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Stochastic Processes and Skorohod’s Theorem

A stochastic process is a time-indexed family {Xt | t ∈ T ⊆ R+} of
random variables / elements Xt : Ω→ S , where (Ω,ΣΩ, µ) is a
probability space, and S is a Polish space.

Fact: If S is Polish, then so is (Prob(S), dp), where dp is the Prokhorov
metric.

Skorohod’s Theorem
Let S be a Polish space, let ν ∈ ProbS , and let λ denote Lebesgue
measure on [0, 1]. Then there is a random variable X : [0, 1]→ S
satisfying X∗ λ = ν.

Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then the random variables
Xn,X : [0, 1]→ S with X∗ λ = ν,Xn∗ λ = νn satisfy Xn → X λ-a.e.

Fact: We could use any standard probability space (S ,ΣS ,m) instead of
([0, 1], λ).



Domains

Domains are partially ordered sets with additional properties;

Informatic partial order

p v q if q contains more information than p.

Example: Upper Space U(X ) = ({K ⊆ X | ∅ 6= K compact} ∪ {X},⊇).

Directed completeness

∅ 6= D ⊆ P directed if x , y ∈ D ⇒ (∃z ∈ D) x , y ≤ z .
P directed complete: D directed ⇒ supD exists.

F ⊆ U(X ) directed ⇒ supF =
⋂
F .

Approximation

x � y iff y ≤ supD ⇒ (∃d ∈ D) x ≤ d .
Domain: ↓↓y = {x | x � y} directed and y = sup ↓↓y

K � L iff L ⊆ K◦; L =
⋂
{K | L ⊆ K◦} = sup{K | K � L}.



Domains

Scott Topology

U Scott open if:

• U = ↑U = {x ∈ P | (∃u ∈ U) u ≤ x} and

• D directed, supD ∈ U ⇒ D ∩ U 6= ∅.

Morphisms

f : P → Q is Scott continuous if:
• f is monotone, and
• D directed ⇒ f (supD) = sup f (D).

f : X → Y ⇒ U(f ) : U(X )→ U(Y ) by U(f )(K ) = f (K )

is monotone and f (
⋂
F) =

⋂
f (F).

Lawson Topology

Basis: {↑↑x \ ↑F | F ∈ P<ωD}
Hausdorff refinement of Scott topology.

All the domains we discuss are Lawson compact.



Domain Environments

Embedding X in U(X )

X Polish ⇒ X ↪→ [0, 1]ω ⇒ X ⊆Gδ X compact Polish

{Kn | Kn ∈ U(X ), n > 0}: neighborhood basis of compact subsets of X .
Then:

1◦ X ⊆ X ↪→ MaxU(X ) ⊆ U(X ) by x 7→ {x} =
⋂
n

{Kn | x ∈ K◦n }

2◦ X inherits the Scott topology = Lawson topology on MaxU(X ).

3◦ Each family {K1, . . . ,Knm} with X ⊆
⋃

nm
K◦i defines a

Scott-continuous projection ψm : U(X )→ U(X ) with finite image.

4◦ Ordering the covers by refinement yields 1U(X ) = supm ψm.



Domains and Probability Measures

Prob(D) is a Domain

D (Lawson compact) domain ⇒ Prob(D) (Lawson compact) domain:

1◦ µ ≤ ν iff
∫
fdµ ≤

∫
fdν (∀f : D → R+ Scott continuous)

2◦ D Lawson compact ⇒ (Prob(D),weak) = (Prob(D), Lawson).

3◦ D = U(X ),X Polish ⇒ 1Prob(D) = supn ψn∗, so

µ = supn ψn∗ µ, with ψn∗ µ =
∑

i≤mn
µ(Ki )δKi (∀µ).

4◦ Choosing ri < µ(Ki ) & Li � Ki and ε = 1− (
∑

i ri ) produces

νn
def
= εδX +

∑
i≤mn

riδLi � ψn∗µ.

5◦ Construct ν1 � · · · � νn � νn+1 � · · · with µ = supn νn.



Domains and Probability Measures

Prob(D) is a Domain

D (Lawson compact) domain ⇒ Prob(D) (Lawson compact) domain:

1◦ µ ≤ ν iff
∫
fdµ ≤

∫
fdν (∀f : D → R+ Scott continuous)

2◦ D Lawson compact ⇒ (Prob(D),weak) = (Prob(D), Lawson).

3◦ D = U(X ),X Polish ⇒ 1Prob(D) = supn ψn∗, so

µ = supn ψn∗ µ, with ψn∗ µ =
∑

i≤mn
µ(Ki )δKi (∀µ).

4◦ Choosing ri < µ(Ki ) & Li � Ki and ε = 1− (
∑

i ri ) produces

νn
def
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riδLi � ψn∗µ.

5◦ Construct ν1 � · · · � νn � νn+1 � · · · with µ = supn νn.

By comparison:

(X ,S , d) a computational Polish space implies

µ = limn

∑
i≤mn

diδxi ∈ MaxU(X ) with xi ∈ S .

Then νn � ψn∗µ ≤ µ ⇒ (∃N) n ≥ N ⇒ νn �
∑

i≤mn
diδxi .



Defining the Random Variables

A Domain Environment for C

C

C ∩ [ 1
2
, 1]

...
...

...
...

C ∩ [0, 1
2
]

...
...

...
...

C ↪→ MaxCT ⊆ CT ::= {0, 1}∗ ∪ {0, 1}ω

Cn = {0, 1}n ⇒ ∃πn : C → Cn retraction

1C = supn ιn ◦ πn|C , where ιn : Cn ↪→ C lower semicontinuous.



Defining the Random Variables

A Domain Environment for C
• Given µ ∈ ProbU(X ) and ψn∗µ =

∑
i≤mn

µ(Ki )δKi , fix pn and

choose ri ∈ Dpn = { s
2pn | 0 ≤ s ≤ 2pn} and Li � Ki .

• Then νn
def
= (1−

∑
i ri )δX +

∑
i≤mn

riδLi �
∑

i≤mn
µ(Ki )δKi .

• Define fn : Cpn → U(X ) by fn(j) =


L1 if 1 ≤ j ≤ r1

L2 if r1 < j ≤ r1 + r2
...

X if
∑

i ri < j

Then fn∗(
1

2pn

∑
i≤2pn δ i

2pn
) = (1−

∑
i ri )δX +

∑
i≤mn

riδLi = νn.

• So, fn ◦ πn : C → U(X ) is Lawson continuous and

(fn ◦ πn)∗ (µC) = νn = (1−
∑

i ri )δX +
∑

i≤mn
riδLi .
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X = (supn fn ◦ πn)|C : C → U(X ) measurable with X∗µC = µ.



Defining the Random Variables

A Domain Environment for C
• By construction fn : ↓CPn → U(X ) satisfies fn ≤ fn+1, and then

X = (supn fn ◦ πn)|C : C → U(X ) measurable with X∗µC = µ.

• If µm →w µ ∈ Prob(X ), define

ρm,n � ψn∗ µm and fm,n : ↓Cpm,n → U(X ) as above.

Then Xm = (supn fm,n)|C satisfies Xm : C → U(X ) measurable

with Xm∗ λ = µm.

• Argue directly that Xm → X a.s. λ.



Questions?


