Probability In Computational Models:

- Programming language semantics
- Applications in mathematics, physics, ...
- Probabilistic programming semantics
- ...
Probability Theory

A random variable is a measurable map $X : \Omega \rightarrow S$, where $(\Omega, \Sigma_\Omega, \mu)$ is a probability space and (S, Σ_S) is a measurable space.

The law of X is $X_* \mu \in \text{Prob}(Y)$ by $X_* \mu(A) = \mu(X^{-1}(A))$.

Note: $\text{Prob}: \text{Meas} \rightarrow \text{Meas} \implies \text{Prob}(X) = X_*$

If $X = X' \mu$-a.e., then $X_* \mu = X'_* \mu$

Goal: Develop domain-theoretic approach where random variables are Scott continuous

Gain: If X, X' are continuous on supp μ, then $X_* \mu = X'_* \mu \implies X = X'$.
A stochastic process is a time-indexed family \(\{X_t \mid t \in T \subseteq \mathbb{R}_+\} \) of random variables \(X_t : \Omega \to S \), where \(S \) is a Polish space.

Note: If \(S \) is Polish, then so is \((\text{Prob}(S), d_p)\)

\[d_p \text{ is the Lévy-Prokhorov metric; generates the weak topology.} \]

Examples:

- Brownian motion, Lévy processes, Markov chains
- MCMC – Markov chain Monte Carlo
- Theme in *Probabilistic Programming Semantics*
Stochastic Processes and Skorohod’s Theorem

Let λ denote Lebesgue measure on $[0, 1]$.

Skorohod’s Theorem
If S is a Polish space, and $\nu \in \text{Prob } S$, then there is a random variable $X : [0, 1] \to S$ with $X_* \lambda = \nu$; i.e., $\nu(A) = \lambda(X^{-1}(A)) \ \forall A$ measurable.

Moreover, if $\nu_n, \nu \in \text{Prob } S$ satisfy $\nu_n \to_w \nu$, then there are random variables $X_n, X : [0, 1] \to S$ with $X_* \lambda = \nu, X_{n*} \lambda = \nu_n$ and $X_n \to X \ \lambda$-a.e.

So:
1) Every stochastic process arises as $\{X_t : [0, 1] \to S \mid t \in T\}$.

2) Convergence in $(\text{Prob } S, \text{weak})$ is equivalent to pointwise convergence λ-a.e. of the measurable maps $X_t : [0, 1] \to S$.

Goal: Obtain domain-theoretic version of Skorohod’s Theorem with Skorohod’s Theorem as a Corollary.
Towards a Domain-theoretic Skorohod Theorem

First step: We can use any standard probability space for \([0, 1], \lambda\):

Let \(C = 2^\omega\) denote a countable product of 2-point groups, and let \(\mu_C\) denote Haar measure on \(C\).

Theorem:
If \(S\) is a Polish space, and \(\nu \in \text{Prob} S\), then there is a random variable \(X : C \to S\) with \(X_* \mu_C = \nu\).

Moreover, if \(\nu_n, \nu \in \text{Prob} S\) satisfy \(\nu_n \to_w \nu\), then there are random variables \(X_n, X : C \to S\) with \(X_* \mu_C = \nu, X_{n*} \mu_C = \nu_n\) and \(X_n \to X\) \(\mu_C\)-a.e.

Proof: Use \(\varphi : C \to [0, 1]\). \(\square\)
Towards a Domain-theoretic Skorohod Theorem

Second Step: Embed \mathcal{C} in an appropriate domain:

$$\mathcal{C}_T = \{0, 1\}^\infty$$ is a domain in the prefix order.

$$\mathcal{C} \cong (\{0, 1\}^\omega, \Sigma(\mathcal{C}_T)\mid_{\{0, 1\}^\omega}) = (\text{Max } \mathcal{C}_T, \Lambda(\mathcal{C}_T)\mid_{\text{Max } \mathcal{C}_T})$$
Third Step: Which domains represent Polish spaces?

BCD_ω – countably based bounded complete domains and Scott continuous maps.

- \(D^\infty \simeq [D^\infty \rightarrow D^\infty] \) is in BCD_ω.
- \(\mathbb{CT} = \{0, 1\}^\infty \) is a bounded complete domain.

Theorem: (Lawson; Ciesielski, Flagg & Kopperman; Martin)
Each countably-based bounded complete domain \(D \) satisfies \(\text{Max } D \) is a Polish space in the inherited Scott topology.

Conversely, every Polish space can be embedded as \(\text{Max } D \) for some countably based bounded complete domain \(D_P \).

Moreover, \(\text{Max } D_P \) is a \(G_\delta \) in \(D \).

Examples:

1) \(\mathcal{C} \simeq \text{Max } \mathbb{CT} \hookrightarrow \mathbb{CT} \).

2) \(\mathbb{R} \simeq \text{Max } \mathbb{IR} \hookrightarrow \mathbb{IR} = (\{[a, b] \mid a \leq b \in \mathbb{R}\} \cup \{\mathbb{R}\}, \supseteq) \).
Domain-theoretic Skorohod Theorem (cont’d)

Skorohod’s Theorem for Domains

If D is a countably based bounded complete domain and $\nu \in \text{Prob} \, D$, then there is a Scott-continuous map $X : \mathbb{C} \mathbb{T} \to D$ with $X_* \mu_C = \nu$.

Moreover, if $\nu_n, \nu \in \text{Prob} \, D$ satisfy $\nu_n \to_w \nu$, then there are Scott-continuous maps $X_n, X : \mathbb{C} \mathbb{T} \to D$ with $X_* \mu_C = \nu$, $X_{n*} \mu_C = \nu_n$ and $X_n \to X$ pointwise in Scott topology.

Note: \{X_n\}_n is not directed: $\lim \inf_n X_n(x) \geq X(x) \ \forall x \in \mathbb{C} \mathbb{T}$.

BCD$_\omega$ is Cartesian closed:

- $[D \to E] = \{f : D \to E \mid f \text{ Scott continuous}\}$
- $f \leq g \iff f(x) \leq g(x) \ (\forall x \in D)$.

So: $X \mapsto X_* \mu_C : [\mathbb{C} \mathbb{T} \to D] \to (\text{Prob} \, D, \text{Scott})$ continuous surjection.
Domain-theoretic Skorohod Theorem (cont’d)

Skorohod’s Theorem for Domains

If \(D \) is a countably based bounded complete domain and \(\nu \in \text{Prob} \ D \), then there is a Scott-continuous map \(X : \mathbb{C}T \to D \) with \(X_* \mu_C = \nu \).

Moreover, if \(\nu_n, \nu \in \text{Prob} \ D \) satisfy \(\nu_n \to_w \nu \), then there are Scott-continuous maps \(X_n, X : \mathbb{C}T \to D \) with \(X_* \mu_C = \nu \), \(X_{n*} \mu_C = \nu_n \) and \(X_n \to X \) pointwise in Scott topology.

Note: \(\{X_n\}_n \) is *not* directed: \(\lim \inf_n X_n(x) \geq X(x) \ \forall x \in \mathbb{C}T \).

Corollary: Skorohod’s Theorem

Proof: If \(S \) is Polish, then \(S \simeq \text{Max} \ D \) for some \(D \) in \(\text{BCD}_\omega \).

Then \((\text{Prob} \ S, \text{weak}) \simeq (\text{Max} \text{Prob} \ D, \text{weak}) \).

The theorem implies \(\forall \nu \in \text{Prob} \ S. (\exists X : \mathbb{C}T \to D) X_* \mu_C = \nu \).

\(C' = X^{-1}(\text{Max} \ D) \) is Borel, so \(X|_{C'} : C' \to \text{Max} \ D \) is measurable. \(\square \)
Deflations

\(\phi : D \to D \) is a deflation if \(\phi \) is Scott continuous and \(\phi(D) \) is finite.

\(D \in \text{BCD}_\omega \implies 1_D = \sup_n \phi_n, \quad \phi_n \ll \phi_{n+1}, \) deflations

Prob functorial \(\implies 1_{\text{Prob} D} = \sup_n \phi_n^* \)

So: If \(D \in \text{BCD}_\omega \) and \(\mu \in \text{Prob} D \), then \(\mu = \sup_n \phi_n^* \mu \)

with \(\phi_n^* \mu = \sum_{x \in F_n} r_x \delta_x \), where \(F_n \) finite for all \(n \).

Example: \(\pi_n : \mathcal{C} \to \downarrow C_n \), where \(C_n \simeq 2^n \implies 1_{\mathcal{C}} = \sup_n \pi_n \)

So, \(\mu_C = \sup_n \pi_n^* \mu_C = \sup_n \mu_{C_n} \)
Outline of Proof

Finitary Mappings

\[D \in \text{BCD}_\omega \implies 1_D = \sup_n \phi_n, \ \phi_n \ll \phi_{n+1}, \text{ deflations} \]

But, \(\phi_n \ll \phi_{n+1} \iff \phi_{n*}\mu \ll \phi_{n+1*}\mu. \)

Fix \(\mu \in \text{Prob } D, \) and fix \(\phi_{n*}\mu = \sum_{x \in F_n} r_x \delta_x. \)

We approximate \(\phi_{n*}\mu: \)

Choose \(m_n > n, |F_n| \) with \(r_x - s_x < \frac{1}{2^{m_n}} \) (\(\forall x \in F_n \)), where

\[s_x = \max_{D} (r_x \cap \text{Dyad}_{m_n}), \text{ with } \text{Dyad}_{m_n} = \left\{ \frac{k}{2^{m_n}} \mid k \leq 2^{m_n} \right\}. \]

Then \(\nu_n = \sum_{x \in F_n} s_x \delta_x \ll \phi_{n*}\mu, \)

Define \(f_n: C_{m_n} \to F_n \cup \{\perp\} \subseteq D \) by

\[f_n^{-1}(x) = s_x \ (\forall x \in F_n), \ \text{and } f_n^{-1}(\perp) = 1 - \sum_{x \in F_n} s_x. \]

Then \(f_{n*}\mu_{C_{m_n}} = \nu_n \ll \phi_{n*}\mu \)
Proposition: Let \(\nu = \sum_{x \in F} r_x \delta_x \leq \sum_{y \in G} s_y \delta_y = \nu' \in \text{Prob} \ D \).

Assume \(r_x, s_y \) are dyadic rationals for each \(x \in F, y \in G \).

Suppose \(f_n : C_{m_n} \to D \) satisfies \(f_n \ast \mu_{C_{m_n}} = \nu \).

Then there are \(n' > n, m_{n'} > m_n \), and \(f_{n'} : C_{m_{n'}} \to D \) satisfying:

1. \(f_{n'} \ast \mu_{C_{m_{n'}}} = \nu' \), and
2. \(f_n \circ \pi_{m_n m_{n'}} \leq f_{n'} \), where \(\pi_{m_n m_{n'}} : C_{m_{n'}} \to C_{m_n} \) is the canonical projection.

The proof uses the Splitting Lemma, the fact that if \(r_x, s_y \) are dyadic, then the transport numbers \(t_{x,y} \) are, too, and a generalization of Hall’s Marriage Problem.
Outline of Proof

Proposition: Let \(\nu = \sum_{x \in F} r_x \delta_x \leq \sum_{y \in G} s_y \delta_y = \nu' \in \text{Prob } D \).
Assume \(r_x, s_y \) are dyadic rationals for each \(x \in F, y \in G \).
Suppose \(f_n : C_{m_n} \to D \) satisfies \(f_n^* \mu_{C_{m_n}} = \nu \).
Then there are \(n' > n, m_{n'} > m_n, \) and \(f_{n'} : C_{m_{n'}} \to D \) satisfying:

- \(f_{n'}^* \mu_{C_{m_{n'}}} = \nu' \), and
- \(f_n \circ \pi_{m_n m_{n'}} \leq f_{n'} \), where \(\pi_{m_n m_{n'}} : C_{m_{n'}} \to C_{m_n} \) is the canonical projection.

The proof of the first part of the Theorem follows by recursively defining an increasing family \(\tilde{f}_n : \downarrow C_{m_n} \to D \), where \(\tilde{f}_0 : C_0 \to D \) by \(\tilde{f}_0(\langle \rangle) = \bot_D \), and

\[
\tilde{f}_{n+1}(x) = \begin{cases}
 f_{n+1}(x) & \text{if } x \in C_{m_{n+1}} \\
 \tilde{f}_n \circ \pi_{nk}(x) & \text{if } x \in C_k, m_n \leq k < m_{n+1}.
\end{cases}
\]
and then letting \(X = \sup_n \tilde{f}_n \circ \pi_{m_n} \).
Generalizations

1. The same results hold for subprobability measures (aka valuations):

Skorohod’s Theorem for Subprobability Measures

If $\nu \in \text{SProb } D$ is a subprobability measure on a countably based BCD domain, then there is a Scott-open subset $U_\nu \subseteq \mathcal{C} \mathcal{T}$ and a Scott-continuous map $X : U_\nu \to D$ satisfying $X_\nu \ast \mu_C = \nu$.

Moreover, if $\nu_n \to_w \nu \in \text{SProb } D$, then the Scott-continuous partial maps $X_n : U_{\nu_n} \to D$ satisfy $X_n \to X$ pointwise.

Proof:

1. Embed $D \hookrightarrow D_\perp \in \text{BCD}$

2. Apply the theorem to D_\perp.

3. Restrict X, X_n to $U_\nu = \mathcal{C} \mathcal{T} \setminus X_\nu^{-1}(\perp), U_{\nu_n} = \mathcal{C} \mathcal{T} \setminus X_{\nu_n}^{-1}(\perp)$ \(\square\)
1. The same results hold for subprobability measures (aka valuations):

Skorohod’s Theorem for Subprobability Measures

If $\nu \in \text{SProb } D$ is a subprobability measure on a countably based BCD domain, then there is a Scott-open subset $U_\nu \subseteq \mathbb{C}T$ and a Scott-continuous map $X : U_\nu \rightarrow D$ satisfying $X_{\nu^*}\mu_C = \nu$.

Moreover, if $\nu_n \rightarrow_w \nu \in \text{SProb } D$, then the Scott-continuous partial maps $X_n : U_{\nu_n} \rightarrow D$ satisfy $X_n \rightarrow X$ pointwise.

2. The results all hold for more general domains:

In fact, they hold for any countably based coherent domains D.
Happy Birthday, DANA!
Questions?