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Introduction

Probability In Computational Models:

e Programming language semantics
e Applications in mathematics, physics, ...
e Probabilistic programming semantics



Introduction

Probability Theory

A random variable is a measurable map X: Q — S, where (Q,Xq, ) is a
probability space and (S, Xs) is a measurable space.

The law of X is X, 1 € Prob(Y) by X. u(A) = p(X~1(A)).

Note: Prob: Meas — Meas = Prob(X) = X,

If X =X’ p-a.e., then X, p= X

Goal: Develop domain-theoretic approach where random variables are
Scott continuous

Gain: If X, X’ are continuous on supp p, then Xy u =X p = X = X'.



Stochastic Processes and Skorohod’s Theorem

A stochastic process is a time-indexed family {X; | t € T CR,} of
random variables X;: Q2 — S, where S is a Polish space.

Note: If S is Polish, then so is (Prob(S), dp)
— dp is the Lévy-Prokhorov metric; generates the weak topology.
Examples:

e Brownian motion, Lévy processes, Markov chains

MCMC — Markov chain Monte Carlo
Theme in Probabilistic Programming Semantics



Stochastic Processes and Skorohod’s Theorem

Let A\ denote Lebesgue measure on [0, 1].

Skorohod’s Theorem
If S is a Polish space, and v € Prob S, then there is a random variable
X:[0,1] — S with X, A =v; i.e., v(A) = A\(X71(A)) VA measurable.

Moreover, if v,,v € Prob S satisfy v, —,, v, then there are random
variables X, X: [0,1] = S with X, A =1, X, A = v, and X, — X A-ae.
So: 1) Every stochastic process arises as {X;: [0,1] = S|t e T}.

2) Convergence in (Prob S, weak) is equivalent to pointwise
convergence A-a.e. of the measurable maps X;: [0,1] — S.

Goal: Obtain domain-theoretic version of Skorohod's Theorem with
Skorohod’s Theorem as a Corollary.



Towards a Domain-theoretic Skorohod Theorem

First step: We can use any standard probability space for ([0, 1], \):

Let C = 2% denote a countable product of 2-point groups, and let uc
denote Haar measure on C.

Theorem:
If S is a Polish space, and v € Prob S, then there is a random variable

X:C — S with X, uc =v.

Moreover, if v,,v € Prob S satisfy v, —,, v, then there are random
variables X, X: C — S with X, pec = v, Xy, ie = vp and X, = X

le-a.e.

Proof: Use p: C — [0, 1]. O



Towards a Domain-theoretic Skorohod Theorem

Second Step: Embed C in an appropriate domain:

CT ={0,1}°° is a domain in the prefix order.

C

C ~ ({0,1}*,%(CT)|;0,13+) = (MaxCT , A(CT ) |maxcT )



Towards a Domain-theoretic Skorohod Theorem
Third Step: Which domains represent Polish spaces?

BCD,, — countably based bounded complete domains and Scott
continuous maps.

e D™ ~[D>® — D*>]isin BCD,,.
e CT ={0,1} is a bounded complete domain.

Theorem: (Lawson; Ciesielski, Flagg & Kopperman; Martin)

Each countably-based bounded complete domain D satisfies Max D is a
Polish space in the inherited Scott topology.

Conversely, every Polish space can be embedded as Max D for some
countably based bounded complete domain Dp.

Moreover, Max Dp is a Gs in D.

Examples:
1) C ~ MaxCT — CT.
2) R ~ MaxIR — IR = ({[a, b] | a < b € R} U{R}, D).



Domain-theoretic Skorohod Theorem (cont’d)

Skorohod’s Theorem for Domains

If D is a countably based bounded complete domain and v € Prob D,
then there is a Scott-continuous map X: CT — D with X, uc = v.

Moreover, if v,,v € Prob D satisfy v, —,, v, then there are
Scott-continuous maps X,, X: CT — D with X, pc = v,
X« ic = vy and X, — X pointwise in Scott topology.

Note: {X,}, is not directed: liminf, X,(x) > X(x) ¥x € CT.

BCD,, is Cartesian closed:
o [D— E]l={f: D— E | f Scott continuous}
o f < giff f(x) < g(x) (Vx € D).

So: X +— X,pc: [CT — D] — (Prob D, Scott) continuous surjection.



Domain-theoretic Skorohod Theorem (cont’d)

Skorohod’s Theorem for Domains

If D is a countably based bounded complete domain and v € Prob D,
then there is a Scott-continuous map X: CT — D with X, puc = v.

Moreover, if v,,v € Prob D satisfy v, —,, v, then there are
Scott-continuous maps X,, X: CT — D with X, puc = v,
Xy ie = vy and X, — X pointwise in Scott topology.

Note: {X,}, is not directed: liminf, X,(x) > X(x) Vx € CT.

Corollary: Skorohod’s Theorem

Proof: If S is Polish, then S ~ Max D for some D in BCD,,.
Then (Prob S, weak) ~ (Max Prob D, weak).

The theorem implies Vv € Prob S.(3X: CT — D) X.pic = v.

C’ = X~1(Max D) is Borel, so X|c/: C' — Max D is measurable.



Outline of Proof

Deflations

¢: D — D is a deflation if ¢ is Scott continuous and ¢(D) is finite.
D € BCD, = 1p =sup, ¢n, ¢n <K Pni1, deflations

Prob functorial = 1pobp = SUp, Pns

So: If D € BCD,, and p € Prob D, then y = sup,, ¢n. it
with @y b = ZXan rydy, where F, finite for all n.

Example: 7,: CT — |Cp,, where C, 2" = l1¢r =sup,m,

So, ji¢ = Sup, Tnx« fic = SUp, fic,



Outline of Proof

Finitary Mappings

D € BCD,, = 1p =sup, ¢n, ¢n < P41, deflations

But, ¢p K pni1 7= I p <K ¢n+1*

Fix o € Prob D, and fix ¢pu pt = 35 cp I

We approximate ¢, it

Choose m,, > n,|F,| with r, — s, < 2mn (Vx € Fp), where
s« = max [(r, N Dyadp, ), with Dyad,, = {55 | k < 2™}.

Then v, = erpn Sx0x K Ppy 11,

Define f,: Cpy, = FLU{L} C D by

f 1 (x) = s (Vx € Fp), and £ 1 (L) =13 f s

Then fo. pic,, = Vn < Qns b




Outline of Proof

Proposition: Let v =3 _rdx <> 5,0, =1 € ProbD.
Assume ry, s, are dyadic rationals for each x € F,y € G.
Suppose f,: Cp,, — D satisfies f,. pic, = v.

Then there are n' > n, my > m,, and f,: C, , — D satisfying:

® fuyxpic,, =V, and

o fhommm, < for, where mp m 0 Cpy, — Cy, is the canonical
projection.

The proof uses the Splitting Lemma, the fact that if r,, s, are dyadic,
then the transport numbers t, , are, too, and a generalization of Hall's
Marriage Problem.



Outline of Proof

Proposition: Let v =3 _ rd, < ZyEG s,0, =1 € Prob D.
Assume ry, s, are dyadic rationals for each x € F,y € G.
Suppose f,: Cp, — D satisfies . pc,, =v
Then there are n’ > n, my > m,, and fy: Cm,, — D satisfying:
o fupc,, = and
® 0 Tm,m, < fw, where 7 m,: Cr, — Cp, is the canonical

projection.

The proof of the first part of the Theorem follows by recursively defining
an increasing family f,: |Cm, — D, where fo: Co — D by fo({ )) =Lp,

and F 1(X) _ QI+1( ) if x € Cmn+1
m foomak(x) if x € Ck,mp < k < mpy1.

and then letting X = sup,, f o Tm,-



Generalizations

1. The same results hold for subprobability measures (aka valuations):

Skorohod’s Theorem for Subprobability Measures

If v € SProb D is a subprobability measure on a countably based
BCD domain, then there is a Scott-open subset U, C CT and a
Scott-continuous map X: U, — D satisfying X,.pic = v.

Moreover, if v, —,, v € SProb D, then the Scott-continuous partial maps
Xn: U, — D satisfy X, — X pointwise.
Proof:

@ Embed D — D, € BCD

@ Apply the theorem to D, .

© Restrict X, X, to U, = CT \ X, *(L), Uy, =CT \ X, *(L) O



Generalizations

1. The same results hold for subprobability measures (aka valuations):

Skorohod’s Theorem for Subprobability Measures

If v € SProb D is a subprobability measure on a countably based
BCD domain, then there is a Scott-open subset U, C CT and a
Scott-continuous map X: U, — D satisfying X,.pc = v.

Moreover, if v, —,, v € SProb D, then the Scott-continuous partial maps
Xn: U, — D satisfy X, — X pointwise.

2. The results all hold for more general domains:

In fact, they hold for any countably based coherent domains D.



Happy Birthday, DANA!



Questions?



