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Stochastic Processes and Skorohod’s Theorem

A stochastic process is a time-indexed family {X; |t € T C R} of
random variables / elements X;: Q — S, where (Q,Xq, ) is a
probability space, and S is a Polish space.

Fact: If S is Polish, then so is (Prob(S), dp), where d, is the Prokhorov
metric. In fact, d, generates the weak topology.

Skorohod’s Theorem

Let S be a Polish space, let v € Prob S, and let A denote Lebesgue
measure on [0, 1]. Then there is a random variable X: [0,1] — S
satisfying X.(\) = v.1

Moreover, if v,,v € Prob S satisfy v, —,, v, then the random variables
Xny X [0,1] = S with X, (A) = v, X5.(A) = v, satisfy X, — X A-a.e.

Fact: We could use any standard probability space (S,¥Ls, m) instead of
([07 1]7 8[0,1]7 )\)

X (M) (A) = A(XT1(A)) is the push forward of X, also called the law of X.



Domains

Domains are partially ordered sets with additional properties;

Informatic partial order
p C q if g contains more information than p.

Example: The Upper Space of Y locally compact sober:
U(Y)=({K CY |0 #K compact, saturated} U{Y}, D).

Directed completeness
) £ D C P directed if x,y € D = (Jz€ D)x,y < z.
P is directed complete if D C P directed = sup D exists.

F C U(Y) directed = supF =) F.

Approximation
xLyiffy<supD = (3d € D)x < d.
Domain: |y = {x | x < y} directed and y = sup |y

K<LiffLCKS;, L=({K|LCK}=sup{K|K< L}



Scott Topology
U C P Scott open if:

o U=tU={xeP|(FuelU)u<x}and
e D directed, supDe U = DNU#0.
Upper Vietoris topology on U(Y).
Tx = {y | x < y} is Scott open.

Morphisms

f: P— Q is Scott continuous if:
e f is monotone, and
e D directed = f(sup D) =supf(D).

Upper semicontinuous maps between U(Y) and U(Z):
f:Y—=2Z = U(f): U(Y)— U(Z) by U(f)(K)
is monotone and f((F) = f(F).

Domains

f(K)



Scott Topology
U C P Scott open if:

e U=tU={xeP|(FuelU)u<x}and
e D directed, supDe U = DNU#0.

Morphisms

f: P— Q is Scott continuous if:
e f is monotone, and
e D directed = f(sup D) =supf(D).

Lawson Topology
Basis: {Tx \ 1F | F C P finite}
Hausdorff refinement of Scott topology.

All the domains we discuss are Lawson compact.

Vietoris topology on U(Y).

Domains



Domain Environments

Embedding S in U(S)
S Polish = S < [0,1]* = S Cg, S compact Polish

{K, | K» € U(S),n > 0}: neighborhood basis of compact subsets of S.
Then:

1° SCS < MaxU(S) C U(S) by x = {x} =[){Kn | x € K}

2° S inherits the Scott topology = Lawson topology on Max U(S).

3° Each cover K, & {Ki,...,Km,} with S C | K? defines a

i<my,

Scott-continuous projection v,: U(S) — U(S)

with finite image L, = (K,). This implies 1, < 1,3,
4°  Ordering covers by refinement yields 1U(§) = sup, ¥n.



Domains and Probability Measures

Prob(P) is a Domain
P (Lawson compact) domain = Prob(P) (Lawson compact) domain:

1° p<viff [fdu < [fdv (Vf: P — Ry Scott continuous)
2° P Lawson compact = (Prob(P), weak) = (Prob(P), Lawson).
3° P =U(S),S Polish = 1pp(py = Sup, s, S0
t = SUP, s 1, With Ppe 1 =" gcer 1(K)ok (V).
4° By construction
Pre(p) < oo < Ppe(p) <0 < = supy, P ().
Note: . (p) € = Ttns(p) compact neighborhood of p.



Defining the Random Variables

A Domain Environment for the Cantor set, C

C

C < MaxCT C CT == {0,1}* U{0,1}*
Cp =1{0,1}* = 3m,: C — C, retraction

tp: Cp—=C = 1p,0m,: C — C lower semicontinuous,
and 1¢ = sup, tp 0 plc.



Some Random Variables

o Given p € ProbU(S), ¥n.(p) = Y ker, #(K)dk, and any
p > logy(|Ly| - minker, 1(K)), there are

rk € Dp = {5; | 0 <'s < 2P} with u(K) —
e Then
Vn,p « (1= > ker, )05 + D ker, Ok < X ker, MK)Ok = Yni(p),
Vo = Yns(p)]] < 35 and sup, vy p = e (11)-

% < UL|2P



Some Random Variables
o Given p € ProbU(S), ¥n.(p) = Y ker, #(K)dk, and any
p > logy(|L,| - minker, u(K)), there are
€ Dy = {510< 5 < 2%} with ju(K) — % < -l
e Then
no = (1= Sier, )05 + Sicen,, 0k < Cicer, 1K)k = (1),
[Vnp = Yns ()| < 25 and sup, vnp = Pns (1)
Ko if1<j<n
_ Ky ifn<j<n+n
o Define f,,: Cp, — U(S) by £,,(j) =
S if ZKE]L” rx < J

Then fi (2 i< 524,3) = (1 =22 r)ds + Xker, KOK = Vnp.



Some Random Variables

o Given p € ProbU(S), ¥n.(p) = Y ker, #(K)dk, and any
p > logy(|Ly| - minker, 1(K)), there are

rk € Dp = {5; | 0 <'s < 2P} with u(K) —

e Then
@u—ZMwaﬁ&x@rmK<ZMLm)&:wam,
[Vnp = Yns ()| < 25 and sup, vnp = Pns (1)

% < UL|2P

Ko ifl<j<n

- K> ifr1<j§r1+r2
e Define f, ,: C, — U(S) by f,,(j) =

S if ZKe]Ln rk <j
Then fi (2 i< 527;) = (1 =22 r)ds + Xker, KOK = Vnp.

e And, f,,0m,: C— U(S) is Lawson continuous with

(Fap 0 Tp) (110) = Frpn (3 Cican 04 ) = Vip < toma(1):



Recursively Defining Random Variables

To bring order to the family {f, , | n, p}, we apply domain theory and
recursion:

1° Let Fl,P1: CP1 — U(g) with (fl,Pi O7TP1)(:UC) =UVip < wl*(u)'



Recursively Defining Random Variables

To bring order to the family {f, , | n, p}, we apply domain theory and
recursion:

19 Let Fl,Pl: CP1 - U(?) with (fl,Pi O7TP1)(:“C) =g K wl*(u)'
2°  Since ¢1(p) < h2(p) = sup, v2,p, we can find p, > p; with

Vip K V2,p



Recursively Defining Random Variables

To bring order to the family {f, , | n, p}, we apply domain theory and
recursion:

1° Let fip: Cpy — U(S) with (fip, 0 mp )(1ic) = 1,5 < P1a().

2°  Since ¢1(p) < h2(p) = sup, v2,p, we can find p, > p; with
Vip K V2,p,-

3° Using the Splitting Lemma, this implies f; p, o 7p,p, < fy, p,, from
which it follows that f; p, o 7y < o p, 0 7p,.

4°  We obtain an increasing sequence f,, ,, with f, 5 o mp . < fonp

for n < m.



Recursively Defining Random Variables

e By construction f, p,: 1Cp, — U(S) satisfies f, . © Tp.p, < fm.pm» SO
Xy = (sup, fo.p, © Tp,)|c: C — U(S) measurable with X.(uc) = p.
o |If um —w p € Prob(S), define vy, < Yn.(pm) and
fnsnpmn: TCpmn — U(S) as above.
e Then Xp = (sup,, fm,n,pn.)|c satisfies X,: C — U(S) is measurable
with X (pe) = tim-
® [m —w [ =SUP,Vnp,, bm = SUPy n Vmn = Vnp, K Vm,n eventually.
e This implies fy p, 0 Tp,p < fov i p,, ., €ventually.

e This is used to show X, = X a.s. pc.



Recursively Defining Random Variables

By construction f, p, : 1Cp, — U(S) satisfies f, p, © Tp,pr < fm.pm» SO

Xn = (sup, fnp, ©Tp,)|c: C — U(S) measurable with X,.(rc) = p.
If tim —w p € Prob(S), define vm n < ¢pi(pm) and
fnsnpmn: TCpmn — U(S) as above.
Then Xm = (sup,, fm,n,pn.)|c satisfies Xp,: C — U(S) is measurable
with X (pe) = tim-
Hm —w b = SUP, Vp p,, fbm = SUPm n Vmn = Vnp, K Vmn eventually.
This implies f, p, 0 Tp,p , , < fo o p,., , eventually.

This is used to show X, = X a.s. pc.

We know ¢: C Z [0,1]: ¢ is a projection-embedding pair, with
@«(pc) = X and 1.(\) = pe. Composing X: C — U(S) with ¢ yields

random variable X o¢: [0,1] = U(S) with law (¢ 0 X).(\) = p, etc.



Questions?



