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Compact Coverages Generate Spectral Frames
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Abstract

This note proves a useful characterization of spectral frames: a frame is spectral if
and only if it can be generated from a compact coverage relation, where compactness
is defined in the usual topological sense.

1 Introduction

The concept of frames (or locales) arises in the study of topology by taking
the lattice of open sets as the starting point (this is the so-called pointless
topology). Spectral (or coherent) frames form an important subclass of frames
due to their property of being spatial [3]. Intuitively, they allow points to
come back into the picture, in the sense that each element of the frame can be
considered as a set of points, with the underlying partial order being recovered
as set inclusion.

Technically, points are completely prime filters. As such, they have the
logical standing of models. If one thinks of elements of a frame as propositional
formulas, with the underlying partial order interpreted as logical implication,
then spectral frames are complete when there exist enough models to capture
implication: one formula entails another exactly when every model of the first
formula is a model of the second.

Johnstone [3] introduces a way to generate a frame from a meet-semi-lattice
using the so-called coverage relation. The generated frame consists of C-ideals
under inclusion. He shows that spectral frames are exactly those which can
be generated from a distributive lattice with the standard coverage relation
associated with it. In this case C-ideals are precisely ideals and the generated
frame corresponds to the ideal completion of the distributive lattice.

This note gives a characterization of spectral frames directly in terms of
the coverage relation: a frame is spectral if and only if it can be generated
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from a compact coverage relation. Here we call a coverage relation compact if
it has the property that when a set covers an element, a finite subset of the
set already covers the element.

This result brings out the full advantage of the syntactic nature of the
coverage relation: with minimal amount of data (a meet-semi-lattice and a
coverage), we can not only generate a frame, but also know exactly when the
generated frame is spectral. This is especially useful when compactness of the
coverage relation is explicitly given, as in the case of sequent structures and
hyperresolution [1].

2 Frames and coverage

This section gives a brief review of the coverage relation to fix notation and
provide basic ideas.

A frame is a poset with finite meets and arbitrary joins which satisfies the
infinite distributive law

x ∧
∨

Y =
∨

{x ∧ y | y ∈ Y }.

For frames F and G, a frame morphism is a function f : F → G that preserves
finite meets and arbitrary joins. Frames are also called locales.

Note that any function which preserves finite meets must be monotonic: if
a ≤ b then

f(a) = f(a ∧ b) = f(a) ∧ f(b) ≤ f(b).

Johnstone ([3], page 57) provides a way to construct a frame from a meet-
semi-lattice based on the notion of coverage relation.

Definition 2.1 Let (S,∧,≤) be a meet-semi-lattice. A coverage on S is a
relation ≻⊆ 2S × S satisfying

(i) if Y ≻ a then a is an upper bound of Y with respect to ≤.

(ii) if Y ≻ a then for any b ≤ a, {y ∧ b | y ∈ Y } ≻ b.

A coverage relation (or coverage) ≻ is called compact if for every X ⊆ S and
every a ∈ S,

X ≻ a implies Y ≻ a for some finite Y ⊆fin X.

A ≻-ideal determined by coverage ≻ is a subset I of S which is

(i) lower-closed: a ∈ I & b ≤ a ⇒ b ∈ I,

(ii) covered: U ≻ a & U ⊆ I ⇒ a ∈ I.

A meet-semi-lattice S equipped with a coverage ≻ is called a site. A frame
H with i : S → H is said to be generated from a site (S,≻) if

• i preserves finite meets,

• i transforms covers to joins: Y ≻ a ⇒ i(a) =
∨

i(Y ), and
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• H, i is universal, i.e., for any frame F and any meet-preserving and cover-
to-join transforming function f : S → F , there exists a unique frame mor-
phism g : H → F such that the following diagram commutes:

S

?
H

-F
f

i

�
�

�
���

∃!g
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Note that such a universal property guarantees that the generated frame
is unique up to isomorphism.

Note also that the requirement for U to be part of the lower set of a can
be dropped in the formula U ≻ a. This is because the other condition can be
used to recover this property: if U ≻ a, then {x ∧ a | x ∈ U} ≻ a ∧ a.

The concept of coverage has a clear topological interpretation. If the el-
ements of a frame are considered as open sets, then U ≻ a says that the
collection of open sets U covers the open set a in the standard sense. When
this happens, one can of course find a cover of a whose members are subsets
of a. Under this interpretation the compactness property says that “basis”
open sets in S are assumed to be topologically compact to start with.

Here is Johnstone’s fundamental result for the coverage relation.

Theorem 2.2 (Coverage Theorem) The collection of ≻-ideals under in-
clusion is the frame generated from a site (S,≻).

Proofs for this basic theorem can be found in [3] and in [4]. We summarize
some of the key ideas used in the proof below, some of which will be used in
the next section.

Note that ≻-ideals are closed under arbitrary intersections, and S itself
is the largest ≻-ideal. This property allows us to talk about the ≻-ideal cU
generated by an arbitrary set U ⊆ S, which is the intersection of all ≻-ideals
containing U . Also, since ≻-ideals are downwards closed, we clearly have
cU = c ↓U , where ↓U := {x ∈ S | (∃y ∈ U) x ≤ y}. Sets with the property
U = ↓U are called lower sets.

To show that ≻-ideals form a frame, one needs to verify the infinite dis-
tributive law. However, this reduces to the fact that the mapping c preserves
finite meets on lower sets, i.e.,

Lemma 2.3 For any lower sets U, V , c(U ∩ V ) = cU ∩ cV.

Once this is proven, then the intersection of two ≻-ideals is a ≻-ideal, and
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so

I ∩
∨

i
Ji = cI ∩ c(

⋃
i
Ji)

= c(I ∩
⋃

i
Ji)

= c(
⋃

i
(I ∩ Ji))

=
∨

i
(I ∩ Ji).

where I and Ji are arbitrary ≻-ideals.

A crucial “quotient” construction is used to prove Lemma 2.3. For K, U ⊆
S, the quotient K/U is defined to be the set {x ∈ S | (∀y ∈ U)x ∧ y ∈ K}.
Quotients have several important properties:

(i) If K is a ≻-ideal then K/U is a ≻-ideal.

(ii) For any lowersets U, V , U ∩ V ⊆ K iff U ⊆ K/V iff V ⊆ K/U.

(iii) For any lowersets U, V , we have (U/V ) ∩ V ⊆ U and V ⊆ U/(U/V ).

To show c(U ∩ V ) ⊇ cU ∩ cV, let I be a ≻-ideal such that U ∩ V ⊆ I.
Since both I/U and I/(I/U) are ≻-ideals, we have

cU ∩ cV

⊆ (I/(I/U)) ∩ (I/U)

⊆ I.

Now let I = c(U ∩ V ) to get the desired containment.

We end this section by indicating the morphisms used in the defining dia-
gram for the generated frame (Definition 2.1). Let H be Idl≻(S), the collection
of ≻-ideals of a site (S,≻), under inclusion. The mapping i : S → Idl≻(S) is
defined as a 7−→ c{a} for all a ∈ S. For any other such map f : S → F with
F a frame, define g : Idl≻(S) → F by I 7−→

∨
f(I) for any ≻-ideal I.

One last property is used in showing that g is the unique mapping such
that f = g ◦ i: for any map f : S → F which preserves finite meets and
transforms covers to joins, the set f−1( ↓x) is a ≻-ideal for any x ∈ F .

3 Spectral frames and compact coverages

In this section we prove the main result of this note, followed by a couple of
examples.

Recall that a coverage relation ≻ over a meet-semi-lattice (S,∧,≤) is called
compact if for every X ⊆ S and every a ∈ S,

X ≻ a ⇒ Y ≻ a for some Y ⊆fin X.

Theorem 3.1 A frame is spectral if and only if it can be generated from a
compact coverage relation.
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By a proposition of Johnstone ([3], page 64), any spectral frame is gen-
erated by a compact coverage relation, which is the standard one associated
with a distributive lattice: U ≻ a if U ⊆↓a and there exists a finite subset X
of U such that a = ∨X.

We introduce a couple of lemmas first to prepare for the proof of the other
direction.

Lemma 3.2 If (S,≻) is a site for which the coverage relation ≻ is compact,
then for any directed set F of ≻-ideals, we have

∨
F =

⋃
F.

Proof. It suffices to show that
⋃

F is a ≻-ideal. It is clearly lower-closed.
It is also covered: suppose X ⊆

⋃
F and X ≻ a. By the compactness of ≻,

there is a finite subset Y of X such that Y ≻ a. However, since Y ⊆
⋃

F
with Y finite and F directed, we know that Y ⊆ I for some I ∈ F . Therefore,
a ∈ I since I is covered. Hence a ∈

⋃
F .

2

The next lemma characterizes compact ≻-ideals.

Lemma 3.3 Suppose (S,≻) is a site and ≻ is compact. Then a ≻-ideal is
finite (i.e. a compact element in the generated frame) if and only if it is
generated by a finite subset of S.

Proof. Consider cU for some finite subset U of S. If cU ⊆
∨

F for some
directed set F , then cU ⊆

⋃
F , by Lemma 3.2. Since U is finite and U ⊆

⋃
F ,

U ⊆ I for some I ∈ F . Therefore, cU ⊆ I. This shows that a ≻-ideal
generated from a finite set is a compact element in the generated frame.

Suppose, on the other hand, that K is a compact element in Idl≻(S). We
have

K ⊆
∨

{cX | X ⊆fin K},

with the right hand side being a directed set. Therefore, K = cX for some
finite subset X of K, by the compactness of K.

2

PROOF of Theorem 3.1. Let (S,≻) be a site with ≻ compact. We need
to show that the generated frame (Idl≻(S),⊆) is spectral (or coherent).

According to Johnstone ([3], page 63), all we need to show is that

(i) every ≻-ideal is expressible as a join of finite elements, and

(ii) the finite elements form a sublattice of Idl≻(S), i.e., c{1} is finite, where
1 is the top of S, and the meet of two finite elements is finite.

By Lemma 3.3, it is clear that every ≻-ideal is expressible as a (directed)
join of finite elements, using the formula

I =
∨

{cX | X ⊆fin I}.
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Also by Lemma 3.3, c{1} is finite.

Now let I, J be finite elements. By Lemma 3.3, there exist finite sets X, Y
such that I = cX and J = cY . It suffices to show that

I ∩ J = c{x ∧ y | x ∈ X & y ∈ Y }

as {x ∧ y | x ∈ X & y ∈ Y } is a finite set. By Lemma 2.3, we have

I ∩ J = cX ∩ cY = c↓X ∩ c↓Y = c( ↓X ∩ ↓Y ).

Now the desired result follows because we have the equality

↓X ∩ ↓Y = ↓{x ∧ y | x ∈ X & y ∈ Y }.

2

For an example of a coverage relation which is not compact, consider the
lattice (P(ω),⊆), the powerset lattice consisting of all subsets of ω. For any
U ⊆ P(ω) and x ∈ P(ω), write U ≻ x if y ⊆ x for all y ∈ U and

⋃
U = x.

One can easily check that this is indeed a coverage relation. It is clearly not
compact because x can be an infinite set. And indeed, the generated frame is
not spectral, because c{ω} is not finite: we have ↓{ω} =

∨
{cX | X ⊆fin ω}

and yet ↓{ω} is not a subset of any cX ( ↓X) for finite X. Interestingly, the
generated frame seems to be spatial, nevertheless.

Note that we cannot in general claim that the generated frame is not
spectral if ≻ is not compact. The same frame may be isomorphic to a frame
generated by a different, yet compact coverage. For a tighter correspondence,
we must use the weakly compact property:

X ≻ a ⇒ a ∈ cY for some Y ⊆fin X.

This then will allow us to prove the following, whose proof is similar to the
one for Theorem 3.1:

Theorem 3.4 Let (S,≻) be a site. Then (Idl≻(S),⊆) is spectral if and only
if ≻ satisfies the weakly compact property.

We end the note with a positive example: the frames generated from the
so-called entailment relations [1].

Example. An entailment relation is a set A together with a relation ⊢
on the set Fin(A) of finite subsets of A, satisfying certain properties that
should not concern us here. One can introduce a coverage relation over the
meet-semi-lattice (Fin(A),∪,⊇) by the definition

{{a1} ∪ X, {a2} ∪ X, . . . , {an} ∪ X} ≻ X iff X ⊢ a1, . . . , an.

Since such a coverage relation is clearly compact, we know right away that the
generated frame is spectral (and hence spatial), by Theorem 3.1. An interest-
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ing result reported in [1] is that the frame generated by this compact coverage
relation is isomorphic to the collection of disjunctive states, derived indepen-
dently from the hyper-resolution rule as used in disjunctive logic programs.
Since the generated frame is spatial, we obtain a desirable notion of “models”
(of disjunctive logic programs) for free, and we also obtain the completeness
of hyper-resolution for free.
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