Approximating Measurable Maps

Michael Mislove Tulane University

Spring Topology and Dynamical Systems Conference March 9, 2017

Supported by US AFOSR

Outline

I. Stochastic Processes and Skorohod's Theorem

II. Domains and Probability Measures

III. Proving Skorohod's Theorem

Stochastic Processes and Skorohod's Theorem

A stochastic process is a time-indexed family $\{X_t \mid t \in T \subseteq \mathbb{R}_+\}$ of random variables / elements $X_t \colon \Omega \to S$, where $(\Omega, \Sigma_{\Omega}, \mu)$ is a probability space, and S is a Polish space.

Fact: If S is Polish, then so is $(Prob(S), d_p)$, where d_p is the *Prokhorov* metric. In fact, d_p generates the weak topology.

Skorohod's Theorem

Let S be a Polish space, let $\nu \in \operatorname{Prob} S$, and let λ denote Lebesgue measure on [0,1]. Then there is a random variable $X : [0,1] \to S$ satisfying $X_*(\lambda) = \nu$.¹

Moreover, if $\nu_n, \nu \in \operatorname{Prob} S$ satisfy $\nu_n \to_w \nu$, then the random variables $X_n, X \colon [0,1] \to S$ with $X_*(\lambda) = \nu, X_{n*}(\lambda) = \nu_n$ satisfy $X_n \to X$ λ -a.e.

Fact: We could use any standard probability space (S, Σ_S, m) instead of $([0, 1], \mathcal{B}_{[0,1]}, \lambda)$.

 ${}^{1}X_{*}(\lambda)(A) = \lambda(X^{-1}(A))$ is the *push forward of* X, also called the *law of* X.

Domains

Domains are partially ordered sets with additional properties;

Informatic partial order

 $p \sqsubseteq q$ if q contains more information than p.

Example: The Upper Space of Y locally compact sober:

 $U(Y) = (\{K \subseteq Y \mid \emptyset \neq K \text{ compact, saturated}\} \cup \{Y\}, \supseteq).$

Directed completeness

 $\emptyset \neq D \subseteq P$ directed if $x, y \in D \Rightarrow (\exists z \in D) x, y \leq z$. *P* is directed complete if $D \subseteq P$ directed \Rightarrow sup *D* exists.

 $\mathcal{F} \subseteq U(Y)$ directed $\Rightarrow \sup \mathcal{F} = \bigcap \mathcal{F}$.

Approximation

 $\begin{array}{l} x \ll y \text{ iff } y \leq \sup D \implies (\exists d \in D) \, x \leq d. \\ \text{Domain: } \downarrow y = \{x \mid x \ll y\} \text{ directed and } y = \sup \downarrow y \end{array}$

 $K \ll L \text{ iff } L \subseteq K^{\circ}; \qquad L = \bigcap \{K \mid L \subseteq K^{\circ}\} = \sup \{K \mid K \ll L\}.$

Domains

Scott Topology

 $U \subseteq P$ Scott open if:

- $U = \uparrow U = \{x \in P \mid (\exists u \in U) \ u \le x\}$ and
- D directed, sup $D \in U \Rightarrow D \cap U \neq \emptyset$.

Upper Vietoris topology on U(Y). $\uparrow x = \{y \mid x \ll y\}$ is Scott open.

Morphisms

- $f: P \rightarrow Q$ is *Scott continuous* if:
- f is monotone, and
- $D \text{ directed} \Rightarrow f(\sup D) = \sup f(D).$

Upper semicontinuous maps between U(Y) and U(Z):

 $f: Y \to Z \Rightarrow U(f): U(Y) \to U(Z)$ by U(f)(K) = f(K)

is monotone and $f(\bigcap \mathcal{F}) = \bigcap f(\mathcal{F})$.

Domains

Scott Topology

 $U \subseteq P$ Scott open if:

- $U = \uparrow U = \{x \in P \mid (\exists u \in U) \ u \le x\}$ and
- D directed, sup $D \in U \Rightarrow D \cap U \neq \emptyset$.

Morphisms

- $f: P \rightarrow Q$ is *Scott continuous* if:
- f is monotone, and
- $D \text{ directed} \Rightarrow f(\sup D) = \sup f(D).$

Lawson Topology

Basis: $\{\uparrow x \setminus \uparrow F \mid F \subseteq P \text{ finite}\}$

Hausdorff refinement of Scott topology.

All the domains we discuss are Lawson compact.

Vietoris topology on U(Y).

Domain Environments

Embedding *S* in $U(\overline{S})$ *S* Polish $\Rightarrow S \hookrightarrow [0,1]^{\omega} \Rightarrow S \subseteq_{G_{\delta}} \overline{S}$ compact Polish $\{K_n \mid K_n \in U(\overline{S}), n > 0\}$: neighborhood basis of compact subsets of \overline{S} . Then:

1°
$$S \subseteq \overline{S} \hookrightarrow \operatorname{Max} U(\overline{S}) \subseteq U(\overline{S})$$
 by $x \mapsto \{x\} = \bigcap_n \{K_n \mid x \in K_n^\circ\}$

- 2° S inherits the Scott topology = Lawson topology on Max $U(\overline{S})$.
- 3° Each cover $\mathbb{K}_n \stackrel{\text{def}}{=} \{K_1, \dots, K_{m_n}\}$ with $\overline{S} \subseteq \bigcup_{i \leq m_n} K_i^{\circ}$ defines a Scott-continuous projection $\psi_n \colon U(\overline{S}) \to U(\overline{S})$ with finite image $\mathbb{L}_n \stackrel{\text{def}}{=} \langle \mathbb{K}_n \rangle$. This implies $\psi_n \ll \mathbf{1}_{U(\overline{S})}$. 4° Ordering covers by refinement yields $\mathbf{1}_{U(\overline{S})} = \sup_n \psi_n$.

Domains and Probability Measures

Prob(P) is a Domain

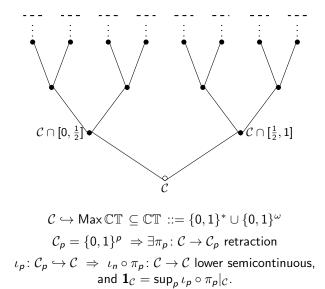
P (Lawson compact) domain \Rightarrow Prob(*P*) (Lawson compact) domain:

- 1° $\mu \leq \nu$ iff $\int f d\mu \leq \int f d\nu$ ($\forall f : P \to \mathbb{R}_+$ Scott continuous)
- 2° *P* Lawson compact \Rightarrow (Prob(*P*), weak) = (Prob(*P*), Lawson).
- 3° $P = U(\overline{S}), S$ Polish $\Rightarrow \mathbf{1}_{\operatorname{Prob}(P)} = \sup_n \psi_{n*}, \text{ so}$ $\mu = \sup_n \psi_{n*} \mu, \text{ with } \psi_{n*} \mu = \sum_{K \in \mathbb{L}_n} \mu(K) \delta_K \ (\forall \mu).$
- 4° By construction

 $\psi_{1*}(\mu) \ll \cdots \ll \psi_{n*}(\mu) \ll \cdots \ll \mu = \sup_{n} \psi_{n*}(\mu).$ Note: $\psi_{n*}(\mu) \ll \mu \Rightarrow \uparrow \psi_{n*}(\mu)$ compact neighborhood of μ .

Defining the Random Variables

A Domain Environment for the Cantor set, $\ensuremath{\mathcal{C}}$



Some Random Variables

- Given $\mu \in \operatorname{Prob} U(\overline{S})$, $\psi_{n*}(\mu) = \sum_{K \in \mathbb{L}_n} \mu(K) \delta_K$, and any $p \ge \log_2(|\mathbb{L}_n| \cdot \min_{K \in \mathbb{L}_n} \mu(K))$, there are $r_K \in D_p = \{\frac{s}{2^p} \mid 0 \le s \le 2^p\}$ with $\mu(K) \frac{r_K}{2^p} \le \frac{1}{|\mathbb{L}_n| \cdot 2^p}$.
- Then

$$\nu_{n,p} \stackrel{\text{def}}{=} (1 - \sum_{K \in \mathbb{L}_n} r_K) \delta_S + \sum_{K \in \mathbb{L}_n} r_K \delta_K \ll \sum_{K \in \mathbb{L}_n} \mu(K) \delta_K = \psi_{n*}(\mu),$$
$$||\nu_{n,p} - \psi_{n*}(\mu)|| \leq \frac{1}{2^p} \text{ and } \sup_p \nu_{n,p} = \psi_{n*}(\mu).$$

Some Random Variables

- Given $\mu \in \operatorname{Prob} U(\overline{S})$, $\psi_{n*}(\mu) = \sum_{K \in \mathbb{L}_n} \mu(K) \delta_K$, and any $p \ge \log_2(|\mathbb{L}_n| \cdot \min_{K \in \mathbb{L}_n} \mu(K))$, there are $r_K \in D_p = \{\frac{s}{2^p} \mid 0 \le s \le 2^p\}$ with $\mu(K) \frac{r_K}{2^p} \le \frac{1}{|\mathbb{L}_n| \cdot 2^p}$.
- Then

$$\nu_{n,p} \stackrel{\text{def}}{=} (1 - \sum_{K \in \mathbb{L}_n} r_K) \delta_S + \sum_{K \in \mathbb{L}_n} r_K \delta_K \ll \sum_{K \in \mathbb{L}_n} \mu(K) \delta_K = \psi_{n*}(\mu),$$
$$||\nu_{n,p} - \psi_{n*}(\mu)|| \leq \frac{1}{2^p} \text{ and } \sup_p \nu_{n,p} = \psi_{n*}(\mu).$$

• Define
$$f_{n,p} \colon \mathcal{C}_p \to U(\overline{S})$$
 by $f_{n,p}(j) = \begin{cases} K_n & \text{if } 1 \leq j \leq r_1 \\ K_2 & \text{if } r_1 < j \leq r_1 + r_2 \\ \vdots \\ S & \text{if } \sum_{K \in \mathbb{L}_n} r_K < j \end{cases}$

Then $f_{n,p*}(\frac{1}{2^p}\sum_{i\leq 2^p}\delta_{\frac{i}{2^p}}) = (1-\sum_i r_i)\delta_S + \sum_{K\in\mathbb{L}_n} r_K\delta_K = \nu_{n,p}.$

Some Random Variables

- Given $\mu \in \operatorname{Prob} U(\overline{S})$, $\psi_{n*}(\mu) = \sum_{K \in \mathbb{L}_n} \mu(K) \delta_K$, and any $p \ge \log_2(|\mathbb{L}_n| \cdot \min_{K \in \mathbb{L}_n} \mu(K))$, there are $r_K \in D_p = \{\frac{s}{2^p} \mid 0 \le s \le 2^p\}$ with $\mu(K) \frac{r_K}{2^p} \le \frac{1}{|\mathbb{L}_n| \cdot 2^p}$.
- Then

$$\nu_{n,p} \stackrel{\text{def}}{=} (1 - \sum_{K \in \mathbb{L}_n} r_K) \delta_S + \sum_{K \in \mathbb{L}_n} r_K \delta_K \ll \sum_{K \in \mathbb{L}_n} \mu(K) \delta_K = \psi_{n*}(\mu),$$
$$||\nu_{n,p} - \psi_{n*}(\mu)|| \leq \frac{1}{2^p} \text{ and } \sup_p \nu_{n,p} = \psi_{n*}(\mu).$$

• Define
$$f_{n,p} \colon \mathcal{C}_p \to U(\overline{S})$$
 by $f_{n,p}(j) = \begin{cases} K_n & \text{if } 1 \leq j \leq r_1 \\ K_2 & \text{if } r_1 < j \leq r_1 + r_2 \\ \vdots \\ S & \text{if } \sum_{K \in \mathbb{L}_n} r_K < j \end{cases}$

Then $f_{n,p*}(\frac{1}{2^p}\sum_{i\leq 2^p}\delta_{\frac{i}{2^p}}) = (1-\sum_i r_i)\delta_S + \sum_{K\in\mathbb{L}_n} r_K\delta_K = \nu_{n,p}.$

• And, $f_{n,p} \circ \pi_p \colon \mathcal{C} \to U(\overline{S})$ is Lawson continuous with

$$(f_{n,p} \circ \pi_p)_* (\mu_{\mathcal{C}}) = f_{n,p*} \left(\frac{1}{2^p} \sum_{i \leq 2^p} \delta_{\frac{i}{2^p}} \right) = \nu_{n,p} \ll \psi_{n*}(\mu)$$

To bring order to the family $\{f_{n,p} \mid n, p\}$, we apply domain theory and recursion:

$$1^{\circ} \quad \text{Let } f_{1,\rho_1} \colon \mathcal{C}_{\rho_1} \to U(\overline{S}) \text{ with } (f_{1,\rho_i} \circ \pi_{\rho_1})(\mu_{\mathcal{C}}) = \nu_{1,\rho_1} \ll \psi_{1*}(\mu).$$

To bring order to the family $\{f_{n,p} \mid n, p\}$, we apply domain theory and recursion:

- $1^\circ \quad \text{Let } f_{1,\rho_1} \colon \mathcal{C}_{\rho_1} \to U(\overline{S}) \text{ with } (f_{1,\rho_i} \circ \pi_{\rho_1})(\mu_{\mathcal{C}}) = \nu_{1,\rho_1} \ll \psi_{1*}(\mu).$
- 2° Since $\psi_1(\mu) \ll \psi_2(\mu) = \sup_p \nu_{2,p}$, we can find $p_2 > p_1$ with $\nu_{1,p_1} \ll \nu_{2,p_2}$.

To bring order to the family $\{f_{n,p} \mid n, p\}$, we apply domain theory and recursion:

- 1° Let $f_{1,\rho_1} \colon \mathcal{C}_{\rho_1} \to U(\overline{S})$ with $(f_{1,\rho_i} \circ \pi_{\rho_1})(\mu_{\mathcal{C}}) = \nu_{1,\rho_1} \ll \psi_{1*}(\mu)$.
- 2° Since $\psi_1(\mu) \ll \psi_2(\mu) = \sup_p \nu_{2,p}$, we can find $p_2 > p_1$ with $\nu_{1,p_1} \ll \nu_{2,p_2}$.
- 3° Using the Splitting Lemma, this implies $f_{1,p_1} \circ \pi_{p_1p_2} \leq f_{n_2,p_2}$, from which it follows that $f_{1,p_1} \circ \pi_{p_1} \leq f_{2,p_2} \circ \pi_{p_2}$.
- 4° We obtain an *increasing sequence* f_{n,p_n} with $f_{n,p_n} \circ \pi_{p_np_m} \leq f_{m,p_m}$ for $n \leq m$.

• By construction $f_{n,p_n} \colon \uparrow C_{p_n} \to U(\overline{S})$ satisfies $f_{n,p_n} \circ \pi_{p_np_m} \leq f_{m,p_m}$, so $X_n = (\sup_n f_{n,p_n} \circ \pi_{p_n})|_{\mathcal{C}} \colon \mathcal{C} \to U(\overline{S})$ measurable with $X_{n*}(\mu_{\mathcal{C}}) = \mu$.

• If
$$\mu_m \to_w \mu \in \operatorname{Prob}(S)$$
, define $\nu_{m,n} \ll \psi_{n*}(\mu_m)$ and $f_{m,n,p_{m,n}} \colon \uparrow \mathcal{C}_{p_{m,n}} \to U(\overline{S})$ as above.

- Then X_m = (sup_n f_{m,n,pm,n})|_C satisfies X_m: C → U(S̄) is measurable with X_{m*}(μ_C) = μ_m.
- $\mu_m \to_w \mu = \sup_n \nu_{n,p_n}, \mu_m = \sup_{m,n} \nu_{m,n} \Rightarrow \nu_{n,p_n} \ll \nu_{m,n}$ eventually.
- This implies $f_{n,p_n} \circ \pi_{p_n p_{m',n'}} \leq f_{m',n',p_{m',n'}}$ eventually.
- This is used to show $X_m \to X$ a.s. μ_C .

• By construction $f_{n,p_n} \colon \uparrow C_{p_n} \to U(\overline{S})$ satisfies $f_{n,p_n} \circ \pi_{p_np_m} \leq f_{m,p_m}$, so $X_n = (\sup_n f_{n,p_n} \circ \pi_{p_n})|_{\mathcal{C}} \colon \mathcal{C} \to U(\overline{S})$ measurable with $X_{n*}(\mu_{\mathcal{C}}) = \mu$.

• If
$$\mu_m \to_w \mu \in \operatorname{Prob}(S)$$
, define $\nu_{m,n} \ll \psi_{n*}(\mu_m)$ and $f_{m,n,p_{m,n}} \colon \uparrow \mathcal{C}_{p_{m,n}} \to U(\overline{S})$ as above.

- Then X_m = (sup_n f_{m,n,pm,n})|_C satisfies X_m: C → U(S̄) is measurable with X_{m*}(μ_C) = μ_m.
- $\mu_m \to_w \mu = \sup_n \nu_{n,p_n}, \mu_m = \sup_{m,n} \nu_{m,n} \Rightarrow \nu_{n,p_n} \ll \nu_{m,n}$ eventually.
- This implies $f_{n,p_n} \circ \pi_{p_n p_{m',n'}} \leq f_{m',n',p_{m',n'}}$ eventually.
- This is used to show $X_m \to X$ a.s. $\mu_{\mathcal{C}}$.
- We know φ: C → [0, 1]: ι is a projection-embedding pair, with φ_{*}(μ_C) = λ and ι_{*}(λ) = μ_C. Composing X: C → U(S) with ι yields random variable X ∘ ι: [0, 1] → U(S) with law (ι ∘ X)_{*}(λ) = μ, etc.

Questions?