Stochastic Domain Theory

Michael Mislove Tulane University

DOMAINS XIII Oxford, 2018

Supported by US AFOSR

Introduction

Probability In Computational Models:

- Programming language semantics
- Applications in mathematics, physics, ...
- Probabilistic programming semantics
- . . .

Introduction

Probability Theory

A random variable is a measurable map $X : \Omega \to S$, where $(\Omega, \Sigma_{\Omega}, \mu)$ is a probability space and (S, Σ_S) is a measurable space.

The *law* of X is $X_* \mu \in \text{Prob}(Y)$ by $X_* \mu(A) = \mu(X^{-1}(A))$.

Note: Prob: Meas \rightarrow Meas \implies Prob $(X) = X_*$

If
$$X=X'$$
 μ -a.e., then $X_*\,\mu=X'_*\,\mu$

Goal: Develop domain-theoretic approach where random variables are Scott continuous

Gain: If X, X' are continuous on supp μ , then $X_* \mu = X'_* \mu \implies X = X'$.

Stochastic Processes and Skorohod's Theorem

A stochastic process is a time-indexed family $\{X_t \mid t \in T \subseteq \mathbb{R}_+\}$ of random variables $X_t \colon \Omega \to S$, where S is a Polish space.

Note: If S is Polish, then so is $(Prob(S), d_p)$

 $-d_p$ is the Lévy-Prokhorov metric; generates the weak topology.

Examples:

• Brownian motion, Lévy processes, Markov chains

MCMC – Markov chain Monte Carlo Theme in *Probabilistic Programming Semantics*

Stochastic Processes and Skorohod's Theorem

Let λ denote Lebesgue measure on [0, 1].

Skorohod's Theorem

If S is a Polish space, and $\nu \in \operatorname{Prob} S$, then there is a random variable $X: [0,1] \to S$ with $X_* \lambda = \nu$; i.e., $\nu(A) = \lambda(X^{-1}(A)) \forall A$ measurable. Moreover, if $\nu_n, \nu \in \operatorname{Prob} S$ satisfy $\nu_n \to_w \nu$, then there are random variables $X_n, X: [0,1] \to S$ with $X_* \lambda = \nu, X_{n*} \lambda = \nu_n$ and $X_n \to X \lambda$ -a.e.

- So: 1) Every stochastic process arises as {X_t: [0,1] → S | t ∈ T}.
 2) Convergence in (Prob S, weak) is equivalent to pointwise convergence λ-a.e. of the measurable maps X_t: [0,1] → S.
- Goal: Obtain domain-theoretic version of Skorohod's Theorem with Skorohod's Theorem as a Corollary.

First step: We can use any standard probability space for $([0,1],\lambda)$:

Let $C = 2^{\omega}$ denote a countable product of 2-point groups, and let μ_C denote Haar measure on C.

Theorem:

If S is a Polish space, and $\nu \in \operatorname{Prob} S$, then there is a random variable $X \colon \mathcal{C} \to S$ with $X_* \mu_{\mathcal{C}} = \nu$.

Moreover, if $\nu_n, \nu \in \operatorname{Prob} S$ satisfy $\nu_n \to_w \nu$, then there are random variables $X_n, X : \mathcal{C} \to S$ with $X_* \mu_{\mathcal{C}} = \nu, X_{n*} \mu_{\mathcal{C}} = \nu_n$ and $X_n \to X \mu_{\mathcal{C}}$ -a.e.

Proof: Use $\varphi : \mathcal{C} \rightarrow [0, 1]$.

Towards a Domain-theoretic Skorohod Theorem

Second Step: Embed C in an appropriate domain:

 $\mathbb{CT} = \{0,1\}^\infty$ is a domain in the prefix order.

 $\mathcal{C}\simeq (\{0,1\}^{\omega}, \Sigma(\mathbb{CT}\,)|_{\{0,1\}^{\omega}}) = (\mathsf{Max}\,\mathbb{CT}\,, \Lambda(\mathbb{CT}\,)|_{\mathsf{Max}\,\mathbb{CT}}\,)$

Towards a Domain-theoretic Skorohod Theorem

Third Step: Which domains represent Polish spaces?

- BCD_ω countably based bounded complete domains and Scott continuous maps.
- $D^{\infty} \simeq [D^{\infty} \to D^{\infty}]$ is in BCD_{ω} .
- $\mathbb{CT}=\{0,1\}^\infty$ is a bounded complete domain.

Theorem: (Lawson; Ciesielski, Flagg & Kopperman; Martin)

Each countably-based bounded complete domain D satisfies Max D is a Polish space in the inherited Scott topology.

Conversely, every Polish space can be embedded as Max D for some countably based bounded complete domain D_P .

Moreover, $Max D_P$ is a G_{δ} in D.

Examples:

1) $\mathcal{C} \simeq \mathsf{Max} \mathbb{CT} \hookrightarrow \mathbb{CT}$.

2) $\mathbb{R} \simeq \mathsf{Max} \, \mathbb{IR} \hookrightarrow \mathbb{IR} = (\{[a, b] \mid a \leq b \in \mathbb{R}\} \cup \{\mathbb{R}\}, \supseteq).$

Skorohod's Theorem for Domains

If *D* is a countably based bounded complete domain and $\nu \in \operatorname{Prob} D$, then there is a Scott-continuous map $X \colon \mathbb{CT} \to D$ with $X_* \mu_{\mathcal{C}} = \nu$. Moreover, if $\mu, \nu \in \operatorname{Prob} D$ satisfy $\mu \to -\mu$, then there are

Moreover, if $\nu_n, \nu \in \operatorname{Prob} D$ satisfy $\nu_n \to_w \nu$, then there are Scott-continuous maps $X_n, X : \mathbb{CT} \to D$ with $X_* \mu_{\mathcal{C}} = \nu$, $X_{n*} \mu_{\mathcal{C}} = \nu_n$ and $X_n \to X$ pointwise in Scott topology.

Note: $\{X_n\}_n$ is not directed: $\liminf_n X_n(x) \ge X(x) \ \forall x \in \mathbb{CT}$.

 BCD_{ω} is Cartesian closed:

- $[D \rightarrow E] = \{f \colon D \rightarrow E \mid f \text{ Scott continuous}\}$
- $f \leq g$ iff $f(x) \leq g(x)$ ($\forall x \in D$).

So: $X \mapsto X_* \mu_{\mathcal{C}} : [\mathbb{CT} \to D] \twoheadrightarrow (\operatorname{Prob} D, Scott)$ continuous surjection.

Skorohod's Theorem for Domains

If D is a countably based bounded complete domain and $\nu \in \operatorname{Prob} D$, then there is a Scott-continuous map $X : \mathbb{CT} \to D$ with $X_* \mu_{\mathcal{C}} = \nu$.

Moreover, if $\nu_n, \nu \in \operatorname{Prob} D$ satisfy $\nu_n \to_w \nu$, then there are Scott-continuous maps $X_n, X \colon \mathbb{CT} \to D$ with $X_* \mu_{\mathcal{C}} = \nu$, $X_{n*} \mu_{\mathcal{C}} = \nu_n$ and $X_n \to X$ pointwise in Scott topology. *Note:* $\{X_n\}_n$ is *not* directed: $\liminf_n X_n(x) > X(x) \ \forall x \in \mathbb{CT}$.

Corollary: Skorohod's Theorem

Proof: If *S* is Polish, then $S \simeq \operatorname{Max} D$ for some *D* in $\operatorname{BCD}_{\omega}$. Then (Prob *S*, *weak*) \simeq (Max Prob *D*, *weak*). The theorem implies $\forall \nu \in \operatorname{Prob} S.(\exists X : \mathbb{CT} \to D) X_* \mu_{\mathcal{C}} = \nu$. $\mathcal{C}' = X^{-1}(\operatorname{Max} D)$ is Borel, so $X|_{\mathcal{C}'} : \mathcal{C}' \to \operatorname{Max} D$ is measurable.

Deflations

 $\phi: D \to D$ is a *deflation* if ϕ is Scott continuous and $\phi(D)$ is finite. $D \in BCD_{\omega} \implies \mathbf{1}_{D} = \sup_{n} \phi_{n}, \ \phi_{n} \ll \phi_{n+1}$, deflations Prob functorial $\implies \mathbf{1}_{Prob D} = \sup_{n} \phi_{n*}$

So: If
$$D \in BCD_{\omega}$$
 and $\mu \in Prob D$, then $\mu = \sup_{n} \phi_{n*} \mu$
with $\phi_{n*} \mu = \sum_{x \in F_n} r_x \delta_x$, where F_n finite for all n .

Example: $\pi_n : \mathbb{CT} \to \downarrow \mathcal{C}_n$, where $\mathcal{C}_n \simeq 2^n \implies \mathbf{1}_{\mathbb{CT}} = \sup_n \pi_n$ So, $\mu_{\mathcal{C}} = \sup_n \pi_{n*} \mu_{\mathcal{C}} = \sup_n \mu_{\mathcal{C}_n}$

Finitary Mappings

 $D \in \mathsf{BCD}_{\omega} \implies \mathbf{1}_D = \sup_n \phi_n, \ \phi_n \ll \phi_{n+1}, \text{ deflations}$ But, $\phi_n \ll \phi_{n+1} \iff \phi_{n*} \mu \ll \phi_{n+1*} \mu$. Fix $\mu \in \operatorname{Prob} D$, and fix $\phi_{n*} \mu = \sum_{x \in F} r_x \delta_x$. We approximate $\phi_{n*} \mu$: Choose $m_n > n$, $|F_n|$ with $r_x - s_x < \frac{1}{2m_n}$ ($\forall x \in F_n$), where $s_x = \max \downarrow (r_x \cap Dyad_{m_n})$, with $Dyad_{m_n} = \{\frac{k}{2m_n} \mid k \leq 2^{m_n}\}$. Then $\nu_n = \sum_{x \in F_n} s_x \delta_x \ll \phi_{n*} \mu$, Define $f_n: \mathcal{C}_{m_n} \to F_n \cup \{\bot\} \subset D$ by $f_n^{-1}(x) = s_x \ (\forall x \in F_n), \text{ and } f_n^{-1}(\bot) = 1 - \sum_{x \in F} s_x.$ Then $f_{n*} \mu_{\mathcal{C}_{m_n}} = \nu_n \ll \phi_{n*} \mu$

Proposition: Let $\nu = \sum_{x \in F} r_x \delta_x \leq \sum_{y \in G} s_y \delta_y = \nu' \in \operatorname{Prob} D$. Assume r_x, s_y are dyadic rationals for each $x \in F, y \in G$. Suppose $f_n \colon \mathcal{C}_{m_n} \to D$ satisfies $f_{n*} \mu_{\mathcal{C}_{m_n}} = \nu$. Then there are n' > n, $m_{n'} > m_n$, and $f_{n'} \colon \mathcal{C}_{m_{n'}} \to D$ satisfying:

•
$$f_{n'*} \mu_{\mathcal{C}_{m_{n'}}} = \nu'$$
, and

• $f_n \circ \pi_{m_n m_{n'}} \leq f_{n'}$, where $\pi_{m_n m_{n'}} : \mathcal{C}_{m_{n'}} \to \mathcal{C}_{m_n}$ is the canonical projection.

The proof uses the Splitting Lemma, the fact that if r_x , s_y are dyadic, then the transport numbers $t_{x,y}$ are, too, and a generalization of Hall's Marriage Problem.

Proposition: Let $\nu = \sum_{x \in F} r_x \delta_x \leq \sum_{y \in G} s_y \delta_y = \nu' \in \operatorname{Prob} D$. Assume r_x, s_y are dyadic rationals for each $x \in F, y \in G$. Suppose $f_n \colon \mathcal{C}_{m_n} \to D$ satisfies $f_{n*} \mu_{\mathcal{C}_{m_n}} = \nu$. Then there are n' > n, $m_{n'} > m_n$, and $f_{n'} \colon \mathcal{C}_{m_{n'}} \to D$ satisfying:

•
$$f_{n'*} \mu_{\mathcal{C}_{m_{n'}}} = \nu'$$
, and

• $f_n \circ \pi_{m_n m_{n'}} \leq f_{n'}$, where $\pi_{m_n m_{n'}} : \mathcal{C}_{m_{n'}} \to \mathcal{C}_{m_n}$ is the canonical projection.

The proof of the first part of the Theorem follows by recursively defining an increasing family $\widetilde{f}_n: \downarrow \mathcal{C}_{m_n} \to D$, where $\widetilde{f}_0: \mathcal{C}_0 \to D$ by $\widetilde{f}_0(\langle \rangle) = \perp_D$, and $\widetilde{f}_{n+1}(x) = \begin{cases} f_{n+1}(x) & \text{if } x \in \mathcal{C}_{m_{n+1}} \\ \widetilde{f}_n \circ \pi_{nk}(x) & \text{if } x \in \mathcal{C}_k, m_n \leq k < m_{n+1}. \end{cases}$ and then letting $X = \sup_n \widetilde{f}_n \circ \pi_{m_n}$.

Generalizations

1. The same results hold for subprobability measures (*aka* valuations):

Skorohod's Theorem for Subprobability Measures

If $\nu \in \operatorname{SProb} D$ is a subprobability measure on a countably based BCD domain, then there is a Scott-open subset $U_{\nu} \subseteq \mathbb{CT}$ and a Scott-continuous map $X \colon U_{\nu} \to D$ satisfying $X_{\nu*}\mu_{\mathcal{C}} = \nu$.

Moreover, if $\nu_n \to_w \nu \in \operatorname{SProb} D$, then the Scott-continuous partial maps $X_n \colon U_{\nu_n} \to D$ satisfy $X_n \to X$ pointwise.

Proof:

- $I Embed D \hookrightarrow D_{\perp} \in \mathsf{BCD}$
- **2** Apply the theorem to D_{\perp} .
- **3** Restrict X, X_n to $U_{\nu} = \mathbb{CT} \setminus X_{\nu}^{-1}(\bot), U_{\nu_n} = \mathbb{CT} \setminus X_{\nu_n}^{-1}(\bot)$

Generalizations

1. The same results hold for subprobability measures (*aka* valuations):

Skorohod's Theorem for Subprobability Measures

If $\nu \in \operatorname{SProb} D$ is a subprobability measure on a countably based BCD domain, then there is a Scott-open subset $U_{\nu} \subseteq \mathbb{CT}$ and a Scott-continuous map $X \colon U_{\nu} \to D$ satisfying $X_{\nu*}\mu_{\mathcal{C}} = \nu$.

Moreover, if $\nu_n \to_w \nu \in \operatorname{SProb} D$, then the Scott-continuous partial maps $X_n \colon U_{\nu_n} \to D$ satisfy $X_n \to X$ pointwise.

2. The results all hold for more general domains:

In fact, they hold for any countably based coherent domains D.

Happy Birthday, DANA!

Questions?