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ABSTRACT

Linear FS-lattices are special linked and bicontinuous lattices. Given a contin-
uous lattice A, let A—A be the space of all maps f: A — A preserving suprema
and [A — A] the space of maps preserving directed suprema where the or-
der is defined pointwise. Then the inclusion I4: (A—A) — [A — A] preserves
suprema and has thus an upper adjoint Ps:[A — A] — (A—A). We show that
A is a linear FS-lattice if and only if the map P4 preserves directed suprema.
Furthermore, a complete lattice B is completely distributive if and only if it
is a distributive linear FS-lattice; this is equivalent to the map Pp preserving
suprema.

1 Linear FS-lattices

Continuous lattices [3] are complete lattices with some inherent form of approx-
imation which makes them important objects of study in pure mathematics and
theoretical computer science alike. We say that x is way-below y in a complete
lattice L if and only if for all directed sets D C L with y < VD we have x < d
for some d € D; we denote this by © < y. A complete lattices L is continuous
if and only if every y € L is the supremum of elements z < y.

Such lattices provided the first mathematical model of the untyped lambda-
calculus [17] and were the conceptual point of departure for the development
of domain theory [1], a rich an subtle mathematical foundation for denotational
semantics [13]. Let us just cite two results in pure mathematics where contin-
uous lattices play a crucial role. First, endowed with their Scott-topology they
are recognized as the injective Ty-spaces [3, Chapter 11, Theorem 3.8]. Second,
the distributive continuous lattices are the Stone duals of the locally compact
sober spaces [6, 7]. But continuous lattices with their Scott-topology are such
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locally compact sober spaces and their Stone duals in turn are known to be
the completely distributive lattices [4, 5]. Recall the a complete lattice L is
completely distributive [14] if and only if for all families (A;);c; of subsets of L

we have
AV4a= V A0

il fell;er Ai i€l

Their are two well-known characterizations of completely distributive lattices
needed in this paper.

Theorem 1 [3, Chapter I, Theorem 3.15] A complete lattice L is completely
distributive if and only if L is distributive and L and L™ are continuous lattices.

The other characterization of competely distributive lattices goes back to
[15]; we define © << y in the same way as © < y only that we now allow to
consider all subsets D C L with y < VD: ie., x < y if and only if for all
D C L with y < VD we have x < d for some d € D. In that case we say that
x is way-way-below y. Call a complete lattice prime-continuous if and only if
every element y € L is the supremum of z << y.

Theorem 2 [1, 15, Theorem 7.1.3] A complete lattice is prime-continuous if
and only if it is completely distributive.

If we think of complete lattices as complete sup-semilattices then the homo-
morphisms are maps f: L — M which preserve suprema: f(VX) = Vf(X) for
all X C L. Let L—M denote the function space of all such maps where the
order is defined pointwise: f < g in LM if and only if f(z) < g(z) for all
x € L. One readily notes that L—M is a complete lattice with

\/ Fo) = Vif(2): f € F}

forall FC L-—M.

Alternatively, we may think of complete lattices as dcpos [1], partial orders
with least element 0 such that all directed subsets have a supremum. Then
the natural homomorphisms are maps f: . — M preserving directed suprema:
f(vD) = Vv f(D) for all directed sets D C L. Let [L — M| be the corresponding
function space in the pointwise order. Again, this is a complete lattice where
the supremum in [L — M] is evaluated pointwise. Evidently, LM is a subset
of [L — M] but the inclusion map preserves suprema since such suprema are
calculated pointwise in either function space. The inclusion

therefore has an upper adjoint [3, Chapter 0, Corollary 3.5]
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which renders for f € [L — M] the greatest map preserving suprema below f.
We write Iy, and Py if L = M.

A first step towards motivating and defining linear FS-lattices is to describe
the continuity of a complete lattice L by appealing to higher-order notions:
instead of realizing continuity via < at the element level of L we only refer to
the existence of certain functions in [L — L] which have the identity function
as supremum.

For that we need to point out that < satisfies the interpolation axiom [3]
in a continuous lattice L: x < y implies v < z < y for some z € L. This is the
instrumental property in establishing a structure theory of continuous lattices.

Definition 1 A self-map f: L — L of a complete lattice L is a deflation if and
only if f(x) <z for all x € L and the image of f is finite.

Deflations f € [L — L] give rise to elements of <:

Lemma 1 Let f € [L — L] be a deflation. Then f(x) < x for all z € L.

Proof. Let D C L be directed with # < VD. Then f(z) < Vf(D) as f
preserves directed suprema. Since the image of f is finite and f(D) directed
there exists some d* € D with Vf(D) = f(d*) and thus f(z) < f(d*) < d* € D.
(Il

Proposition 1 Let L be a complete lattice. Then L is continuous if and only
if there exists a directed set of deflations D C [L — L] with \/ D =id, . In that
case we have x < y in L if and only if x < f(y) for some f € D.

Proof.
. First, let D be such a set and x € L. Then f(z) < z for all f € F by Lemma 1
and the supremum of {f(z): f € F} equals x; thus L is continuous.
Second, assume that [ is continuous. For each finite subset F© C [ define
dr: L — L as

dp(z) =V{y € Fry < z}

Clearly, the image of dp is finite as it is contained in the sup-semilattice gen-
erated by F. One readily checks that dp € [L — L] using the interpola-
tion property of <. Moreover, dp < id, shows that dp is a deflation. Then
{dp: F C L finite} is a directed set of deflations in [L. — L] and its supremum
equals id, , for L is continuous.
. First, x < y and y = V{f(y): f € D} imply x < f(y) for some f € D. Second,
if x < f(y) is the case for some f € D then f(y) < y implies z < y. O
Note that the pointwise supremum of two deflations in [L — L] is again a
deflation. Thus we can also state that L is continuous if and only if id, is the
(directed) supremum of all deflations in [L — L]. This results suggests to define
linear FS-lattices L by demanding the existence of some directed family D in
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[L — L] whose supremum equals id,. The odd feature of the actual definition
is that we strengthen it with respect to continuity by confining the family D to
the smaller set L-—L and by simultaneously weakening the notion of deflation.
This weaker notion of finitely separated functions is due to A. Jung [12].

Definition 2 Let f, g: L — M be two maps between complete lattices L and M.
We say that f is finitely separated from g if and only if there exists some finite
set M C L such that for all x € L there is some m, € M with f(z) < m, <

g9(x).

We will primarily be interested in functions f € L—L which are finitely
separated from id,. Clearly, any deflation on L is finitely separated from id,
by its image. The property of being finitely separated from id, generalizes the
notion of a deflation by weakening the finiteness of the image to some more
general and abstract compactness condition.

Definition 3 [11, 10] A complete lattice L is a linear FS-lattice if and only if
there exists a directed set D C L—L with VD = id, such that every f € D is
finitely separated from id, .

In the definition above, if L is just a dcpo and D a subset of [L — L]
then this is the definition of FS-domains in [12]. One can show that linear FS-
lattices are special linked, bicontinuous lattices [11, 10]. Viewed as complete
sup-semilattices they form a x-autonomous subcategory of the x-autonomous
category of complete sup-semilattices [2]; in fact, it is the greatest such x-
autonomous category of linked continuous lattices with that given internal hom
functor L—M [11, 10].

The algebraic linear FS-lattices are such that we can demand all f € D
to be idempotent deflations; further, their sup-retracts are linear FS-lattices
where we can demand all f € D to be deflations, not necessarily idempotent
[11, 10]. Algebraic linear FS-lattices have already been studied as profinite
lattices [?]. They have been interpreted at the element level via interaction
orders [8] and they are the greatest class of algebraic lattices closed under the
operation L — (L—L) [9].

In this paper we will show the following results:

A continuous lattice L is a linear FS-lattice if and only if the map P;, preserves
directed suprema;

a complete lattice L is completely distributive if and only if it is a distributive
linear FS-lattice;

and a continuous lattice A is completely distributive if and only if the map Py
preserves suprema.



2 A characterization of linear FS-lattices

Let g be finitely separated from h by the finite set M. If f < g then clearly f is
finitely separated from h by M. This is all we need in showing one half of the
characterization of linear FS-lattices.

Proposition 2 Let L be a continuous lattice such that P;, preserves directed

Proof. Since L is continuous we have a directed set D C [L — L] of deflations
such that id, is the supremum of D (Proposition 1). Since Pj, preserves directed
suprema we have that id, = Py (id,) equals the supremum of the directed set
{P.(f): f € D} C L—L. We are done if each Py (f) is finitely separated from
id, . But this is clear, for Pr,(f) < f and f, being a deflation, is finitely separated
from id, . O

The proof of the other implication is quite hard and involves an astonish-
ingly subtle argument. But first we need to generalize Lemma 1 to the case of
functions finitely separated from id, .

Lemma 2 Let L be a complete lattice such that f € [L — L] is finitely separated
fromid,. Then f(y) < y for all y € L; moreover, x < f(y) implies v < y in
L.

Proof. The second claim is immediate since z < f(y) < y implies z < y. Let
{a;:i € I} C L be directed with y < V{a;:7 € I'}. Then f(y) < {f(a;):i € I} as
f preserves directed suprema. Let M be a finite set separating f from id,. For
i € I there exists some m; € M with f(a;) < m; < a;. The set F = {m;:i € I}
is finite; let J be a finite subset of I such that F' = {m;:j € J}. As the
family {a;:7 € I} is directed we have an upper bound a, of {a;:j € J}. Then
f(y) < vje.lmj < vje.]a’j < Q. =

Corollary 1 Fvery linear FS-lattice is a continuous lattice.

Proposition 3 [11, 10] Let L and M be linear FS-lattice. Then L—M is a
linear F'S-lattices.

Proof. Let D C L—L and &€ C M —M be directed sets with VD = id, and
VE =id,, such that all f € D and g € £ are finitely separated from the respec-
tive identities. If My, respectively M,, is a finite set separating f € D from id,,
respectively g € € from id,,, then we are done if (f—g)? € (L—M)—o(L—-M)
is separated from idL_OM by some finite set, where

f—eg(h)=gohof;



1.

simply note that id is the directed supremum of the set
L—OM

{(f—~g)* f€eD, ge&}

as composition preserves directed suprema.
We define an equivalence relation ~ on L—M by

b~ hy & Vm € My Hg(h(m))) 0 M, = Hg(ha(m))) 0 M,

As My and M, are finite, there are only finitely many equivalence classes on
L—M. Let M be an non-redundant and complete set of representatives of these
classes. We claim that the finite set f—og(M) separates (f—og)? from id

Given h € L—M, let h be the corresponding representative in M. For a € L,
we compute

h(a) > h(my) ; for some my € My with f(a) <m; <a
> my for some m, € M, with g(h(my)) < mgy < h(my)
> g(h(m )) ;as g(h(my)) < mg, and h ~ h
> g(h(f(a))  ;as f(x) < my.
By symmetry, we obtain h > (f —g)(h), so h > f—og(h) > (f —~g)?(h). O

This argument is due to A. Jung in [12] were it is used in the function
space [L — M]; we merely adapted it to cater for the space L—M. This result
implies that linear FS-lattices are a class of continuous lattices closed under the
operation L — (L—L). There is, however, a more naive approach to obtaining
such a class.

Let L be a complete la,ttzce (md M a contmuous lattzce equzpped with maps
r:M — L and e: L — M preserving directed suprema. If roe =id, then L is
a continuous lattice.

Proof. We provide succinct proofs by using Proposition 1.
We know that id, = \/D and id,, = \/ £ for directed sets of deflations D C
[L — L) and € C [M — M]. Then

F={f = gl:f€D,ge &} C[[L— M —[L— M]

is directed and its supremum equals [id, — id, ] =id, _,, since composition
preserves directed suprema. Thus [L — M| is continuous by Proposition 1.
Given £ as in (1), the set {rogoe:g € £} is directed and has roid,, oe =id,

as supremum, for composition preserves directed suprema.



O

Given a continuous lattice L we therefore have that [L — L] is a continuous
lattice as well. Since I}, is a lower adjoint of P, it preserves suprema. Assuming
that P, preserves directed suprema we then infer that L—L is a continuous
lattice by Lemma 3(2). In order to show that the class of continuous lattices
L where Pj, preserves directed suprema is closed under L +— (L-<L) we now
need to verify that P, preserves directed suprema for M = L—L. This is far
from obvious. The results presented in this paper show that it is indeed true
and that this class of continuous lattices surprisingly coincides with the class of
linear F'S-lattices.

In showing the converse of Proposition 2 we show that Pj, preserves directed
suprema by proving that I, preserves the way-below relation; we will see shortly
that this is indeed a sound strategy.

Definition 4 Let f: L — M be a function between two complete lattices. We
say that f preserves the way-below relation if and only if x < y in L implies

f(x) < F(y) in M.

We cite the relevant parts of [1, Proposition 3.1.14] for the special case of
continuous lattices.

Proposition 4 Let L and M be complete lattices and f: L — M a lower adjoint
of g: M — L.

. If the function g preserves directed suprema then f preserves the way-below
relation.

. If L is a continuous lattice then the converse of (1) is true as well.

Finally, we have accumulated all the necessary concepts and facts for char-
acterizing linear FS-lattices via the function spaces — and [ — |.

Theorem 3 Let L be a continuous lattice. Then L is a linear FS-lattice if and
only if the map Py, preserves directed suprema.

Proof. By Proposition 2 it suffices to show that P;, preserves directed suprema
if L is a linear FS-lattice. In that case, Proposition 3 and Corollary 1 ensure
that L—L is a continuous lattice. Using Proposition 4(2), it thus suffices to
prove that I, preserves the way-below relation. So let f < g in L-—-L. We need
to show f < ¢ in [L— L]. By Lemma 2 we are done if we have f < ¥(g) for
some ¥ € [[L — L] — [L — L]] such that ¥ is finitely separated from id, .

Since L is a linear F'S-lattice we have a directed family of functions D C L—L
with supremum id, such that each h € D is separated from id, by some finite
set M, C L. Let h—oh be the element of (L-—oL)—o(L-oL) which sends each
i to the map hoioh. Clearly, id _ is the supremum of {(h—h)*:h € D}

7



as composition preserves directed suprema. Since f < ¢ in L—L and g =
V{(h—h)?(g): h € D}, we have f < (h—h)?(g) for some h € D.

The subtle point is now this: since h is also in [L — L| we may define
[h — h] € [[L = L] — [L — L]] whose action restricted to L—L equals the
action of h—h. Therefore

f<[h—hP(g)
In [12] we then have a proof that [h — h]* is finitely separated from id, .. In

L]
fact, this is the same proof as the one in Proposition 3 where we replace all —

by [ = ]. O

3 A characterization of distributive linear FS-lattices

Before we strengthen the Theorem above to the case of distributive linear FS-
lattices we want to uncover these latter lattices as being precisely the completely
distributive ones.

Proposition 5 A complete lattice L is completely distributive if and only if L
18 a distributive linear FS-lattice.

Proof. First, let L be a distributive linear FS-lattice. Clearly 2 = {0 < 1} is
a linear F'S-lattice as it is finite. So A—2 is a linear FS-lattice by Proposition 3.
But

A—222 A™
where the isomorphism is realized by
frr VETH(04)

Thus A* is continuous by Corollary 1. Using Theorem 1 we infer that L is
completely distributive.

Second, let L be completely distributive. Clearly, L is then distributive. For
each finite subset F' C L define ep: L — L by

ep(r) =V{y € Fry K =}

We reason as for the maps dy to conclude that all maps e, are deflations and
that the family {ey: F C L finite} is directed. The proof that < satisfies
the interpolation property can be successfully tranferred to <€ whenever L is
completely distributive [14]. Thus all maps ep are in L—<L and their supremum
equals id, by Theorem 2. Hence L is a linear FS-lattice. O

Proposition 6 Let L be a completely distributive lattice. Then Py, preserves
suprema and

Pi(f)(a) = V{f(w):w <« a}
for all f € [L — L] and all a € L.



Proof. Let f € [L — L] be given. Define f%(a) = V{f(w):w < a} for
all a € L. We claim that f¢ = P,(f). Since L is completely distributive we
known that << satisfies the interpolation property and that every element in
L is the supremum of elements way-way-below it. Clearly, f? is monotone, so
VFUX) < fUVvX) for X C L. Let w' <« f%(vX). Then w' < f(w) for some
w <& VX by the definition of f¢. Let w” be such that w <& w" <& VX. Then
w" < x for some x € X shows w << z. Thus w' < f(w) < fé(z) < fUVX)
and f¢ € L—L has been shown. If ¢ < f with ¢ € L—L then g < f? readily
follows as g preserves all suprema and as every element in L is the supremum
of elements way-way-below it. This proves Py, (f) = fe.

As every completely distributive lattice is a linear FS-lattice (Proposition 5)
we have that P, preserves directed suprema (Theorem 3). Thus it suffices to
show that P, preserves binary suprema. We compute

(fvgi(a) = V{(fVg)(w):w < a}

V{f(w)V g(w):w <« a}

V{f(w):w < a} Vv (V{g(w):w < a})
fla) Vv g*(a)

= (f'Vg")(a)

for all @ € L. O

Recall that an element p in a complete lattice L is a V-prime if and only if
for all z,y € L with p <z Vy we have p <z or p <uy.

Corollary 2 Let L be a completely distributive lattice. Then the V-primes of
L—L are exactly the V-primes of [L — L] which are elements of L—L.

Before we go on to prove the converse of Proposition 6, we need to establish
a version of Proposition 4 for completely distributive lattice.

Lemma 4 Let L and M be complete lattices and f: L — M a lower adjoint of
g M — L.

. If g preserves suprema then f preserves <.

. If L is completely distributive then the converse of (1) is also true.

Proof.

. Let a <« b in L; we have to show f(a) <€ f(b). Let X C M such that
f(b) < Vv, X. We are done if f(a) < z for some x € X. Since g preserves
all suprema we get b < g(f(b)) < g(vV,,X) = V,9(X). Now, a < b implies
a < g(x) for some x € X and f(a) < f(g(x)) <z follows.

. Let X C M be arbitrary. As ¢ is monotone we have V,g(X) < g(v,X).
We need to show the reverse inequality and by Theorem 7 it suffices to show



a < V,9(X) for all a <« g(V,X). So let a << g(V,X) be given. Since f
preserves << we obtain f(a) << f(g(V, X)) <V, X which implies f(a) < z for
some x € X. Therefore, a < g(f(a)) < g(z) < V,9(X).

O

Corollary 3 Let L be a completely distributive lattice. Then I preserves <.

Next we want to demonstrate that a continuous lattice L is completely
distributive if P, preserves suprema. For that we need to gain a better under-
standing of step functions, certain maps preserving directed suprema, and of
their images under Pj,.

Definition 5 Let L be a complete lattice and z,y,z € L. Definex \,y: L — L
[1] to be the function with maps f}(x) to y and L\ f}(x) to 0,, where

Mz) ={y € Lix <y} [1, 5

Further, let z /* y: L — L be the function with maps L\ [(2) to y and [(2) to
0

L*

Lemma 5 Let L be a continuous lattice and x,vy,z € L.
. The map x \,y € L preserves directed suprema and is a deflation;

cand Pr(x N\ y) =2z 7y, where z = V(L \ t(x)).

Proof.
. This is immediate as f}(x) is an upper set inaccessible by directed suprema if L
is continuous.

. We first show z 2y <z N\ y: If a € {f(x) then (z 7 y)(a) <y = (x \ y)(a).

If a € L\ f(z) then a < z implies (z " y)(a) =0, < (2 \,y)(a). Now, let g €

L—L be such that g < x N\, y. We are done if g g z /y. Since g <z \(y we

have L\ {(x) = (z \,y) '(0,) € ¢ '(0,). As g preserves suprema we conclude

that z = V(z \,y)'(0,) € ¢ '(0,). Therefore, g(a) =0, < (2 /" y)(a) for all
< (z

a<z Ifagzthen g(a) < (z\yy)la) <y=(z "y)a).
O

Theorem 4 Let L. be a continuous lattice. Then Py, preserves suprema if and
only iof L is completely distributive.

Proof. By Proposition 6 it remains to show that L is completely distributive
if P;, preserves suprema. Assuming the latter we utilize step functions: since L
is continuous we know that

= \/{3: N y:y < xin L}, [3,Chapter 11, Exercise 2.16(iii)]
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Since Py, is assumed to preserve suprema, we obtain
id, = Py(id,)
= P\{e Ny <ain L))
= \V{Pule \y)y<ain L}
= V{z fyy<a, 2= V(IL\ (@)}

Each of the functions z 7 y has at most two points in its image, so the image
is certainly completely distributive. Therefore, each of these functions is a tight
Galois Connection on L [16]. The supremum of tight Galois Connections is
tight, for every Galois Connection has a least tight Galois Connection below it.
Thus id, is tight as well. By [16] this is the case if and only if L is completely
distributive. O

Hence we can make \/{P(z \, y):y < x in L} a precise measure of com-
plete distributivity.

Corollary 4 Let L be a continuous lattice. Then the following are equivalent:
. L is completely distributive.

id, = V{Pr(zx Nyy):y<xin L}.

Furthermore, we always have the formula

VA t=V{PuleNy)y<winL}

afu tLu

for all elements in a continuous lattice L.

Proof. The comments on the tightness of id, above show that (2) implies
(1). Let L be completely distributive. Then Pj preserves suprema and (2) is
immediate. As L is completely distributive if and only if id, is tight, and as
VA{PL(x \yy):y < x in L} is a tight Galois Connection below id, satisfying the
above equivalence, we infer that \/{Py,(z \, y): y < x in L} equals the greatest
tight Galois Connection below id, which is known to satisfy the above formula
[16]. O

4 Open problems

There are essentially two open problems in the theory of linear F'S-lattices. First,
we know that a linear FS-lattice L is algebraic if and only if there exists some
directed set D C L—L of idempotent deflations whose supremum equals id, .
The retracts of these lattices are those complete lattices M which have some
directed set £ C M —M of deflations whose supremum equals id , ; in particular,
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they are linear FS-lattices and linear FS-lattices are closed under sup-retracts
(similar proof as in Lemma 3(2)). Of course, we would like to know whether
every linear FS-lattice is the retract of some algebraic linear F'S-lattice.

Question 1 Is every linear FS-lattice the sup-retract of some algebraic linear
FS-lattice?

Note that such a statement holds for continuous lattices, for the ideal com-
pletion of a continuous lattice is an algebraic lattice. Moreover, this statement
holds in the world of distributive linear FS-lattices, for we may realize such
a lattice as the sup-retract of the completely distributive algebraic lattice of
lower sets of its V-primes. However, it is not the case that the ideal comple-
tion of a linear FS-lattice is a linear FS-lattice and we have to come up with a
generalization of the retract construction in the distributive case.

The second open problem is about characterizing linear FS-lattices as pre-
cisely those complete lattices L such that LL—L is continuous. This has been
shown for algebraic linear FS-lattices in [9]. We have seen that L—L is contin-
uous for any linear FS-lattice. In [11, 10] we showed that L is bicontinuous if
L—L is continuous. Moreover, if L is linked then the continuity of L—L forces
L to be a linear FS-lattices. The problem is lies therefore in getting rid of the
additional assumption of linkedness in proving this.

Question 2 Let L be a (bicontinuous) lattice such that L—L is a continuous
lattice. Is L linked?

In that case L would indeed be a linear FS-lattice and these would be exactly
those continuous lattices which are closed under —o.
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