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Prototypical Quantum Computer

o Knill's QRAM model: A classical computer with a quantum co-processor

circuits
Classical Computer Quantum Co-processor
measurements

e Circuit: sequence of unitary operators

How do we program such a device?
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Some Basics

Logical Foundations
Predicate calculus:

Predicate symbols: P, Q, R, ... each with a fixed arity
Functions symbols: f, g, h,... each with a fixed arity
Terms: t :=x | ¢ | f(t1,...,ty) where
X is a variable, ¢ a nullary function, and f a function symbol with arity n.
Formulas: o = P(t1,...,tn) | L | T |oAp|eVe|lp—o|Vxe| Ixe.
e Sound and complete: - P iff = P.



Some Basics

Logical Foundations
Predicate calculus:

Set Theory:

Standard ZF axioms, including Axiom of Infinity:
ISPeS ANVT)TeS = TU{T}eS.

e Sound, semantically complete. But,

Theorem:[Gddel] Any system powerful enough to do arithmetic is incapable of proving its
own consistency.



Some Basics

Logical Foundations
Predicate calculus:

Set Theory:

Intuitionistic Logic:(Brouwer, 1907)
Does not include AV —A, or equivalently, -——A — A.
Emphasis is on proof, not validity.

The logic for classical computation.
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Some Basics

Logical Foundations
Predicate calculus:

Set Theory:

Intuitionistic Logic:(Brouwer, 1907)

Linear Logic:(Girard, 1987)
Regards formulas as resources.
Each hypothesis used once and only once.
Derivations that obey this paradigm are called /inear.

Logic for reasoning about computing over quantum systems.



A Primer on the Basics

Computational Structures
Lambda calculus:(Church, 1934)

Untyped A-calculus: Terms: t ::= x | Ax.t | tt where x is a variable, t a term.
Conversion Rules:

Ax.e =4 Ay.ely/x] when y & FV/(e)

(Ax.e)(e') —p e[e’/x] if FV(e') N BV(e) = 0.
Turing complete:

Supports full recursion: rec x.t = t[rec x.t/x].

Paradoxical combinator Y := (Ax.x x)(Ax.x x) produces fixed point for any term

3/22



A Primer on the Basics

Computational Structures
Lambda calculus:(Church, 1934)

Untyped \-calculus:
Simply typed lambda calculus, \7:

Types: 7::=1| Int | Bool | T — 7.
Terms: t = x| null | n| true | false | tt | A7 x : 7.t
Typing Judgements:

M=null:1 I n:int [+ true:Bool I+ false:Bool

Mx)=7 Tle 77 TFe:T rxrker
M=x:7 MN-ee:7’ N=(A\—7xr.e):r—7
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A Primer on the Basics

Computational Structures
Lambda calculus:(Church, 1934)

Untyped \-calculus:
Simply typed lambda calculus, \7:

Curry—Howard Correspondence:

Intuitionistic Propositional Simply Typed
Natural Deduction Lambda Calculus
Propositions — Types
Proofs —> Terms

Intuitionistic logic is the logic of classical computation
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A Primer on the Basics

Computational Structures
Lambda calculus:(Church, 1934)

Untyped \-calculus:
Simply typed lambda calculus, A7 :

Linear lambda calculus:
Types A,B = 0|A+B|I|A®B|A—-B|!A
Terms M,N,P == x|c|letx=Min N|OaM | leftagM | righta gM
| case M of {left x — N | right y — P} | * | (M, N)
| let {x,y) = M in N | AxA.M | MN | lift M | force M
lift M(=!M) — Allows multiple instances of resource M.

force M — produces an instance of M’ when M =M.
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Semantic Models

A category C consists of:

(i) a family of objects obj C, and

(ii) for each pair A, B € obj C a family of morphisms C(A, B) satisfying:
0:C(B,C) x C(A, B) = C(A, C) is associative, and (VA, B € obj C)
1a: A— Ais an identity with 1gof = f o 14,

Example: Set, the category of sets and functions.

A category C is Cartesian closed if C has
finite products — A x B,
a terminal object, L satisfying |C(A, L)| = 1 for all objects A,
and an internal hom [A, B] satisfying C(A x B, C) ~ C(A, [A, B]).

For example, Set is Cartesian closed.
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Semantic Models

Lambek’s Theorem
There is a one-to-one correspondence between Cartesian closed categories and models of the

typed lambda calculus.

For example, Set is a model for A~

Scott’s Corollary
There is a one-to-one correspondence between reflexive objects [X — X] 5 X in Cartesian
closed categories and models of the untyped lambda calculus

For example, Do ~ [Doo — Do) is a model.

Fact
The only known non-degenerate reflexive objects in Cartesian closed categories are domains.
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Semantic Models

Lambek’'s Theorem
There is a one-to-one correspondence between Cartesian closed categories and models of the

typed lambda calculus.

For example, Set is a model for A~

Scott's Corollary
There is a one-to-one correspondence between reflexive objects [X — X] 5 X in Cartesian
closed categories and models of the untyped lambda calculus

For example, Doy >~ [Doo — Doo] is @ model.

Fact
The only known non-degenerate reflexive objects in Cartesian closed categories are domains.

What does all this have to do with quantum computing?
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Categorical Quantum Mechanics

The Hilbert space formalism provides the basic model of quantum mechanics.

The category FdHilb of finite dimensional Hilbert spaces and linear maps has a number of
important properties:

FdHilb has a symmetric tensor product: H® K ~ K ® H.
FdHilb has a unit object C: C® H ~ H.

FdHilb has a 0-object, the degenerate Hilbert space: 0 ® H ~ 0.
FdHilb has biproducts: H$ K.

FdHilb is dagger compact closed: there is an involution H — H* that extends to f — f,
on linear maps satisfying H** ~ H, f,, = f and ()" = (fT)..
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Categorical Quantum Mechanics
The Hilbert space formalism provides the basic model of quantum mechanics.

Abramsky & Coecke: Dagger compact closed (symmetric monoidal) categories with
biproducts model finitary quantum mechanics.

These categories are a model of (multiplicative) linear logic.

They are an abstract setting in which to reason precisely about quantum protocols, such as
teleportation and entanglement swapping.

There also is a diagrammatic calculus for reasoning in these categories:

time

00)+11)

)



Prototypical Quantum Computer

e Returning to Knill's QRAM model:

circuits
Classical Computer Quantum Co-processor
measurements

e Circuit: sequence of unitary operators
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Prototypical Quantum Computer

e A quantum programming language is a classical functional language together with a linear
language of quantum circuits:

/\

Functional Language Linear language

\/

e We elide measurements and focus on a classical functional language for constructing
circuits and a linear language for modeling them as linear morphisms.

e We model circuit description languages using Linear / Nonlinear Models
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Linear/Non-Linear models

A Linear/Non-Linear (LNL) model is given by the following data:
e A cartesian closed category C.
e A symmetric monoidal closed category L.

e A symmetric monoidal adjunction:

F FIXxY) ~ FX)®F(Y)
c T L F(X+Y) =~ F(X)+F(Y)
~_ F(0)=0 F(1)=1
¢ FoG = |- thelift comonad

An LNL model is a model of Intuitionistic Linear Logic.}

!Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL'94
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Proto-Quipper-M (Rios and Selinger)

Types AB = «a|0|A+B|I|A®B|A—B|!A| Circ(T,U)
Intuitionistic types P,R == O0|P+R|I|P®R|!A| Circ(T,U)

M-types T,U == all|ToU

Terms M,N == x|{]|c|letx=Min N

| OaM | lefta gM | righta gM | case M of {left x — N | right y — P}
| % | M;N | (M,N) | let (x,y) =M in N | \xA.M | MN

N
| lift M | force M | box7M | apply(M, N) | (¢,C, )
e All types other than Intuitionistic types are linear

e M-types: morphisms from a symmetric monoidal category such as M = FdHilb

e Only use one (combined) form of type judgement
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Example

Assume H : Q@ — @ is a constant representing the Hadamard gate.

Example

two-hadamard : Circ(Q, Q)
two-hadamard = boxg lift \g®?.HHq

This program creates a completed circuit consisting of two H gates. The term is intuitionistic
(can be copied, deleted).
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Circuit Model

Example

Shor's algorithm for integer factorization may be seen as an infinite family of quantum circuits
— each circuit is a procedure for factoring an n-bit integer, for a fixed n.

|a) s o 1 [HF |w)
fent) 4} : R ]

QFT,

1) — Rejrnt

Figure: Quantum Fourier Transform on n qubits (subroutine in Shor’s algorithm).?

Proto-Quipper-M is used to describe families of morphisms in an arbitrary, but fixed, symmetric
monoidal category, M.

2Figure source: https://commons.wikimedia.org/w/index.php?curid=14545612
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Concrete model of Proto-Quipper-M

A simple Proto-Quipper-M model is given by the LNL model:

-0l
/\

Set il M
v

M(Ia _)
where M = [M°P_ Set] is a closed, product complete category containing given SMC M

Theorem (Rios & Selinger)

The simple categorical model of Proto-Quipper-M is type-safe, sound, and computationally
adequate
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Concrete model of Proto-Quipper-M

There are two semantic models:
e For all types, [P] e M
e For intuitionistic types, also have (P) € Set

Theorem
For any intuitionistic type P, there exists a canonical isomorphism ap : [P] — F(P).

So we can define copy and discard morphisms for each intuitionistic type P:

F(id id) apteap?t

T
3
X
3
Ue
Py
I
®

Ap = [P] =& F(P) F(P) [Pl ® [P]
op = [P] 25 F(P) 25 F1 551

where FX = X o/
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Our Work: Adding Recursion

Focus on adding recursive types.

e Term recursion follows from recursive types.

Main difficulty is with the categorical model.
e How can we copy/discard intuitionistic recursive types?

e A list of qubits should be linear — cannot copy/discard.
o A list of natural numbers should be intuitionistic — can implicitly copy/discard.

For the rest of the talk we focus on the linear/non-linear type structure.

How do we design a linear/non-linear FPC 3 ?

3FPC is an intuitionistic Fixed Point Calculus studied by Fiore and Plotkin.



Adding Recursive Datatypes

Type Variables X, Y

Types AB = X|a|A+B|I|A®B|A—B|!A]Circ(T,V)
| nX.A

Intuitionistic types P,R 1= X |P+R|I|P®R|!'A]| Circ(T,VU) | uX.P

M-types T, U = «all|TeU

These types are accompanied by some formation rules, which we omit.
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Some useful recursive datatypes

Example
Nat = pX./ + X (intuitionistic)

Example
List Nat = uX./ + X ® Nat (intuitionistic)

Example
List Qubit = pX.I + X ® Qubit (linear)

Example
Stream Qubit = pX./ —o (X ® Qubit) (linear)

Example
Stream Nat = pX.!(X ® Nat) (intuitionistic)
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A CPO-enriched model

CPO - w-complete partial orders and monotone maps preserving suprema of w-chains.
If C is Cartesian closed (or even monoidal closed), then the category B is C-enriched if:
obj B is a set
For each B, B’ € obj B, the family B(B, B’) € obj C.
The relevant morphisms — composition, etc., in B are C-morphisms:
E.g., o: B(B',B") x B(B,B') = B(B,B") is a C-morphism.
Examples: 1) Since Set is Cartesian closed, every concrete category is Set-enriched.
2) CPO is Cartesian closed, so CPO is self-enriched.

3) CPO, is CPO-enriched, where CPO |, is the subcategory of CPO where every object has
a least element (L) and morphisms preserve L.
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A CPO-enriched model

CPO - w-complete partial orders and monotone maps preserving suprema of w-chains.

A CPO-enriched LNL model includes:

1. A CPO-symmetric monoidal closed category £ with finite CPO-coproducts.

2. A CPO-symmetric monoidal adjunction:

F=—0l

/\

CPO € L,
\_/

L(Iv_)

3. The category £ is CPO | -enriched and has w-colimits

Example: £ = CPO, is the simplest example: / = {1}, and F(D) ~ D, for all CPOs D.
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A CPO-enriched model

CPO - w-complete partial orders and monotone maps preserving suprema of w-chains.

A CPO-enriched LNL model includes:

1. A CPO-symmetric monoidal closed category £ with finite CPO-coproducts.

2. A CPO-symmetric monoidal adjunction:
F=—0l

CPO € L,

ﬁ(lv_)
3. The category £ is CPO_-enriched and has w-colimits

Remark
1. and 3. imply L has a zero object and we can solve recursive domain equations.
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Interpretation of recursive types

Interpreting recursive types requires finding initial (final) (co)algebras of certain
CPO-endofunctors.

If T:C — C is an endofunctor, then a T-algebra is an object C € obj C and a map
¢c: TC — C.

C is an initial T-algebra if for any T-algebra ¢p: TD — D, there is a unique morphism
f: C — D satisfying ¢p o Tf = f o ¢c.

Example: If T: Set — Set is T(S) = SU{S}, then N is the initial T-algebra.
Dually, a final T-coalgebra is an object C and a morphism p: D — TD.

D is a final T-coalgebra if any other T-coalgebra ¢)g: E — TE admits a morphism g: E — D
with ¢p o g = Tg o k.

Example: If T: Set — Set is T(S) = {0} US, then {0} is the final T-coalgebra.
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Interpretation of recursive types

Interpreting recursive types requires finding initial (final) (co)algebras of certain
CPO-endofunctors.

Lemma (Adamek)

Let C be a category with an initial object () and let T : C — C be an endofunctor. Assume
further that the following w-diagram

2
0L TS T20 1Y
has a colimit and T preserves it. Then, the induced isomorphism is the initial T-algebra.

Corollary

In a symmetric monoidal closed category with finite coproducts and w-colimits, any
endofunctor composed from constants, ® and + has an initial algebra.
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Embedding-projection pairs

Problem: How do we interpret recursive types which also contain ! and — 7
The problem for (A, B) — A —o B is that it is covariant in B and contravariant in A.
Textbook Solution: CPO-enrichment and embedding-projection pairs.

Definition
Given a CPO-enriched category C, an embedding-projection pair is a pair of morphisms
e:A— Band p: B— A, such that poe=id and eo p < id.

Theorem

If e is an embedding, then it has a unique projection, which we denote e*.

Definition

The subcategory of C with the same objects, but whose morphisms are embeddings is denoted
C..
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Interpretation of recursive types (contd.)

Theorem (Smyth and Plotkin)

If T:C— D isa CPO-enriched functor and C has w-colimits, then T preserves w-colimits of
embeddings. In other words, the restriction T, : C. — D, is w-continuous.

Theorem

In our categorical model, any CPO-endofunctor T : L — L has an initial T-algebra, whose
inverse is a final T-coalgebra.

Remark
The above theorem follows directly from results in Fiore's PhD thesis.
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Main Lemma

We define CPO,,. to be the full-on-objects subcategory of CPO whose morphisms f are those
satisfying F(f) € L. We call such f pre-embeddings.

Then there are two semantic models:
e For all types, [ F P] € L
e For intuitionistic types, also have (© F P) € CPO,.
There exists a natural isomorphism
agrp: [OF Pl .o F*"= Fo(©F P)

Diagrammatically:

[eF P,
.l e
FX|@|T = T F
cPol} CPO,.
©FP)
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Copy and Discard

Let P be an intuitionistic object and o : P — F(X) an isomorphism.

We can define three maps:

Discard: % := P = F(X) F, F(1) =N
Copy: 3 == P 5 F(X) 299, F(x 5 X) 25 F(X) 0 F(X) 2227, p e p,

-1y

Lift: |iftg =p F(X) F(nx) !F(X) (o p.

Given two intuitionistic objects P; and P,, a morphism f : Py — P» is called intuitionistic, if
there exists a morphism ' € CPO(X, Y) and two isomorphisms
o and B, such that = P1 % F(X) 2% F(v) & p,.
If f: P; — P5 is intuitionistic, then:
e op,of =op;
e Ap,of =(f®f)oAp,;

° |iftp2 of = Ifo |iftpl.
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Thank You!

Questions?’?
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Syntax

— - (var) — - (label) - - (const) O,I1;01-m:A ®,Ih,x:A;02-n: B let
o.x:AbrFx:A liarl:a B0Fc:A ®.1.1501,0, F letx = minn: B (let)
Ii0rm:0 I'OFrm:A I'Orm:B X *)

initi left ht - :
Toroom c W) o e, pmias B O T;Qr right, gm A+ B 8% 0k 1
O, 11;01+-m:A+B O, I, x: A0, +-n:C CID,Fg,y:B;Qsz:C( ) O,I;01F-m: 1 O, 1;0,-n:C (seq)
D, 11,1201, Q02 + case mof {left x —» n | righty — p} : C case O, I1,15;01,02 - myn: C seq
O, T1;01+-m: A &, I5;0,Fn:B i O, T1;01-m:A®B O, x:Ay:B;Q2kn:C .
(pair) - (let-pair)
D, I,12;01,02 F {m,n): A® B ®,17,12;01,Q2 Flet{x,y) =minn:C
Ix:AQrm:B ®,11;01Fm:A—B O,T;02Fn: A O;0Frm: A [;0Fm:lA
: (abs) B 2 Q2 (app) m (iift) 9 (force)
0 Ax%m:A—B D,T11,12;01,Q2-mn: B @;0 + lift m 1A ;0 forcem: A
I;0F m (T — U) @,Ty; 01 F m : Diag(T.U) ®.Tp;Qp+n:T 0:QFC:T 0;Q' ' :U SeMp(Q.Q) ..
(box) (apply) (diag)

T;Q + boxrm : Diag(T,U) @, 11, T2; 01, Q2 + apply(m, n) : U o0+ (E, S,Z’) : Diag(T, U)
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Operational semantics

(S.m)y L (S v) (&, v) S.m (5 (v, (§.nfv/xo" [y]) LS w)
(S, (m,m) | (8", {w, ")) (S.let{x,y) =minn) || (5", w)
(S,m) | (8", 1ift m") (8',m") | (8", v)
(S, force m) |} (8”7, v)

(S.lift m) | (S, lift m)

(S,m) Il (5',1ift n) freshlabels(T) = (Q,%) (idg,nf) Il (D, ")
(S, boxpm) | (8", (£, D, £))

(S.m) UL (8", (£.D,¢")) (S".n) U (S”.K) append(S”,K.E,D, ") = (5", k)
(S. apply(m.n)) I (5™, k')
(S,m) | (87, (ED, E’)) (8’,n) U (8", é) append(S”’, £.ED, E’) undefined

(S, apply(m, n)) | Error (S.(£,D,€)) I (S, (£, D, £))
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