, 1]→ S with X∗ λ = ν,Xn∗ λ = νn satisfy Xn → X λ-a.e.



Domains and Random Variables

Skorohod’s Theorem
Let S be a Polish space, let ν ∈ ProbS , and let λ denote Lebesgue
measure on [0, 1]. Then there is a random variable X : [0, 1]→ S
satisfying X∗ λ = ν.

Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then the random variables
Xn,X : [0, 1]→ S with X∗ λ = ν,Xn∗ λ = νn satisfy Xn → X λ-a.e.

Proof Outline: Basic set up:

• S ↪→ MS – countably-based bounded complete domain environment.

• ProbS ↪→ Max ProbMS ⊆ VMS ; weak topology is the inherited
Scott topology.

• BS ⊆ MS – countable basis

B = {
∑

x∈F rxδx | rx dyadic,
∑

x rx = 1,F ⊆ BS} countable basis
for ProbMS



Domains and Random Variables

Skorohod’s Theorem
Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then the random variables
Xn,X : [0, 1]→ S with X∗ λ = ν,Xn∗ λ = νn satisfy Xn → X λ-a.e.

Proof Outline: Now, given ν ∈ ProbS :

• Choose νn � νn+1 � ν with ν = supn νn & νn ∈ B.
• Let νn =

∑
x∈Fn

rxδx �
∑

y∈Fn+1
syδy = νn+1.

• Since rx , sy are dyadic, the transport numbers {tx,y}(x,y)∈Fn×Fn+1

also are dyadic. Because νn, νn+1 are probability measures,

• rx =
∑

y tx,y for each x ∈ Fn;

• sy =
∑

x tx,y for each y ∈ Fn+1.



Domains and Random Variables

Skorohod’s Theorem
Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then the random variables
Xn,X : [0, 1]→ S with X∗ λ = ν,Xn∗ λ = νn satisfy Xn → X λ-a.e.

Proof Outline:
To start, let ν1 =

∑
x∈F1

rxδx �
∑

y∈F2
syδy = ν2; |Fi | = ki ;

2m1 = gcd{rx}; 2m2 = gcd{sy}, wlog m1 ≤ m2.

Cm2 = [tx1y1 ][tx1y2 ] · · · [tx1yk2
] · · · [txk1

y1 ] [txk1
y2 ] · · · [txk1

yk2
]

πm1m2

��

fn2

txi yj 7→yj
// S

v

Cm1 = [rx1 ] · · · [rxk1
]

fn1

rxi 7→xi
// S

• fm1 : Cm1 = {0, 1}m1 → S satisfies fm1 µm1 = ν1;

• fm2 : Cm2 = {0, 1}m2 → S satisfies fm2 µm2 = ν2.



Domains and Random Variables

Skorohod’s Theorem
Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then the random variables
Xn,X : [0, 1]→ S with X∗ λ = ν,Xn∗ λ = νn satisfy Xn → X λ-a.e.

Proof Outline:
The inductive step is the same idea, complicated by the repeated
subdivisions of subintervals. In the end, we have

fmi : {0, 1}mi → S with fmi ◦ πmi v fmi+1 ◦ πmi+1 , and

fmi ◦ πm1 : {0, 1}N → S with (fmi ◦ πm1 )µ{0,1}N = νni .

Then, f := limi (fmi ◦ πm1 ) : {0, 1}N → S satisfies f µ{0,1}N = ν.

Finally, if λ denotes Lebesgue measure on [0, 1]:

ι : [0, 1] �
↪→ {0, 1}N : π ⇒ ι λ = µ{0,1}N , so

(f ◦ ι) : [0, 1]→ S satisfies (f ◦ ι)λ = ν.



Domains and Random Variables

Skorohod’s Theorem
Let S be a Polish space, let ν ∈ ProbS , and let λ denote Lebesgue
measure on [0, 1]. Then there is a random variable X : [0, 1]→ S
satisfying X∗ λ = ν.

Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then the random variables
Xn,X : [0, 1]→ S with X∗ λ = ν,Xn∗ λ = νn satisfy Xn → X λ-a.e.

Proof Outline:
The last statement follows by an argument showing

λ({x ∈ [0, 1] | Xn(x) 6→Λ X (x)}) = 0. 2

Actually, the Theorem also holds for νn, ν ∈ VS . In fact,

Corollary: (to the Proof:)

Let S ↪→ MS be a Polish space with domain environment MS ,
and let f : [0, 1]→ S be a measurable map. Then:

there is a measurable map g : [0, 1]→ S with f = g λ-a.e. satisfying

g = supn gn, with gn : [0, 1]→ MS piecewise constant.
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