Domains and Quantum Programming Languages: Recursion in Categorical Models

Michael Mislove

Department of Computer Science Tulane University Work Supported by US AFOSR

Joint work with Bert Lindenhovius and Vladimir Zamdzhiev

AchimFest University of Birmingham 8 September 2018

Achim

• The Jung-Tix Problem

The troublesome probabilistic power domain, Jung & Tix, 1988

Achim

• The Jung-Tix Problem

The troublesome probabilistic power domain, Jung & Tix, 1988 And, I'm still working on that exit plan....

Prototypical Quantum Computer

• A quantum computer is a classical computer with a quantum co-processor

• Circuit: sequence of unitary operators

Prototypical Quantum Computer

- We'll elide measurements and focus on a classical functional language for *constructing circuits* and a linear language for *modeling them* as linear morphisms.
- A *quantum programming language* is a classical functional language together with a linear language of *quantum circuits*:

• We study circuit description languages using Linear / Nonlinear Models

Proto-Quipper-M

• *Proto-Quipper-M* developed by Francisco Rios and Peter Selinger.

The types of the language:

TypesA, B::= $\alpha \mid 0 \mid A + B \mid I \mid A \otimes B \mid A \multimap B \mid !A \mid \mathsf{Circ}(\mathsf{T}, \mathsf{U})$ Intuitionistic typesP, R::= $0 \mid P + R \mid I \mid P \otimes R \mid !A \mid \mathsf{Circ}(\mathsf{T}, \mathsf{U})$ M-typesT, U::= $\alpha \mid I \mid T \otimes U$

The term language:

Terms
$$M, N$$
 ::= $x \mid \ell \mid c \mid \text{let } x = M \text{ in } N$
 $\mid \Box_A M \mid \text{left}_{A,B} M \mid \text{right}_{A,B} M \mid \text{case } M \text{ of } \{\text{left } x \to N \mid \text{right } y \to P\}$
 $\mid * \mid M; N \mid \langle M, N \rangle \mid \text{let } \langle x, y \rangle = M \text{ in } N \mid \lambda x^A . M \mid MN$
 $\mid \text{lift } M \mid \text{force } M \mid \mathbf{box_TM} \mid \mathbf{apply}(M, N) \mid (\overrightarrow{\ell}, C, \overrightarrow{\ell'})$

Combined Typing Judgement

- There is only one form of type judgement.
- Typing contexts Φ, Γ, ... can be mixed.
- Typing contexts Q are for circuit labels.

Table 3: The typing rules of Proto-Quipper-M (excerpt)

Example

Assume $H: Q \multimap Q$ is a constant representing the Hadamard gate.

Example

two-hadamard : Circ(Q, Q)two-hadamard $\equiv box_Q$ lift $\lambda q^Q.HHq$

This program creates a completed circuit consisting of two H gates. The term is intuitionistic (can be copied, deleted).

Circuit Model

Example

Shor's algorithm for integer factorization may be seen as an infinite family of quantum circuits – each circuit is a procedure for factoring an n-bit integer, for a fixed n.

Figure: Quantum Fourier Transform on n qubits (subroutine in Shor's algorithm).¹

¹Figure source: https://commons.wikimedia.org/w/index.php?curid=14545612

Circuit Model

Proto-Quipper-M is used to describe *families* of morphisms in an arbitrary, but fixed, symmetric monoidal category, M.

Example

If M = FdCStar, then a program in our language is a family of quantum circuits.

Example

M also could be a category of string diagrams that is freely generated.

• Model Verilog, VHDL, similar hardware description languages, Petri Nets, etc.

Linear/Non-Linear models

A Linear/Non-Linear (LNL) model as described by Benton is given by the following data:

- A cartesian closed category V.
- A symmetric monoidal closed category C.
- A symmetric monoidal adjunction:

 $F \circ G = ! -$ the lift comonad

Remark

An LNL model is a model of Intuitionistic Linear Logic.

Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL'94

Concrete models of Proto-Quipper-M

The original Proto-Quipper-M model is given by the LNL model:

 $\overline{\mathbf{M}}$ – closed, product complete category containing given SMC \mathbf{M}

- $\operatorname{Fam}[\overline{M}] = \{(X, A) \mid X \text{ discrete category}, A \colon X \to \overline{M} \text{ functor}\}.$
- $(f, \phi) \in \operatorname{Fam}[\overline{M}]((X, A), (Y, B))$ if $f: X \to Y$ functor and $\phi: A \to B \circ f$ natural transformation.
- $(g,\psi)\circ(f,\phi)=(g\circ f,\psi f\circ \phi).$

Theorem (Rios & Selinger)

The Families categorical model of Proto-Quipper-M is type-safe, sound, and computationally adequate

Concrete models of Proto-Quipper-M

The original Proto-Quipper-M model is given by the LNL model:

Sam Staton asked why the Fam construction is needed – it's not:

A simpler model for Proto-Quipper-M satisfying the same properties is given by:

where in both cases $\overline{\mathbf{M}} = [\mathbf{M}^{op}, \mathbf{Set}]$.

Our Work: Adding Recursion

- Rename the language to ECLNL
 - Emphasizes Enrichment, Combined typing judgement and LNL models.
 - Doesn't tie the language to quantum programming per se.
- Describe an *abstract* categorical model for the same language.
- Extend language and abstract categorical model to support recursion.
- Prove soundness for abstract models, and computational adequacy for *concrete model*.

Related work: Rennela and Staton describe a different circuit description language, called EWire (based on QWire), for which they also use enriched category theory.

An abstract model for ECLNL

An ECLNL model is given by the following data:

3. A V-symmetric monoidal adjunction:

- 1. A cartesian closed category V together with its self-enrichment ${\cal V}$ having finite V-coproducts.
- 2. A V-symmetric monoidal closed category ${\mathcal C}$ having finite V-coproducts.

where $(-\odot I)$ denotes the **V**-copower of the tensor unit in \mathcal{C} .

4. A symmetric monoidal category **M** and a strong symmetric monoidal functor $E : \mathbf{M} \to \mathbf{C}$, the underlying category of C.

Theorem: Absent condition 4, an LNL model canonically induces an ECLNL model.²

²Egger, Møgelberg, Simpson. *The enriched effect calculus: syntax and semantics*. Journal of Logic and Computation 2012

Soundness

Theorem (Soundness) Every abstract model of ECLNL is computationally sound.

Concrete models of the base language

Fix an arbitrary symmetric monoidal category M. Equipping M with the free **DCPO**-enrichment yields a concrete (order-enriched) ECLNL model:

where $\overline{\mathbf{M}} = [\mathbf{M}^{\mathrm{op}}, \mathbf{DCPO}].$

Abstract models with recursion

Definition

An endofunctor $T : \mathbf{C} \to \mathbf{C}$ is *parametrically algebraically compact*, if for every $A \in Ob(\mathbf{C})$, the endofunctor $A \otimes T(-)$ has an initial algebra and a final coalgebra whose carriers coincide.

Theorem

A categorical model of a linear/non-linear lambda calculus extended with recursion is given by an LNL model:

where FG (or equivalently GF) is parametrically algebraically compact 3 .

³Benton & Wadler. *Linear logic, monads and the lambda calculus.* LiCS'96.

ECLNL extended with general recursion

Definition

A categorical model of ECLNL extended with general recursion is given by a model of ECLNL, where in addition:

5. The comonad endofunctor:

is parametrically algebraically compact.

Recursion

Extend the syntax:

$$\frac{\Phi, x : !A; \emptyset \vdash m : A}{\Phi; \emptyset \vdash \operatorname{rec} x^{!A} m : A} (\operatorname{rec})$$

Extend the operational semantics:

$$\frac{(C, m[\text{lift rec } x^{!A}m/x]) \Downarrow (C', v)}{(C, \text{rec } x^{!A}m) \Downarrow (C', v)}$$

Soundness

Theorem (Soundess) Every model of ECLNL extended with recursion is computationally sound.

Concrete model of ECLNL extended with recursion Let M_* be the free DCPO_{$\perp !}-enrichment of M and <math>\overline{M_*} = [M_*^{op}, DCPO_{\perp !}]$ be the associated enriched functor category.</sub>

Remark

If M = 1, then the above model degenerates to the left vertical adjunction, which is a model of a LNL lambda calculus with general recursion.

Computational adequacy

Theorem The following LNL model:

is computationally adequate at intuitionistic types for the circuit-free fragment of *ECLNL*.

- Use logical relations for proof.
- Problem with adding circuits is that structural induction over logical relations breaks down on tensors from ${\sf M}$
- Need more assumptions about **M** for "traditional" approach to work.

Ongoing / Future work

- 1. Inductive / recursive types.
 - We can support inductive types, since both C and V are algebraically complete for endofunctors preserving ω -colimits.
 - C is algebraically compact for endofunctors preserving ω -colimits, but \mathcal{V} is not.
 - Problem is identifying which parametrically algebraic compact bifunctors
 T: C^{op} × C → C are *intuitionistic*. We believe we have solved this.
 Note: *e-p pairs arise here!*
- 2. Dependent types (Fam/CFam constructions are well-behaved w.r.t. current models).
- 3. Dynamic lifting.

Conclusions

- One can construct a model of ECLNL by categorically enriching certain denotational models.
- We described a sound abstract model for ECLNL (with general recursion).
- Systematic construction for concrete models that works for *any* circuit (string diagram) model described by a symmetric monoidal category.
- The "domain theory" is at the most general level DCPO, $DCPO_{\perp,!}$.

Thanks for your attention! And Happy Birthday, Achim! Thanks for your attention! And Happy Birthday, Achim!

Operational semantics

(S, m) is a *configuration* if S is a (partially completed) labeled circuit, and m is a term.

 $(S,m) \Downarrow (S',v) \quad (S',n) \Downarrow (S'',v') \quad (S,m) \Downarrow (S',\langle v,v'\rangle) \quad (S',n[v \mid x,v' \mid y]) \Downarrow (S'',w)$ $(S_{n}(m,n)) \parallel (S'', \langle v, v' \rangle)$ $(S, \text{let } \langle x, y \rangle = m \text{ in } n) \Downarrow (S'', w)$ $\frac{1}{(S, \text{lift } m) \Downarrow (S, \text{lift } m)} \qquad \frac{(S, m) \Downarrow (S', \text{lift } m') \quad (S', m') \Downarrow (S'', v)}{(S'', v)}$ (S, force m) $\parallel (S'', v)$ $(S, m) \Downarrow (S', \text{lift } n) \quad \text{freshlabels}(T) = (Q, \vec{\ell}) \quad (\text{id}_Q, n\vec{\ell}) \Downarrow (D, \vec{\ell}')$ $(S, \text{box}_{\mathcal{T}}m) \parallel (S', (\vec{\ell}, D, \vec{\ell}'))$ $(S, m) \Downarrow (S', (\vec{\ell}, D, \vec{\ell}'))$ $(S', n) \Downarrow (S'', \vec{k})$ append $(S'', \vec{k}, \vec{\ell}, D, \vec{\ell}') = (S''', \vec{k}')$ $(S, \operatorname{apply}(m, n)) \parallel (S''', \vec{k}')$ $(S,m) \Downarrow (S',(\vec{\ell},D,\vec{\ell}'))$ $(S',n) \Downarrow (S'',\vec{k})$ append $(S'',\vec{k},\vec{\ell},D,\vec{\ell}')$ undefined $(S, (\vec{\ell}, D, \vec{\ell}')) \parallel (S, (\vec{\ell}, D, \vec{\ell}'))$ $(S, \operatorname{apply}(m, n)) \Downarrow \operatorname{Error}$

Recursion (contd.) Extend the denotational semantics: $\llbracket \Phi; \emptyset \vdash \operatorname{rec} x^{!A} m : A \rrbracket := \sigma_{\llbracket m \rrbracket} \circ \gamma_{\llbracket \Phi \rrbracket}.$ $\llbracket \Phi \rrbracket \otimes \llbracket \Phi \rrbracket \xleftarrow{\mathsf{id}} B \llbracket \Phi \rrbracket \xleftarrow{\mathsf{id}} B \llbracket \Phi \rrbracket \bigotimes \llbracket \Phi \rrbracket \xleftarrow{\Delta} \llbracket \Phi \rrbracket$ $\mathsf{id} \otimes !\gamma_{\llbracket \Phi \rrbracket}$ $\gamma \llbracket \mathbf{\Phi} \rrbracket$ $\omega_{[\![\Phi]\!]}^{-1}$ $\llbracket \Phi \rrbracket \otimes ! \Omega_{\llbracket \Phi \rrbracket} \leftarrow$ $\Omega_{\llbracket \Phi \rrbracket}$ id id $\omega_{\llbracket \Phi \rrbracket}$ $\llbracket \Phi \rrbracket \otimes ! \Omega_{\llbracket \Phi \rrbracket}$ $\Omega_{\llbracket \Phi \rrbracket}$ $\mathrm{id} \otimes !\sigma_{[\![m]\!]}$ $\sigma_{\llbracket m \rrbracket}$ **[**Φ]]⊗!**[***A*] $\llbracket A \rrbracket$ $\llbracket m \rrbracket$