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Il. Domains and Probability Measures

I11. Proving Skorohod’s Theorem

Along the way, compare with the computational Polish space approach



Stochastic Processes and Skorohod’s Theorem

A stochastic process is a time-indexed family {X; | t € T CR,} of
random variables / elements X;: Q — S, where (Q,Xq, ) is a
probability space, and S is a Polish space.

Fact: If S is Polish, then so is (Prob(S), d,), where d,, is the Prokhorov
metric.

Skorohod’s Theorem

Let S be a Polish space, let v € Prob S, and let A denote Lebesgue
measure on [0,1]. Then there is a random variable X: [0,1] = S
satisfying X, A = v.

Moreover, if v,,v € Prob S satisfy v, —,, v, then the random variables
Xy X1 [0,1] = S with X, A = v, X, A = v, satisfy X, — X A-a.e.

Fact: We could use any standard probability space (S, ~s, m) instead of
(10,1], A).



Domains

Domains are partially ordered sets with additional properties;

Informatic partial order
p C q if g contains more information than p.

Example: Upper Space U(X) = ({K C X | 0 # K compact} U {X}, D).

Directed completeness
0 # D C P directed if x,y e D = (3z€ D)x,y < z.
P directed complete: D directed =- sup D exists.

F C U(X) directed = sup F =) .F.

Approximation
x<Lyiffy<supD = (3d € D)x < d.
Domain: |y = {x | x < y} directed and y = sup |y

K<LiffLCKS;, L={K|LCK}=sup{K|K<L}.



Domains

Scott Topology
U Scott open if:

e U=tU={xeP|(FuelU)u<x}and
e D directed, supDe U = DNU#0.

Morphisms

f: P— Q is Scott continuous if:
e f is monotone, and
e D directed = f(sup D) =supf(D).

f: X—=Y = U(f): UX)—= UY) by Uf)(K) =f(K)
is monotone and (" F) = f(F).

Lawson Topology

Basis: {Tx\1F | F € P-,D}

Hausdorff refinement of Scott topology.

All the domains we discuss are Lawson compact.



Domain Environments

Embedding X in U(X)
X Polish = X < [0,1]* = X Cg, X compact Polish

{K, | Ky € U(X),n > 0}: neighborhood basis of compact subsets of X.
Then:

1° XCX < MaxU(X) C UX) by x> {x} = ({Kn | x € K5}

2° X inherits the Scott topology = Lawson topology on Max U(X).
3° Each family {Ki,...,Kp,} with X € |J, K; defines a
Scott-continuous projection ¥,,: U(X) — U(X) with finite image.

4°  Ordering the covers by refinement yields lu(Y) = sup,, Ym-.



Domains and Probability Measures

Prob(D) is a Domain

D (Lawson compact) domain = Prob(D) (Lawson compact) domain:
1° pu<viff [fdu < [fdv (Vf: D — R4 Scott continuous)
2° D Lawson compact = (Prob(D), weak) = (Prob(D), Lawson).
3° D= U(X),X Polish = 1prop(D) = SUP, Yns, SO

f = SUp, Y 1, With P pp =37, p(K;)dk; (Y1)
4°  Choosing r; < p(Ki) & Li < Kj and e =1 — (>, r;) produces

def
Vp = €dx + Z’.Sm" ri(SL,- K P fi.

5° Construct 11 < -+ K Vp K Vpyp1 K -+ With g = sup, v,.



Domains and Probability Measures

Prob(D) is a Domain

D (Lawson compact) domain = Prob(D) (Lawson compact) domain:
1° pu<viff [fdu < [fdv (Vf: D — Ry Scott continuous)
2° D Lawson compact = (Prob(D), weak) = (Prob(D), Lawson).
3° D= U(X), X Polish = 1prob(D) = SUP, Yns, SO

= Sup, Y i, With P pp =37, u(K;)dk; (V1)
4°  Choosing r; < pi(Ki) & Li < Kj and e =1 — (>, ri) produces

def
vp = edx + Zigm,, ridr, K Ypafh

5° Construct 1} <€ -+ K Vp K Vpp1 K -+ With g = sup,, vp.
By comparison:

(X, S, d) a computational Polish space implies

p=1lim, 3> didx € Max U(X) with x; € S.

Then Up L Ypepp < = 3BN)n>N = v, < Eigmn didy;.



Defining the Random Variables

A Domain Environment for C

C

C < MaxCT C CT == {0,1}* U{0,1}*
C,={0,1}" = 3m,: C — C, retraction

1c = sup, tp o Tplc, where ¢,: C,, < C lower semicontinuous.



Defining the Random Variables

A Domain Environment for C
e Given p € ProbU(X) and ¢nupr = 3, 14(Ki)dk, fix p, and
choose r; € D, = {55, | 0 < s <2P} and L; < K;.

o Then v, & (1- %, r)ox + S icm, 01, € X icm 1(K:)OK-

L f1<j<n
o Ly fn<j<n+n
o Define f,: Cp, — U(X) by f,(j) = < .
X if Z’-I’,‘<j

Then fn*(z% Z,’gzpn 6 )=(1—=>r)ox+ ZI’Smn rid, = Vn.

2Pn

e So, f,om,: C — U(X) is Lawson continuous and
(faomn)s (ne) = vn = (1= 22, 1i)0x + X i<, fi0L,-



Defining the Random Variables

A Domain Environment for C
e Given p € ProbU(X) and ¢n.p = > i<m, H(Ki)dk;, fix p, and
choose r; € D, = {55, | 0 < s < 2P} and L; < K;.

o Then vy = (1= 50, 1)0x + Xiam, 101, < Xicmy 1K)

Then fo (557 Dicom 04) = (1= 32, 1i)0x + X<, 101, = V.

2Pn

e So, fyom,: C— U(X) is Lawson continuous and
(faomn)s (ke) = va = (L =22, 1i)0x + Xicpm, idL;-

e By construction f,: [Cp, — U(X) satisfies f, < f,.1, and then

X
X = (sup, fn 0 Th)|e: C — U(X) measurable with X,puc = p.



Defining the Random Variables

A Domain Environment for C
By construction f,: [Cp, — U(X) satisfies f, < f,,1, and then
X = (sup, fn 0 Ts)|e: C — U(X) measurable with X,puc = p.

o If im —w p € Prob(X), define
Pm.n L Vs fim and 00 1Cp,  — U(X) as above.
Then X, = (sup,, fm.n)|c satisfies X;,: C — U(X) measurable

with X A = .
e Argue directly that X, = X a.s. A\



Questions?



