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Outline
The main points:

I Domains are useful and popular models of computation, but...

I ... they don’t handle probabilistic choice very well.

I An alternative is random variables, so

I ... I’ll describe a monad of discrete random variables over domains,
and

I ... indicate how the model can be extended to include continuous
measures.



Domains and Probability
I. Domains are models of computation:

I DCPOs – directed complete partially ordered sets

I ∅ 6= X ⊆ (D,≤) directed if x , y ∈ X ⇒ (∃z ∈ X ) x , y ≤ z .

I (D,≤) directed complete if supX ∈ D (∀X ⊆ D directed)

I Domains are DCPOs with approximation:

I y � x if x ≤ supX directed implies y ∈ ↓X .

I D domain: ↓↓x = {y | y � x} directed & x = sup ↓↓x (∀x ∈ D).

I Cartesian closed categories of domains and Scott-continuous maps

I f : D −→ E Scott continuous if f is monotone and
f (supX ) = sup f (X ) (∀X ⊆ D directed).

I Give models of untyped lambda calculus. . .

I For the purposes of this talk, think of the Failures or
Failures/Divergences models of untimed CSP

I Both are bounded complete domains.



Domains and Probability
II. V(D) – Subprobability measures qua Scott continuous valuations:

I µ : O(D) −→ [0, 1] with µ(∅) = 0, µ(D) ≤ 1,

µ(U ∪ V ) + µ(U ∩ V ) = µ(U) + µ(V ).

µ(
⋃

i Ui ) = supi µ(Ui ) (∀{Ui} ⊆ O(D) directed).

I V(D) ⊆ [O(D) −→ [0, 1]] is a subdcpo in pointwise order



What We Know About (V(D),≤)

Positive Results:

1980: Saheb-Djarhomi: V(D) is a dcpo & simple measures are sup-dense.

1989: Claire Jones: V is a monad on DCPO and on Dom;

Splitting Lemma:
∑

i riδxi ≤
∑

j sjδyj iff (∃{tij ≥ 0 | i , j})
with ri =

∑
j tij ,

∑
i tij ≤ sj ; & tij > 0⇒ xi ≤ yj

1998 Jung & Tix: V(D) ∈ Coh if D is;

V(T ) ∈ BCD & V(T rev ) ∈ RB for each finite tree, T .

2016 M. (unpublished): V(C ) is a continuous lattice if C is a

complete chain.

Negative Results:

2003 Plotkin & Varacca: There is no distributive law for V over any of
the power domains.

1980– No known CCC of domains invariant under V.



What We Know About (V(D),≤)

Positive Results:

1980: Saheb-Djarhomi: V(D) is a dcpo & simple measures are sup-dense.

1989: Claire Jones: V is a monad on DCPO and on Dom;
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∑
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1998 Jung & Tix: V(D) ∈ Coh if D is;

V(T ) ∈ BCD & V(T rev ) ∈ RB for each finite tree, T .

Purpose of this talk:

I Describe a discrete random variable monad DCT on BCD

I Can be applied to models of untimed CSP

I Also describe an extension CRV that incorporates continuous
measures, inspired by Hoare’s normal termination,

√



Discrete Random Variables over Domains

Random variable: X : (S ,ΣS , µ) −→ (T ,ΣT ) measurable map.

E.g., S ,T topological spaces, ΣS , ΣT Borel σ-algebras.

Example: Discrete coin tosses:

I 2n[ = {0, 1}n⊥ – flat domain of outcomes of n coin tosses.

I M =
⊕

n 2n[ – coalesced sum:

x ≤ y iff x =⊥ or x = y ∈ 2n.

I V(M) = {
∑

n<N rnδxn | xn ∈M,
∑

n rn ≤ 1 & N ≤ ω}
– sub-probabilities over M.

– Bounded complete domain b/c M is a tree.

– All measures are discrete b/c M is countable.



Discrete Random Variables over Domains

Example: Discrete coin tosses:

I DCT (D) = {(µ,X ) ∈ V(M)× [suppΣ µ −→ D]}

(µ,X ) ≤ (ν,Y ) iff µ ≤ ν & X ◦ πsuppΣ µ ≤ Y .

I µ ≤ ν ⇒ ∃πsuppΣ µ : suppΣ ν −→ suppΣ µ.

I D bounded complete ⇒ DCT (D) bounded complete
I BCD is Cartesian closed
I DCT (D) is an V(M)-indexed family {µ} × [suppΣ µ −→ D]

of bounded complete domains.

I f : D −→ E ⇒ DCT (f )(µ,X ) = (µ, f ◦ X ).



Discrete Random Variables over Domains

Example: Discrete coin tosses:

I DCT (D) = {(µ,X ) ∈ V(M)× [suppΣ µ −→ D]}

(µ,X ) ≤ (ν,Y ) iff µ ≤ ν & X ◦ πsuppΣ µ ≤ Y .

I f : D −→ E ⇒ DCT (f )(µ,X ) = (µ, f ◦ X ).

An Example

A process flips a fair coin; if H occurs, then it executes a −→ STOP,
if T occurs, it executes b −→ SKIP.
We wish to iterate this twice. Here’s the result:

µ = 1
2δ0 + 1

2δ1. (0 = H; 1 = T ) X : {0, 1}⊥ −→ CSPtraces by

X (0) = a −→ STOP, X (1) = b −→ SKIP, X (⊥) = STOP.

(µ,X ); (µ,X ) = ( 1
2δ0 + 1

4δ10 + 1
4δ11,X ; (X ;STOP)), and

(X ; (X ;STOP))(0) = a −→ STOP;

(X ; (X ;STOP))(10) = b −→ a −→ STOP;

(X ; (X ;STOP))(11) = b −→ b −→ STOP.



Monadic Properties of V qua SProb
We claim DCT : BCD −→ BCD is a monad. Here’s why:

Let V be a real vector space.

X ⊆ V is an affine space if ∃ [0, 1]× X × X −→ X continuous.

If [0, 1] · X ⊆ X , then 0V ∈ X .

Comp – Compact Hausdorff spaces and continuous maps

CompAff – Compact Hausdorff affine spaces with zero and continuous
affine maps preserving zero.

CompMon – Compact Hausdorff monoids and continuous monoid
homomorphisms

CompAffMon – Compact Hausdorff affine monoids with zero and
continuous affine monoid homomorphisms preserving zero.

Theorem

• SProb: Comp −→ CompAff defines a monad.

• SProb: CompMon −→ CompAffMon defines a monad.



Monadic Properties of V qua SProb
We claim DCT : BCD −→ BCD is a monad. Here’s why:

(S , ·) compact monoid ⇒ ∗ : SProb S ×SProbS −→ SProbS is given by:

µ ∗ ν(A) = µ× ν(·−1(A)) = µ× ν({(x , y) | x · y ∈ A})
(∀A ⊆ S measurable).

Moreover, suppµ ∗ ν = suppµ · supp ν.

CompOrdMon – Compact ordered monoids and continuous monotone
homomorphisms.

CompOrdAffMon – Compact ordered affine monoids with zero and
continuous affine monotone homomorphisms preserving zero.

Theorem

• SProb: CompOrdMon −→ CompOrdAffMon defines a monad.



Monadic Properties of V qua SProb
We claim DCT : BCD −→ BCD is a monad. Here’s why:

Some facts about M:

I M is a coherent domain: its Lawson topology is compact Hausdorff

(b/c M is bounded complete)

I M is the free ordered monoid with zero over {0, 1}:

x · y =


x if y = ε

y if x = ε

⊥ if x =⊥ or y =⊥
xy ∈ {0, 1}|x|+|y | otherwise

I (M, ·) is a compact monoid.

Corollary M =
⊕

n 2n[ is a free compact ordered monoid, so

(V(M), ∗) is a free compact ordered affine monoid.



Discrete Random Variables... (cont’d)

I DCT is a monad, with Kleisli lift:

{(µ,X ) ∈ V(M)× [suppΣ µ −→ D]}
h†

,,

D

ηD

OO

h
// {(ν,Y ) ∈ V(M)× [suppΣ ν −→ E ]})

where ηD(d) = (δε, constd), and

h†(
∑
m

rmδxm ,X ) =

(∑
m

rm(δxm ∗ π1 ◦ h ◦ X (xm)), π2 ◦ h ◦ X

)

where π2 ◦ h ◦ X :
⋃
m

{xm · suppΣ(π1 ◦ h ◦ X )(xm))}
Σ

−→ E is

π2 ◦ h ◦ X (x) =
∧
{(π2 ◦h◦X )(xm)(y) | x = xm ·y ∈ ({0, 1}|xm|+|y |)⊥}.

Note: The many possible ways to factor x as xmy can lead to
different possible outcomes.



The Cantor Tree as a Source of Randomness

What about a model with continuous measures? C = {0, 1}∞
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The Cantor Tree as a Source of Randomness

Instead of C = {0, 1}∗ ∪ {0, 1}ω in the prefix order, we use

M {0, 1} = {0, 1}∗{√,⊥} ∪ {0, 1}ω, a sequential domain monoid.
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µ = 1
4δ00

√ + 1
4δ01

√ + 1
4δ10

√ + 1
4δ11

√ is maximal, but

µ ∗ δ⊥ = 1
4δ00⊥ + 1

4δ01⊥ + 1
4δ10⊥ + 1

4δ11⊥ ≤ µ, ν for all

uniform measures ν concentrated on {0, 1}n√, {0, 1}n⊥ for n > 4.



The Cantor Tree as a Source of Randomness

Then VM {0, 1} is an affine domain monoid.

It’s also in BCD because M {0, 1} is a tree. So we define

CRV (D) = {(µ,X ) ∈ VM {0, 1} × [suppΣ µ −→ D]} with

(µ,X ) ≤ (ν,Y ) iff µ ≤ ν & X ◦ πsuppΣµ
≤ Y , and

f : D −→ E ⇒ CRV (f )(µ,X ) = (µ, f ◦ X ).

Theorem: CRV forms a monad on BCD.

CRV (D)

h†

$$
D

ηD

OO

h

// CRV (E)

where ηD (d) = (δ√ , constd ), and

h†(
∑
m

rmδxm , X ) =

(∑
m

rm(δxm ∗ π1 ◦ h ◦ X (xm)), π2 ◦ h ◦ X
)

where π2 ◦ h ◦ X :
⋃
m

{xm · suppΣ(π1 ◦ h ◦ X )(xm))}
Σ
−→ E is

π2 ◦ h ◦ X (x) =
∧
{(π2 ◦ h ◦ X )(xm)(y) | x = xm · y ∈ ({0, 1}|xm|+|y|)⊥}.



And, finally...

Thanks, and Happy Birthday Bill!!


