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Stochastic Processes and Skorohod’s Theorem

A stochastic process is a time-indexed family {Xt | t ∈ T ⊆ R+} of
random variables / elements Xt : Ω→ S , where (Ω,ΣΩ, µ) is a
probability space, and S is a Polish space.

Fact: If S is Polish, then so is (Prob(S), dp), where dp is the Prokhorov
metric. In fact, dp generates the weak topology.

Skorohod’s Theorem
Let S be a Polish space, let ν ∈ ProbS , and let λ denote Lebesgue
measure on [0, 1]. Then there is a random variable X : [0, 1]→ S
satisfying X∗(λ) = ν.1

Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then the random variables
Xn,X : [0, 1]→ S with X∗(λ) = ν,Xn∗(λ) = νn satisfy Xn → X λ-a.e.

Fact: We could use any standard probability space (S ,ΣS ,m) instead of
([0, 1],B[0,1], λ).

1X∗(λ)(A) = λ(X−1(A)) is the push forward of X , also called the law of X .



Domains

Domains are partially ordered sets with additional properties;

Informatic partial order

p v q if q contains more information than p.

Example: The Upper Space of Y locally compact sober:

U(Y ) = ({K ⊆ Y | ∅ 6= K compact, saturated} ∪ {Y },⊇).

Directed completeness

∅ 6= D ⊆ P directed if x , y ∈ D ⇒ (∃z ∈ D) x , y ≤ z .
P is directed complete if D ⊆ P directed ⇒ supD exists.

F ⊆ U(Y ) directed ⇒ supF =
⋂
F .

Approximation

x � y iff y ≤ supD ⇒ (∃d ∈ D) x ≤ d .
Domain: ↓↓y = {x | x � y} directed and y = sup ↓↓y

K � L iff L ⊆ K◦; L =
⋂
{K | L ⊆ K◦} = sup{K | K � L}.



Domains

Scott Topology

U ⊆ P Scott open if:

• U = ↑U = {x ∈ P | (∃u ∈ U) u ≤ x} and

• D directed, supD ∈ U ⇒ D ∩ U 6= ∅.
Upper Vietoris topology on U(Y ).

↑↑x = {y | x � y} is Scott open.

Morphisms

f : P → Q is Scott continuous if:
• f is monotone, and
• D directed ⇒ f (supD) = sup f (D).

Upper semicontinuous maps between U(Y ) and U(Z ):

f : Y → Z ⇒ U(f ) : U(Y )→ U(Z ) by U(f )(K ) = f (K )

is monotone and f (
⋂
F) =

⋂
f (F).



Domains

Scott Topology

U ⊆ P Scott open if:

• U = ↑U = {x ∈ P | (∃u ∈ U) u ≤ x} and

• D directed, supD ∈ U ⇒ D ∩ U 6= ∅.

Morphisms

f : P → Q is Scott continuous if:
• f is monotone, and
• D directed ⇒ f (supD) = sup f (D).

Lawson Topology

Basis: {↑↑x \ ↑F | F ⊆ P finite}
Hausdorff refinement of Scott topology.

All the domains we discuss are Lawson compact.

Vietoris topology on U(Y ).



Domain Environments

Embedding S in U(S)

S Polish ⇒ S ↪→ [0, 1]ω ⇒ S ⊆Gδ S compact Polish

{Kn | Kn ∈ U(S), n > 0}: neighborhood basis of compact subsets of S .
Then:

1◦ S ⊆ S ↪→ MaxU(S) ⊆ U(S) by x 7→ {x} =
⋂
n

{Kn | x ∈ K◦n }

2◦ S inherits the Scott topology = Lawson topology on MaxU(S).

3◦ Each cover Kn
def
= {K1, . . . ,Kmn} with S ⊆

⋃
i≤mn

K◦i defines a

Scott-continuous projection ψn : U(S)→ U(S)

with finite image Ln
def
= 〈Kn〉. This implies ψn � 1U(S).

4◦ Ordering covers by refinement yields 1U(S) = supn ψn.



Domains and Probability Measures

Prob(P) is a Domain

P (Lawson compact) domain ⇒ Prob(P) (Lawson compact) domain:

1◦ µ ≤ ν iff
∫
fdµ ≤

∫
fdν (∀f : P → R+ Scott continuous)

2◦ P Lawson compact ⇒ (Prob(P),weak) = (Prob(P), Lawson).

3◦ P = U(S),S Polish ⇒ 1Prob(P) = supn ψn∗, so

µ = supn ψn∗ µ, with ψn∗ µ =
∑

K∈Ln
µ(K )δK (∀µ).

4◦ By construction

ψ1∗(µ)� · · · � ψn∗(µ)� · · · � µ = supn ψn∗(µ).

Note: ψn∗(µ)� µ ⇒ ↑ψn∗(µ) compact neighborhood of µ.



Defining the Random Variables

A Domain Environment for the Cantor set, C

C

C ∩ [ 1
2
, 1]

...
...

...
...

C ∩ [0, 1
2
]

...
...

...
...

C ↪→ MaxCT ⊆ CT ::= {0, 1}∗ ∪ {0, 1}ω

Cp = {0, 1}p ⇒ ∃πp : C → Cp retraction

ιp : Cp ↪→ C ⇒ ιn ◦ πp : C → C lower semicontinuous,
and 1C = supp ιp ◦ πp|C .



Some Random Variables

• Given µ ∈ ProbU(S), ψn∗(µ) =
∑

K∈Ln
µ(K )δK , and any

p ≥ log2(|Ln| ·minK∈Ln µ(K )), there are

rK ∈ Dp = { s
2p | 0 ≤ s ≤ 2p} with µ(K )− rK

2p ≤ 1
|Ln|·2p .

• Then

νn,p
def
= (1−

∑
K∈Ln

rK )δS +
∑

K∈Ln
rKδK �

∑
K∈Ln

µ(K )δK = ψn∗(µ),

||νn,p − ψn∗(µ)|| ≤ 1
2p and supp νn,p = ψn∗(µ).
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• Define fn,p : Cp → U(S) by fn,p(j) =


Kn if 1 ≤ j ≤ r1

K2 if r1 < j ≤ r1 + r2
...

S if
∑

K∈Ln
rK < j

Then fn,p∗(
1
2p

∑
i≤2p δ i

2p
) = (1−

∑
i ri )δS +

∑
K∈Ln

rKδK = νn,p.
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• And, fn,p ◦ πp : C → U(S) is Lawson continuous with

(fn,p ◦ πp)∗ (µC) = fn,p∗
(

1
2p

∑
i≤2p δ i

2p

)
= νn,p � ψn∗(µ).



Recursively Defining Random Variables

To bring order to the family {fn,p | n, p}, we apply domain theory and
recursion:

1◦ Let f1,p1 : Cp1 → U(S) with (f1,pi ◦ πp1 )(µC) = ν1,p1 � ψ1∗(µ).
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Recursively Defining Random Variables

To bring order to the family {fn,p | n, p}, we apply domain theory and
recursion:

1◦ Let f1,p1 : Cp1 → U(S) with (f1,pi ◦ πp1 )(µC) = ν1,p1 � ψ1∗(µ).

2◦ Since ψ1(µ)� ψ2(µ) = supp ν2,p, we can find p2 > p1 with

ν1,p1 � ν2,p2 .

3◦ Using the Splitting Lemma, this implies f1,p1 ◦ πp1p2 ≤ fn2,p2 , from

which it follows that f1,p1 ◦ πp1 ≤ f2,p2 ◦ πp2 .

4◦ We obtain an increasing sequence fn,pn with fn,pn ◦ πpnpm ≤ fm,pm

for n ≤ m.



Recursively Defining Random Variables

• By construction fn,pn : ↑Cpn → U(S) satisfies fn,pn ◦ πpnpm ≤ fm,pm , so

Xn = (supn fn,pn ◦ πpn)|C : C → U(S) measurable with Xn∗(µC) = µ.

• If µm →w µ ∈ Prob(S), define νm,n � ψn∗(µm) and

fm,n,pm,n : ↑Cpm,n → U(S) as above.

• Then Xm = (supn fm,n,pm,n)|C satisfies Xm : C → U(S) is measurable

with Xm∗(µC) = µm.

• µm →w µ = supn νn,pn , µm = supm,n νm,n ⇒ νn,pn � νm,n eventually.

• This implies fn,pn ◦ πpnpm′,n′ ≤ fm′,n′,pm′,n′ eventually.

• This is used to show Xm → X a.s. µC .
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with Xm∗(µC) = µm.

• µm →w µ = supn νn,pn , µm = supm,n νm,n ⇒ νn,pn � νm,n eventually.

• This implies fn,pn ◦ πpnpm′,n′ ≤ fm′,n′,pm′,n′ eventually.

• This is used to show Xm → X a.s. µC .

• We know ϕ : C →← [0, 1] : ι is a projection-embedding pair, with

ϕ∗(µC) = λ and ι∗(λ) = µC . Composing X : C → U(S) with ι yields

random variable X ◦ ι : [0, 1]→ U(S) with law (ι ◦X )∗(λ) = µ, etc.



Questions?


