Semantic Models of Quantum Programming Languages:

Recursion in Categorical Models

Michael Mislove

Department of Computer Science
Tulane University
Work Supported by US AFOSR

Joint work with Bert Lindenhovius and Vladimir Zamdzhiev

Workshop on Higher Category Approach to Certifiably Correct Quantum Information Processing Systems
February 4, 2019
MURI Project
Semantics and Tools for
High Level Functional Quantum Programming Languages
A quantum computer is a classical computer with a quantum co-processor.

Circuit: sequence of unitary operators
Prototypical Quantum Computer

• We’ll elide measurements and focus on a classical functional language for *constructing circuits* and a linear language for *modeling them* as linear morphisms.

• A *quantum programming language* is a classical functional language together with a linear language of *quantum circuits*:

 ![Diagram](image)

 Functional Language
 Linear language

• We study *circuit description languages* using Linear / Nonlinear Models
Proto-Quipper-M

• *Proto-Quipper-M* developed by Francisco Rios and Peter Selinger.

The types of the language:

Types \(A, B \) ::= \(\alpha \mid 0 \mid A + B \mid I \mid A \otimes B \mid A \to B \mid !A \mid \text{Circ}(T, U) \)

Intuitionistic types \(P, R \) ::= \(0 \mid P + R \mid I \mid P \otimes R \mid !A \mid \text{Circ}(T, U) \)

M-types \(T, U \) ::= \(\alpha \mid I \mid T \otimes U \)

The term language:

Terms \(M, N \) ::= \(x \mid \ell \mid c \mid \text{let } x = M \text{ in } N \)

| \(\Box A M \) | \(\text{left}_{A, B} M \) | \(\text{right}_{A, B} M \) | \(\text{case } M \text{ of } \{ \text{left } x \to N \mid \text{right } y \to P \} \)
| \(\ast \mid M ; N \mid \langle M, N \rangle \mid \text{let } \langle x, y \rangle = M \text{ in } N \mid \lambda x^A . M \mid MN \)
| lift \(M \) | force \(M \) | box_T M | apply(M, N) | (\(\ell \), C, \(\ell' \))
There is only one form of type judgement.

Typing contexts \(\Phi, \Gamma, \ldots \) can be mixed.

Typing contexts \(Q \) are for circuit labels.

Combined Typing Judgement

- \(\Phi, x : A; \emptyset \vdash x : A \) \(\text{(var)} \)
- \(\Phi; \ell : \alpha \vdash \ell : \alpha \) \(\text{(label)} \)
- \(\Phi; \emptyset \vdash c : A_c \) \(\text{(const)} \)

\[
\begin{align*}
\Gamma, x : A; Q \vdash M : B \\
\Gamma; Q \vdash \lambda x^A.M : A \rightarrow B & \quad \text{(abs)} \\
\Phi; \emptyset \vdash M : A \\
\Phi; \emptyset \vdash \text{lift}M : !A & \quad \text{(lift)} \\
\Gamma; Q \vdash M : !A & \quad \text{(force)} \\
\Phi; \Gamma_1; Q_1 \vdash M : \text{Circ}(T, U) \\
\Phi; \Gamma_2; Q_2 \vdash N : T & \quad \text{(apply)} \\
\Phi; \emptyset \vdash (\ell, C, \ell') : \text{Circ}(T, U) & \quad \text{(circ)}
\end{align*}
\]

Table 3: The typing rules of Proto-Quipper-M (excerpt)
Assume $H : Q \rightarrow Q$ is a constant representing the Hadamard gate.

Example

two-hadamard : Circ(Q, Q)
two-hadamard \equiv box_Q \lift \lambda q^Q.HHq

This program creates a completed circuit consisting of two H gates. The term is intuitionistic (can be copied, deleted).
Example

Shor’s algorithm for integer factorization may be seen as an infinite family of quantum circuits – each circuit is a procedure for factoring an n-bit integer, for a fixed n.

Figure: Quantum Fourier Transform on n qubits (subroutine in Shor’s algorithm).¹

¹Figure source: https://commons.wikimedia.org/w/index.php?curid=14545612
Proto-Quipper-M is used to describe families of morphisms in an arbitrary, but fixed, symmetric monoidal category, \(M \).

Example

If \(M = \text{FdCStar} \), then a program in our language is a family of quantum circuits.

Example

\(M \) also could be a category of string diagrams that is freely generated.

- Model Verilog, VHDL, similar hardware description languages, Petri Nets, etc.
Linear/Non-Linear models

A Linear/Non-Linear (LNL) model as described by Benton is given by the following data:

- A cartesian closed category \mathcal{V}.
- A symmetric monoidal closed category \mathcal{C}.
- A symmetric monoidal adjunction:

$$F \circ G = ! - \text{the lift comonad}$$

Remark

An LNL model is a model of Intuitionistic Linear Logic.

Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL'94
Concrete models of Proto-Quipper-M

The original Proto-Quipper-M model is given by the LNL model:

$$\text{Set} \quad \perp \quad \text{Fam}[\overline{M}] \quad \perp \quad \text{Fam}[\overline{M}](I, -)$$

\overline{M} – closed, product complete category containing given SMC M

- $\text{Fam}[\overline{M}] = \{(X, A) \mid X \text{ discrete category}, A : X \to \overline{M} \text{ functor}\}$.
- $(f, \phi) \in \text{Fam}[\overline{M}][(X, A), (Y, B)]$ if $f : X \to Y$ functor and $\phi : A \to B \circ f$ natural transformation.
- $(g, \psi) \circ (f, \phi) = (g \circ f, \psi f \circ \phi)$.

Theorem (Rios & Selinger)

The Families categorical model of Proto-Quipper-M is type-safe, sound, and computationally adequate.
Concrete models of Proto-Quipper-M

The original Proto-Quipper-M model is given by the LNL model:

\[
\text{Set} \xrightarrow{- \circ I} \text{Fam}[M] \xleftarrow{\perp} \text{Fam}[M](I, -)
\]

Sam Staton asked why the \text{Fam} construction is needed – it’s not:

A simpler model for Proto-Quipper-M satisfying the same properties is given by:

\[
\text{Set} \xrightarrow{- \circ I} \overline{M} \xleftarrow{\perp} \overline{M}(I, -)
\]

where in both cases \(\overline{M} = [M^{\text{op}}, \text{Set}]\).
Our Work: Adding Recursion

- Rename the language to *ECLNL*
 - Emphasizes *Enrichment, Combined typing judgement* and *LNL models*.
 - Doesn't tie the language to quantum programming *per se*.

- Describe an *abstract* categorical model for the same language.

- Extend language and abstract categorical model to support recursion.

- Prove soundness for abstract models, and computational adequacy for *concrete model*.

Related work: Rennela and Staton describe a different circuit description language, called EWire (based on QWire), for which they also use enriched category theory.
An abstract model for ECLNL

An *ECLNL model* is given by the following data:

1. A cartesian closed category \mathcal{V} together with its self-enrichment \mathcal{V} having finite \mathcal{V}-coproducts.

2. A \mathcal{V}-symmetric monoidal closed category \mathcal{C} having finite \mathcal{V}-coproducts.

3. A \mathcal{V}-symmetric monoidal adjunction:

$$
\begin{array}{c}
\mathcal{V} \\
\downarrow \\
\mathcal{C},
\end{array}
\begin{array}{c}
\mathcal{V} \\
\uparrow \\
\mathcal{C}(I,-)
\end{array}
- \otimes I
$$

where $(- \otimes I)$ denotes the \mathcal{V}-copower of the tensor unit in \mathcal{C}.

4. A symmetric monoidal category \mathcal{M} and a strong symmetric monoidal functor $E : \mathcal{M} \to \mathcal{C}$, the underlying category of \mathcal{C}.

Theorem: Absent condition 4, an LNL model canonically induces an ECLNL model.\(^2\)

Soundness

Theorem (Soundness)
Every abstract model of ECLNL is computationally sound.
Concrete models of the base language

Fix an arbitrary symmetric monoidal category \mathcal{M}. Equipping \mathcal{M} with the free DCPO-enrichment yields a concrete (order-enriched) ECLNL model:

$$\mathcal{M}(I, -)$$

where $\mathcal{M} = [\mathcal{M}^{\text{op}}, \text{DCPO}]$.
Abstract models with recursion

Definition
An endofunctor $T : C \rightarrow C$ is \textit{parametrically algebraically compact}, if for every $A \in \text{Ob}(C)$, the endofunctor $A \otimes T(_)$ has an initial algebra and a final coalgebra whose carriers coincide.

Theorem
A categorical model of a linear/non-linear lambda calculus extended with recursion is given by an LNL model:

\begin{center}
\begin{tikzpicture}
 \node (V) at (0,0) {V};
 \node (C) at (2,0) {C};
 \node (F) at (1,1) {F};
 \node (G) at (1,-1) {G};
 \draw[->] (V) to (F);
 \draw[->] (F) to (C);
 \draw[->] (C) to (G);
 \draw[->] (G) to (V);
\end{tikzpicture}
\end{center}

where FG (or equivalently GF) is \textit{parametrically algebraically compact} 3.

3Benton & Wadler. \textit{Linear logic, monads and the lambda calculus}. LiCS’96.
Definition
A categorical model of ECLNL extended with general recursion is given by a model of ECLNL, where in addition:

5. The comonad endofunctor:

\[\mathcal{V} \xrightarrow{- \odot I} \perp \xleftarrow{\mathcal{C}(I,-)} \mathcal{C} \]

is parametrically algebraically compact.
Recursion

Extend the syntax:

\[
\frac{\Phi, x : !A; \emptyset \vdash m : A}{\Phi; \emptyset \vdash \text{rec } x^{A} m : A} \quad (\text{rec})
\]

Extend the operational semantics:

\[
(C, m[\text{lift } \text{rec } x^{A} m/x]) \Downarrow (C', v) \\
(C, \text{rec } x^{A} m) \Downarrow (C', v)
\]
Soundness

Theorem (Soundess)

Every model of ECLNL extended with recursion is computationally sound.
Concrete model of ECLNL extended with recursion

Let M_* be the free $\text{DCPO}_{\perp!}$-enrichment of M and $\overline{M_*} = [M_*^{\text{op}}, \text{DCPO}_{\perp!}]$ be the associated enriched functor category.

Remark

If $M = 1$, then the above model degenerates to the left vertical adjunction, which is a model of a LNL lambda calculus with general recursion.
Computational adequacy

Theorem

The following LNL model:

\[
\text{DCPO} \vdash_{\bot} \text{DCPO}_{\bot!} \quad U
\]

is computationally adequate at intuitionistic types for the circuit-free fragment of ECLNL.

- Use logical relations for proof.
- Problem with adding circuits is that structural induction over logical relations breaks down on tensors from \(\mathcal{M} \).
- Need more assumptions about \(\mathcal{M} \) for "traditional" approach to work.
1. Inductive / recursive types.
 - We can support inductive types, since both \mathcal{C} and \mathcal{V} are algebraically complete for endofunctors preserving ω-colimits.
 - \mathcal{C} is algebraically compact for endofunctors preserving ω-colimits, but \mathcal{V} is not.
 - Problem is identifying which parametrically algebraic compact bifunctors $T: \mathcal{C}^{\text{op}} \times \mathcal{C} \to \mathcal{C}$ are intuitionistic. We believe we have solved this.
 Note: $e\text{-}p$ pairs arise here!

2. Dependent types (Fam/CFam constructions are well-behaved w.r.t. current models).

3. Dynamic lifting.
Conclusions

• One can construct a model of ECLNL by categorically enriching certain denotational models.

• We described a sound abstract model for ECLNL (with general recursion).

• Systematic construction for concrete models that works for any circuit (string diagram) model described by a symmetric monoidal category.

• The "domain theory" is at the most general level – DCPO, DCPO⊥,↑.
Thanks for your attention!

And

Happy Birthday, Achim!
Thanks for your attention!

And

Happy Birthday, Achim!
Operational semantics

(S, m) is a configuration if S is a (partially completed) labeled circuit, and m is a term.

\[
\begin{align*}
(S, m) \downarrow (S', v) & \quad (S', n) \downarrow (S'', v') \\
(S, \langle m, n \rangle) \downarrow (S'', \langle v, v' \rangle) & \\
(S, \text{lift } m) \downarrow (S, \text{lift } m) & \\
(S, m) \downarrow (S', \text{lift } m') & \quad (S', m') \downarrow (S'', v) & \quad (S, \text{let } \langle x, y \rangle = m \text{ in } n) \downarrow (S'', w) \\
(S, \text{force } m) \downarrow (S'', v) & \\
(S, m) \downarrow (S', \text{lift } n) & \quad \text{freshlabels}(T) = (Q, \vec{\ell}) & \quad (\text{id}_Q, n\vec{\ell}) \downarrow (D, \vec{\ell}') \\
(S, \text{box}_T m) \downarrow (S', (\vec{\ell}, D, \vec{\ell}')) & \\
(S, m) \downarrow (S', (\vec{\ell}, D, \vec{\ell}')) & \quad (S', n) \downarrow (S'', \vec{k}) & \quad \text{append}(S'', \vec{k}, \vec{\ell}, D, \vec{\ell}') = (S''', \vec{k}') \\
(S, \text{apply}(m, n)) \downarrow (S''', \vec{k}') & \\
(S, m) \downarrow (S', (\vec{\ell}, D, \vec{\ell}')) & \quad (S', n) \downarrow (S'', \vec{k}) & \quad \text{append}(S'', \vec{k}, \vec{\ell}, D, \vec{\ell}') \text{ undefined} \\
(S, \text{apply}(m, n)) \downarrow \text{Error} & \\
(S, (\vec{\ell}, D, \vec{\ell}')) \downarrow (S, (\vec{\ell}, D, \vec{\ell}'))
\end{align*}
\]
Recursion (contd.)

Extend the denotational semantics: \([\Phi; \emptyset \vdash \text{rec } x^!A \ m : A] := \sigma[m] \circ \gamma[\Phi] \).

\[
\begin{array}{c}
[\Phi] \otimes ! [\Phi] \xleftarrow{\text{id} \otimes \text{lift}} [\Phi] \otimes [\Phi] \xrightarrow{\Delta} [\Phi] \\
\downarrow \text{id} \otimes ! \gamma[\Phi] \quad \quad \quad \quad \downarrow \gamma[\Phi] \\
[\Phi] \otimes ! \Omega[\Phi] \xleftarrow{\omega_{[\Phi]}^{-1}} \Omega[\Phi] \\
\downarrow \text{id} \\
[\Phi] \otimes ! \Omega[\Phi] \xrightarrow{\omega_{[\Phi]}} \Omega[\Phi] \\
\downarrow \text{id} \\
[\Phi] \otimes ! [A] \xrightarrow{\sigma[m]} [A] \\
\end{array}
\]