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QOutline
The main points:

» Domains are useful and popular models of computation, but...
> ... they don't handle probabilistic choice very well.
> An alternative is random variables, so

» ... I'll describe a monad of discrete random variables over domains,
and

» ... indicate how the model can be extended to include continuous
measures.



Domains and Probability
I. Domains are models of computation:

» DCPOs — directed complete partially ordered sets
» 0 #£ X C(D,<) directed if x,y e X = (Fze€ X)x,y <z
» (D, <) directed complete if sup X € D (VX C D directed)
» Domains are DCPOs with approximation:
» v K x if x < sup X directed implies y € [X.
» D domain: [x = {y |y < x} directed & x = sup [x (Vx € D).
» Cartesian closed categories of domains and Scott-continuous maps

» f: D — E Scott continuous if f is monotone and
f(sup X) = sup f(X) (VX C D directed).

» Give models of untyped lambda calculus. . .

» For the purposes of this talk, think of the Failures or
Failures/Divergences models of untimed CSP

» Both are bounded complete domains.



Domains and Probability
[I. V(D) — Subprobability measures qua Scott continuous valuations:
> p: O(D) — [0,1] with p(0) = 0,u(D) < 1,
pUU V) +p(Un V) = p(U) + pu(V).
w(U; Ui) = sup; u(U;) (Y{U;i} € O(D) directed).
> V(D) C [O(D) — [0,1]] is a subdcpo in pointwise order



What We Know About (V(D), <)
Positive Results:

1980: Saheb-Djarhomi: V(D) is a dcpo & simple measures are sup-dense.
1989: Claire Jones: V is a monad on DCPO and on Dom;
Splitting Lemma: 3, ridx, < 3. s;6y, iff (3{t; > 0] i, j})
with r,-:th,'j, Yt <s; &t >0=> x; <y
1998 Jung & Tix: V(D) € Coh if D is;
V(T) € BCD & V(T"™) € RB for each finite tree, T.
2016 M. (unpublished): V(C) is a continuous lattice if C is a
complete chain.
Negative Results:

2003 Plotkin & Varacca: There is no distributive law for V over any of
the power domains.

1980— No known CCC of domains invariant under V.
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Purpose of this talk:
> Describe a discrete random variable monad DCT on BCD
» Can be applied to models of untimed CSP

» Also describe an extension CRV that incorporates continuous
measures, inspired by Hoare's normal termination, /



Discrete Random Variables over Domains
Random variable: X: (S,Xs, ) — (T, X 1) measurable map.
E.g., S, T topological spaces, s, X1 Borel g-algebras.

Example: Discrete coin tosses:

b . .
» 2" ={0,1}7 - flat domain of outcomes of n coin tosses.

» M=, 27" — coalesced sum:
x<yiffx=Lorx=ye2"
> VM) = (S o | %0 € M, Y070 S 1& N < )
— sub-probabilities over M.
— Bounded complete domain b/c M is a tree.

— All measures are discrete b/c M is countable.



Discrete Random Variables over Domains
Example: Discrete coin tosses:

» DCT(D) = {(u, X) € V(M) x [supps 1t — D]}
(1, X) < (v, V) iff p < v & Xomgupp, u < Y.

» 4 <V = IMguppy p: SUPPy ¥V — SUPPx [
» D bounded complete = DCT(D) bounded complete

» BCD is Cartesian closed
» DCT(D) is an V(M)-indexed family {u} x [suppy p — D]
of bounded complete domains.

> f:D—s E = DCT(f)(1, X) = (u, f o X).



Discrete Random Variables over Domains
Example: Discrete coin tosses:

> DCT(D) = {(n, X) € V(M) x [suppy p — D]}
(1, X) < (v, V) iff p < v & Xomgupp, u < Y.
» f:D— E = DCT(f)(,X) = (, f o X).
An Example
A process flips a fair coin; if H occurs, then it executes a — STOP,

if T occurs, it executes b — SKIP.
We wish to iterate this twice. Here's the result:

=100 +301. 0=H;1=T)  X:{0,1} . — CSPyaces by
X(O) =a— STOP, X(1) = b — SKIP, X(L) = STOP.
(1, X); (11, X) = (300 + %610 + 3611, X; (X; STOP)), and

(X; (X; STOP))(0) = a —» STOP;
(X;(X;STOP))(10) = b — a — STOP;
(X;(X;STOP))(11) = b — b — STOP.

xX X



Monadic Properties of V qua SProb
We claim DCT : BCD — BCD is a monad. Here's why:

Let V be a real vector space.

X C Vis an affine space if 3[0,1] x X x X — X continuous.
If [0,1] - X C X, then Oy € X.

Comp — Compact Hausdorff spaces and continuous maps

CompAff — Compact Hausdorff affine spaces with zero and continuous
affine maps preserving zero.

CompMon — Compact Hausdorff monoids and continuous monoid
homomorphisms

CompAffMon — Compact Hausdorff affine monoids with zero and
continuous affine monoid homomorphisms preserving zero.

Theorem
e SProb: Comp — CompAff defines a monad.

e SProb: CompMon — CompAffMon defines a monad.



Monadic Properties of V qua SProb
We claim DCT : BCD — BCD is a monad. Here's why:

(S,-) compact monoid = x: SProb S x SProbS — SProb S is given by:
pxv(A) =pxv(-"YA) = pxv({(xy) | x-y € A})

(YA C S measurable).
Moreover, Supp ft * = Supp j - SuUpp v.

CompOrdMon — Compact ordered monoids and continuous monotone
homomorphisms.

CompOrdAffMon — Compact ordered affine monoids with zero and
continuous affine monotone homomorphisms preserving zero.

Theorem
e SProb: CompOrdMon — CompOrdAffMon defines a monad.



Monadic Properties of V qua SProb
We claim DCT : BCD — BCD is a monad. Here's why:

Some facts about M:

> M is a coherent domain: its Lawson topology is compact Hausdorff
(b/c M is bounded complete)

> M is the free ordered monoid with zero over {0,1}:

X ify=ce
y if x=¢
Xy = )
i if x=L ory=1

xy € {0, 1}X+Ivl otherwise
> (M,-) is a compact monoid.
Corollary M =P, 2" is a free compact ordered monoid, so

(V(M), ) is a free compact ordered affine monoid.



Discrete Random Variables... (cont’d)
» DCT is a monad, with Kleisli lift:

{(n, X) € V(M) x [supps pp — D]}

7D

D p {(v,Y) € V(M) x [supps v —> E]})

where np(d) = (., consty), and

hT(Z rméxva) = (Z rm(5xm xmpoho X(Xm))77r2 oho X)

m

%
where m 0 ho X: U{xm ~supps(m 0 ho X)(xn))} — Eis
m

20 ho X(x) = A{(m20ho X)(m)(¥) | x = xim-y € ({0.1}01471) ).

Note: The many possible ways to factor x as xp,y can lead to
different possible outcomes.



The Cantor Tree as a Source of Randomness
What about a model with continuous measures? C = {0,1}*




The Cantor Tree as a Source of Randomness
Instead of C = {0,1}* U {0,1}* in the prefix order, we use
M{0,1} = {0,1}*{v, L} U{0,1}¥, a sequential domain monoid.

o 000L o 0011 q 0101 g 011 g 100 g 1011 q 110L g 111L

111
00/

n= %500\/ -+ %(501\/ + %(510\/ + %511\/ is maXimaI, but
[* 61 = 20001 + 30011 + 30101 + 30111 < p, v for all

uniform measures v concentrated on {0,1}"/,{0,1}" L for n > 4.



The Cantor Tree as a Source of Randomness
Then VM {0,1} is an affine domain monoid.

It's also in BCD because M {0, 1} is a tree. So we define
CRV(D) = {(u, X) € VM{0,1} X [suppy p —> D]} with
(LX) <(WY)iffu<v&X © TMsuppy,, <Y, and
f:D— E = CRV(f)(, X) = (p, f o X).

Theorem: CRV forms a monad on BCD.

CRV(D)

I

D ———— CRV(E)

where np(d) = (8, /, consty), and

BT (3 b, X) = (Z rm(8xpy * 71 0 h 0 X(xm)), 72 0 ho X>
m

m

[ P
where T3 0 ho X: U{xm -suppy (71 0 ho X)(xm))} — E'is

m

T 0 ho X(x) = A{(m2 0 ho X)(xm)(¥) | x = xm - y € ({0, 1}PmI+I¥]y, 3.



And, finally...

Thanks, and Happy Birthday Bill!!



