Discrete Random Variables Over Domains, Revisited

Michael Mislove

Tulane University New Orleans, LA

Bill@60
Oxford
January 9 - 10, 2017
Work sponsored by AFOSR

Outline

The main points:

- Domains are useful and popular models of computation, but...
- ... they don't handle probabilistic choice very well.
- An alternative is random variables, so
- ... I'll describe a monad of discrete random variables over domains, and
- ... indicate how the model can be extended to include continuous measures.

Domains and Probability

I. Domains are models of computation:

- DCPOs - directed complete partially ordered sets
- $\emptyset \neq X \subseteq(D, \leq)$ directed if $x, y \in X \Rightarrow(\exists z \in X) x, y \leq z$.
- (D, \leq) directed complete if sup $X \in D(\forall X \subseteq D$ directed $)$
- Domains are DCPOs with approximation:
- $y \ll x$ if $x \leq \sup X$ directed implies $y \in \downarrow X$.
- D domain: $\ddagger x=\{y \mid y \ll x\}$ directed $\& x=\sup \sharp x(\forall x \in D)$.
- Cartesian closed categories of domains and Scott-continuous maps
- $f: D \longrightarrow E$ Scott continuous if f is monotone and $f(\sup X)=\sup f(X)(\forall X \subseteq D$ directed $)$.
- Give models of untyped lambda calculus...
- For the purposes of this talk, think of the Failures or Failures/Divergences models of untimed CSP
- Both are bounded complete domains.

Domains and Probability

II. $\mathbb{V}(D)$ - Subprobability measures qua Scott continuous valuations:

- $\mu: \mathcal{O}(D) \longrightarrow[0,1]$ with $\mu(\emptyset)=0, \mu(D) \leq 1$,

$$
\mu(U \cup V)+\mu(U \cap V)=\mu(U)+\mu(V)
$$

$$
\mu\left(\bigcup_{i} U_{i}\right)=\sup _{i} \mu\left(U_{i}\right) \quad\left(\forall\left\{U_{i}\right\} \subseteq \mathcal{O}(D) \text { directed }\right)
$$

- $\mathbb{V}(D) \subseteq[\mathcal{O}(D) \longrightarrow[0,1]]$ is a subdcpo in pointwise order

What We Know About $(\mathbb{V}(D), \leq)$

Positive Results:
1980: Saheb-Djarhomi: $\mathbb{V}(D)$ is a dcpo \& simple measures are sup-dense.
1989: Claire Jones: \mathbb{V} is a monad on DCPO and on Dom;
Splitting Lemma: $\sum_{i} r_{i} \delta_{x_{i}} \leq \sum_{j} s_{j} \delta_{y_{j}}$ iff $\left(\exists\left\{t_{i j} \geq 0 \mid i, j\right\}\right)$
with $r_{i}=\sum_{j} t_{i j}, \sum_{i} t_{i j} \leq s_{j} ; \& t_{i j}>0 \Rightarrow x_{i} \leq y_{j}$
1998 Jung \& Tix: $\mathbb{V}(D) \in$ Coh if D is; $\mathbb{V}(T) \in \mathrm{BCD} \& \mathbb{V}\left(T^{\text {rev }}\right) \in \mathrm{RB}$ for each finite tree, T.
2016 M . (unpublished): $\mathbb{V}(C)$ is a continuous lattice if C is a complete chain.

Negative Results:
2003 Plotkin \& Varacca: There is no distributive law for \mathbb{V} over any of the power domains.

1980- No known CCC of domains invariant under \mathbb{V}.

What We Know About $(\mathbb{V}(D), \leq)$

Positive Results:
1980: Saheb-Djarhomi: $\mathbb{V}(D)$ is a dcpo \& simple measures are sup-dense.
1989: Claire Jones: \mathbb{V} is a monad on DCPO and on Dom;
Splitting Lemma: $\sum_{i} r_{i} \delta_{x_{i}} \leq \sum_{j} s_{j} \delta_{y_{j}}$ iff $\left(\exists\left\{t_{i j} \geq 0 \mid i, j\right\}\right)$
with $r_{i}=\sum_{j} t_{i j}, \sum_{i} t_{i j} \leq s_{j} ; \& t_{i j}>0 \Rightarrow x_{i} \leq y_{j}$
1998 Jung \& Tix: $\mathbb{V}(D) \in$ Coh if D is; $\mathbb{V}(T) \in \mathrm{BCD} \& \mathbb{V}\left(T^{\text {rev }}\right) \in \mathrm{RB}$ for each finite tree, T.

Purpose of this talk:

- Describe a discrete random variable monad DCT on BCD
- Can be applied to models of untimed CSP
- Also describe an extension CRV that incorporates continuous measures, inspired by Hoare's normal termination, \checkmark

Discrete Random Variables over Domains

Random variable: $X:\left(S, \Sigma_{S}, \mu\right) \longrightarrow\left(T, \Sigma_{T}\right)$ measurable map.
E.g., S, T topological spaces, Σ_{S}, Σ_{T} Borel σ-algebras.

Example: Discrete coin tosses:

- $2^{n^{b}}=\{0,1\}_{\perp}^{n}$ - flat domain of outcomes of n coin tosses.
- $\mathcal{M}=\bigoplus_{n} 2^{n^{b}}$ - coalesced sum:

$$
x \leq y \text { iff } x=\perp \text { or } x=y \in 2^{n} .
$$

- $\mathbb{V}(\mathcal{M})=\left\{\sum_{n<N} r_{n} \delta_{x_{n}} \mid x_{n} \in \mathcal{M}, \sum_{n} r_{n} \leq 1 \& N \leq \omega\right\}$
- sub-probabilities over \mathcal{M}.
- Bounded complete domain $b / c \mathcal{M}$ is a tree.
- All measures are discrete $b / c \mathcal{M}$ is countable.

Discrete Random Variables over Domains

Example: Discrete coin tosses:

- $\operatorname{DCT}(D)=\left\{(\mu, X) \in \mathbb{V}(\mathcal{M}) \times\left[\operatorname{supp}_{\Sigma} \mu \longrightarrow D\right]\right\}$

$$
\begin{aligned}
& (\mu, X) \leq(\nu, Y) \text { iff } \mu \leq \nu \& X \circ \pi_{\text {supp }_{\Sigma} \mu} \leq Y . \\
& \quad \text { • } \mu \leq \nu \Rightarrow \exists \pi_{\text {supp }_{\Sigma} \mu}: \operatorname{supp}_{\Sigma} \nu \longrightarrow \operatorname{supp}_{\Sigma} \mu .
\end{aligned}
$$

- D bounded complete $\Rightarrow D C T(D)$ bounded complete
- BCD is Cartesian closed
- $\operatorname{DCT}(D)$ is an $\mathbb{V}(\mathcal{M})$-indexed family $\{\mu\} \times\left[\operatorname{supp}_{\Sigma} \mu \longrightarrow D\right]$ of bounded complete domains.
- $f: D \longrightarrow E \Rightarrow D C T(f)(\mu, X)=(\mu, f \circ X)$.

Discrete Random Variables over Domains

Example: Discrete coin tosses:

- $\operatorname{DCT}(D)=\left\{(\mu, X) \in \mathbb{V}(\mathcal{M}) \times\left[\operatorname{supp}_{\Sigma} \mu \longrightarrow D\right]\right\}$

$$
(\mu, X) \leq(\nu, Y) \text { iff } \mu \leq \nu \& X \circ \pi_{\text {supp }_{\Sigma} \mu} \leq Y
$$

- $f: D \longrightarrow E \Rightarrow D C T(f)(\mu, X)=(\mu, f \circ X)$.

An Example

A process flips a fair coin; if H occurs, then it executes $a \longrightarrow S T O P$, if T occurs, it executes $b \longrightarrow S K I P$.
We wish to iterate this twice. Here's the result:

$$
\begin{aligned}
& \mu=\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1} .(0=H ; 1=T) \quad X:\{0,1\}_{\perp} \longrightarrow C S P_{\text {traces }} \text { by } \\
& X(0)=a \longrightarrow S T O P, X(1)=b \longrightarrow S K I P, X(\perp)=S T O P . \\
& (\mu, X) ;(\mu, X)=\left(\frac{1}{2} \delta_{0}+\frac{1}{4} \delta_{10}+\frac{1}{4} \delta_{11}, X ;(X ; S T O P)\right), \text { and } \\
& \quad(X ;(X ; S T O P))(0)=a \longrightarrow S T O P ; \\
& \quad(X ;(X ; S T O P))(10)=b \longrightarrow a \longrightarrow S T O P ; \\
& (X ;(X ; S T O P))(11)=b \longrightarrow b \longrightarrow S T O P .
\end{aligned}
$$

Monadic Properties of \mathbb{V} qua SProb

We claim DCT: BCD $\longrightarrow B C D$ is a monad. Here's why:
Let V be a real vector space.
$X \subseteq V$ is an affine space if $\exists[0,1] \times X \times X \longrightarrow X$ continuous.
If $[0,1] \cdot X \subseteq X$, then $0_{V} \in X$.
Comp - Compact Hausdorff spaces and continuous maps
CompAff - Compact Hausdorff affine spaces with zero and continuous affine maps preserving zero.
CompMon - Compact Hausdorff monoids and continuous monoid homomorphisms
CompAffMon - Compact Hausdorff affine monoids with zero and continuous affine monoid homomorphisms preserving zero.

Theorem

- SProb: Comp \longrightarrow CompAff defines a monad.
- SProb: CompMon CompAffMon defines a monad.

Monadic Properties of \mathbb{V} qua SProb

We claim DCT: BCD $\longrightarrow B C D$ is a monad. Here's why:
(S, \cdot) compact monoid $\Rightarrow *: \operatorname{SProb} S \times \mathrm{SProb} S \longrightarrow \mathrm{SProb} S$ is given by:
$\mu * \nu(A)=\mu \times \nu\left(\cdot{ }^{-1}(A)\right)=\mu \times \nu(\{(x, y) \mid x \cdot y \in A\})$
($\forall A \subseteq S$ measurable).
Moreover, $\operatorname{supp} \mu * \nu=\operatorname{supp} \mu \cdot \operatorname{supp} \nu$.
CompOrdMon - Compact ordered monoids and continuous monotone homomorphisms.
CompOrdAffMon - Compact ordered affine monoids with zero and continuous affine monotone homomorphisms preserving zero.

Theorem

- SProb: CompOrdMon \longrightarrow CompOrdAffMon defines a monad.

Monadic Properties of \mathbb{V} qua SProb

We claim DCT: BCD $\longrightarrow B C D$ is a monad. Here's why:
Some facts about \mathcal{M} :

- \mathcal{M} is a coherent domain: its Lawson topology is compact Hausdorff (b/c \mathcal{M} is bounded complete)
- \mathcal{M} is the free ordered monoid with zero over $\{0,1\}$:

$$
x \cdot y= \begin{cases}x & \text { if } y=\epsilon \\ y & \text { if } x=\epsilon \\ \perp & \text { if } x=\perp \text { or } y=\perp \\ x y \in\{0,1\}^{|x|+|y|} & \text { otherwise }\end{cases}
$$

- (\mathcal{M}, \cdot) is a compact monoid.

Corollary $\mathcal{M}=\bigoplus_{n} 2^{n b}$ is a free compact ordered monoid, so
$(\mathbb{V}(\mathcal{M}), *)$ is a free compact ordered affine monoid.

Discrete Random Variables... (cont'd)

- DCT is a monad, with Kleisli lift:

$$
\left\{(\mu, X) \in \mathbb{V}(\mathcal{M}) \times\left[\operatorname{supp}_{\Sigma} \mu \longrightarrow D\right]\right\}
$$

where $\eta_{D}(d)=\left(\delta_{\epsilon}\right.$, const $\left._{d}\right)$, and

$$
h^{\dagger}\left(\sum_{m} r_{m} \delta_{x_{m}}, X\right)=\left(\sum_{m} r_{m}\left(\delta_{x_{m}} * \pi_{1} \circ h \circ X\left(x_{m}\right)\right), \overline{\pi_{2} \circ h \circ X}\right)
$$

$$
\text { where } \left.\overline{\pi_{2} \circ h \circ X:} \bigcup_{m}\left\{x_{m} \cdot \operatorname{supp}_{\Sigma}\left(\pi_{1} \circ h \circ X\right)\left(x_{m}\right)\right)\right\}^{\Sigma} \longrightarrow E \text { is }
$$

$$
\overline{\pi_{2} \circ h \circ X(x)=\bigwedge\left\{\left(\pi_{2} \circ h \circ X\right)\left(x_{m}\right)(y) \mid x=x_{m} \cdot y \in\left(\{0,1\}^{\left|x_{m}\right|+|y|}\right)_{\perp}\right\} ~}
$$

Note: The many possible ways to factor x as $x_{m} y$ can lead to different possible outcomes.

The Cantor Tree as a Source of Randomness
What about a model with continuous measures? $\mathcal{C}=\{0,1\}^{\infty}$

The Cantor Tree as a Source of Randomness

Instead of $\mathcal{C}=\{0,1\}^{*} \cup\{0,1\}^{\omega}$ in the prefix order, we use
$\mathbb{M}\{0,1\}=\{0,1\}^{*}\{\vee, \perp\} \cup\{0,1\}^{\omega}$, a sequential domain monoid.

$\mu=\frac{1}{4} \delta_{00 \sqrt{ }}+\frac{1}{4} \delta_{01 \sqrt{ }}+\frac{1}{4} \delta_{10 \sqrt{ }}+\frac{1}{4} \delta_{11 \sqrt{ }}$ is maximal, but $\mu * \delta_{\perp}=\frac{1}{4} \delta_{00 \perp}+\frac{1}{4} \delta_{01 \perp}+\frac{1}{4} \delta_{10 \perp}+\frac{1}{4} \delta_{11 \perp} \leq \mu, \nu$ for all uniform measures ν concentrated on $\{0,1\}^{n} \sqrt{ },\{0,1\}^{n} \perp$ for $n>4$.

The Cantor Tree as a Source of Randomness

Then $\mathbb{V} \mathbb{M}\{0,1\}$ is an affine domain monoid.
It's also in BCD because $\mathbb{M}\{0,1\}$ is a tree. So we define
$C R V(D)=\left\{(\mu, X) \in \mathbb{V} \mathbb{M}\{0,1\} \times\left[\operatorname{supp}_{\Sigma} \mu \longrightarrow D\right]\right\}$ with

$$
(\mu, X) \leq(\nu, Y) \text { iff } \mu \leq \nu \& X \circ \pi_{\text {supp }_{\Sigma_{\mu}}} \leq Y, \text { and }
$$

$f: D \longrightarrow E \Rightarrow \operatorname{CRV}(f)(\mu, X)=(\mu, f \circ X)$.
Theorem: $C R V$ forms a monad on BCD.

where $\eta_{D}(d)=\left(\delta_{\sqrt{ }}\right.$, const $\left._{d}\right)$, and

$$
\begin{array}{r}
h^{\dagger}\left(\sum_{m} r_{m} \delta_{x_{m}}, X\right)=\left(\sum_{m} r_{m}\left(\delta_{x_{m}} * \pi_{1} \circ h \circ X\left(x_{m}\right)\right), \overline{\pi_{2} \circ h \circ X}\right) \\
\text { where } \overline{\pi_{2} \circ h \circ X:} \overline{\left.\bigcup_{m}\left\{x_{m} \cdot \operatorname{supp}_{\Sigma}\left(\pi_{1} \circ h \circ X\right)\left(x_{m}\right)\right)\right\}} \bar{\Sigma} \longrightarrow E \text { is }
\end{array}
$$

$$
\overline{\pi_{2} \circ h \circ X}(x)=\bigwedge\left\{\left(\pi_{2} \circ h \circ X\right)\left(x_{m}\right)(y) \mid x=x_{m} \cdot y \in\left(\{0,1\}^{\left|x_{m}\right|+|y|}\right)_{\perp}\right\}
$$

And, finally...

Thanks, and Happy Birthday Bill!!

