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Abstract

This paper serves to bring three independent but important areas of computer sci-
ence to a common meeting point: Formal Concept Analysis (FCA), Chu Spaces,
and Domain Theory (DT). Each area is given a perspective or reformulation that
is conducive to the flow of ideas and to the exploration of cross-disciplinary connec-
tions. Among other results, we show that the notion of states in Scott’s information
system corresponds precisely to that of formal concepts in FCA with respect to all
finite Chu spaces, and the entailment relation corresponds to “association rules”.

1 Introduction

This paper serves as the meeting point of three “parallel worlds”: Chu spaces,
Domain Theory, and Formal Concept Analysis. It brings the three indepen-
dent areas together and establishes fundamental connections among them,
leaving open opportunities for the exploration of cross-disciplinary influences.

We begin with an overview of each of the three areas, followed by an ac-
count of the background of each area from a unified perspective. We then
move to basic connections among them and point to topics of immediate in-
terest and opportunities for further development, including applications in
data-mining and knowledge discovery.

Due to its interdisciplinary nature, the paper is written in a way that does
not assume specific background knowledge for each area.

1.1 Domain theory

Domain theory (DT) was introduced by Scott in the late 60s for the deno-
tational semantics of programming languages. It provides the mathematical
foundation for the design, definition, and implementation of programming
languages, and for systems for the specification and verification of programs.
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The fundamental idea of domain theory is partial information and suc-
cessive approximation. The notion of partial information is captured by a
complete partial order (cpo). Functions acting on cpos are those which pre-
serve the limits of directed sets – this is the so-called continuity property. If
one thinks of directed sets as an approximating schema for infinite objects,
then members of the directed set can be thought of as finite approximations.
Continuity makes sure that infinite objects can be approximated by finite
computations.

An important property of continuous functions is that when ordered in
appropriate ways, they form a complete partial order again. Thus a continuous
function becomes once again an object in a partial order. The beauty of
domain theory is that a higher-order object is treated just as another ordinary
object.

For further information on domain theory, see, for example, [1,2,9,20,31,32].

1.2 Formal concept analysis

FCA is an order-theoretic method for the mathematical analysis of scientific
data, pioneered by German scientists Wille and others [10] in mid 80’s. The
novel idea of FCA is the clustering of attributes based on the algebraic princi-
ple of Galois connection, forming a partially ordered set called concept lattice.
The clustering determines which collection of attributes forms a coherent en-
tity called a concept, by the philosophical criteria of unity between extension
and intension. The extension of a concept consists of all objects belonging to
the concept, while the intension of a concept consists of attributes common to
all these objects. One can then take this as the defining property of a concept:
a collection of attributes which agrees with the intension of its extension.

Over the past twenty years, FCA has become a powerful tool for cluster-
ing, data analysis, information retrieval, knowledge discovery, and ontological
engineering, used by over two hundred scientific projects so far. This fruitful
development of applied FCA lies in the fact that FCA is susceptible to many
interpretations, so that connections can be made with different areas and used
by researchers from different disciplines.

1.3 Chu spaces

Category theory (CT) has provided a unified language for managing concep-
tual complexity in mathematics and computer science. Chu spaces, having
its birth place in category theory, was brought to light in computer science
through the work of Barr and Seely [3,4,29] as constructive models of linear
logic. Pratt’s extensive work [21,22,23,24,25,26] broadened the scope of their
applications to areas such as models for concurrency and philosophy of logic,
information, and computation.

There are substantial culture differences among the three areas. FCA, for
example, focuses on internal properties of and algorithms for concept struc-
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tures almost exclusively on an individual basis, while CT mandates that con-
cept structures should be looked at collectively as a whole, with appropriate
morphisms relating one individual structure to another. It can be seen as a
universal object-oriented language. On the other hand, DT carries an intrinsic
higher-order view incorporating the notions of partial information and suc-
cessive approximation. In a precise sense, FCA and Chu spaces started with
the same objects but went to different directions out of their own independent
motivations. This paper brings them together again through domain-theoretic
methods – Scott’s information systems [28], in particular.

Related work

Lamarche [13] provides an order-theoretic model for linear logic grounded
on Chu spaces. Hitzler [11] gives an account of how the clausal logic of Rounds
and Zhang [27] can be viewed as a way for constructing concepts, in a limited
setting. These can be seen as special cases of what is manifested by this paper.

2 Preliminaries

This section reviews terminologies and backgrounds for the three areas men-
tioned earlier, with the goal to bring them to some common bases.

2.1 Cpos

Let (D,⊑) be a partial order. A subset X of D is directed if it is non-empty
and for each pair of elements a, b ∈ X, there is an upper bound x ∈ X for
{a, b}. A complete partial order (cpo) is a partial order (D,⊑) with a least
element (⊥) and every directed subset X has a least upper bound (or join)⊔

X. A complete lattice is a partial order in which any subset has a join
(this implies that any subset will also have a meet – greatest lower bound).
Compact elements of a cpo (D,⊑) are those inaccessible by directed sets:
a ∈ D is compact if for any directed set X of D, a ⊑

⊔
X implies that there

exits x ∈ X with a ⊑ x. A cpo is algebraic if every element is the join of a
directed set of compact elements. A set X ⊆ D is bounded if it has an upper
bound. A cpo is bounded complete if every bounded set has a join. Scott
domains are bounded complete algebraic cpos.

Notation. The upper set ↑X of a set X is defined to be {y | ∃x ∈ X, x ⊑ y}.
A set is upward-closed if X = ↑X. Similarly, a set is down-closed if X = ↓X.

2.2 Closure systems and closure operators

For any set A, let P(A) denote the powerset of A. A subset C of the powerset
P(A) is called a closure system on A if C is closed under arbitrary intersections,
i.e., for every X ⊆ C,

⋂
X ∈ C. Note that, by convention, this implies that

the whole space A is always a member of a closure system C, by instantiating
X as the empty set in the definition.
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A closure operator on A is a function ϕ : P(A) → P(A) which is infla-
tionary (X ⊆ ϕ(X)), monotonic (X ⊆ Y ⇒ ϕ(X) ⊆ ϕ(Y )), and idempotent
(ϕ(ϕ(X)) = ϕ(X)).

Proposition 2.1 Define a closed set with respect to a closure operator

ϕ : P(A) → P(A)

to be a fixed point of ϕ. Then closed sets of ϕ are precisely sets of the form
ϕ(X). The collection of closed sets {ϕ(X) | X ∈ P(A)} forms a closure
system on A.

The defining property of closure systems provides arbitrary meets. The join
of a subset X can then be obtained as the meet of the set of upper bounds of
X, A included. These observations lead to the following basic property about
closure systems.

Proposition 2.2 For any closure system C on A, the partial order (C,⊆) is
a complete lattice with A being the top element.

2.3 Galois connections

Let P , Q be sets. A pair of functions

s : P(P ) → P(Q) and t : P(Q) → P(P )

is called a Galois connection 2 if for each X ∈ P(P ) and Y ∈ P(Q),

s(X) ⊇ Y if and only if X ⊆ t(Y ).

The next well-known fact shows that closure operators can be derived from
Galois connections in a natural way.

Proposition 2.3 For any Galois connection s, t with s : P(P ) → P(Q) and
t : P(Q) → P(P ), s ◦ t is a closure operator on Q, and t ◦ s is a closure
operator on P .

The proof of this proposition uses some basic properties about Galois con-
nections, summarized in the following lemma (for more details see [15]).

Lemma 2.4 Let the pair (s, t) with s : P(P ) → P(Q) and t : P(Q) → P(P )
be a Galois connection. The following are true:

- s ◦ t and t ◦ s are inflationary.

2 Galois connections appear in the literature in two equivalent versions. The original version
uses order-reversing maps [7], and the second version, more popular in computer science,
uses order-preserving maps. Since set-containment is more primitive, the notion of Galois
connection used in this paper is more concrete, serving our purpose well. Note that we are in
fact neutral with respect to the issue of order-preserving vs. order-reversing: set-inclusion
removes the potential overhead for keeping track of the direction of order.
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- s and t are anti-monotonic, i.e., if X ⊆ Y then s(Y ) ⊆ s(X), and similarly
for t.

- s ◦ t and t ◦ s are monotonic.

- s ◦ t ◦ s = s and t ◦ s ◦ t = t and, therefore, s ◦ t and t ◦ s are idempotent.

The next definition serves to fix notations only.

Definition 2.5 Any function f : A → B can be lifted to the powerset level
in two canonical ways:

f+ : P(A) → P(B) with X 7−→ {f(a) | a ∈ X},

f− : P(B) → P(A) with Y 7−→ {a | f(a) ∈ Y }.

f− is the standard inverse image operation, and f+ is the forward image
operation. The notation is chosen here by symmetry. Note that f+ ◦ f−

is less than the identity function on P(B) and f− ◦ f+ dominates identity
with respect to coordinatewise inclusion (they form a Galois connection in the
general sense [7]).

Proposition 2.6 For any function f : A → B, we have

- (f+ ◦ f−)Y ⊆ Y for any Y ∈ P(B);

- (f− ◦ f+)X ⊇ X for any X ∈ P(A);

- f+ ◦ f− is the identity function if and only if f is onto;

- f− ◦ f+ is the identity function if and only if f is one-to-one.

3 Chu spaces and formal concept lattices

We will consider a special form of Chu spaces in this paper. Pratt [25] provides
arguments for the use of sets in place of the enriching category V .

Definition 3.1 A Chu space P is a triple (Po, |=P , Pa) where Po is a set of
objects and Pa is a set of attributes. The satisfaction relation |=P is a subset of
Po×Pa. A mapping from a Chu space (Po, |=P , Pa) to a Chu space (Qo, |=Q, Qa)
is a pair of functions (fa, fo), with fa : Pa → Qa and fo : Qo → Po such that
for any x ∈ Pa and y ∈ Qo, fo(y) |=P x iff y |=Q fa(x).

Example 3.2 The most common construction in data-mining is to extend
a relation (context) by a row, adding one new object with the observed at-
tributes, but the attribute set remain unchanged. This construction induces a
Chu-mapping, from the enlarged space to the initial space, with fa being the
identity function on attributes, and fo the injection of objects.

Example 3.3 Galois connections can also be viewed as Chu space mappings.
Suppose a pair of functions

s : P(P ) → P(Q) and t : P(Q) → P(P )
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forms a Galois connection. Then (s, t) is a mapping from the Chu space
(P(P ),⊇,P(P )) to the Chu space (P(Q),⊆,P(Q)), because for each X ∈
P(P ) and Y ∈ P(Q), we have t(Y ) ⊇ X if and only if Y ⊆ s(X).

A Chu space is called a context in FCA, but “Chu” carries with it the
notion of morphisms, to form a category. On the other hand, FCA provides
the notion of concepts, intrinsic to a Chu space.

Definition 3.4 With respect to a Chu space P = (Po, |=P , Pa), two functions
can be defined:

α : P(Po) → P(Pa) with X 7−→ {a | ∀x ∈ X x |=P a},

ω : P(Pa) → P(Po) with Y 7−→ {o | ∀y ∈ Y o |=P y}.

A subset A ⊆ Pa is called a (formal) concept (of attributes) if it is a fixed
point of α ◦ω, i.e., α(ω(A)) = A. Dually, a subset X ⊆ Po is called a (formal)
concept (of objects) if it is a fixed point of ω ◦ α.

The functions α and ω are dependent on P and we will use subscripts
to avoid confusion. Readers familiar with FCA will notice that our notation
differs from the standard notation in FCA which collapses both αP and ωP

to a single ( )′ without the possibility of using subscripts. The elaboration of
notation to a less context-sensitive one makes it more expressive and accurate
(try to restate some of the results in this paper using ( )′ only!). The following
is a fundamental theorem in formal concept analysis.

Theorem 3.5 (Wille) With respect to a Chu space P = (Po, |=P , Pa), the
pair (α, ω) forms a Galois connection. As a consequence, we have

- The set of attribute (object) concepts of P forms a closure system.

- The attribute (object) concepts of P under set inclusion form a complete
lattice.

- The lattice of attribute concepts and the lattice of object concepts are anti-
isomorphic to each other.

Notation. From now on, we write LP for the complete lattice of formal
concepts associated with a Chu space P .

Example 3.6 Here is an example which shows that Chu-mappings do not
necessarily preserve concepts.

P a b

1 × ×

2 ×

Q a b

1 × ×

2 × ×

Define f : Pa → Qa to be the identity map, and g : Qo → Po to be
the constant map λx.1. One can readily check that the pair (f, g) so defined
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gives a Chu-mapping from P to Q. Note that while {a} is a concept of P ,
f+({a}) = {a} is not a concept of Q.

The following result, first pointed out in [13], serves as a starting point to
understand how Chu-mappings interact with concept lattices.

Proposition 3.7 Let (f, g) with f : Pa → Qa and g : Qo → Po be a Chu
mapping from (Po, |=P , Pa) to (Qo, |=Q, Qa). We have

αP ◦ g+ = f− ◦ αQ and ωQ ◦ f+ = g− ◦ ωP .

Notation. We use ⊑ to denote the extensional order of functions on sets with
respect to inclusion.

Proposition 3.8 With respect to any Chu-mapping (f, g) from (Po, |=P , Pa)
to (Qo, |=Q, Qa) with f : Pa → Qa and g : Qo → Po, the following statements
are true:

- g+ ◦ g− ◦ ωP ⊑ ωP ,

- αP ◦ g+ ◦ g− ◦ ωP ⊒ αP ◦ ωP ,

- αQ ◦ ωQ ◦ f+ ⊒ f+ ◦ αP ◦ ωP ,

- αP ◦ ωP ◦ f− ⊑ f− ◦ αQ ◦ ωQ,

- ωP ◦ αP ◦ g+ ⊑ g+ ◦ ωQ ◦ αQ,

- ωQ ◦ αQ ◦ g− ⊒ g− ◦ ωP ◦ αP .

The next two propositions identify some conditions under which concepts
are preserved under Chu-mappings.

Proposition 3.9 Let (f, g) with f : Pa → Qa and g : Qo → Po be a mapping
from (Po, |=P , Pa) to (Qo, |=Q, Qa), as defined on Chu spaces. If both f and g

are onto (surjective) then we have:

- f+ maps (attribute) concepts over P to (attribute) concepts over Q;

- f− maps (attribute) concepts over Q to (attribute) concepts over P ;

- g+ maps (object) concepts over Q to (object) concepts over P ;

- g− maps (object) concepts over P to (object) concepts to Q.

Proposition 3.10 Let (f, g) with f : Pa → Qa and g : Qo → Po be a mapping
from (Po, |=P , Pa) to (Qo, |=Q, Qa), as defined on Chu spaces. The following
statements are true.

- If f is injective (one-to-one) and g is surjective (onto), then X is a concept
if f+X is a concept.

- If g is injective and f is surjective, then Y is a concept if g+Y is a concept.

- If both f and g are surjective, then B is a concept if f−B is a concept, and
X is a concept if g−X is a concept.
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4 Concept lattices and information systems

The converse of Theorem 3.5 is also true: every complete lattice is isomorphic
to a concept lattice of a Chu space. This is a standard result in FCA; we
provide a proof in terms of the formulation used in this paper to make it self-
contained. The proof uses the idea of “open sets as properties”. These open
sets are called Alexandrov open [12].

Theorem 4.1 (Representation Theorem) For every complete lattice D,
there is a Chu space P such that D is order-isomorphic to LP .

Proof. Suppose (D,⊑) is a complete lattice. Define the Chu space P =
(Po, |=, Pa), where Po = Pa = D, and x |= b iff b ⊑ x. We want to show that
LP is order-isomorphic to (D,⊑).

First note that for any X ⊆ Pa, we have

ωX = {o | ∀x ∈ X, o |= x}

= {o | ∀x ∈ X, x ⊑ o}

= {o |
⊔

X ⊑ o}

= ↑(
⊔

X).

On the other hand,

αY = {a | ∀y ∈ Y, y |= a}

= {a | ∀y ∈ Y, a ⊑ y}

= {a | ∀y ∈ Y, a ∈↓y}

=
⋂
{ ↓y | y ∈ Y }.

Therefore, X is a concept iff (α ◦ ω)X ⊆ X, or

⋂
{ ↓y | y ∈↑(

⊔
X)} ⊆ X.

Since
⋂
{ ↓y | y ∈↑(

⊔
X)} = ↓

⊔
X, this is equivalent to saying that ↓

⊔
X ⊆

X. Hence, X ⊆ Pa is a concept iff X = ↓
⊔

X. In other words, concepts of
(D,⊒, D) are precisely the down-closed subsets of D generated by a single
element.

Since for each x, y ∈ D, x ⊑ y iff ↓x ⊆↓y, the mapping x 7−→↓x provides
an order-isomorphism between D and LP . 2

A few special cases may be worth noting. First, D, being the down-closure
of the top element, is always a concept. On the other hand, the empty set
does not qualify as a concept because (α ◦ ω)∅ = {⊥}.
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We now move to Scott’s notion of information systems [28] which provide
a concrete representation of Scott domains, with a logical flavor.

An information system consists of a set A of tokens, a subset Con of the
set of finite subsets of A, denoted as Fin(A), and a relation ⊢ between Con

and A. The subset Con on A is often called the consistency predicate, and the
relation ⊢ is called the entailment relation. Both the consistency predicate
and the entailment relation satisfy some routine axioms, made precise in the
following definition.

Definition 4.2 An information system A is a triple (A, Con,⊢), where

- A is the token set,

- Con is the consistency predicate (Con ⊆ Fin(A) and ∅ ∈ Con),

- ⊢ is the entailment relation (⊢ ⊆ Con × A).

Moreover, the consistency predicate and entailment relation satisfy the follow-
ing properties:

- X ⊆ Y & Y ∈ Con ⇒ X ∈ Con,

- a ∈ A ⇒ { a } ∈ Con,

- X ⊢ a & X ∈ Con ⇒ X ∪ { a } ∈ Con,

- a ∈ X & X ∈ Con ⇒ X ⊢ a,

- (∀b ∈ Y. X ⊢ b) & Y ⊢ c ⇒ X ⊢ c.

Although monotonicity for ⊢ is not explicitly given, it is a derivable prop-
erty. The notion of consistency can be easily extended to arbitrary token sets
by enforcing compactness, i.e., a set is consistent if every finite subset of it is
consistent. By overloading notation, we write X ∈ Con when every finite sub-
set of X is consistent; hence the consistency of finite sets is a more primitive
notion.

An information system (A, Con,⊢) induces an operator F : Con → Con,
given as

F (X) := {a | ∃Y (Y ⊆fin X & Y ⊢ a)}.

(Here, ⊆fin stands for “finite subset of”, and X need not be finite.) It follows
from the properties of an information system that F is a closure operator in
a generalized sense: it is inflationary, monotonic, and idempotent. However,
this is not strictly a closure operator because F is defined on Con, instead of
P(A).

The information states, or simply states, of an information system are sets
of the form F (X) with X ∈ Con, where Con is understood in the generalized
sense to include infinite sets through the compactness condition. Information
states consist of consistent, deductively closed (under ⊢) sets of tokens. The
importance of information systems lies in the fact that they provide a logical
representation of Scott domains.

Theorem 4.3 (Scott) For any information system A, the collection of its
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information states under set inclusion forms a Scott domain. Conversely,
every Scott domain is order-isomorphic to the partial order of information
states of some information system.

A Chu space determines an information system in the following way.

Definition 4.4 For a given Chu space P = (Po, |=P , Pa), define a system
(AP , ConP ,⊢P ) with AP = Pa as follows. Write x |=P X if x |=P b for each
b ∈ X. For a finite set X of attributes and an attribute a, define X ⊢P a if

∀x ∈ Po (x |=P X ⇒ x |=P a).

The consistency predicate ConP is the trivial one: every subset of Pa is con-
sistent.

Lemma 4.5 For a given Chu space P = (Po, |=P , Pa) and the derived relation
⊢P given in the previous definition, we have

X ⊢P a if and only if a ∈ αP ◦ ωP (X).

Proof.

X ⊢P a ⇐⇒ ∀x ∈ Po (x |=P X ⇒ x |=P a)

⇐⇒ ωP (X) ⊆ ωP ({a})

⇐⇒ αP ◦ ωP ({a}) ⊆ αP ◦ ωP (X)

⇐⇒ a ∈ αP ◦ ωP (X)

2

Proposition 4.6 Given a Chu space P = (Po, |=P , Pa), the triple

(AP , ConP ,⊢P )

is an information system.

The proof goes by checking each axiom of an information system, which
is straightforward. The interesting question is whether a set of attributes is a
concept if and only if it is an information state.

Theorem 4.7 Given a Chu space P = (Po, |=P , Pa) with Pa a finite set, X ⊆
Pa is a concept if and only if it is a state of the derived information system
(AP , ConP ,⊢P ).

Proof. Suppose X is a concept. We show that it is deductively closed, i.e.,
for each a and each Y ⊆ X, Y ⊢P a implies a ∈ X. Since X is a concept, we
have αP ◦ωP (X) = X. Suppose Y ⊆ X and Y ⊢P a. By Lemma 4.5, we have
a ∈ αP ◦ ωP (Y ). Since αP ◦ ωP (Y ) ⊆ αP ◦ ωP (X) and αP ◦ ωP (X) = X, we
get a ∈ X.

For the other direction, suppose T is a deductively closed set, i.e., for any
a ∈ Pa, T ⊢P a implies a ∈ T . By Lemma 4.5 again, T ⊢P a means a ∈ αP ◦
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ωP (T ). Therefore, the deductive closeness of T implies that αP ◦ ωP (T ) ⊆ T ,
and T is a concept. 2

The finiteness of Pa is needed for the second part of the proof. Every
concept is a deductively closed set, but an infinite deductively closed set is
not necessarily a concept, as our example below shows.

Note that finiteness is a severe restriction theoretically. This restriction
represents a conceptual mismatch, rather than a technical shortcoming.

Note also that, by the earlier Representation Theorem 4.1, any information
system (A, Con,⊢) with a trivial consistency predicate determines a Chu space
which determines an isomorphic concept lattice. A simpler and more direct
construction exists. The required Chu space can be defined as follows. We can
take information states x as objects, and tokens a ∈ A as attributes, and let
x |= a iff a is a member of x. With respect to this Chu space, the extension of
a set of attributes B is the set [[B]] := {x | B ⊆ x}, where x is an information
state; the intension of [[B]] is the set {a | ∀x ∈ [[B]], a ∈ x}. The requirement
that B matches the intension of the extension of B can be stated precisely
as B = {a | ∀x ∈ [[B]], a ∈ x}, which amounts to the statement that B is
an information state of the original information system (A, Con,⊢), observe
that the information state generated by B is precisely the intension of the
extension of B.

From another perspective, the correspondence between information states
and formal concepts breaks down in the infinite case because information sys-
tems represent Scott domains, which are algebraic; on the other hand, concept
lattices, though bounded complete, need not be algebraic, as the following ex-
ample shows.

Example 4.8 We follow the construction given in the proof of Theorem 4.1
to construct a Chu space whose concepts form a lattice isomorphic to the one
pictured below. This lattice is not algebraic even if one turns it up side down.

0

1

t

-1

*

b

Fig. 1. A complete lattice which is not algebraic

According to the proof of Theorem 4.1, we obtain the Chu space given by
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the following table

P ↑t ↑b ↑∗ ↑0 ↑1 ↑2 · · · ↑−1 ↑−2 ↑−3 · · ·

t × × × × × × · · · × × × · · ·

b × · · · · · ·

* × × · · · · · ·

0 × × · · · × × × · · ·

1 × × × · · · × × × · · ·

2 × × × × × × × · · ·
...

...
...

...
...

...
...

...
...

. . .

-1 × × × × · · ·

-2 × × × · · ·

-3 × × · · ·
...

...
...

...
...

...
...

...
...

. . .

With respect to its corresponding information system, note that for any
finite subset X of { ↑i | i ≥ 0} ⊆ Pa, we do not have X ⊢ ∗ since ∗ is not a
member in α ◦ ω(X) (by Lemma 4.5). However, ∗ is a member of α ◦ ω{ ↑i |
i ≥ 0} and hence it is a member of the concept generated by { ↑i | i ≥ 0}.
In other words, we need “infinitary” implication { ↑i | i ≥ 0} ⊢ ∗ to capture
a concept, but this cannot be captured by finitary entailment relations. In a
sense, compactness fails here.

We can also see this from the proof of Theorem 4.1. While ∗ is a member
of

↓
⋂

{ ↑i | i ≥ 0} = ↓t,

t 6∈ ↓(
⋂

X) for any finite subset X of { ↑i | i ≥ 0}.

One can further observe that the composition α ◦ ω, though monotonic, is
not continuous.

We mention without proof a few conditions under which the concept lattice
is algebraic.

Proposition 4.9 For any context P , its corresponding concept lattice LP is
algebraic if and only if αP ◦ ωP is continuous.

The function αP◦ωP is continuous if there are no infinitely-checked columns.

Proposition 4.10 For any context P , αP ◦ ωP is continuous if for each a ∈
Pa, ωP{a} is a finite set.

Proposition 4.11 For any context P , α ◦ ω is continuous if the set {ωY |
Y finite} is well-founded.
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Proposition 4.12 For any context P , α ◦ ω is continuous iff for any b ∈ Pa

and any u ⊆ Pa, b ∈ (α ◦ ω)u implies b ∈ (α ◦ ω)X for some finite subset X

of u.

5 Towards data-mining applications

Many data sets are, or can be put into the form of, Chu spaces. In this section
we discuss some of the implications of our earlier results in the area of data-
mining and knowledge discovery. Pfaltz and his collaborators [18,19] have
done some interesting work on the minimal representation in concept lattices.

The first observation, although simple, is helpful. It is a well-known fact
in formal concept anaylsis.

Proposition 5.1 Let P = (Po, |=P , Pa) be a Chu space. For each object x ∈
Po, the set of its attributes αP{x} is a concept.

This gives immediate structural information about concept lattices: the set
of attributes collected from each row always forms a concept and, moreover,
any intersection of a subset of these concepts forms another concept.

Proposition 5.2 Let P = (Po, |=P , Pa) be a Chu space, and let Chu space
Q = (Qo, |=Q, Qa) be a structure obtained from P by adding a row without
changing the attribute set, i.e.,

- Qo = Po ∪ {n} where n is the “new” object,

- Pa = Qa,

- |=P =|=Q when restricted to Po × Pa.

Then the function pair (f, g) with f the identity function on Qa and g the
injection Po → Qo with x 7→ x is a Chu mapping from Q to P .

This is a more precise statement of Example 3.1. The upshot of it is that
since f is surjective and g is injective, we have, by Theorem 3.3, item 2, Y

is a concept if g+(Y ) is a concept, for any Y ⊆ Po. We can state this more
precisely in terms of attribute concepts, as follows.

Proposition 5.3 Let P = (Po, |=P , Pa) and Q = (Qo, |=Q, Qa) be Chu spaces
as given in the previous proposition: Q extends P by a row. Then every
attribute concept A of P is also an attribute concept of Q.

Of course, transitivity allows us to generalize this result to the case when
Q is an extension of P by adding rows, and this provides the foundation for
an iterative, “on-line” construction of concept lattices when the attribute set
is fixed (which is usually the case), but new data keep coming in, not all at
once.

13



Zhang

5.1 A closure-system centric view

The closure-system point of view is equivalent to that of Galois connections for
concept lattices. However, closure systems sometimes provide a more straight-
forward theoretic basis for data-mining algorithms.

Lemma 5.4 Let A be a set. Then the set of all closure systems over A forms
a (meta) closure system over P(A).

For closure systems C1 and C2 over A, let C := C1 ∩C2. One can check that
C is again a closure system over A. In general, intersection preserves closure
systems, and the intersection of an empty collection of closure systems over A

is the largest closure system P(A) over A.

As an immediate consequence of this lemma, any subset of the powerset
P(A) generates a closure system.

Lemma 5.5 Every subset of P(A) generates a closure system over A, which
is the smallest closure system containing the starting subset.

We can then view concept lattices as a generated closure system.

Proposition 5.6 Let P = (Po, |=P , Pa) be a Chu space. Then its concept
lattice LP is isomorphic to the closure system generated by the set {αP{x} |
x ∈ Po}. Dually, LP anti-isomorphic to the closure system generated by the
set {ωP{p} | p ∈ Pa}.

This brings flexibility for procedures for constructing concept lattices. For
example, one can partition Po into A∪B = Po, find the closure system gener-
ated by {αP{x} | x ∈ A} and {αP{x} | x ∈ B}, respectively, and then find the
closure system generated by the union of the two closure systems. This view
provides an easy-to-understand, straightforward way to justify the correctness
of many FCA related algorithms in the literature (for which correctness proofs
are not always provided).

6 Conclusions and future work

This paper has brought three relatively independent areas together: Chu
spaces, Formal Concepts, and Domains. The formulation and results pro-
vided here serve as a basis for many opportunities for further development, in
a number of directions. For example:

The notion of morphisms on general concept lattices needs to be further
explored, keeping Chu-mapping as a yard-stick. Continuous functions on
finite lattices may be the starting point, because there is a standard way to
define continuous functions on Scott’s information systems, as approximable
mappings.

Since the notion of contexts in FCA is the same as a special form of Chu
spaces, and Chu spaces come with well-defined and robust notions of mor-
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phisms, it would be desirable to provide a categorical account of the con-
struction L from Chu spaces to complete lattices. For example, can L be
seen as a part of a coreflection between a certain category of Chu spaces
and a certain category of complete lattices? Work reported in [14,16] may
be useful for understanding this categorical aspect.

Attributes in real-world data rarely come without some preliminary struc-
tural information. For example, one attribute many be in conflict with
another, for scientific or logical reasons (case in point: “four-legged animal”
and “two-legged animal”). In general, objects having all the attributes are
not interesting, even if they exit. It would be beneficial to explore a notion
of formal concepts with the constraint of a consistency predicate, in the
spirit of information systems. This will bring concept structures to cpos
without necessarily a top element, such as bounded complete cpos, if not
Scott domains.

A rich collection of constructions on Chu spaces exist, for the purpose of
modeling linear logic. It would be interesting to see which of those con-
structions can be useful for exploring the structure of data, and how and if
concepts are preserved with respect to these constructions.

In general, logical systems for reasoning about concept structures may be
profitably developed using a similar approach as “logic of domains”, or
semantics-based proof systems [1,8,12,30,32]. The information-flow theory
of Barwise [5] has already taken a step in this direction.

Last and maybe most, there is an explosion of research on ontology and on-
tological engineering over the last couple of years, sparked by the Semantic
Web initiative [6]. There seems to be a great deal of potential in exploring
FCA, information systems, and Chu constructions in this context, especially
with respect to the understanding of ontological structures and automated
learning of ontology from the Web.

Acknowledgment. Thanks go to Pascal Hitzler and John Pfaltz for stim-
ulating discussions related to formal concept analysis, and to Austin Melton
for pointers to Galois connections.
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