Approximating Measurable Maps

Michael Mislove
Tulane University

Spring Topology and Dynamical Systems Conference
 March 9, 2017

Supported by US AFOSR

Outline

I. Stochastic Processes and Skorohod's Theorem
II. Domains and Probability Measures
III. Proving Skorohod's Theorem

Stochastic Processes and Skorohod's Theorem

A stochastic process is a time-indexed family $\left\{X_{t} \mid t \in T \subseteq \mathbb{R}_{+}\right\}$of random variables / elements $X_{t}: \Omega \rightarrow S$, where $\left(\Omega, \Sigma_{\Omega}, \mu\right)$ is a probability space, and S is a Polish space.

Fact: If S is Polish, then so is $\left(\operatorname{Prob}(S), d_{p}\right)$, where d_{p} is the Prokhorov metric. In fact, d_{p} generates the weak topology.

Skorohod's Theorem

Let S be a Polish space, let $\nu \in \operatorname{Prob} S$, and let λ denote Lebesgue measure on $[0,1]$. Then there is a random variable $X:[0,1] \rightarrow S$ satisfying $X_{*}(\lambda)=\nu .{ }^{1}$
Moreover, if $\nu_{n}, \nu \in \operatorname{Prob} S$ satisfy $\nu_{n} \rightarrow_{w} \nu$, then the random variables $X_{n}, X:[0,1] \rightarrow S$ with $X_{*}(\lambda)=\nu, X_{n *}(\lambda)=\nu_{n}$ satisfy $X_{n} \rightarrow X$-a.e.

Fact: We could use any standard probability space $\left(S, \Sigma_{S}, m\right)$ instead of $\left([0,1], \mathcal{B}_{[0,1]}, \lambda\right)$.
${ }^{1} X_{*}(\lambda)(A)=\lambda\left(X^{-1}(A)\right)$ is the push forward of X, also called the law of X.

Domains

Domains are partially ordered sets with additional properties;
Informatic partial order
$p \sqsubseteq q$ if q contains more information than p.
Example: The Upper Space of Y locally compact sober:

$$
U(Y)=(\{K \subseteq Y \mid \emptyset \neq K \text { compact, saturated }\} \cup\{Y\}, \supseteq) .
$$

Directed completeness
$\emptyset \neq D \subseteq P$ directed if $x, y \in D \Rightarrow(\exists z \in D) x, y \leq z$.
P is directed complete if $D \subseteq P$ directed \Rightarrow sup D exists.

$$
\mathcal{F} \subseteq U(Y) \text { directed } \Rightarrow \sup \mathcal{F}=\bigcap \mathcal{F}
$$

Approximation
$x \ll y$ iff $y \leq \sup D \Rightarrow(\exists d \in D) x \leq d$.
Domain: $\downarrow y=\{x \mid x \ll y\}$ directed and $y=\sup \downarrow y$

$$
K \ll L \text { iff } L \subseteq K^{\circ} ; \quad L=\bigcap\left\{K \mid L \subseteq K^{\circ}\right\}=\sup \{K \mid K \ll L\} .
$$

Domains

Scott Topology

$U \subseteq P$ Scott open if:

- $U=\uparrow U=\{x \in P \mid(\exists u \in U) u \leq x\}$ and
- D directed, sup $D \in U \Rightarrow D \cap U \neq \emptyset$.

Upper Vietoris topology on $U(Y)$.
$\uparrow x=\{y \mid x \ll y\}$ is Scott open.

Morphisms

$f: P \rightarrow Q$ is Scott continuous if:

- f is monotone, and
- $\quad D$ directed $\Rightarrow f(\sup D)=\sup f(D)$.

Upper semicontinuous maps between $U(Y)$ and $U(Z)$:

$$
f: Y \rightarrow Z \Rightarrow U(f): U(Y) \rightarrow U(Z) \text { by } U(f)(K)=f(K)
$$

is monotone and $f(\bigcap \mathcal{F})=\bigcap f(\mathcal{F})$.

Domains

Scott Topology

$U \subseteq P$ Scott open if:

- $U=\uparrow U=\{x \in P \mid(\exists u \in U) u \leq x\}$ and
- D directed, $\sup D \in U \Rightarrow D \cap U \neq \emptyset$.

Morphisms

$f: P \rightarrow Q$ is Scott continuous if:

- f is monotone, and
- D directed $\Rightarrow f(\sup D)=\sup f(D)$.

Lawson Topology

Basis: $\{\uparrow x \backslash \uparrow F \mid F \subseteq P$ finite $\}$
Hausdorff refinement of Scott topology.
All the domains we discuss are Lawson compact.
Vietoris topology on $U(Y)$.

Domain Environments

Embedding S in $U(\bar{S})$

S Polish $\Rightarrow S \hookrightarrow[0,1]^{\omega} \Rightarrow S \subseteq G_{\delta} \bar{S}$ compact Polish
$\left\{K_{n} \mid K_{n} \in U(\bar{S}), n>0\right\}$: neighborhood basis of compact subsets of \bar{S}. Then:
$1^{\circ} \quad S \subseteq \bar{S} \hookrightarrow \operatorname{Max} U(\bar{S}) \subseteq U(\bar{S})$ by $x \mapsto\{x\}=\bigcap_{n}\left\{K_{n} \mid x \in K_{n}^{\circ}\right\}$
$2^{\circ} S$ inherits the Scott topology = Lawson topology on $\operatorname{Max} U(\bar{S})$.
3° Each cover $\mathbb{K}_{n} \xlongequal{\text { def }}\left\{K_{1}, \ldots, K_{m_{n}}\right\}$ with $\bar{S} \subseteq \bigcup_{i \leq m_{n}} K_{i}^{\circ}$ defines a
Scott-continuous projection $\psi_{n}: U(\bar{S}) \rightarrow U(\bar{S})$
with finite image $\mathbb{L}_{n} \xlongequal{ } \stackrel{\text { def }}{=}\left\langle\mathbb{K}_{n}\right\rangle$. This implies $\psi_{n} \ll \mathbf{1}_{U(\bar{S})}$.
4° Ordering covers by refinement yields $\mathbf{1}_{U(\bar{S})}=\sup _{n} \psi_{n}$.

Domains and Probability Measures

$\operatorname{Prob}(P)$ is a Domain

P (Lawson compact) domain $\Rightarrow \operatorname{Prob}(P)$ (Lawson compact) domain:
$1^{\circ} \quad \mu \leq \nu$ iff $\int f d \mu \leq \int f d \nu\left(\forall f: P \rightarrow \mathbb{R}_{+}\right.$Scott continuous)
$2^{\circ} \quad P$ Lawson compact $\Rightarrow(\operatorname{Prob}(P)$, weak $)=(\operatorname{Prob}(P)$, Lawson $)$.
$3{ }^{\circ} \quad P=U(\bar{S})$, S Polish $\Rightarrow 1_{\operatorname{Prob}(P)}=\sup _{n} \psi_{n *}$, so
$\mu=\sup _{n} \psi_{n *} \mu$, with $\psi_{n *} \mu=\sum_{K \in \mathbb{L}_{n}} \mu(K) \delta_{K}(\forall \mu)$.
4° By construction

$$
\psi_{1 *}(\mu) \ll \cdots \ll \psi_{n *}(\mu) \ll \cdots \ll \mu=\sup _{n} \psi_{n *}(\mu)
$$

Note: $\psi_{n *}(\mu) \ll \mu \Rightarrow \uparrow \psi_{n *}(\mu)$ compact neighborhood of μ.

Defining the Random Variables

A Domain Environment for the Cantor set, \mathcal{C}

$$
\mathcal{C} \hookrightarrow \operatorname{Max} \mathbb{C} \mathbb{T} \subseteq \mathbb{C} \mathbb{T}::=\{0,1\}^{*} \cup\{0,1\}^{\omega}
$$

$$
\mathcal{C}_{p}=\{0,1\}^{p} \Rightarrow \exists \pi_{p}: \mathcal{C} \rightarrow \mathcal{C}_{p} \text { retraction }
$$

$\iota_{p}: \mathcal{C}_{p} \hookrightarrow \mathcal{C} \Rightarrow \iota_{n} \circ \pi_{p}: \mathcal{C} \rightarrow \mathcal{C}$ lower semicontinuous, and $\mathbf{1}_{\mathcal{C}}=\sup _{p} \iota_{p} \circ \pi_{p} \mid \mathcal{C}$.

Some Random Variables

- Given $\mu \in \operatorname{Prob} U(\bar{S}), \psi_{n *}(\mu)=\sum_{K \in \mathbb{L}_{n}} \mu(K) \delta_{K}$, and any
$p \geq \log _{2}\left(\left|\mathbb{L}_{n}\right| \cdot \min _{K \in \mathbb{L}_{n}} \mu(K)\right)$, there are $r_{K} \in D_{p}=\left\{\left.\frac{s}{2^{p}} \right\rvert\, 0 \leq s \leq 2^{p}\right\}$ with $\mu(K)-\frac{r_{K}}{2^{p}} \leq \frac{1}{\left|\mathbb{\mathbb { L } _ { n }}\right| \cdot 2^{p}}$.
- Then

$$
\begin{aligned}
\nu_{n, p} & \stackrel{\text { def }}{=}\left(1-\sum_{K \in \mathbb{L}_{n}} r_{K}\right) \delta_{S}+\sum_{K \in \mathbb{L}_{n}} r_{K} \delta_{K} \ll \sum_{K \in \mathbb{L}_{n}} \mu(K) \delta_{K}=\psi_{n *}(\mu), \\
& \left\|\nu_{n, p}-\psi_{n *}(\mu)\right\| \leq \frac{1}{2^{p}} \text { and } \sup _{p} \nu_{n, p}=\psi_{n *}(\mu) .
\end{aligned}
$$

Some Random Variables

- Given $\mu \in \operatorname{Prob} U(\bar{S}), \psi_{n *}(\mu)=\sum_{K \in \mathbb{L}_{n}} \mu(K) \delta_{K}$, and any
$p \geq \log _{2}\left(\left|\mathbb{L}_{n}\right| \cdot \min _{K \in \mathbb{L}_{n}} \mu(K)\right)$, there are
$r_{K} \in D_{p}=\left\{\left.\frac{s}{2^{p}} \right\rvert\, 0 \leq s \leq 2^{p}\right\}$ with $\mu(K)-\frac{r_{K}}{2^{p}} \leq \frac{1}{\left\lvert\, \frac{\mathbb{L}_{n} \mid \cdot 2^{p}}{}\right.}$.
- Then

$$
\nu_{n, p} \stackrel{\text { def }}{=}\left(1-\sum_{K \in \mathbb{L}_{n}} r_{K}\right) \delta_{S}+\sum_{K \in \mathbb{L}_{n}} r_{K} \delta_{K} \ll \sum_{K \in \mathbb{L}_{n}} \mu(K) \delta_{K}=\psi_{n *}(\mu),
$$

$$
\left\|\nu_{n, p}-\psi_{n *}(\mu)\right\| \leq \frac{1}{2^{p}} \text { and } \sup _{p} \nu_{n, p}=\psi_{n *}(\mu) .
$$

- Define $f_{n, p}: \mathcal{C}_{p} \rightarrow U(\bar{S})$ by $f_{n, p}(j)= \begin{cases}K_{n} & \text { if } 1 \leq j \leq r_{1} \\ K_{2} & \text { if } r_{1}<j \leq r_{1}+r_{2} \\ \vdots & \\ S & \text { if } \sum_{K \in \mathbb{L}_{n}} r_{K}<j\end{cases}$

Then $f_{n, p *}\left(\frac{1}{2^{p}} \sum_{i \leq 2^{p}} \delta_{\frac{i}{2^{p}}}\right)=\left(1-\sum_{i} r_{i}\right) \delta_{S}+\sum_{K \in \mathbb{L}_{n}} r_{K} \delta_{K}=\nu_{n, p}$.

Some Random Variables

- Given $\mu \in \operatorname{Prob} U(\bar{S}), \psi_{n *}(\mu)=\sum_{K \in \mathbb{L}_{n}} \mu(K) \delta_{K}$, and any
$p \geq \log _{2}\left(\left|\mathbb{L}_{n}\right| \cdot \min _{K \in \mathbb{L}_{n}} \mu(K)\right)$, there are
$r_{K} \in D_{p}=\left\{\left.\frac{s}{2^{p}} \right\rvert\, 0 \leq s \leq 2^{p}\right\}$ with $\mu(K)-\frac{r_{K}}{2^{p}} \leq \frac{1}{\left|\mathbb{L}_{n}\right| \cdot 2^{p}}$.
- Then
$\nu_{n, p} \stackrel{\text { def }}{=}\left(1-\sum_{K \in \mathbb{L}_{n}} r_{K}\right) \delta_{S}+\sum_{K \in \mathbb{L}_{n}} r_{K} \delta_{K} \ll \sum_{K \in \mathbb{L}_{n}} \mu(K) \delta_{K}=\psi_{n *}(\mu)$,
$\left\|\nu_{n, p}-\psi_{n *}(\mu)\right\| \leq \frac{1}{2^{p}}$ and $\sup _{p} \nu_{n, p}=\psi_{n *}(\mu)$.
- Define $f_{n, p}: \mathcal{C}_{p} \rightarrow U(\bar{S})$ by $f_{n, p}(j)=\left\{\begin{array}{cl}K_{n} & \text { if } 1 \leq j \leq r_{1} \\ K_{2} & \text { if } r_{1}<j \leq r_{1}+r_{2} \\ \vdots & \\ S & \text { if } \sum_{K \in \mathbb{L}_{n}} r_{K}<j\end{array}\right.$

Then $f_{n, p *}\left(\frac{1}{2^{p}} \sum_{i \leq 2^{p}} \delta_{\frac{i}{2^{p}}}\right)=\left(1-\sum_{i} r_{i}\right) \delta_{S}+\sum_{K \in \mathbb{L}_{n}} r_{K} \delta_{K}=\nu_{n, p}$.

- And, $f_{n, p} \circ \pi_{p}: \mathcal{C} \rightarrow U(\bar{S})$ is Lawson continuous with

$$
\left(f_{n, p} \circ \pi_{p}\right)_{*}\left(\mu_{\mathcal{C}}\right)=f_{n, p *}\left(\frac{1}{2^{p}} \sum_{i \leq 2^{p}} \delta_{\frac{i}{2^{p}}}\right)=\nu_{n, p} \ll \psi_{n *}(\mu) .
$$

Recursively Defining Random Variables

To bring order to the family $\left\{f_{n, p} \mid n, p\right\}$, we apply domain theory and recursion:
$1^{\circ} \quad$ Let $f_{1, p_{1}}: \mathcal{C}_{p_{1}} \rightarrow U(\bar{S})$ with $\left(f_{1, p_{i}} \circ \pi_{p_{1}}\right)\left(\mu_{\mathcal{C}}\right)=\nu_{1, p_{1}} \ll \psi_{1 *}(\mu)$.

Recursively Defining Random Variables

To bring order to the family $\left\{f_{n, p} \mid n, p\right\}$, we apply domain theory and recursion:
$1^{\circ} \quad$ Let $f_{1, p_{1}}: \mathcal{C}_{p_{1}} \rightarrow U(\bar{S})$ with $\left(f_{1, p_{i}} \circ \pi_{p_{1}}\right)\left(\mu_{\mathcal{C}}\right)=\nu_{1, p_{1}} \ll \psi_{1 *}(\mu)$.
2° Since $\psi_{1}(\mu) \ll \psi_{2}(\mu)=\sup _{p} \nu_{2, p}$, we can find $p_{2}>p_{1}$ with

$$
\nu_{1, p_{1}} \ll \nu_{2, p_{2}}
$$

Recursively Defining Random Variables

To bring order to the family $\left\{f_{n, p} \mid n, p\right\}$, we apply domain theory and recursion:
$1^{\circ} \quad$ Let $f_{1, p_{1}}: \mathcal{C}_{p_{1}} \rightarrow U(\bar{S})$ with $\left(f_{1, p_{i}} \circ \pi_{p_{1}}\right)\left(\mu_{\mathcal{C}}\right)=\nu_{1, p_{1}} \ll \psi_{1 *}(\mu)$.
2° Since $\psi_{1}(\mu) \ll \psi_{2}(\mu)=\sup _{p} \nu_{2, p}$, we can find $p_{2}>p_{1}$ with $\nu_{1, p_{1}} \ll \nu_{2, p_{2}}$.
3° Using the Splitting Lemma, this implies $f_{1, p_{1}} \circ \pi_{p_{1} p_{2}} \leq f_{n_{2}, p_{2}}$, from which it follows that $f_{1, p_{1}} \circ \pi_{p_{1}} \leq f_{2, p_{2}} \circ \pi_{p_{2}}$.
4° We obtain an increasing sequence $f_{n, p_{n}}$ with $f_{n, p_{n}} \circ \pi_{p_{n} p_{m}} \leq f_{m, p_{m}}$ for $n \leq m$.

Recursively Defining Random Variables

- By construction $f_{n, p_{n}}: \uparrow \mathcal{C}_{p_{n}} \rightarrow U(\bar{S})$ satisfies $f_{n, p_{n}} \circ \pi_{p_{n} p_{m}} \leq f_{m, p_{m}}$, so $X_{n}=\left.\left(\sup _{n} f_{n, p_{n}} \circ \pi_{p_{n}}\right)\right|_{\mathcal{C}}: \mathcal{C} \rightarrow U(\bar{S})$ measurable with $X_{n *}\left(\mu_{\mathcal{C}}\right)=\mu$.
- If $\mu_{m} \rightarrow_{w} \mu \in \operatorname{Prob}(S)$, define $\nu_{m, n} \ll \psi_{n *}\left(\mu_{m}\right)$ and $f_{m, n, p_{m, n}}: \uparrow \mathcal{C}_{p_{m, n}} \rightarrow U(\bar{S})$ as above.
- Then $X_{m}=\left.\left(\sup _{n} f_{m, n, p_{m, n}}\right)\right|_{\mathcal{C}}$ satisfies $X_{m}: \mathcal{C} \rightarrow U(\bar{S})$ is measurable with $X_{m *}\left(\mu_{\mathcal{C}}\right)=\mu_{m}$.
- $\mu_{m} \rightarrow_{w} \mu=\sup _{n} \nu_{n, p_{n}}, \mu_{m}=\sup _{m, n} \nu_{m, n} \Rightarrow \nu_{n, p_{n}} \ll \nu_{m, n}$ eventually.
- This implies $f_{n, p_{n}} \circ \pi_{p_{n} p_{m^{\prime}, n^{\prime}}} \leq f_{m^{\prime}, n^{\prime}, p_{m^{\prime}, n^{\prime}}}$ eventually.
- This is used to show $X_{m} \rightarrow X$ a.s. $\mu_{\mathcal{C}}$.

Recursively Defining Random Variables

- By construction $f_{n, p_{n}}: \uparrow \mathcal{C}_{p_{n}} \rightarrow U(\bar{S})$ satisfies $f_{n, p_{n}} \circ \pi_{p_{n} p_{m}} \leq f_{m, p_{m}}$, so $X_{n}=\left.\left(\sup _{n} f_{n, p_{n}} \circ \pi_{p_{n}}\right)\right|_{\mathcal{C}}: \mathcal{C} \rightarrow U(\bar{S})$ measurable with $X_{n *}\left(\mu_{\mathcal{C}}\right)=\mu$.
- If $\mu_{m} \rightarrow_{w} \mu \in \operatorname{Prob}(S)$, define $\nu_{m, n} \ll \psi_{n *}\left(\mu_{m}\right)$ and $f_{m, n, p_{m, n}}: \uparrow \mathcal{C}_{p_{m, n}} \rightarrow U(\bar{S})$ as above.
- Then $X_{m}=\left(\sup _{n} f_{m, n, p_{m, n}}\right)_{\mathcal{C}}$ satisfies $X_{m}: \mathcal{C} \rightarrow U(\bar{S})$ is measurable with $X_{m *}\left(\mu_{\mathcal{C}}\right)=\mu_{m}$.
- $\mu_{m} \rightarrow_{w} \mu=\sup _{n} \nu_{n, p_{n}}, \mu_{m}=\sup _{m, n} \nu_{m, n} \Rightarrow \nu_{n, p_{n}} \ll \nu_{m, n}$ eventually.
- This implies $f_{n, p_{n}} \circ \pi_{p_{n} p_{m^{\prime}, n^{\prime}}} \leq f_{m^{\prime}, n^{\prime}, p_{m^{\prime}, n^{\prime}}}$ eventually.
- This is used to show $X_{m} \rightarrow X$ a.s. $\mu_{\mathcal{C}}$.
- We know $\varphi: \mathcal{C} \rightleftarrows[0,1]: \iota$ is a projection-embedding pair, with $\varphi_{*}\left(\mu_{\mathcal{C}}\right)=\lambda$ and $\iota_{*}(\lambda)=\mu_{\mathcal{C}}$. Composing $X: \mathcal{C} \rightarrow U(\bar{S})$ with ι yields random variable $X \circ \iota:[0,1] \rightarrow U(\bar{S})$ with law $(\iota \circ X)_{*}(\lambda)=\mu$, etc.

Questions?

