
Semantic Models of Quantum Programming Languages:

Recursion in Categorical Models

Michael Mislove

Department of Computer Science
Tulane University

Work Supported by US AFOSR

Joint work with Bert Lindenhovius and Vladimir Zamdzhiev

QuILT Workshop
University of New Orleans

March 25, 2019

0 / 22

Prototypical Quantum Computer

• Knill’s QRAM model: A classical computer with a quantum co-processor

Classical Computer Quantum Co-processor

circuits

measurements

• Circuit: sequence of unitary operators

How do we program such a device?

1 / 22

Some Basics

Logical Foundations
Predicate calculus:

Predicate symbols: P,Q,R, . . . each with a fixed arity

Functions symbols: f , g , h, . . . each with a fixed arity

Terms: t ::= x | c | f (t1, . . . , tn) where

x is a variable, c a nullary function, and f a function symbol with arity n.

Formulas: ϕ ::= P(t1, . . . , tn) | ⊥ | > | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ∀x ϕ | ∃x ϕ.
• Sound and complete: ` P iff |= P.

2 / 22

Some Basics

Logical Foundations
Predicate calculus:

Set Theory:

Standard ZF axioms, including Axiom of Infinity:
∃S .∅ ∈ S ∧ (∀T)T ∈ S =⇒ T ∪ {T} ∈ S .

• Sound, semantically complete. But,

Theorem:[Gödel] Any system powerful enough to do arithmetic is incapable of proving its
own consistency.

2 / 22

Some Basics

Logical Foundations
Predicate calculus:

Set Theory:

Intuitionistic Logic:(Brouwer, 1907)

Does not include A ∨ ¬A, or equivalently, ¬¬A→ A.

Emphasis is on proof, not validity.

The logic for classical computation.

2 / 22

Some Basics

Logical Foundations
Predicate calculus:

Set Theory:

Intuitionistic Logic:(Brouwer, 1907)

Linear Logic:(Girard, 1987)

Regards formulas as resources.

Each hypothesis used once and only once.

Derivations that obey this paradigm are called linear.

Logic for reasoning about computing over quantum systems.

2 / 22

A Primer on the Basics

Computational Structures
Lambda calculus:(Church, 1934)

Untyped λ-calculus: Terms: t ::= x | λx .t | t t where x is a variable, t a term.

Conversion Rules:

λx .e ≡α λy .e[y/x] when y 6∈ FV (e)

(λx .e)(e′)→β e[e′/x] if FV (e′) ∩ BV (e) = ∅.
Turing complete:

Supports full recursion: rec x .t = t[rec x .t/x].

Paradoxical combinator Y := (λx .x x)(λx .x x) produces fixed point for any term

3 / 22

A Primer on the Basics

Computational Structures
Lambda calculus:(Church, 1934)

Untyped λ-calculus:

Simply typed lambda calculus, λ→:

Types: τ ::= 1 | Int | Bool | τ → τ.
Terms: t ::= x | null | n | true | false | t t | λ→x : τ.t.
Typing Judgements:

Γ` null :1 Γ` n:Int Γ` true:Bool Γ` false:Bool

Γ(x) = τ
Γ` x :τ

Γ` e : τ→τ ′ Γ` e′:τ
Γ` e e′:τ ′

Γ,x :τ ` e:τ ′

Γ` (λ→x :τ.e):τ→τ ′

3 / 22

A Primer on the Basics

Computational Structures
Lambda calculus:(Church, 1934)

Untyped λ-calculus:

Simply typed lambda calculus, λ→:

Curry–Howard Correspondence:

Intuitionistic Propositional Simply Typed
Natural Deduction Lambda Calculus

Propositions ←→ Types

Proofs ←→ Terms

Intuitionistic logic is the logic of classical computation

3 / 22

A Primer on the Basics

Computational Structures
Lambda calculus:(Church, 1934)

Untyped λ-calculus:

Simply typed lambda calculus, λ→:

Linear lambda calculus:
Types A,B ::= 0 | A + B | I | A⊗ B | A(B | !A

Terms M,N,P ::= x | c | let x = M in N | �AM | leftA,BM | rightA,BM
| case M of {left x → N | right y → P} | ∗ | 〈M,N〉
| let 〈x , y〉 = M in N | λxA.M | MN | lift M | force M

lift M(= !M) – Allows multiple instances of resource M.

force M – produces an instance of M ′ when M = !M ′.

3 / 22

Semantic Models

A category C consists of:

(i) a family of objects obj C, and
(ii) for each pair A,B ∈ obj C a family of morphisms C(A,B) satisfying:

◦ : C(B,C)× C(A,B)→ C(A,C) is associative, and (∀A,B ∈ obj C)

1A : A→ A is an identity with 1B ◦ f = f ◦ 1A.
Example: Set, the category of sets and functions.

A category C is Cartesian closed if C has

finite products – A× B,

a terminal object, ⊥ satisfying |C(A,⊥)| = 1 for all objects A,

and an internal hom [A,B] satisfying C(A× B,C) ' C(A, [A,B]).

For example, Set is Cartesian closed.

4 / 22

Semantic Models

Lambek’s Theorem
There is a one-to-one correspondence between Cartesian closed categories and models of the
typed lambda calculus.

For example, Set is a model for λ→

Scott’s Corollary
There is a one-to-one correspondence between reflexive objects [X → X] �

↪→ X in Cartesian
closed categories and models of the untyped lambda calculus

For example, D∞ ' [D∞ → D∞] is a model.

Fact
The only known non-degenerate reflexive objects in Cartesian closed categories are domains.

4 / 22

Semantic Models

Lambek’s Theorem
There is a one-to-one correspondence between Cartesian closed categories and models of the
typed lambda calculus.

For example, Set is a model for λ→

Scott’s Corollary
There is a one-to-one correspondence between reflexive objects [X → X] �

↪→ X in Cartesian
closed categories and models of the untyped lambda calculus

For example, D∞ ' [D∞ → D∞] is a model.

Fact
The only known non-degenerate reflexive objects in Cartesian closed categories are domains.

What does all this have to do with quantum computing?

4 / 22

Categorical Quantum Mechanics

The Hilbert space formalism provides the basic model of quantum mechanics.

The category FdHilb of finite dimensional Hilbert spaces and linear maps has a number of
important properties:

FdHilb has a symmetric tensor product: H ⊗ K ' K ⊗ H.

FdHilb has a unit object C: C⊗ H ' H.

FdHilb has a 0-object, the degenerate Hilbert space: 0⊗ H ' 0.

FdHilb has biproducts: H ⊕ K .

FdHilb is dagger compact closed: there is an involution H 7→ H∗ that extends to f 7→ f∗
on linear maps satisfying H∗∗ ' H, f∗∗ = f and (f∗)† = (f †)∗.

5 / 22

Categorical Quantum Mechanics
The Hilbert space formalism provides the basic model of quantum mechanics.

Abramsky & Coecke: Dagger compact closed (symmetric monoidal) categories with
biproducts model finitary quantum mechanics.

These categories are a model of (multiplicative) linear logic.

They are an abstract setting in which to reason precisely about quantum protocols, such as
teleportation and entanglement swapping.

There also is a diagrammatic calculus for reasoning in these categories:

• Observation consists of receiving the information on
the outcome of the measurement, to be thought of as
specification of the index i of the outcome-projector
Pi in the above list. Measurements which destroy the
system can be seen as ‘observation only’.

• Preparation consists of producing the state Pi(ψ).
In our abstract setting these arise naturally as the two ‘build-
ing blocks’ which are used to construct projectors and mea-
surements.
We now discuss some important quantum protocols

which we chose because of the key rôle entanglement plays
in them — they involve both initially entangled states, and
measurements against a basis of entangled states.

2.1 Quantum teleportation

The quantum teleportation protocol [5] (see also [8] §2.3
and §3.3) involves three qubits a, b and c (corresponding to
q, qA and qB respectively in our preliminary sketch in the
Introduction). Qubit a is in a state |φ⟩ and qubits b and c
form an ‘EPR-pair’, that is, their joint state is |00⟩ + |11⟩.
After spatial relocation (so that a and b are positioned at
the source A, while c is positioned at the target B), one
performs a Bell-base measurement on a and b, that is, a
measurement such that each Pi projects on one of the one-
dimensional subspaces spanned by a vector in the Bell ba-
sis:

b1 := 1√
2

· (|00⟩+|11⟩) b2 := 1√
2

· (|01⟩+|10⟩)

b3 := 1√
2

· (|00⟩−|11⟩) b4 := 1√
2

· (|01⟩−|10⟩) .

This measurement can be of the type ‘observation only’. We
observe the outcome of the measurement and depending on
it perform one of the unitary transformations

β1 :=

(
1 0
0 1

)
β2 :=

(
0 1
1 0

)

β3 :=

(
1 0
0 −1

)
β4 :=

(
0 −1
1 0

)

on c — β1, β2, β3 are all self-inverse while β−1
4 = −β4.

Physically, this requires transmission of two classical bits,
recording the outcome of the measurement, from the loca-
tion of a and b to the location of c.

|00⟩+|11⟩

MBell

Ux
x ∈ B2

|φ⟩

|φ⟩

✻
time

The final state of c proves to be |φ⟩ as well. We will be able
to derive this fact in our abstract setting.
Since a continuous variable has been transmitted while

the actual classical communication involved only two bits,
besides this classical information flow there has to exist a
quantum information flow. The nature of this quantum flow
has been analyzed by one of the authors in [8, 9], building
on the joint work in [2]. We recover those results in our ab-
stract setting (see Section 4), which also reveals additional
‘fine structure’. To identify it we have to separate it from
the classical information flow. Therefore we decompose the
protocol into:

1. a tree with the operations as nodes, and with branch-
ing caused by the indeterminism of measurements;

2. a network of the operations in terms of the order they
are applied and the subsystem to which they apply.

|00⟩+|11⟩

MBell

U00 U01 U10 U11

00 01 10 11

...

...

...

a b c

The nodes in the tree are connected to the boxes in the net-
work by their temporal coincidence. Classical communica-
tion is encoded in the tree as the dependency of operations
on the branch they are in. For each path from the root of the
tree to a leaf, by ‘filling in the operations on the included
nodes in the corresponding boxes of the network’, we ob-
tain an entanglement network, that is, a network

|00⟩+|11⟩

Px

Ux

a b c

✻
time

for each of the four values x takes. A component Px of an
observation will be referred to as an observational branch.
It will be these networks, from which we have removed the
classical information flow, that we will study in Section 4.
(There is a clear analogy with the idea of unfolding a Petri
net into its set of ‘processes’ [21]). The classical informa-
tion flow will be reintroduced in Section 9.

2.2 Logic gate teleportation

Logic gate teleportation [12] (see also [8] §3.3) gener-
alizes the above protocol in that b and c are initially not
necessarily an EPR-pair but may be in some other (not ar-
bitrary) entangled state |Ψ⟩. Due to this modification the

5 / 22

Prototypical Quantum Computer

• Returning to Knill’s QRAM model:

Classical Computer Quantum Co-processor

circuits

measurements

• Circuit: sequence of unitary operators

6 / 22

Prototypical Quantum Computer

• A quantum programming language is a classical functional language together with a linear
language of quantum circuits:

Functional Language Linear language

• We elide measurements and focus on a classical functional language for constructing
circuits and a linear language for modeling them as linear morphisms.

• We model circuit description languages using Linear / Nonlinear Models

6 / 22

Linear/Non-Linear models

A Linear/Non-Linear (LNL) model is given by the following data:

• A cartesian closed category C.

• A symmetric monoidal closed category L.

• A symmetric monoidal adjunction:

C ` L

F

G

F (X × Y) ' F (X)⊗ F (Y)

F (X + Y) ' F (X) + F (Y)

F (∅) = 0 F (1) = I

F ◦ G = ! – the lift comonad

An LNL model is a model of Intuitionistic Linear Logic.1

1Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL’94
7 / 22

Proto-Quipper-M (Rios and Selinger)

Types A,B ::= α | 0 | A + B | I | A⊗ B | A(B | !A | Circ(T ,U)
Intuitionistic types P,R ::= 0 | P + R | I | P ⊗ R | !A | Circ(T ,U)
M-types T ,U ::= α | I | T ⊗ U

Terms M,N ::= x | ` | c | let x = M in N
| �AM | leftA,BM | rightA,BM | case M of {left x → N | right y → P}
| ∗ | M;N | 〈M,N〉 | let 〈x , y〉 = M in N | λxA.M | MN

| lift M | force M | boxTM | apply(M,N) | (
→
` ,C ,

→
`′)

• All types other than Intuitionistic types are linear

• M-types: morphisms from a symmetric monoidal category such as M = FdHilb

• Only use one (combined) form of type judgement

8 / 22

Example

Assume H : Q (Q is a constant representing the Hadamard gate.

Example
two-hadamard : Circ(Q,Q)
two-hadamard ≡ boxQ lift λqQ .HHq

This program creates a completed circuit consisting of two H gates. The term is intuitionistic
(can be copied, deleted).

9 / 22

Circuit Model

Example
Shor’s algorithm for integer factorization may be seen as an infinite family of quantum circuits
– each circuit is a procedure for factoring an n-bit integer, for a fixed n.

Figure: Quantum Fourier Transform on n qubits (subroutine in Shor’s algorithm).2

Proto-Quipper-M is used to describe families of morphisms in an arbitrary, but fixed, symmetric
monoidal category, M.

2Figure source: https://commons.wikimedia.org/w/index.php?curid=14545612
10 / 22

https://commons.wikimedia.org/w/index.php?curid=14545612

Concrete model of Proto-Quipper-M

A simple Proto-Quipper-M model is given by the LNL model:

Set M

−� I

M(I ,−)

⊥

where M = [Mop,Set] is a closed, product complete category containing given SMC M

Theorem (Rios & Selinger)
The simple categorical model of Proto-Quipper-M is type-safe, sound, and computationally
adequate

11 / 22

Concrete model of Proto-Quipper-M

There are two semantic models:

• For all types, JPK ∈M

• For intuitionistic types, also have LPM ∈ Set

Theorem
For any intuitionistic type P, there exists a canonical isomorphism αP : JPK→ F LPM.
So we can define copy and discard morphisms for each intuitionistic type P:

∆P := JPK αP−−→ F LPM
F〈id,id〉−−−−−→ F (LPM× LPM)

∼=−→ F LPM⊗ F LPM
α−1

P ⊗α
−1
P−−−−−−→ JPK⊗ JPK

�P := JPK αP−−→ F LPM F1−→ F1
∼=−→ I

where FX = X � I

11 / 22

Our Work: Adding Recursion

• Focus on adding recursive types.

• Term recursion follows from recursive types.

• Main difficulty is with the categorical model.

• How can we copy/discard intuitionistic recursive types?

• A list of qubits should be linear – cannot copy/discard.
• A list of natural numbers should be intuitionistic – can implicitly copy/discard.

• For the rest of the talk we focus on the linear/non-linear type structure.

• How do we design a linear/non-linear FPC 3 ?

3FPC is an intuitionistic Fixed Point Calculus studied by Fiore and Plotkin.
12 / 22

Adding Recursive Datatypes

Type Variables X ,Y
Types A,B ::= X | α | A + B | I | A⊗ B | A(B | !A | Circ(T ,U)

| µX .A
Intuitionistic types P,R ::= X | P + R | I | P ⊗ R | !A | Circ(T ,U) | µX .P
M-types T ,U ::= α | I | T ⊗ U

These types are accompanied by some formation rules, which we omit.

13 / 22

Some useful recursive datatypes

Example
Nat ≡ µX .I + X (intuitionistic)

Example
List Nat ≡ µX .I + X ⊗ Nat (intuitionistic)

Example
List Qubit ≡ µX .I + X ⊗ Qubit (linear)

Example
Stream Qubit ≡ µX .I ((X ⊗ Qubit) (linear)

Example
Stream Nat ≡ µX .!(X ⊗ Nat) (intuitionistic)

14 / 22

A CPO-enriched model

CPO – ω-complete partial orders and monotone maps preserving suprema of ω-chains.

If C is Cartesian closed (or even monoidal closed), then the category B is C-enriched if:

obj B is a set

For each B,B ′ ∈ obj B, the family B(B,B ′) ∈ obj C.
The relevant morphisms – composition, etc., in B are C-morphisms:

E.g., ◦ : B(B ′,B”)× B(B,B ′)→ B(B,B”) is a C-morphism.

Examples: 1) Since Set is Cartesian closed, every concrete category is Set-enriched.

2) CPO is Cartesian closed, so CPO is self-enriched.

3) CPO⊥! is CPO-enriched, where CPO⊥! is the subcategory of CPO where every object has
a least element (⊥) and morphisms preserve ⊥.

15 / 22

A CPO-enriched model

CPO – ω-complete partial orders and monotone maps preserving suprema of ω-chains.

A CPO–enriched LNL model includes:

1. A CPO-symmetric monoidal closed category L with finite CPO-coproducts.

2. A CPO-symmetric monoidal adjunction:

CPO ` L,

F=−�I

L(I ,−)

3. The category L is CPO⊥!-enriched and has ω-colimits

Example: L = CPO⊥! is the simplest example: I = {⊥}⊥ and F (D) ' D⊥ for all CPOs D.

15 / 22

A CPO-enriched model
CPO – ω-complete partial orders and monotone maps preserving suprema of ω-chains.

A CPO–enriched LNL model includes:

1. A CPO-symmetric monoidal closed category L with finite CPO-coproducts.

2. A CPO-symmetric monoidal adjunction:

CPO ` L,

F=−�I

L(I ,−)

3. The category L is CPO⊥!-enriched and has ω-colimits

Remark
1. and 3. imply L has a zero object and we can solve recursive domain equations.

15 / 22

Interpretation of recursive types

Interpreting recursive types requires finding initial (final) (co)algebras of certain
CPO-endofunctors.

If T : C → C is an endofunctor, then a T -algebra is an object C ∈ obj C and a map
φC : TC → C .

C is an initial T -algebra if for any T -algebra φD : TD → D, there is a unique morphism
f : C → D satisfying φD ◦ Tf = f ◦ φC .
Example: If T : Set→ Set is T (S) = S ∪ {S}, then N is the initial T -algebra.

Dually, a final T -coalgebra is an object C and a morphism ψD : D → TD.

D is a final T -coalgebra if any other T -coalgebra ψE : E → TE admits a morphism g : E → D
with ψD ◦ g = Tg ◦ ψE .

Example: If T : Set→ Set is T (S) = {∅} ∪ S , then {∅} is the final T -coalgebra.

16 / 22

Interpretation of recursive types

Interpreting recursive types requires finding initial (final) (co)algebras of certain
CPO-endofunctors.

Lemma (Adámek)
Let C be a category with an initial object ∅ and let T : C→ C be an endofunctor. Assume
further that the following ω-diagram

∅ ι−→ T∅ T ι−→ T 2∅ T2ι−−→ · · ·

has a colimit and T preserves it. Then, the induced isomorphism is the initial T -algebra.

Corollary
In a symmetric monoidal closed category with finite coproducts and ω-colimits, any
endofunctor composed from constants, ⊗ and + has an initial algebra.

16 / 22

Embedding-projection pairs

Problem: How do we interpret recursive types which also contain ! and (?

The problem for 〈A,B〉 7→ A(B is that it is covariant in B and contravariant in A.

Textbook Solution: CPO-enrichment and embedding-projection pairs.

Definition
Given a CPO-enriched category C, an embedding-projection pair is a pair of morphisms
e : A→ B and p : B → A, such that p ◦ e = id and e ◦ p ≤ id.

Theorem
If e is an embedding, then it has a unique projection, which we denote e∗.

Definition
The subcategory of C with the same objects, but whose morphisms are embeddings is denoted
Ce .

17 / 22

Interpretation of recursive types (contd.)

Theorem (Smyth and Plotkin)
If T : C→ D is a CPO-enriched functor and C has ω-colimits, then T preserves ω-colimits of
embeddings. In other words, the restriction Te : Ce → De is ω-continuous.

Theorem
In our categorical model, any CPO-endofunctor T : L → L has an initial T -algebra, whose
inverse is a final T -coalgebra.

Remark
The above theorem follows directly from results in Fiore’s PhD thesis.

18 / 22

Main Lemma
We define CPOpe to be the full-on-objects subcategory of CPO whose morphisms f are those
satisfying F (f) ∈ Le . We call such f pre-embeddings.

Then there are two semantic models:

• For all types, JΘ ` PK ∈ L
• For intuitionistic types, also have LΘ ` PM ∈ CPOpe

There exists a natural isomorphism

αΘ`P : JΘ ` PKs ◦ F×n =⇒ F ◦ LΘ ` PM

Diagrammatically:

CPO|Θ|pe CPOpe

L|Θ|e Le

F×|Θ| F

JΘ ` PKe

LΘ ` PM

α=⇒

19 / 22

Copy and Discard
Let P be an intuitionistic object and α : P → F (X) an isomorphism.

We can define three maps:

Discard: �αP := P
α−→ F (X)

F (1X)−−−→ F (1)
∼=−→ I ;

Copy: ∆α
P := P

α−→ F (X)
F (〈id,id〉)−−−−−−→ F (X × X)

∼=−→ F (X)⊗ F (X)
α−1⊗α−1

−−−−−−→ P ⊗ P;

Lift: liftαP := P
α−→ F (X)

F (ηX)−−−→ !F (X)
!(α−1)−−−−→ !P.

Given two intuitionistic objects P1 and P2, a morphism f : P1 → P2 is called intuitionistic, if
there exists a morphism f ′ ∈ CPO(X ,Y) and two isomorphisms

α and β, such that f = P1
α−→ F (X)

F (f ′)−−−→ F (Y)
β−→ P2.

If f : P1 → P2 is intuitionistic, then:

• �P2 ◦ f = �P1 ;

• ∆P2 ◦ f = (f ⊗ f) ◦∆P1 ;

• liftP2 ◦ f = !f ◦ liftP1 .
20 / 22

Thank You!

Questions??

21 / 22

Syntax

21 / 22

Operational semantics

21 / 22

