
Domains and Quantum Programming Languages:

Recursion in Categorical Models

Michael Mislove

Department of Computer Science
Tulane University

Work Supported by US AFOSR

Joint work with Bert Lindenhovius and Vladimir Zamdzhiev

AchimFest
University of Birmingham

8 September 2018

0 / 1

Achim

• The Jung-Tix Problem

The troublesome probabilistic power domain, Jung & Tix, 1988

And, I’m still working on that exit plan....

1 / 1

Achim

• The Jung-Tix Problem

The troublesome probabilistic power domain, Jung & Tix, 1988

And, I’m still working on that exit plan....

1 / 1

Prototypical Quantum Computer

• A quantum computer is a classical computer with a quantum co-processor

Classical Computer Quantum Co-processor

circuits

measurements

• Circuit: sequence of unitary operators

2 / 1

Prototypical Quantum Computer

• We’ll elide measurements and focus on a classical functional language for
constructing circuits and a linear language for modeling them as linear morphisms.

• A quantum programming language is a classical functional language together with
a linear language of quantum circuits:

Functional Language Linear language

• We study circuit description languages using Linear / Nonlinear Models

2 / 1

Proto-Quipper-M

• Proto-Quipper-M developed by Francisco Rios and Peter Selinger.

The types of the language:

Types A,B ::= α | 0 | A + B | I | A⊗ B | A(B | !A | Circ(T,U)
Intuitionistic types P,R ::= 0 | P + R | I | P ⊗ R | !A | Circ(T,U)
M-types T ,U ::= α | I | T ⊗ U

The term language:

Terms M,N ::= x | ` | c | let x = M in N
| �AM | leftA,BM | rightA,BM | case M of {left x → N | right y → P}
| ∗ | M;N | 〈M,N〉 | let 〈x , y〉 = M in N | λxA.M | MN

| lift M | force M | boxTM | apply(M,N) | (
→
` ,C,

→
`′)

3 / 1

Combined Typing Judgement
• There is only one form of type judgement.
• Typing contexts Φ, Γ, ... can be mixed.
• Typing contexts Q are for circuit labels.

Francisco Rios and Peter Selinger 9

Φ,x : A; /0 ⊢ x : A
(var) Φ;ℓ : α ⊢ ℓ : α (label) Φ; /0 ⊢ c : Ac

(const)

Γ,x : A;Q ⊢ M : B
Γ;Q ⊢ λxA.M : A !B

(abs) Φ,Γ1;Q1 ⊢ M : A !B Φ,Γ2;Q2 ⊢ N : A
Φ,Γ1,Γ2;Q1,Q2 ⊢ MN : B

(app)

Φ; /0 ⊢ M : A
Φ; /0 ⊢ lift M : !A

(lift)
Γ;Q ⊢ M : !A

Γ;Q ⊢ force M : A
(force)

Γ;Q ⊢ M : !(T !U)

Γ;Q ⊢ boxT M : Circ(T,U)
(box)

Φ,Γ1;Q1 ⊢ M : Circ(T,U) Φ,Γ2;Q2 ⊢ N : T
Φ,Γ1,Γ2;Q1,Q2 ⊢ apply(M,N) : U

(apply)

/0;Q ⊢ ℓ⃗ : T /0;Q′ ⊢ ℓ⃗′ : U C ∈ ML (Q,Q′)

Φ; /0 ⊢ (⃗ℓ,C, ℓ⃗′) : Circ(T,U)
(circ)

Table 3: The typing rules of Proto-Quipper-M (excerpt)

will comment on a few particular features of the type system. Note that in the typing rules, Φ stands for a
parameter context, whereas Γ denotes an arbitrary variable context (which can contain both parameter types
and non-parameter types). There is no formal distinction between these two kinds of contexts, so it is entirely
possible to have a type derivation where a given type is part of Φ in one rule and part of Γ in another. Let us call
a variable whose type is not a parameter type a linear variable. The type system enforces that labels and linear
variables are used exactly once, whereas parameters may be used any number of times or not at all. In the typing
rule for constants, we have assumed that each constant c is equipped with a fixed type Ac.

4.4 Categorical semantics
Because of the preparatory work we did in Section 3, the categorical semantics of Proto-Quipper-M is now
straightforward. The semantics associates to each type A an object [[A]] of the category M in the obvious way:
the interpretation [[α]] of a wire type is assumed given, and each connective is interpreted as “itself”, for example,
[[0]] = 0, [[A + B]] = [[A]]+ [[B]], and so on. We also set [[Circ(T,U)]] = p(M([[T]], [[U]])). If Γ = x1 : A1, . . . ,xn : An
is a typing context, we write [[Γ]] = [[A1]]⊗ . . .⊗ [[An]].

Next, we associate a morphism [[Γ;Q ⊢ M : A]] : [[Γ]]⊗ [[Q]] → [[A]] to each valid typing judgement. By abuse
of notation, we sometimes denote this simply as [[M]]. We assume that each constant c of type Ac is interpreted
by a given fixed morphism [[c]] : I → [[Ac]]. The interpretation of type derivations is defined by induction on
the typing rules. For space reasons, we only show part of the interpretation in Table 4. The interpretation
uses maps ⋄ : P → I and ∆ : P → P ⊗ P, which exist in the category M whenever P is a parameter object. Each
judgement of the form Q ⊢ ℓ⃗ : T induces an isomorphism [[⃗ℓ]] : [[Q]] → [[T]], from which we can define a morphism
f (⃗ℓ,C, ℓ⃗′) = [[⃗ℓ′]]◦C ◦ [[⃗ℓ]]−1 : [[T]] → [[U]]. This is used in the last rule in Table 4.

5 Operational semantics
5.1 Evaluation rules
We define the operational semantics of Proto-Quipper-M as a big-step semantics [5]. A configuration is a pair
(C,M) of a labelled circuit C and a term M. Recall that a labelled circuit is, by definition, a morphism of the
category ML . Intuitively, C is the circuit “currently being constructed” when the term M is run. A configuration
is a value configuration if M is a value. Evaluation takes the form of an evaluation relation (C,M) ⇓ (C′,V).
Its intuitive meaning is: when the term M is evaluated in the context of a partially constructed circuit C, then it
produces a circuit C′ (obtained from C by appending zero or more gates) and a value V . We also define an error
relation (C,M) ⇓ Error, meaning that the evaluation of M in the context of the circuit C produces a run-time
error. Examples of run-time errors are:

• Run-time type errors. For example, evaluating an application MN, where M is not a function, or a projec-
tion π1M, when M is not a pair.

3 / 1

Example

Assume H : Q (Q is a constant representing the Hadamard gate.

Example
two-hadamard : Circ(Q,Q)
two-hadamard ≡ boxQ lift λqQ .HHq

This program creates a completed circuit consisting of two H gates. The term is
intuitionistic (can be copied, deleted).

4 / 1

Circuit Model

Example
Shor’s algorithm for integer factorization may be seen as an infinite family of quantum
circuits – each circuit is a procedure for factoring an n-bit integer, for a fixed n.

Figure: Quantum Fourier Transform on n qubits (subroutine in Shor’s algorithm).1

1Figure source: https://commons.wikimedia.org/w/index.php?curid=14545612
5 / 1

https://commons.wikimedia.org/w/index.php?curid=14545612

Circuit Model

Proto-Quipper-M is used to describe families of morphisms in an arbitrary, but fixed,
symmetric monoidal category, M.

Example
If M = FdCStar, then a program in our language is a family of quantum circuits.

Example
M also could be a category of string diagrams that is freely generated.

• Model Verilog, VHDL, similar hardware description languages, Petri Nets, etc.

6 / 1

Linear/Non-Linear models
A Linear/Non-Linear (LNL) model as described by Benton is given by the following
data:

• A cartesian closed category V.

• A symmetric monoidal closed category C.

• A symmetric monoidal adjunction:

V ` C

F

G

F ◦ G = ! – the lift comonad

Remark
An LNL model is a model of Intuitionistic Linear Logic.

Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL’94
7 / 1

Concrete models of Proto-Quipper-M
The original Proto-Quipper-M model is given by the LNL model:

Set Fam[M]

−� I

Fam[M](I ,−)

⊥

M – closed, product complete category containing given SMC M

• Fam[M] = {(X ,A) | X discrete category,A : X →M functor}.
• (f , φ) ∈ Fam[M]((X ,A), (Y ,B)) if f : X → Y functor and φ : A→ B ◦ f natural
transformation.

• (g , ψ) ◦ (f , φ) = (g ◦ f , ψf ◦ φ).

Theorem (Rios & Selinger)
The Families categorical model of Proto-Quipper-M is type-safe, sound, and
computationally adequate

Sam Staton asked why the Fam construction is needed – it’s not:

A simpler model for Proto-Quipper-M satisfying the same properties is given by:

Set M

−� I

M(I ,−)

⊥

where in both cases M = [Mop,Set].

8 / 1

Concrete models of Proto-Quipper-M
The original Proto-Quipper-M model is given by the LNL model:

Set Fam[M]

−� I

Fam[M](I ,−)

⊥

Sam Staton asked why the Fam construction is needed – it’s not:

A simpler model for Proto-Quipper-M satisfying the same properties is given by:

Set M

−� I

M(I ,−)

⊥

where in both cases M = [Mop,Set].
8 / 1

Our Work: Adding Recursion

• Rename the language to ECLNL
• Emphasizes Enrichment, Combined typing judgement and LNL models.
• Doesn’t tie the language to quantum programming per se.

• Describe an abstract categorical model for the same language.

• Extend language and abstract categorical model to support recursion.

• Prove soundness for abstract models, and computational adequacy for concrete
model.

Related work: Rennela and Staton describe a different circuit description language,
called EWire (based on QWire), for which they also use enriched category theory.

9 / 1

An abstract model for ECLNL
An ECLNL model is given by the following data:
1. A cartesian closed category V together with its self-enrichment V having finite

V-coproducts.
2. A V-symmetric monoidal closed category C having finite V-coproducts.

3. A V-symmetric monoidal adjunction: V ` C,

− � I

C(I ,−)

where (−� I) denotes the V-copower of the tensor unit in C.
4. A symmetric monoidal category M and a strong symmetric monoidal functor

E : M→ C, the underlying category of C.
Theorem: Absent condition 4, an LNL model canonically induces an ECLNL model.2

2Egger, Møgelberg, Simpson. The enriched effect calculus: syntax and semantics. Journal of Logic
and Computation 2012

10 / 1

Soundness

Theorem (Soundness)
Every abstract model of ECLNL is computationally sound.

11 / 1

Concrete models of the base language

Fix an arbitrary symmetric monoidal category M.
Equipping M with the free DCPO-enrichment yields a concrete (order-enriched)
ECLNL model:

DCPO M

−� I

M(I ,−)

⊥

where M = [Mop,DCPO].

12 / 1

Abstract models with recursion

Definition
An endofunctor T : C→ C is parametrically algebraically compact, if for every
A ∈ Ob(C), the endofunctor A⊗ T (−) has an initial algebra and a final coalgebra
whose carriers coincide.

Theorem
A categorical model of a linear/non-linear lambda calculus extended with recursion is
given by an LNL model:

V ` C

F

G

where FG (or equivalently GF) is parametrically algebraically compact 3.

3Benton & Wadler. Linear logic, monads and the lambda calculus. LiCS’96.
13 / 1

ECLNL extended with general recursion

Definition
A categorical model of ECLNL extended with general recursion is given by a model of
ECLNL, where in addition:
5. The comonad endofunctor:

V ` C

− � I

C(I ,−)

is parametrically algebraically compact.

14 / 1

Recursion

Extend the syntax:
Φ, x :!A; ∅ ` m : A

(rec)
Φ; ∅ ` rec x !A m : A

Extend the operational semantics:

(C ,m[lift rec x !Am/x]) ⇓ (C ′, v)

(C , rec x !Am) ⇓ (C ′, v)

15 / 1

Soundness

Theorem (Soundess)
Every model of ECLNL extended with recursion is computationally sound.

16 / 1

Concrete model of ECLNL extended with recursion
Let M∗ be the free DCPO⊥!-enrichment of M and M∗ = [Mop

∗ ,DCPO⊥!] be the
associated enriched functor category.

DCPO⊥! M∗

−� I

M∗(I ,−)

⊥

−� I

M(I ,−)

⊥DCPO M

a aL L UU

Remark
If M = 1, then the above model degenerates to the left vertical adjunction, which is a
model of a LNL lambda calculus with general recursion.

17 / 1

Computational adequacy
Theorem
The following LNL model:

DCPO ` DCPO⊥!

−⊥

U

is computationally adequate at intuitionistic types for the circuit-free fragment of
ECLNL.

• Use logical relations for proof.
• Problem with adding circuits is that structural induction over logical relations
breaks down on tensors from M

• Need more assumptions about M for "traditional" approach to work.
18 / 1

Ongoing / Future work

1. Inductive / recursive types.
• We can support inductive types, since both C and V are algebraically complete for

endofunctors preserving ω-colimits.
• C is algebraically compact for endofunctors preserving ω-colimits, but V is not.
• Problem is identifying which parametrically algebraic compact bifunctors

T : Cop × C → C are intuitionistic. We believe we have solved this.
Note: e-p pairs arise here!

2. Dependent types (Fam/CFam constructions are well-behaved w.r.t. current
models).

3. Dynamic lifting.

19 / 1

Conclusions

• One can construct a model of ECLNL by categorically enriching certain
denotational models.

• We described a sound abstract model for ECLNL (with general recursion).

• Systematic construction for concrete models that works for any circuit (string
diagram) model described by a symmetric monoidal category.

• The "domain theory" is at the most general level – DCPO, DCPO⊥,!.

20 / 1

Thanks for your attention!

And
Happy Birthday, Achim!

20 / 1

Thanks for your attention!

And
Happy Birthday, Achim!

20 / 1

Operational semantics
(S ,m) is a configuration if S is a (partially completed) labeled circuit, and m is a term.

20 / 1

Recursion (contd.)
Extend the denotational semantics: JΦ; ∅ ` rec x !A m : AK := σJmK ◦ γJΦK.

JΦKJΦK⊗ JΦKJΦK⊗!JΦK ∆id⊗ lift

JΦK⊗!ΩJΦK ΩJΦK
ω−1

JΦK

γJΦKid⊗!γJΦK

ΩJΦK

σJmK

JΦK⊗!ΩJΦK

JAK

ωJΦK

JΦK⊗!JAK

id⊗!σJmK

JmK

idid

20 / 1

