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Introduction

Probability In Computational Models:

• Programming language semantics

• Applications in mathematics, physics, . . .

• Probabilistic programming semantics

• . . .



Introduction

Probability Theory

A random variable is a measurable map X : Ω→ S , where (Ω,ΣΩ, µ) is a
probability space and (S ,ΣS) is a measurable space.

The law of X is X∗ µ ∈ Prob(Y ) by X∗ µ(A) = µ(X−1(A)).

Note: Prob: Meas→ Meas =⇒ Prob(X ) = X∗

If X = X ′ µ-a.e., then X∗ µ = X ′∗ µ

Goal: Develop domain-theoretic approach where random variables are
Scott continuous

Gain: If X ,X ′ are continuous on suppµ, then X∗ µ = X ′∗ µ =⇒ X = X ′.



Stochastic Processes and Skorohod’s Theorem

A stochastic process is a time-indexed family {Xt | t ∈ T ⊆ R+} of
random variables Xt : Ω→ S , where S is a Polish space.

Note: If S is Polish, then so is (Prob(S), dp)

– dp is the Lévy-Prokhorov metric; generates the weak topology.

Examples:

• Brownian motion, Lévy processes, Markov chains

MCMC – Markov chain Monte Carlo
Theme in Probabilistic Programming Semantics



Stochastic Processes and Skorohod’s Theorem

Let λ denote Lebesgue measure on [0, 1].

Skorohod’s Theorem
If S is a Polish space, and ν ∈ ProbS , then there is a random variable
X : [0, 1]→ S with X∗ λ = ν; i.e., ν(A) = λ(X−1(A)) ∀A measurable.

Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then there are random
variables Xn,X : [0, 1]→ S with X∗ λ = ν,Xn∗ λ = νn and Xn → X λ-a.e.

So: 1) Every stochastic process arises as {Xt : [0, 1]→ S | t ∈ T}.
2) Convergence in (ProbS ,weak) is equivalent to pointwise
convergence λ-a.e. of the measurable maps Xt : [0, 1]→ S .

Goal: Obtain domain-theoretic version of Skorohod’s Theorem with
Skorohod’s Theorem as a Corollary.



Towards a Domain-theoretic Skorohod Theorem

First step: We can use any standard probability space for ([0, 1], λ):

Let C = 2ω denote a countable product of 2-point groups, and let µC
denote Haar measure on C.

Theorem:
If S is a Polish space, and ν ∈ ProbS , then there is a random variable
X : C → S with X∗ µC = ν.

Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then there are random
variables Xn,X : C → S with X∗ µC = ν,Xn∗ µC = νn and Xn → X
µC-a.e.

Proof: Use ϕ : C � [0, 1]. 2



Towards a Domain-theoretic Skorohod Theorem

Second Step: Embed C in an appropriate domain:

CT = {0, 1}∞ is a domain in the prefix order.

C

C ∩ [ 1
2
, 1]

...
...

...
...

C ∩ [0, 1
2
]

...
...

...
...

C ' ({0, 1}ω,Σ(CT )|{0,1}ω ) = (MaxCT ,Λ(CT )|Max CT )



Towards a Domain-theoretic Skorohod Theorem

Third Step: Which domains represent Polish spaces?

BCDω – countably based bounded complete domains and Scott
continuous maps.

• D∞ ' [D∞ → D∞] is in BCDω.

• CT = {0, 1}∞ is a bounded complete domain.

Theorem: (Lawson; Ciesielski, Flagg & Kopperman; Martin)

Each countably-based bounded complete domain D satisfies MaxD is a
Polish space in the inherited Scott topology.

Conversely, every Polish space can be embedded as MaxD for some
countably based bounded complete domain DP .

Moreover, MaxDP is a Gδ in D.

Examples:

1) C ' MaxCT ↪→ CT .

2) R ' Max IR ↪→ IR = ({[a, b] | a ≤ b ∈ R} ∪ {R},⊇).



Domain-theoretic Skorohod Theorem (cont’d)

Skorohod’s Theorem for Domains

If D is a countably based bounded complete domain and ν ∈ ProbD,
then there is a Scott-continuous map X : CT → D with X∗ µC = ν.

Moreover, if νn, ν ∈ ProbD satisfy νn →w ν, then there are
Scott-continuous maps Xn,X : CT → D with X∗ µC = ν,
Xn∗ µC = νn and Xn → X pointwise in Scott topology.

Note: {Xn}n is not directed: lim infn Xn(x) ≥ X (x) ∀x ∈ CT .

BCDω is Cartesian closed:

• [D → E ] = {f : D → E | f Scott continuous}
• f ≤ g iff f (x) ≤ g(x) (∀x ∈ D).

So: X 7→ X∗µC : [CT → D] � (ProbD,Scott) continuous surjection.



Domain-theoretic Skorohod Theorem (cont’d)

Skorohod’s Theorem for Domains

If D is a countably based bounded complete domain and ν ∈ ProbD,
then there is a Scott-continuous map X : CT → D with X∗ µC = ν.

Moreover, if νn, ν ∈ ProbD satisfy νn →w ν, then there are
Scott-continuous maps Xn,X : CT → D with X∗ µC = ν,
Xn∗ µC = νn and Xn → X pointwise in Scott topology.

Note: {Xn}n is not directed: lim infn Xn(x) ≥ X (x) ∀x ∈ CT .

Corollary: Skorohod’s Theorem

Proof: If S is Polish, then S ' MaxD for some D in BCDω.
Then (Prob S ,weak) ' (Max ProbD,weak).
The theorem implies ∀ν ∈ ProbS .(∃X : CT → D)X∗µC = ν.

C′ = X−1(MaxD) is Borel, so X |C′ : C′ → MaxD is measurable. 2



Outline of Proof

Deflations

φ : D → D is a deflation if φ is Scott continuous and φ(D) is finite.

D ∈ BCDω =⇒ 1D = supn φn, φn � φn+1, deflations

Prob functorial =⇒ 1Prob D = supn φn∗

So: If D ∈BCDω and µ ∈ ProbD, then µ = supn φn∗ µ

with φn∗ µ =
∑

x∈Fn
rxδx , where Fn finite for all n.

Example: πn : CT → ↓Cn, where Cn ' 2n =⇒ 1CT = supn πn

So, µC = supn πn∗ µC = supn µCn



Outline of Proof

Finitary Mappings

D ∈ BCDω =⇒ 1D = supn φn, φn � φn+1, deflations

But, φn � φn+1 6=⇒ φn∗ µ� φn+1∗ µ.

Fix µ ∈ ProbD, and fix φn∗ µ =
∑

x∈Fn
rxδx .

We approximate φn∗ µ:

Choose mn > n, |Fn| with rx − sx <
1

2mn (∀x ∈ Fn), where

sx = max ↓(rx ∩ Dyadmn), with Dyadmn = { k
2mn | k ≤ 2mn}.

Then νn =
∑

x∈Fn
sxδx � φn∗ µ,

Define fn : Cmn → Fn ∪ {⊥} ⊆ D by

f −1
n (x) = sx (∀x ∈ Fn), and f −1

n (⊥) = 1−
∑

x∈Fn
sx .

Then fn∗ µCmn
= νn � φn∗ µ



Outline of Proof

Proposition: Let ν =
∑

x∈F rxδx ≤
∑

y∈G syδy = ν′ ∈ ProbD.

Assume rx , sy are dyadic rationals for each x ∈ F , y ∈ G .

Suppose fn : Cmn → D satisfies fn∗ µCmn
= ν.

Then there are n′ > n, mn′ > mn, and fn′ : Cmn′ → D satisfying:

• fn′∗ µCm
n′

= ν′, and

• fn ◦ πmnmn′ ≤ fn′ , where πmnmn′ : Cmn′ → Cmn is the canonical
projection.

The proof uses the Splitting Lemma, the fact that if rx , sy are dyadic,
then the transport numbers tx,y are, too, and a generalization of Hall’s
Marriage Problem.



Outline of Proof

Proposition: Let ν =
∑

x∈F rxδx ≤
∑

y∈G syδy = ν′ ∈ ProbD.

Assume rx , sy are dyadic rationals for each x ∈ F , y ∈ G .

Suppose fn : Cmn → D satisfies fn∗ µCmn
= ν.

Then there are n′ > n, mn′ > mn, and fn′ : Cmn′ → D satisfying:

• fn′∗ µCm
n′

= ν′, and

• fn ◦ πmnmn′ ≤ fn′ , where πmnmn′ : Cmn′ → Cmn is the canonical
projection.

The proof of the first part of the Theorem follows by recursively defining
an increasing family f̃n : ↓Cmn → D, where f̃0 : C0 → D by f̃0(〈 〉) =⊥D ,

and f̃n+1(x) =

{
fn+1(x) if x ∈ Cmn+1

f̃n ◦ πnk(x) if x ∈ Ck ,mn ≤ k < mn+1.

and then letting X = supn f̃n ◦ πmn .



Generalizations

1. The same results hold for subprobability measures (aka valuations):

Skorohod’s Theorem for Subprobability Measures

If ν ∈ SProbD is a subprobability measure on a countably based
BCD domain, then there is a Scott-open subset Uν ⊆ CT and a
Scott-continuous map X : Uν → D satisfying Xν∗µC = ν.

Moreover, if νn →w ν ∈ SProbD, then the Scott-continuous partial maps
Xn : Uνn → D satisfy Xn → X pointwise.

Proof:

1 Embed D ↪→ D⊥ ∈ BCD

2 Apply the theorem to D⊥.

3 Restrict X ,Xn to Uν = CT \ X−1
ν (⊥),Uνn = CT \ X−1

νn (⊥) 2



Generalizations

1. The same results hold for subprobability measures (aka valuations):

Skorohod’s Theorem for Subprobability Measures

If ν ∈ SProbD is a subprobability measure on a countably based
BCD domain, then there is a Scott-open subset Uν ⊆ CT and a
Scott-continuous map X : Uν → D satisfying Xν∗µC = ν.

Moreover, if νn →w ν ∈ SProbD, then the Scott-continuous partial maps
Xn : Uνn → D satisfy Xn → X pointwise.

2. The results all hold for more general domains:

In fact, they hold for any countably based coherent domains D.



Happy Birthday, DANA!



Questions?


