Semantic Models of Quantum Programming Languages:

Recursion in Categorical Models

Michael Mislove

Department of Computer Science
Tulane University

Work Supported by US AFOSR

Joint work with Bert Lindenhovius and Vladimir Zamdzhiev

QuILT Workshop
University of New Orleans
March 25, 2019

0/22



Prototypical Quantum Computer

o Knill's QRAM model: A classical computer with a quantum co-processor

circuits
Classical Computer Quantum Co-processor
measurements

e Circuit: sequence of unitary operators

How do we program such a device?

1/22



Some Basics

Logical Foundations
Predicate calculus:

Predicate symbols: P, Q, R, ... each with a fixed arity
Functions symbols: f, g, h,... each with a fixed arity
Terms: t :=x | ¢ | f(t1,...,ty) where
X is a variable, ¢ a nullary function, and f a function symbol with arity n.
Formulas: o = P(t1,...,tn) | L | T |oAp|eVe|lp—o|Vxe| Ixe.
e Sound and complete: - P iff = P.



Some Basics

Logical Foundations
Predicate calculus:

Set Theory:

Standard ZF axioms, including Axiom of Infinity:
ISPeS ANVT)TeS = TU{T}eS.

e Sound, semantically complete. But,

Theorem:[Gddel] Any system powerful enough to do arithmetic is incapable of proving its
own consistency.



Some Basics

Logical Foundations
Predicate calculus:

Set Theory:

Intuitionistic Logic:(Brouwer, 1907)
Does not include AV —A, or equivalently, -——A — A.
Emphasis is on proof, not validity.

The logic for classical computation.

2/22



Some Basics

Logical Foundations
Predicate calculus:

Set Theory:

Intuitionistic Logic:(Brouwer, 1907)

Linear Logic:(Girard, 1987)
Regards formulas as resources.
Each hypothesis used once and only once.
Derivations that obey this paradigm are called /inear.

Logic for reasoning about computing over quantum systems.



A Primer on the Basics

Computational Structures
Lambda calculus:(Church, 1934)

Untyped A-calculus: Terms: t ::= x | Ax.t | tt where x is a variable, t a term.
Conversion Rules:

Ax.e =4 Ay.ely/x] when y & FV/(e)

(Ax.e)(e') —p e[e’/x] if FV(e') N BV(e) = 0.
Turing complete:

Supports full recursion: rec x.t = t[rec x.t/x].

Paradoxical combinator Y := (Ax.x x)(Ax.x x) produces fixed point for any term

3/22



A Primer on the Basics

Computational Structures
Lambda calculus:(Church, 1934)

Untyped \-calculus:
Simply typed lambda calculus, \7:

Types: 7::=1| Int | Bool | T — 7.
Terms: t = x| null | n| true | false | tt | A7 x : 7.t
Typing Judgements:

M=null:1 I n:int [+ true:Bool I+ false:Bool

Mx)=7 Tle 77 TFe:T rxrker
M=x:7 MN-ee:7’ N=(A\—7xr.e):r—7

3/22



A Primer on the Basics

Computational Structures
Lambda calculus:(Church, 1934)

Untyped \-calculus:
Simply typed lambda calculus, \7:

Curry—Howard Correspondence:

Intuitionistic Propositional Simply Typed
Natural Deduction Lambda Calculus
Propositions — Types
Proofs —> Terms

Intuitionistic logic is the logic of classical computation

3/22



A Primer on the Basics

Computational Structures
Lambda calculus:(Church, 1934)

Untyped \-calculus:
Simply typed lambda calculus, A7 :

Linear lambda calculus:
Types A,B = 0|A+B|I|A®B|A—-B|!A
Terms M,N,P == x|c|letx=Min N|OaM | leftagM | righta gM
| case M of {left x — N | right y — P} | * | (M, N)
| let {x,y) = M in N | AxA.M | MN | lift M | force M
lift M(=!M) — Allows multiple instances of resource M.

force M — produces an instance of M’ when M =M.

3/22



Semantic Models

A category C consists of:

(i) a family of objects obj C, and

(ii) for each pair A, B € obj C a family of morphisms C(A, B) satisfying:
0:C(B,C) x C(A, B) = C(A, C) is associative, and (VA, B € obj C)
1a: A— Ais an identity with 1gof = f o 14,

Example: Set, the category of sets and functions.

A category C is Cartesian closed if C has
finite products — A x B,
a terminal object, L satisfying |C(A, L)| = 1 for all objects A,
and an internal hom [A, B] satisfying C(A x B, C) ~ C(A, [A, B]).

For example, Set is Cartesian closed.

4/22



Semantic Models

Lambek’s Theorem
There is a one-to-one correspondence between Cartesian closed categories and models of the

typed lambda calculus.

For example, Set is a model for A~

Scott’s Corollary
There is a one-to-one correspondence between reflexive objects [X — X] 5 X in Cartesian
closed categories and models of the untyped lambda calculus

For example, Do ~ [Doo — Do) is a model.

Fact
The only known non-degenerate reflexive objects in Cartesian closed categories are domains.

4/22



Semantic Models

Lambek’'s Theorem
There is a one-to-one correspondence between Cartesian closed categories and models of the

typed lambda calculus.

For example, Set is a model for A~

Scott's Corollary
There is a one-to-one correspondence between reflexive objects [X — X] 5 X in Cartesian
closed categories and models of the untyped lambda calculus

For example, Doy >~ [Doo — Doo] is @ model.

Fact
The only known non-degenerate reflexive objects in Cartesian closed categories are domains.

What does all this have to do with quantum computing?

4/22



Categorical Quantum Mechanics

The Hilbert space formalism provides the basic model of quantum mechanics.

The category FdHilb of finite dimensional Hilbert spaces and linear maps has a number of
important properties:

FdHilb has a symmetric tensor product: H® K ~ K ® H.
FdHilb has a unit object C: C® H ~ H.

FdHilb has a 0-object, the degenerate Hilbert space: 0 ® H ~ 0.
FdHilb has biproducts: H$ K.

FdHilb is dagger compact closed: there is an involution H — H* that extends to f — f,
on linear maps satisfying H** ~ H, f,, = f and ()" = (fT)..

5/22



Categorical Quantum Mechanics
The Hilbert space formalism provides the basic model of quantum mechanics.

Abramsky & Coecke: Dagger compact closed (symmetric monoidal) categories with
biproducts model finitary quantum mechanics.

These categories are a model of (multiplicative) linear logic.

They are an abstract setting in which to reason precisely about quantum protocols, such as
teleportation and entanglement swapping.

There also is a diagrammatic calculus for reasoning in these categories:

time

00)+11)

)



Prototypical Quantum Computer

e Returning to Knill's QRAM model:

circuits
Classical Computer Quantum Co-processor
measurements

e Circuit: sequence of unitary operators

6/22



Prototypical Quantum Computer

e A quantum programming language is a classical functional language together with a linear
language of quantum circuits:

/\

Functional Language Linear language

\/

e We elide measurements and focus on a classical functional language for constructing
circuits and a linear language for modeling them as linear morphisms.

e We model circuit description languages using Linear / Nonlinear Models

6/22



Linear/Non-Linear models

A Linear/Non-Linear (LNL) model is given by the following data:
e A cartesian closed category C.
e A symmetric monoidal closed category L.

e A symmetric monoidal adjunction:

F FIXxY) ~ FX)®F(Y)
c T L F(X+Y) =~ F(X)+F(Y)
~_ F(0)=0 F(1)=1
¢ FoG = |- thelift comonad

An LNL model is a model of Intuitionistic Linear Logic.}

!Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL'94
7/22



Proto-Quipper-M (Rios and Selinger)

Types AB = «a|0|A+B|I|A®B|A—B|!A| Circ(T,U)
Intuitionistic types P,R == O0|P+R|I|P®R|!A| Circ(T,U)

M-types T,U == all|ToU

Terms M,N == x|{]|c|letx=Min N

| OaM | lefta gM | righta gM | case M of {left x — N | right y — P}
| % | M;N | (M,N) | let (x,y) =M in N | \xA.M | MN

N
| lift M | force M | box7M | apply(M, N) | (¢,C, )
e All types other than Intuitionistic types are linear

e M-types: morphisms from a symmetric monoidal category such as M = FdHilb

e Only use one (combined) form of type judgement

8/22



Example

Assume H : Q@ — @ is a constant representing the Hadamard gate.

Example

two-hadamard : Circ(Q, Q)
two-hadamard = boxg lift \g®?.HHq

This program creates a completed circuit consisting of two H gates. The term is intuitionistic
(can be copied, deleted).

9/22



Circuit Model

Example

Shor's algorithm for integer factorization may be seen as an infinite family of quantum circuits
— each circuit is a procedure for factoring an n-bit integer, for a fixed n.

|a) s o 1 [HF |w)
fent) 4} : R ]

QFT,

1) — Rejrnt

Figure: Quantum Fourier Transform on n qubits (subroutine in Shor’s algorithm).?

Proto-Quipper-M is used to describe families of morphisms in an arbitrary, but fixed, symmetric
monoidal category, M.

2Figure source: https://commons.wikimedia.org/w/index.php?curid=14545612
10/22


https://commons.wikimedia.org/w/index.php?curid=14545612

Concrete model of Proto-Quipper-M

A simple Proto-Quipper-M model is given by the LNL model:

-0l
/\

Set il M
v

M(Ia _)
where M = [M°P_ Set] is a closed, product complete category containing given SMC M

Theorem (Rios & Selinger)

The simple categorical model of Proto-Quipper-M is type-safe, sound, and computationally
adequate

11/22



Concrete model of Proto-Quipper-M

There are two semantic models:
e For all types, [P] e M
e For intuitionistic types, also have (P) € Set

Theorem
For any intuitionistic type P, there exists a canonical isomorphism ap : [P] — F(P).

So we can define copy and discard morphisms for each intuitionistic type P:

F(id id) apteap?t

T
3
X
3
Ue
Py
I
®

Ap = [P] =& F(P) F(P) [Pl ® [P]
op = [P] 25 F(P) 25 F1 551

where FX = X o/

11/22



Our Work: Adding Recursion

Focus on adding recursive types.

e Term recursion follows from recursive types.

Main difficulty is with the categorical model.
e How can we copy/discard intuitionistic recursive types?

e A list of qubits should be linear — cannot copy/discard.
o A list of natural numbers should be intuitionistic — can implicitly copy/discard.

For the rest of the talk we focus on the linear/non-linear type structure.

How do we design a linear/non-linear FPC 3 ?

3FPC is an intuitionistic Fixed Point Calculus studied by Fiore and Plotkin.



Adding Recursive Datatypes

Type Variables X, Y

Types AB = X|a|A+B|I|A®B|A—B|!A]Circ(T,V)
| nX.A

Intuitionistic types P,R 1= X |P+R|I|P®R|!'A]| Circ(T,VU) | uX.P

M-types T, U = «all|TeU

These types are accompanied by some formation rules, which we omit.

13/22



Some useful recursive datatypes

Example
Nat = pX./ + X (intuitionistic)

Example
List Nat = uX./ + X ® Nat (intuitionistic)

Example
List Qubit = pX.I + X ® Qubit (linear)

Example
Stream Qubit = pX./ —o (X ® Qubit) (linear)

Example
Stream Nat = pX.!(X ® Nat) (intuitionistic)

14 /22



A CPO-enriched model

CPO - w-complete partial orders and monotone maps preserving suprema of w-chains.
If C is Cartesian closed (or even monoidal closed), then the category B is C-enriched if:
obj B is a set
For each B, B’ € obj B, the family B(B, B’) € obj C.
The relevant morphisms — composition, etc., in B are C-morphisms:
E.g., o: B(B',B") x B(B,B') = B(B,B") is a C-morphism.
Examples: 1) Since Set is Cartesian closed, every concrete category is Set-enriched.
2) CPO is Cartesian closed, so CPO is self-enriched.

3) CPO, is CPO-enriched, where CPO |, is the subcategory of CPO where every object has
a least element (L) and morphisms preserve L.

15/22



A CPO-enriched model

CPO - w-complete partial orders and monotone maps preserving suprema of w-chains.

A CPO-enriched LNL model includes:

1. A CPO-symmetric monoidal closed category £ with finite CPO-coproducts.

2. A CPO-symmetric monoidal adjunction:

F=—0l

/\

CPO € L,
\_/

L(Iv_)

3. The category £ is CPO | -enriched and has w-colimits

Example: £ = CPO, is the simplest example: / = {1}, and F(D) ~ D, for all CPOs D.

15/22



A CPO-enriched model

CPO - w-complete partial orders and monotone maps preserving suprema of w-chains.

A CPO-enriched LNL model includes:

1. A CPO-symmetric monoidal closed category £ with finite CPO-coproducts.

2. A CPO-symmetric monoidal adjunction:
F=—0l

CPO € L,

ﬁ(lv_)
3. The category £ is CPO_-enriched and has w-colimits

Remark
1. and 3. imply L has a zero object and we can solve recursive domain equations.

15/22



Interpretation of recursive types

Interpreting recursive types requires finding initial (final) (co)algebras of certain
CPO-endofunctors.

If T:C — C is an endofunctor, then a T-algebra is an object C € obj C and a map
¢c: TC — C.

C is an initial T-algebra if for any T-algebra ¢p: TD — D, there is a unique morphism
f: C — D satisfying ¢p o Tf = f o ¢c.

Example: If T: Set — Set is T(S) = SU{S}, then N is the initial T-algebra.
Dually, a final T-coalgebra is an object C and a morphism p: D — TD.

D is a final T-coalgebra if any other T-coalgebra ¢)g: E — TE admits a morphism g: E — D
with ¢p o g = Tg o k.

Example: If T: Set — Set is T(S) = {0} US, then {0} is the final T-coalgebra.

16 /22



Interpretation of recursive types

Interpreting recursive types requires finding initial (final) (co)algebras of certain
CPO-endofunctors.

Lemma (Adamek)

Let C be a category with an initial object () and let T : C — C be an endofunctor. Assume
further that the following w-diagram

2
0L TS T20 1Y
has a colimit and T preserves it. Then, the induced isomorphism is the initial T-algebra.

Corollary

In a symmetric monoidal closed category with finite coproducts and w-colimits, any
endofunctor composed from constants, ® and + has an initial algebra.

16 /22



Embedding-projection pairs

Problem: How do we interpret recursive types which also contain ! and — 7
The problem for (A, B) — A —o B is that it is covariant in B and contravariant in A.
Textbook Solution: CPO-enrichment and embedding-projection pairs.

Definition
Given a CPO-enriched category C, an embedding-projection pair is a pair of morphisms
e:A— Band p: B— A, such that poe=id and eo p < id.

Theorem

If e is an embedding, then it has a unique projection, which we denote e*.

Definition

The subcategory of C with the same objects, but whose morphisms are embeddings is denoted
C..

17 /22



Interpretation of recursive types (contd.)

Theorem (Smyth and Plotkin)

If T:C— D isa CPO-enriched functor and C has w-colimits, then T preserves w-colimits of
embeddings. In other words, the restriction T, : C. — D, is w-continuous.

Theorem

In our categorical model, any CPO-endofunctor T : L — L has an initial T-algebra, whose
inverse is a final T-coalgebra.

Remark
The above theorem follows directly from results in Fiore's PhD thesis.

18/22



Main Lemma

We define CPO,,. to be the full-on-objects subcategory of CPO whose morphisms f are those
satisfying F(f) € L. We call such f pre-embeddings.

Then there are two semantic models:
e For all types, [ F P] € L
e For intuitionistic types, also have (© F P) € CPO,.
There exists a natural isomorphism
agrp: [OF Pl .o F*"= Fo(©F P)

Diagrammatically:

[eF P,
.l e
FX|@|T = T F
cPol} CPO,.
©FP)

19/22



Copy and Discard

Let P be an intuitionistic object and o : P — F(X) an isomorphism.

We can define three maps:

Discard: % := P = F(X) F, F(1) =N
Copy: 3 == P 5 F(X) 299, F(x 5 X) 25 F(X) 0 F(X) 2227, p e p,

-1y

Lift: |iftg =p F(X) F(nx) !F(X) (o p.

Given two intuitionistic objects P; and P,, a morphism f : Py — P» is called intuitionistic, if
there exists a morphism ' € CPO(X, Y) and two isomorphisms
o and B, such that = P1 % F(X) 2% F(v) & p,.
If f: P; — P5 is intuitionistic, then:
e op,of =op;
e Ap,of =(f®f)oAp,;

° |iftp2 of = Ifo |iftpl.
2022



Thank You!

Questions?’?

21/22



Syntax

— - (var) — - (label) - - (const) O,I1;01-m:A ®,Ih,x:A;02-n: B let
o.x:AbrFx:A liarl:a B0Fc:A ®.1.1501,0, F letx = minn: B (let)
Ii0rm:0 I'OFrm:A I'Orm:B X *)

initi left ht - :
Toroom c W) o e, pmias B O T;Qr right, gm A+ B 8% 0k 1
O, 11;01+-m:A+B O, I, x: A0, +-n:C CID,Fg,y:B;Qsz:C( ) O,I;01F-m: 1 O, 1;0,-n:C (seq)
D, 11,1201, Q02 + case mof {left x —» n | righty — p} : C case O, I1,15;01,02 - myn: C seq
O, T1;01+-m: A &, I5;0,Fn:B i O, T1;01-m:A®B O, x:Ay:B;Q2kn:C .
(pair) - (let-pair)
D, I,12;01,02 F {m,n): A® B ®,17,12;01,Q2 Flet{x,y) =minn:C
Ix:AQrm:B ®,11;01Fm:A—B O,T;02Fn: A O;0Frm: A [;0Fm:lA
: (abs) B 2 Q2 (app) m (iift) 9 (force)
0 Ax%m:A—B D,T11,12;01,Q2-mn: B @;0 + lift m 1A ;0 forcem: A
I;0F m (T — U) @,Ty; 01 F m : Diag(T.U) ®.Tp;Qp+n:T 0:QFC:T 0;Q' ' :U SeMp(Q.Q) ..
(box) (apply) (diag)

T;Q + boxrm : Diag(T,U) @, 11, T2; 01, Q2 + apply(m, n) : U o0+ (E, S,Z’) : Diag(T, U)

21/22



Operational semantics

(S.m)y L (S v) (&, v) S.m (5 (v, (§.nfv/xo" [y]) LS w)
(S, (m,m) | (8", {w, ")) (S.let{x,y) =minn) || (5", w)
(S,m) | (8", 1ift m") (8',m") | (8", v)
(S, force m) |} (8”7, v)

(S.lift m) | (S, lift m)

(S,m) Il (5',1ift n) freshlabels(T) = (Q,%) (idg,nf) Il (D, ")
(S, boxpm) | (8", (£, D, £))

(S.m) UL (8", (£.D,¢")) (S".n) U (S”.K) append(S”,K.E,D, ") = (5", k)
(S. apply(m.n)) I (5™, k')
(S,m) | (87, (ED, E’)) (8’,n) U (8", é) append(S”’, £.ED, E’) undefined

(S, apply(m, n)) | Error (S.(£,D,€)) I (S, (£, D, £))

21/22



