Electronic Notes in Theoretical Computer Science 83 (2004)
URL: http://www.elsevier.nl/locate/entcs/volume83.html| 32 pages

Secure Protocol Composition

Anupam Dattd Ante Derek' John C. Mitchell

Computer Science Department
Stanford University
Stanford, CA 94305-9045

Dusko Pavlovié

Kestrel Institute
Palo Alto, CA 94304

Abstract

This paper continues the program initiated in [5], towardiegvation system for security
protocols. The general idea is that complex protocols cdarsally derived, starting from

basic security components, using a sequence of refinemeahtsaamsformations, just like

logical proofs are derived starting from axioms, using prages and transformations. The
claim is that in practice, many protocols are already ddrimesuch a way, but informally.

Capturing this practice in a suitable formalism turns outéc considerable task.

The present paper proposes rules for composing securitgqmis from given security
components. In general, security protocols are, of counsiecompositional: information
revealed by one may interfere with the security of the othiervever, annotating protocol
steps by pre- and post-conditions, allows secure seqlientigosition. Establishing that
protocol components satisfy each other’s invariants alavere general forms of compo-
sition, ensuring that the individually secure sub-protseaeuill not interact insecurely in the
composite protocol. The applicability of the method is destmated on modular deriva-
tions of two standard protocols, together with their singgeurity properties.

1 Introduction

Modularity is a central problem in computer security and avpn challenge to
many investigators (includin@ [20,21)2223,24]). In thégper, we explore modular
construction of network protocols and present a systeme@saning about com-
pound protocols from their parts. In general terms, we aftwo basic problems
in modular security. The first may be calledditive combinatior- we wish to

1 {danupam ader ek, j cm@s. st anf or d. edu
2 dusko@xestrel . edu

(©2004 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume83.html

DATTA, DEREK, MITCHELL & PAVLOVIC

combine protocol components in a way that accumulates isgquoperties. For

example, we may wish to combine a basic key exchange protattobn authen-

tication mechanism to produce a protocol for authentickimdexchange. The
second basic problem is ensuringndestructive combinatioif two mechanisms

are combined, each serving a separate purpose, then it istempto be sure that
neither one degrades the security properties of the otbeexample, if we add an
alternative mode of operation to a protocol, then some pa#y initiate a session
in one mode and simultaneously respond to another sessamother mode, using
the same public key or long-term key in both. Unless the madeslesigned not
to interfere, there may be an attack on the multi-mode podtbat would not arise
if only one mode were possible. An interesting illustratafrthe significants of

nondestructive combination is the constructionin [16] ethshows that for every
security protocol there is another protocol that interagth it insecurely.

Recognizing that many common network protocols are buitigian accepted
set of standard concepts, we have identified a set of basip@oamts, protocol
composition operations, protocol refinements, and protoaosformations for au-
thentication and key exchange protocols. [Ih [5], we charas the structure of
a family of key exchange protocols that includes StatiorSTation (STS), 1SO-
9798-3, Just Fast Keying (JFK) and related protocols, shg\wow all the proto-
cols in this family may be derived systematically. (In ortiemake this submis-
sion more self-contained, a very cursory overview is caordiin AppendixXE.)
We have also constructed systematic derivations of otmeilies of protocols, in
each case showing how a simple starting protocol may be @gteimncrementally
adding properties or optimizing performance in each stephil&\the derivation
system seems a useful tool for developing and understanmiotgcols, we have
not yet been able to prove that each derivation step is saurallfprotocols where
it could be applied. In this paper, we show how to prove canesxs of additive and
nondestructive combinations of protocol components.

Intuitively, additive combination is captured by a befaféer formalism for
reasoning about steps in protocol execution. Suppbiea sequence of protocol
steps, and andy are formulas asserting secrecy of some data, past actiaigef
principals, or other facts about a run of a protocol. Thdérifj P| 4¢» means that
if ¢ is true before principall does actiong?, then« will be true afterwards. For
example, the precondition might assert tAatnows B’s public key, the action®
allow A to receive a signed message and veHfy signature, and the postcondition
may say thaB sent the signed message tHateceived. The importance of before-
after assertions is that we can combine assertions abavidodl protocol steps to
derive properties of a sequence of stepsp|P] 41 andy[P’'] 46, thend[PP'] 40.
For example, an assertion assuming that keys have beersstudtedistributed can
be combined with steps that do key distribution to prove prgs of a protocol
that distributes keys and uses them.

We ensure nondestructive combination, which is usefuldasoning about run-
ning older versions of a protocol concurrently with curreatsions (e.g., SSR.0
and SSL3.0) and for verifying protocols like IKE[]13] which contain argge num-

2

DATTA, DEREK, MITCHELL & PAVLOVIC

ber of sub-protocols, using invariance assertions. The&aesssertion in our rea-
soning system[’ - ¢[P] %, says that in any protocol satisfying the invaridnt
the before-after assertiaf| P] 4 holds in any run (regardless of any actions by
any dishonest attacker). Typically, our invariants aréestents about principals
that follow the rules of a protocol, as are the final conclnosioFor example, an
invariant may state that every honest principal maintagesey of its keys, where
“honest” means simply that the principal only performs @us$i that are given by
the protocol. A conclusion in such a protocol may be that ibB® honest (so
no one else knows his key), then after Alice sends and recemgain messages,
Alice knows that she has communicated with Bob. Under theiBpeonditions
described in this paper, nondestructive combination aoatnen two protocols are
combined and neither violates the invariants of the other.

As informally described, “additive combination” and “nasructive combi-
nation” may seem like overlapping concepts, at least to #grek that additive
combination assumes that the added steps do not destroyeanstg properties.
In our logic, we factor the two concepts into two separatéomst one for adding
steps to a protocol under some assumed invariants, andearfiottshowing that a
combination of protocol steps preserves a set of invariditse specifically, if we
want to add an authentication step to a protocol, we first sivatvthe additional
step preserves the same needed invariants. Then, undesstimag@tion that invari-
ants are preserved, we combine properties guaranteed byasegteps. There is
some synergy in this approach, since the logical principksd to prove an in-
variant are the same as those used to prove protocol prep&im a given set of
invariants.

To show the utility of our logic for practical protocols, weggent three exam-
ples. Exampl€®l1 is a formal correctness proofSD-9798-3, constructed by
composing proofs of two parts, a standard signature-bdsabtboge response pro-
tocol [28], and a Diffie-Hellman key exchange protocadl [6}xanple[6.2 proves
correctness of a protocol that exchanges certificates éblest public keys, and
then uses public-key cryptography and nonces to estabb$laed secret. Exam-
ple[6.3 combines the two, showing that running any numbensthinces ofSO-
9798-3and the Needham-Schroeder public-key protocol in parpheterves the
security properties of both. While the formal proofs are samat lengthy when
written out in full detail, as in any formal proof system, theof structure takes
advantage of composition ideas and illustrates the powearrabdular approach.
Although the assertions we prove only mention steps of thé&opol, the logic is
sound in a stronger sense: each provable assertion aboatiam @r sequence of
actions holds in any run of the protocol that contains themga&ctions and arbitrary
additional actions by any number of additional principald enalicious attacker(s).
This “implicit attacker” method lets us prove security peojes of protocols under
attack, while reasoning only about the sequence of actakentby honest parties
in the protocol.

It is well known that many natural security properties (ermpninterference)
are not preserved either under composition or under refinerméis has been ex-

3

DATTA, DEREK, MITCHELL & PAVLOVIC

A_ [] oO————>0
gla gbv{‘g(I’igva‘}E {gaug\JLan’A
B o———>0 [

Fig. 1.1S0O-9798-3s arrows-and-messages

tensively explored using trace-based modeling technifR@&21.,2%,213,24], using

properties that are not first-order predicates over trdngsecond-order predicates
over sets of traces that may not have closure propertiessmonding to composi-

tion and refinement. In contrast, our security propertiessarfety properties over
sets of traces that satisfy safety invariants, thus avgidiegative results about
composability.

The rest of the paper is organized as follows. Sec?iaiscusses the process
calculus that we use for defining the steps of a protocol. Ti¢ag and seman-
tics of the core protocol logic is presented in Sectiorirhe proof system is pre-
sented in Sectiod. Section5 describes the extensions to the core proof system
used to reason about protocol composition. In Sedtiome illustrate applications
of the logic. In Sectiori7, we describe previous work on protocol composition
[4)17012,14,16,18,27,36] and discuss how our formabratan be used to explain
some of those results. Finally, in Secti®&rwe present our conclusions and propose
some themes for future work.

2 Cord Calculus

Cords[9] are the formalism we use to represent protocols and theaits. They
form an action calculus [29,80,33], basedowralculus [31], and related tepi-
calculus|1]. The cords formalism is also similar to the agmwh of the Chemical
Abstract Machine formalism_[3], in that the communicati@i@ns can be viewed
as reactions between “molecules”. Cord calculus servesase “protocol pro-
gramming language” which supports our Floyd-Hoare stytgcal annotations,
and verifications in an axiomatic semantics. Cord calcudyzrésented i [9]. In
order to make this paper self-contained, a brief summangcisded in AppendikA.
In this section, we illustrate with an example how proto@uks represented in
cord calculus. Figurd 1 shows tHe0O-9798-3rotocol [15] in the informal arrows-
and-messages notation which is commonly used to desciGbetyegprotocols. The
same protocol is written out in the language of cord calcutuBigure[2. The
common point between the two is that a protocol is describetising out the
sequence of actions that honest parties would execute in.alruthis example,
the protocol consists of two roles, the initiator role and thsponder role. The
sequence of actions in the initiator role are given by thel corin Figure[2. In
words, the actions are: generate a fresh random number; ss@melssage with
the Diffie-Hellman exponential of that number to the pe%;r receive a message
with source addres®; verify that the message contaifts - signature over data
in the expected format; and finally, send another messagevtith the initiator’s

4

DATTA, DEREK, MITCHELL & PAVLOVIC

A= [(Z/CL) <A E?.gaXB? Av n, {|ga7 n, A|}§/B A? Y, Z) (Z/{|ga7 Y, A‘}B) <A7 Bv {|ga7 Y, B|}Z>}

B= KXvaTTl) (l/b) <Bvagbv {‘mvgb7)2|}§> (X,B, {|7n79bvé|}f)]
Fig. 2.1S0O-9798-3&s a cord space

signature over the Diffie-Hellman exponential that she Betite first message, the
data she received froi (which should be a Diffie-Hellman exponential generated
by B) andB’s identity. The notationéz), (t), (z) refer respectively to the actions
of nonce generation, sending a term and receiving a messhige, a message is
assumed to be of the form: (source, destination, contergjail@d syntax of cord
calculus is presented in AppendiX A.

3 A Protocol Logic

3.1 Syntax

The formulas of the logic are given by the grammar in Tdble Aengp may be
any role, written using the notation of cord calculus. Herand P denote a term
and a process respectively. We use the wanatessto refer to a principal exe-
cuting an instance of a role, e.g., Alice taking part in a isesef a protocol in
the initiator role. As a notational convention, we useto refer to a process be-
longing to principalX. We usep ande to indicate predicate formulas, amd to
indicate a generic term we call a “message’’is of the form (source, destination,
protocol-identifier, content), i.e., each message hascecamd destination fields
and a unique protocol identifier besides the contents. Nwtethe source field of
a message may not be the same as the actual sender of the engissagthe in-
truder can spoof the source address. Also, the principatifted by the destination
field may not receive the message since the intruder carcegemessages. The
source and destination fields in the message are useful prioMing authentication
properties of protocols. When an honest principal sends.oo¢ssage, the source
field identifies her and the destination field identifies themded recipient. Our
formalization of authentication is based on the notion ofahimg records of runs
[7] which requires that whenevet and B accept each other’s identities at the end
of a run, their records of the run should match, i.e., eactsamssthatd sent was
received byB and vice versa, each send event happened before the cordéspo
receive event, and moreover the messages sent by eactppti@ator B) appear in
the same order in both the records. Including the source esithétion fields in the
message allows us to match up send-receive actions. Sitius paper, we reason
about correctness of a protocol in an environment in whidteloprotocols may
be executing concurrently, it is important that whérand B accept each other’s
identities, they also agree on which protocol they haveesgfally completed with
the other. One way to extend the matching histories charaat®n to capture this
requirement is by adding protocol identifiers to messageswy M A and B have
matching histories at the end of a run, not only do they agngb@source, destina-

5

DATTA, DEREK, MITCHELL & PAVLOVIC

tion and content of each message, but also on which protoisaiin is an instance
of.

Most protocol proofs use formulas of the fothP] x ¢, which means that after
actionsP are executed in process, starting from a state where formulas true,
formula¢ is true about the resulting state &f. Here are the informal interpreta-
tions of the predicates, with the basis for defining precesaamntics discussed in
the next section.

The formulaHas(X, =) means that principaf(possesses informatianin the
processX. This is “possesses” in the limited sense of having eitheegged the
data or received it in the clear or received it under encoyptivhere the decryp-
tion key is known. The formul&end(X, m) means that the last action in a run of
the protocol corresponds to princip&l sending message in in the processX.
Receive(X, m), New(X,t), Decrypt(X,t), and Verify(X,t) are similarly associ-
ated with the receive, new, decrypt and signature veritioaictions of a protocol.
Fresh(X, t) means that the tertngenerated irX is “fresh” in the sense that no one
else has seen any term containings a subterm. Typically, a fresh term will be a
nonce and freshness will be used to reason about the tengydaing of actions
in runs of a protocol. This form of reasoning is useful in pngvauthentication
properties of protocols. The formula)nest(X') means that the actions of princi-
pal X in the current run are precisely an interleaving of initiegjsients of traces
of a set of roles of the protocol. In other word§,assumes some set of roles and
does exactly the actions prescribed by thé€mntains(t;, t2) means that, is a sub-
term oft,. This predicate helps us identify the components of a messeue two
temporal operatorg> and(© have the same meaning as in Linear Temporal Logic
[19]. Since we view a run as a linear sequence of stafes) means that in some
state in the pasp holds, whereag) ¢ means that in the previous statenolds.
The predicaté\fter(a;, a5) means that the actian, happened after the actian in
a run. In this paper, we restrict attention to protocol raeg/hich all actions are
unique. In particular, a principal executing a role of a pooil does not send the
same message twice. This seems like a reasonable assusiptierven if she did
send two messages with the same content, she would prokiabhgdish the two
by using message sequence numbers or a similar mechanigntedfmnical benefit
of this assumption is thaifter becomes a transitive relation for actions executed
by honest principals.

We note here that the temporal operatorand some of the predicateSead,
Receive) bear semblance to those used in NPATRL [35], the tempogaiirements
language for the NRL Protocol Analyzér [25,26]. HoweverjleNPATRL is used
for specifying protocol requirements, our logic is alsodise infer properties of
protocols. This leads to essential semantical differences

3.2 Semantics

A formula may be true or false at a run of a protocol. More @elg, the main
semantic relation@, R = ¢, may be read, “formula holds for runR of protocol

6

DATTA, DEREK, MITCHELL & PAVLOVIC

Action formulas
a == Send(P, m) | Receive(P,m) | New(P,t) | Decrypt(P,t) | Verify(P,t)
Formulas
¢ ::= a|Has(P,t)|Fresh(P,t)|Honest(V) | Contains(ty,ts) |
b G| 6|F0.0] S6|O0

Modal forms

Vi=polopd
After(a,b) = & (b AOS a)

Table 1
Syntax of the logic

Q.” In this relation, R may be a complete run, with all sessions that are started in
the run completed, or an incomplete run with some principaising for additional
messages to complete one or more sessior@isfa protocol, then le@ be the set
of all initial configurations of protoco, each including a possible intruder cord.
Let Runs(Q) be the set of all runs of protoc@ with intruder, each a sequence of
reaction steps within a cord space.¢lhas free variables, theR, R = ¢ if we
have@, R |= o¢ for all substitutiong that eliminate all the free variablesdn We
write Q = ¢ if Q, R |= ¢ for all R € Runs(Q).

The inductive definition of), R = ¢ is given in AppendiXTB. The main idea
is to view a run as a sequence of reaction steps within a cacksgach reaction
step corresponds to a principal executing an action. Iefbee becomes possible
to assert whether a particular action occurred in a giverandhalso to make as-
sertions about the temporal ordering of the actions. Anradtéve view, similar to
the execution model used in defining Linear Temporal Logid_{Lsemantics, is to
think of a run as a linear sequence of states. Transition Goeistate to the next is
effected by an action carried out by some principal in sonhe rAssociating that
action with the state that the system ends up in as a conseguaiows us to use
the well-understood terminology of LTL in our logic. A fordauis true in a run if
it is true in the last state of that run. An action formules therefore true in a run
if it is the last action in that run. On the other hand, a pashida < a is true if in
the past the action formukawas true in some state, i.e., if the action had occurred

in the past.

DATTA, DEREK, MITCHELL & PAVLOVIC

AA1 ¢la]x
AN1 ¢|(vn

[alx & (a A O0)
(
AN2 ¢[(
(
(

&

Jx Has(X,n)
Jx Has(Y,n) D (Y = X)
|x Fresh(X,n)

X Has ()

)
vn)
ANS3 ¢[(vn)
AR1 ¢[(m)]

Table 2
Axioms for protocol actions

4 Proof System

4.1 Axioms for Protocol Actions

The axioms about protocol actions are listed in Table 2. #dlaxioms state prop-
erties that hold in the state reached by executing one ofcdtiens in a state in
which formula¢ holds. Note that the in axiom A A1 is any one of thé actions
anda is the corresponding predicate in the logi&.A1 states that if a principal
has executed an action in some role, then the correspondidgpte asserting that
the action had occurred in the past is true. Also, in the previstatey is true. If
processX generates a new valueand does no further actions, then axidaN1
says thatX knowsn, AN2 says that no one else knowsand A N3 says that is
fresh. AR1 says that itX has received a messagge then she knows..

4.2 Axioms relating Atomic Predicates

Table[3 lists axioms relating various propositional projest most of which follow
naturally from the semantics of propositional formulasr &le DEC states
that if X decrypts{|n|} x, thenX knowsn because that is the result of the decryp-
tion, andPROJ states that if a process knows a tupley then he also knows
andy. VER andSEC respectively refer to the unforgeability of signatures and
the need to possess the private key in order to decrypt a geesserypted with
the corresponding public key. The additional conditionuigiqg principal X to

be honest guarantees that the intruder is not in possesisiba private keys. The
above described four axioms together provide an abstrecfithe standard Dolev-
Yao intruder model]8]. An important axiom I§1 which states that if a process

has generated a valug then that value is distinct from all other values generated
in all other roles.N2 states that freshly generated values are distinct fromeDiffi
Hellman exponentialsk'l states that fresh values generated in different processes
are distinct.N1, N2, andF1 together capture the intuition that fresh nonces and
Diffie-Hellman exponentials are unique. FinallyON states that the tuple, y
containsr andy as subterms.

DATTA, DEREK, MITCHELL & PAVLOVIC

Axioms Capturing Dolev-Yao Model:
DEC & Decrypt(X,{|n[}x) D Has(X,n)
PROJ Has(X, (z,y)) D Has(X, z) A Has(X, y)
SEC Honest(X) A & Decrypt(Y, {n}x) D (Y = X)
VER Honest(X) A & Verify(Y, {{n}x) D
3X.3m.(&S Send (X, m) A Contains(m, {|n|}+))
Axioms Capturing Uniqueness of Nonces:
N1 & New(X,n) AN &S New(Y,n) D (X =Y)
N2 & New (X, p) D =S New(Y, ¢")
F1 & Fresh(X,n) A & Fresh(Y,n) D (X =Y)
Axiom Capturing Subterm Relationship:
CON Contains((z,y),x) A Contains((z,y),y)

Table 3
Relationship between properties

4.3 Inference Rules, Preservation and Freshness Loss Axiom

Table[4 collects the inference rules and some additionainasi The generic in-
ference rules follow naturally from the semanti€$2 is exactly of the same form
as the rule of consequence in Hoare Logic. It is clear that preslicates are pre-
served by additional actions. For example, if in some dtatg X', n) holds, then

it continues to hold, whelX executes additional actions. Intuitively, if a process
possesses some information at a point in a run, then she reensmh for the rest
of the run. Note, however, that theesh predicate is not preserved if the freshly
generated value is sent out in a message (g

4.4 Axioms and Rules for Temporal Ordering

In order to prove mutual authentication, we need to reasontabe temporal or-
dering of actions carried out by different processes. F pirpose, we use a
fragment of the proof system for Propositional Linear Temapbogic, PLTL (Ta-
ble[). Seel[34] for a complete axiomatization of PLTL. Théoaxs and rules
specific to the temporal ordering of actions are presentddlite[. The first two
rules are fairly straightforwardA F1 orders the actions within a role. This is con-
sistent with the way we view a role as an ordered sequencdiohacAF2 states
that theAfter relation is transitive on actions executed by honest ppdids. It
makes sense since we assume that in a role of a protocol, asthmmcipal does
not send the same message twidel'3 and AF4 use the freshness of nonces to
reason about the ordering of actions carried out by diffigpencesses. Intuitively,
AF3 states that if a process creates a fresh valueand then sends out a message
containing it as a subterm, then any action carried out byatingr process which

9

DATTA, DEREK, MITCHELL & PAVLOVIC

Generic Rules:

olPlxo OPIxv O[Flxo 620 6259 ¢ 3u.6(x)
O[P]xd A1) 0[P x¢' 0[P]x¢ ¢(co)
Preservation Axioms: (Fd®ersist € {Has, & ¢},)

P1 Persist(X,t)[a] xPersist(X, t)
P2 Fresh(X,t)[a]xFresh(X,t), where(t Z a) V (a # (m))
P3 HasAlone(X,t)[a] xHasAlone(X, t), where(t Z, a) V (a # (m))

Freshness Loss Axiom:

F Fresh(X,t)[(m)]x—Fresh(X,t), where(t C m)

Table 4
Generic Rules, Preservation and Freshness Loss Axioms

involvesn (e.g. ifY receives a message containimgnside a signature), happens
after the send actionrAF4 is similar except for the fact that the roles &fandY
are reversed.

4.5 The Honesty Rule

The honesty rule is essentially an invariance rule for prgyroperties of all roles
of a protocol. It is similar to the basic invariance rule oflLJL9]. The honesty
rule is used to combine facts about one role with inferresbastof other roles. For
example, suppose Alice receives a response from a messdage Beb. Alice may
wish to use properties of Bob’s role to reason about how Boleigged his reply. In
order to do so, Alice may assume that Bob is honest and desiveegjuences from
this assumption. Since honesty, by definition in our franmawmeans “following
one or more roles of the protocol,” honest principals mutisaevery property
that is a provable invariant of the protocol roles.

Recall that a protocoQ is a set of roles@Q = {p1,p2,...,pr}. If p € Qisa
role of protocolQ, we write PeBS(p) if P is a continuous segment of the actions
of role p such that (a)? is the empty sequence; or (b)starts at the beginning @f
and goes upto the first receive ; or (€)starts from a receive action and goes upto
the next receive action; or (d starts from the last receive action and continues till
the end of the role. We call suchfaabasic sequencef role p. The reason for only

10

DATTA, DEREK, MITCHELL & PAVLOVIC

PLTL Axioms:

T1 O (0AY) D (O NS W)
T2 S (9VY)D (O oV O Y)
T3 O=¢ = 09

Temporal Generalization Rule:

TGEN

Temporal Ordering of actions:
AF1 9[0,1 R an]X After(al, 32) AL A After(an_l, an)

A A A

AF2 Honest(X) A Honest(Y) A Honest(Z) D
(After(a(X),ax(Y)) A After(ax(Y), a3(Z)) D After(ai(X),a3(2)))

Fresh(X,n)[(m)Plx (¢ D S ax(Y))

Fresh(X,n)[(m)P]x (¢ D After(Send(X,m), ay)) AF3 (X #Y)A(n Cm,ar)

O[Pas)x (¢ D & (Send (Y, m) A ©OFresh(Y,n)))
O[Pas)x (¢ D After(Send(Y,m),az))

Table 5
Axioms and rules for temporal ordering

AF4 (X #Y)A(n Cm,ap)

considering segments starting from a read and continuiintpéi next read is that
if a role contains a send, the send may be done asynchronaitlstyut waiting for
another role to receive. Therefore, we can assume withestdd generality that
the only “pausing” states of a principal are those whereakeeis waiting for input.
If a role calls for a message to be sent, then we dictate tkegtrihcipal following
this role must complete the send before pausing.

Since the honesty rule depends on the protocol, we \@ited|[P]¢ if 0[P]¢ is
provable using the honesty rule f@ and the other axioms and proof rules. Using
the notation just introduced, the honesty rule may be writig follows.

no free variable i
[xé Vpe QVPeBS(p). ¢ [Plx ¢ |
A HON exceptX boundin
Q I Honest(X) D ¢
[P]x

In words, if ¢ holds at the beginning of every role gfand is preserved by all
its basic sequences, then every honest principal execptotgcol Q must satisfy

11

DATTA, DEREK, MITCHELL & PAVLOVIC

I'-¢ w [¢1[Plags F|_¢2[P/]A¢3CI QrT Q’FPCZ
FTul’t ¢ F|—<b1[P;P’]A¢3 Qo FT
Table 6

Composition Rules

¢. The side condition prevents free variables in the conehuionest(X) > ¢
from becoming bound in any hypothesis. Intuitively, sincéolds in the initial
state and is preserved by all basic sequences, it holds paading states of any
run.

5 Formalizing Protocol Composition

Until this point, protocols have been analyzed in isolatibnthis section, we ex-
tend the deductive system to reason about protocol connposiin doing so, we
address the two ways in which composition problems can arisecurity protocol
analysis. Both arise out of complexity. In one case, we wisfein control of com-
plexity by building up a proof of correctness of a complextponl from proofs of
correctness of its component sub-protocols. In the othervant to avoid insecure
interactions between different protocols or differentsiens of the same protocol
that may be operating over the same network.

The protocol composition rules are collected in TdlleI6denotes a set of
formulas which we refer to amnvironment invariantsThe idea is to capture, using
these formulas, the constraints that the environment natisfy in order to enable
a specific protocol to retain its security property. Typligathese constraints will
impose restrictions on the actions of the honest princjpas the principals who
are faithfully executing one or more of the protocols ruignin the environment.
We writeI" ¢ if ¢ is provable using the formulas inand the axioms and proof
rules of the deductive system. The semantic entailménk= ¢, is defined in
AppendiXB. Essentially, it says, that in any run in which imeariants inl" hold,
the formulag is true.

The weakening ruleWV, states that a formula which is provable from a set
of hypothesesl’, remains provable if additional formulas are added to theoke
hypotheses. The protocol composition r@a gives us a way of sequentially com-
posing two roles” and P’ when the logical formula guaranteed by the execution
of P, i.e., the post-condition of, matches the pre-condition required in order to
ensure that”’ achieves some property. As befofedenotes a set of hypotheses
which are used in proving the properties of the protocolss Tdrm of reasoning
allows a proof of correctness of a protocol to be built up@neentally from a proof
of its component sub-protocols. The other composition destates that if the
environment invariants hold for two protocolg, and @', then the invariants also

12

DATTA, DEREK, MITCHELL & PAVLOVIC

hold for their composition. This rule is sound if the formsiia I capture trace-
based invariants, which are proved using the honesty rudeimeductive system.
Soundness proofs of the rules in Table 6 are presented innsiidé.

If Q@ andQ’ are protocols, then we defin2 o Q' to be any protocol such that
every rolep in Q o Q' is a concatenation of basic sequences of roleg ior Q'.
Therefore, every € Q o Q' can be written ag = p1ps ... p, Where every; is a
basic sequence of a role @ or Q'. Note that sequential and parallel composition
arise as special cases of this general composition operatio

Our general methodology for proving protocol compositiesuits involves the
following steps:

(i) Prove separately the security properties of proto&nd Q'.

(ii) Identify the set of environment invariants used in thetproofs,[" andI".
The formulas included in these sets will typically be theriatas in the two
proofs, which were proved using the honesty rule.

(i) Apply the weakening rule so thdt U I represents the set of environment
invariants that will be used while applying the compositialesC1 andC2.
This step is required in case of sequential compositionweifvant to prove
that the properties of bot@ andQ’ are preserved by the composition process.
However, if the goal is to just prove that the propertie®adre preserved, then
the set of environment invariants that will be used whilelgipg C1 andC2
will simply beT".

(iv) When the post-condition of a role @ matches the pre-condition of the cor-
responding role of2’, sequentially compose the two roles by applying rule
C1. This step is required only in the case of sequential contiposi

(v) Prove that the environment invariants used in provirg phoperties of the
protocols,I" U I, hold for both the protocols. Sinc@ + I' was already
proved in Stef, in this step, it is sufficient to show tha@ + I'” and similarly
that @' F I'. If Step 3 was skipped, then it is sufficient to just show that
Q' +T.

Note that in proving a composition result (whether seqamti parallel), we
always prove that the two protocols under consideratiopaeteach other’s invari-
ants (Step), i.e., that they do not interact insecurely. In additiomile proving
that two protocols can be sequentially composed, we rethutehe post-condition
of the first matches the pre-condition of the second (8jefhus, in proving a se-
quential composition result, we address the two centrddlpros of compositional
protocol analysis mentioned in the beginning of the section

6 Examples of Protocol Composition

In this section, we illustrate the use of the methodologyimed in the previous
section, by presenting modular proofs of two standard pasISO-9798-3J15]
andNSL[32[17]. The parallel composition of these two protocolslso proved

13

DATTA, DEREK, MITCHELL & PAVLOVIC

secure. Due to space constraints, we only present the tlo¢ @ir¢SO-9798-3n
its entirety, and sketch an outline of tNSLproof and the proof of correctness of
their parallel composition.

Example 6.1 ThelS0O-9798-3rotocol

ThelS0-9798-3protocol is constructed by a sequential composition of agmal
based on the Diffie-Hellman key exchange protocol and thedsta signature-
based challenge-response protocol. Here, we prove theekegcy property of the
Diffie-Hellman protocol and the mutual authentication pdyp of the challenge-
response protocol. We then prove that tB€©-9798-3protocol can be used to
establish an authenticated shared secret by composingthectmess proofs of
these two protocols.

Challenge Response Protocol;' R:

Our formulation of authentication is based on the conceptatiching conver-
sationd?2] and is similar to the idea of proving authentication gginrrespondence
assertiong37]. The same basic idea is also presentedlin [7] where @fesned to
asmatching records of runsSimply put, it requires that whenevdrand B accept
each other’s identities at the end of a run, their recordé®ftinmatch i.e., each
message thal sent was received hi and vice versa, each send event happened
before the corresponding receive event, and moreover tissages sent by each
principal (A or B) appear in the same order in both the records.

A complete proof of the mutual authentication property gnéeed by execut-
ing the C'R protocol is presented in Tabld D in Appendix D. The final prope
proved about the initiator role (referred @s,;, henceforth) is of the formprecon-
dition [actions] postconditionwhere:

precondition = Fresh(A, m)
actions = [(A, B,m)(B, A, n,{{m,n, A}y/B, Ay, 2)
(z/{lm.y, Al g){(A, B, {m,y, Blyz)]a
postcondition = Honest(B) D ActionsInOrder(
Send(A, {A, B,m}),
Receive(B, {A, B,m}),
Send(B, {B, A, {n, {{m.n, A}z}}),
Receive(A, {B, A, {n, {m,n, A}5}}))
Here, the predicat&ctionsInOrder(ay, a,, .. . ,a,) means that the actions, as, .. .,
a, were executed in that order. Intumvely, this formula meé#mat after executing
the actions in the initiator role purportedly wifb, A is guaranteed that her record

of the run matches that d3, provided thatB is honest. The set of environmental
invariants used in this proaf,, contains only one formula (line (9) of Talilé D), i.e.,

14

DATTA, DEREK, MITCHELL & PAVLOVIC

DH1 Computes(X, g*°) D Has(X, g*)
DH2 Has(X, ¢®) D
(Computes(X, g®) V Im.(& Receive(X, m) A Contains(m, g*)))
DHS3 (& Receive(X, m) A Contains(m, g*)) D
3Y, m’.(Computes(Y, g**) A & Send(Y, m’) A Contains(m’, g**))
DH4 Fresh(X,a) D Fresh(X, g%)
Computes(X, g®) = ((Has(X, a) A Has(X, ¢%)) V (Has(X, b) A Has(X, g%)))

Table 7
Diffie-Hellman Axioms

N

I' = { Honest(B) D (
(& Send (B, mg) A Contains(mq, {lm, n, Al}z) A =& Fresh(B,m)) D
(mo={B, A, {n,{m,n, Alz}}n
& (Send(B, {B, A, {n, {m,n, A}z}}) A OFresh(B,n))A
ActionsInOrder(Receive(B, {A, B,m}),
Send(B, {B, A, {n, {m,n, A}z}}))
)}

Intuitively, this invariant states that whenever hongsiigns a term which is a triple
with the third componentl, and the first component was not freshly generated by
B, then it is the case that this signature was sent as part ciitend message of
the C'R protocol. (Note that each message sent and received hasotioeqd-id in

it. We omit these to improve readability).

Base Diffie Hellman Protocol,D Hy:

The D H, protocol involves generating a fresh random number and atingp
its Diffie-Hellman exponential. It is therefore the initjgart of the standard Diffie-
Hellman key exchange protocol. In order to reason aboutehergy property of
this protocol, the term language and the protocol logic hiaee enriched to allow
reasoning about Diffie-Hellman computation. The tegfis) andh(a, b), respec-
tively representing the Diffie-Hellman exponentéalmod p and the Diffie-Hellman
secretg® mod p, are added to the term language. To improve readability, ile w
useg® andg® instead ofy(a) andh(a, b). TablelT presents the rules specific to the
way that Diffie-Hellman secrets are computed. The predi€ateputes() is used
as a shorthand to denote the fact that the only way to compDiéfia-Hellman
secret is to possess one exponent and the other expon@hHEl. states that ifX

15

DATTA, DEREK, MITCHELL & PAVLOVIC

can compute the Diffie-Hellman secret, then she also possé@s®d H2 captures
the intuition that the only way to possess a Diffie-Hellmaearseis to either com-
pute it directly or obtain it from a received message comagiit. DH3 states that
if a principal receives a message containing a Diffie-Helrsecret, someone who
has computed the secret must have previously sent a (ppsifilerent) message
containing it. DH4 captures the intuition that if is fresh at some point of a run,
theng® is also fresh at that point.

The property of the initiator role of th® H, protocol is given by the formula
below.

[(va)] , HasAlone(A, a) A Fresh(A, g%)

This formula follows easily from the axioms and rules of tbgit. It states that
after carrying out the initiator role abH,, A possesses a fresh Diffie-Hellman
exponentialy® and is the only one who possesses the expomefthis property
will be useful in proving the secrecy condition of tHf&0-9798-3rotocol. The set
of environmental invariants used in this probf, is empty.

Composing the Protocols:

We now prove the security properties of #80-9798-3protocol by compos-
ing the correctness proofs @étH, andC'R. In doing so, we follow the general
methodology for proving composition results outlined ic®m[@. Let us go back
and look at the form of the logical formulas characterizihg tnitiator roles of
DHy,andCR:

DH, : I+ [Initpp,] 4, Fresh(A4, ¢%)
CR : T | Fresh(A,m) [Initcr] 4 Gautn

At this point, stepd and2 of the general methodology have already been carried
out. We now apply the weakening rule to both the formulas al{etep3). Since
I'is empty,I’ UT" is simplyI". Note that the post-condition dp H, matches the
pre-condition ofC' R. We can therefore compose the two formulas by applying the
composition ruleC1 (step4). The resulting formulais:

1ISO-9798-3 (auth.) I' F [Initp,; Initcr] , Gaun

The result of composing the two roles is that the freshly geted Diffie-Hellman
exponential is substituted for the nonce in the challemgpaonse cord. The re-
sulting role is precisely the initiator role of th80-9798-3protocol. The formula
above states that the mutual authentication property/®fs preserved by the com-
position process assuming that the environmental inveriari™ are still satisfied.
Finally, using the honesty rule, it is easily proved tiiat/, respects the environ-
mental invariants il (step 5). Therefore, by applying the composition rai2,

we conclude that the sequential compositiodf, andC R, which isISO-9798-3

, respects the invariants In This completes the composition proof for the mutual
authentication property.

16

DATTA, DEREK, MITCHELL & PAVLOVIC

The other main step involves proving that the secrecy pteuérD H, is pre-
served byC'R, since the”' R protocol does not reveal the Diffie-Hellman exponents.

DH, : + [Initpy,]| , HasAlone(A4, a)
CR' :F HasAlone(A, a) [Initcr/] , HasAlone(A4, a)

Here,C'R' is the same protocol aSR except thay” is substituted for the nonce
m. Therefore, by applying the composition rulel again, we have the secrecy
condition for thelSO-9798-Jrotocol:

ISO-9798-3 (secrecy)
- Initppy,; Initcr] , HasAlone(A4, a)

Since the set of environment invariants is empty, stepsd5 follow trivially.
The rest of the proof uses properties of the Diffie-Hellmanthod of secret com-
putation to prove the following logical formula:

ISO-9798-3 (shared-secret]Initpg,; Initcr) 4 Honest(B) D
(n = g’ AHas(A, g?) A (Has(X, g%) D
(X =AVX=RB)))

Intuitively, the property proved is that i is honest, thenl and B are the only

people who know the Diffie-Hellman secrgt’. In other words, théSO-9798-

3 protocol can be used to compute an authenticated sharegt.s@tre complete
proof is presented in Tablel D in AppendX D. It requires aeotimvariant (line

(3)) capturing the intuition that the honest agents sigfi®ifiellman exponentials
only.

Example 6.2 The NSLProtocol

The 7 message&\SL protocol can be proved correct by sequential composition of
two protocols, which we refer to &SL-initandNSL-base By runningNSL-init,

a principal obtains the public key certificate of a peer froimserver. If a principal
possesses a peer’s public key certificate, she caN8irbasevith him and set up
an authenticated shared secret. In our formalism, the oadiiton of NSL-initis
that the principal knows a peer’s public key certificate. dAlwith a precondition
capturing the same propertiSL-basehas a postcondition stating that the two
principals possess a shared secret. Thus, the two protcamolse composed using
the composition rul€1. The resulting protocol isISL. Moreover, it can be proved
that the two protocols respect each other’s invariantsyatig us to conclude that
theNSLprotocol can be used to set up a shared secret. A part of this @ppears
in [9].

Example 6.3 Parallel Composition ofSO-9798-3andNSL
SincelS0O-9798-AndNSLrespect each other’s invariants, their parallel composi-

17

DATTA, DEREK, MITCHELL & PAVLOVIC

tion can also be proved secure using our formalism. The mmaiight from this

proof is that if the authenticators of two protocols (whigk andividually secure)
cannot be confused with each other, then their composisasecure. Disjoint
encryption, which has been suggested as a design prinoipkeid insecure inter-
action between protocolsl[4)12], appears to be a specialafahis more general
principle.

7 Related Work

Early work on the protocol composition problem concenttate designing pro-
tocols that would be guaranteed to compose with any othéogob This led to
rather stringent constraints on protocols: in essencg, fbguired the fail-stop
property [11] or something very similar to [t [14]. Since kgarld protocols are
not designed in this manner, these approaches did not haek practical appli-
cation. More recent work has therefore focussed on redube@mount of work
that is required to show that protocols are composable. BMeadin her analysis
of the IKE protocol suite using the NRL Protocol Analyzerl[2@roved that the
different sub-protocols did not interact insecurely witttle other by restricting at-
tention to only those parts of the sub-protocols, which hatlance of subverting
each other’s security goals. Independently, Thayer, Hperad Guttman used a
similar insight to develop a technique for proving compositresults using their
strand space model [36]. Their technique consisted in sigptinat a set of terms
generated by one protocol can never be accepted by pris@gatuting the other
protocol. The techniques used for choosing the set of tehmsever, is specific
to the protocols in[[10]. A somewhat different approach isduby Lynch [18] to
prove that the composition of a simple shared key communitatrotocol and the
Diffie-Hellman key distribution protocol is secure. Her nebdises 1/0O automata
and the protocols are shown to compose if adversaries aygansive eavesdrop-
pers.

In a recent paper[4], Canetti, Meadows and Syverson, tekisprotocol com-
position problem. They show how the interaction betweenatogol and its en-
vironment can have a major effect on the security propedfdbe protocol. In
particular, they demonstrate a number of attacks on pudalisind widely used pro-
tocols that are not feasible against the protocol runningahation but become
feasible in some environments. The main question that thidydeaves open is:
how should the environment be constrained so that it doesuliert the security
goals of a protocol? The authors put forward some rules ahththat could be
useful in answering this question. Of these, at least twaobeajustified using our
formalization. The first of these states that the envirorins@ould not use keys
or other secrets in unaltered form. Specifically, the protemder consideration
should not encrypt messages with a key used to encrypt mesbggany protocol
in its environment. The reason this makes sense is that iptetocols use a par-
ticular form of encrypted message as a test to authentiga¢em then the attacker
might be able to make a principal running the first protocokgt a message which

18

DATTA, DEREK, MITCHELL & PAVLOVIC

actually originated in a run of the second protocol. In ounfalism, the environ-
mental invariant for the protocol under consideration widail to hold in such an
environment, and the composition proof would thereforegothrough. We note
that this principle has been followed in the design of reattd/protocols like IKE
[13]. Also, Guttman and Fabrega have proved a theoregsalltto the same effect
in their strand space modeél[12]. The other rule of thumbo(a¢éxzommended by
Kelsey, Schneier and Wagner (n_[16]), is the use of uniquéopd identifiers to
prevent a message intended for use in one protocol to bekarstar use in another
protocol. This rule can also be similarly justified.

8 Conclusions

A modular approach towards construction and analysis desys, which is of-
ten seen in other areas of computer science, does not seearkoery easily in
computer security. The main problem is that systems whiehratividually secure
might lose their security when they are put together becatigee way they inter-
act with each other. In this paper, we have presented a mathgpdfor modular
reasoning about security protocols. While doing so, we lzadressed two basic
problems: (a) how do you construct a protocol from smalldr-grotocols? (b)
how do you prove that two protocols which are individuallgse are also secure
while running concurrently? In our formalism, we use befafer assertions to
address the first problem and protocol invariants to addiressecond. The use
of the methodology is illustrated by presenting modulaofsaonvolving practical
protocols,|SO-9798-3andNSL. This formalism also justifies some design princi-
ples which have been used by protocol designers in the emtisin of real-world
protocols (e.g. IKE) and submuses some previous work indtmedl methods com-
munity on the protocol composition problem. Future work Wdaaclude a deeper
investigation of the limits and applicability of this methand its connection with
other approaches for reasoning about correctness of mista&lso, it would be an
interesting challenge to automate the proof system.

References

[1] M. Abadi and A. Gordon. A calculus for cryptographic probls: the spi calculus.
Information and Computatign148(1):1-70, 1999. Expanded version available as
SRC Research Report 149 (January 1998).

[2] M. Bellare and P. Rogaway. Entity authentication and #isgribution. InAdvances
in Cryprtology - Crypto 93 ProceedingS$pringer-Verlag, 1994.

[3] G. Berry and G. Boudol. The chemical abstract machiriéheoretical Computer
Science96:217-248, 1992.

[4] R. Canetti, C. Meadows, and P. Syverson. Environmenéguirements for
authentication protocols. IfProceedings of Software Security - Theories and

19

DATTA, DEREK, MITCHELL & PAVLOVIC

Systems, Mext-NSF-JSPS International Symposium, IS5 PR09 pages 339-
355. Springer-Verlag, 2003.

[5] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic. A deation system for security
protocols and its logical formalization. IRroceedings of 16th IEEE Computer
Security Foundations Workshopages 109-125. IEEE, 2003.

[6] W. Diffie and M. E. Hellman. New directions in cryptograpHEEE Transactions on
Information TheorylT-22(6):644-654, 1976.

[7] W. Diffie, P. C. Van Oorschot, and M. J. Wiener. Authentioca and authenticated key
exchangesDesigns, Codes and Cryptograpi®107-125, 1992.

[8] D. Dolev and A. Yao. On the security of public-key prottdEEE Transactions on
Information Theory2(29), 1983.

[9] N. Durgin, J. C. Mitchell, and D. Pavlovic. A compositianlogic for protocol
correctness. IProceedings of 14th IEEE Computer Security FoundationskeVam
pages 241-255. IEEE, 2001.

[10] F. J. T. Fabrega, J. C. Herzog, and J. D. Guttman. Stspades: Why is a security
protocol correct? InProceedings of the 1998 IEEE Symposium on Security and
Privacy, pages 160-171, Oakland, CA, May 1998. IEEE Computer SoPiedss.

[11] L. Gong and P. Syverson. Fail-stop protocols: An appinoto designing secure
protocols.Dependable Computing for Critical Applications.79—-100, 1998.

[12] J. Guttman and F. J. T. Fabrega. Protocol independtmoeigh disjoint encryption.
In Proceedings of 13th IEEE Computer Security FoundationskgVap pages 24—34.
IEEE, 2000.

[13] D. Harkins and D. Carrel. The Internet Key Exchange (JKE998. RFC 2409.

[14] N. Heintze and J. D. Tygar. A model for secure protocold #neir compositionlEEE
Transactions on Software Engineerjrg(1):16-30, January 1996.

[15] IEEE. Entity authentication mechanisms — part 3. Eniuthentication using
asymmetric techniques. Technical report ISO/IEC IS 97980Q/IEC, 1993.

[16] J. Kelsey, B. Schneier, and D. Wagner. Protocol intégmas and the chosen protocol
attack. InProceedings of the International Workshop on Security ¢tols April
1997.

[17] G. Lowe. Breaking and fixing the Needham-Schroeder iptkay protocol using
CSP and FDR. Ir2nd International Workshop on Tools and Algorithms for the
Construction and Analysis of Syster8pringer-Verlag, 1996.

[18] N. Lynch. 1/O automata models and proofs for shared-@ynmunication systems.
In Proceedings of 12th IEEE Computer Security FoundationskeVap pages 14—29.
IEEE, 1999.

[19] Z. Manna and A. PnueliTemporal Verification of Reactive Systems: Saf8gyringer-
Verlag, 1995.

20

DATTA, DEREK, MITCHELL & PAVLOVIC

[20] H. Mantel. On the Composition of Secure Systems. Plnceedings of the IEEE
Symposium on Security and Privapages 88-101, Oakland, CA, USA, May 12-15
2002. IEEE Computer Society.

[21] D. McCullough. Noninterference and the composabiliti security properties.
In Proceedings of the IEEE Symposium on Security and Prjveages 177-186,
Oakland, CA, USA, May 1988. IEEE Computer Society.

[22] D. McCullough. A hookup theorem for multilevel secyritlEEE Transactions on
Software Engineeringl6(6):563-568, 1990.

[23] J. McLean. Security models and information flow. Pmoceedings of the IEEE
Symposium on Security and Priva€akland, CA, USA, May 1990. IEEE Computer
Society.

[24] J. McLean. A general theory of composition for a classpafssibilistic” properties.
IEEE Transactions on Software Engineer,i2@(1):53-67, 1996.

[25] C. Meadows. A model of computation for the NRL protocobabyzer. InProceedings
of 7th IEEE Computer Security Foundations Workshmgges 84-89. IEEE, 1994.

[26] C. Meadows. The NRL protocol analyzer: An overviewJournal of Logic
Programming 26(2):113-131, 1996.

[27] C. Meadows. Analysis of the Internet Key Exchange protaising the NRL protocol
analyzer. InProceedings of the IEEE Symposium on Security and PriviidyE,
1998.

[28] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstori¢andbook of Applied
Cryptography CRC Press, 1996.

[29] R. Milner. Action structures. LFCS report ECS-LFCS-229, Department of
Computer Science, University of Edinburgh, JCMB, The Kimgsldings, Mayfield
Road, Edinburgh, December 1992.

[30] R. Milner. Action calculi and the pi-calculus. NATO Summer School on Logic and
Computation Marktoberdorf, November 1993.

[31] R. Milner. Communicating and Mobile Systems: TheCalculus Cambridge
University Press, Cambridge, U.K, 1999.

[32] R.M. Needham and M.D. Schroeder. Using encryption fathantication in large
networks of computersCommunications of the ACN21(12):993-999, 1978.

[33] D. Pavlovic. Categorical logic of names and abstraciio action calculi. Math.
Structures in Comp. S¢i7(6):619-637, 1997.

[34] D. Peled.Software Reliability MethodsSpringer-Verlag, 2001.

[35] P. Syverson and C. Meadows. A formal language for ciyaphic protocol
requirementsDesigns, Codes and Cryptographa(1-2):27-59, 1996.

[36] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Mixed stspaces. IfProceedings of
12th IEEE Computer Security Foundations WorksH&EE, 1999.

21

DATTA, DEREK, MITCHELL & PAVLOVIC

[37] T. Y. C. Woo and S. C. Lam. A semantic model for authetitica protocols. In
Proceedings IEEE Symposium on Research in Security anddyyit993.

A Cord Calculus

Cord calculus is the formalism we use to represent protocidi® main concepts
are collected in this section.

A.1 Terms, Actions, Strands and Cords

Thetermst are built starting from the variablesand the constants Moreover,
the set of basic terms also contains the nafieshich can be variable¥, Y, Z,

or constantsd, B, C, and keysk which can be variablegand constants. Upon
these basic sets, the term language is then generated bygseeneconstructors

p, which always include tupling, the public key encryptifiti} x of the term¢ by

the key K, and the signaturdt[} = over the termr with the private keyk. The
language ofactionsis then built upon the terms by further constructors. They
include sending a ternf), receiving into a variabléz), matching a term against
a pattern(t/q(z)), and creating a new valug'z). A strandis a list of actions.
The idea is that they should be the subsequent actions ofjke sole in a protocol.
For example, the strandvx)(z)] represents a role in which a principal generates
x and then sends out a message containing the freshly geshgedie. Since some
actions of a role may be mutually independent, they can incppie be executed

in any order. Different strands can thus be semanticallyveégnt. A cord is

an equivalence class of behaviorally indistinguishablensts. We use the word
procesdo refer to a principal executing an instance of a role. T@Qlksummarizes
the formal definition of cords. In addition to the sequencadaifons, a cord has an
input interfaceand anoutput interface As the name suggests, the output interface
represents the output of that cord. The input interface élue provide initial
data to a cord. These input parameters (called static pseeshean represent data
known apriori (e.g. signing key) or data that becomes knoywaxgcuting another
cord via its output interface.

22

DATTA, DEREK, MITCHELL & PAVLOVIC

(names) N =X variable name
A constant name
(basic keys) Ky =k constant key
y variable key
N name
(keys) K = Ky basic key
Ky inverse key
(role id) n =S variable role-id
c constant role-id
(process) P:=N,n
(terms) ti==x variable term
c constant term
N name
K key
n session id
t,t tuple of terms
{thx term encrypted with keyK
{tl+ term signed with keyx’
(actions) an=c¢€ the null action
(t) send a term
(x) receive term into variable
(vx) generate new term
(

t/q(x1,...,x,)) match termt to patterng(x1, ..., z,)

(basicterms) bu=zx|c|N|K basic terms allowed in patterns
(basic patterns) p ::=b,...,b tuple pattern
(patterns) q:=0p basic pattern
{pl# decryption pattern
{lplx signature verification pattern
(strands) Su=aS|a
Table A.1

Syntax of terms, actions and strands
23

DATTA, DEREK, MITCHELL & PAVLOVIC

A.2 Cord Spaces and Runs

A cord spaceas a multiset of cords that may interact via communicatioe. ¥ex
for multiset union and | for the empty multiset. Theunsof a protocol arise as re-
action sequences of cord spaces. The basic reactions witard space are shown
in Table[A2, with the required side conditions for each tieacshown below them.
The substitutiorit /) is assumed to act on the strand left of7i .S’. As usual, itis
assumed that no free variable becomes bound after sulmstituthich can always
be achieved by renaming the bound variables. Readfion @)send and receive
interaction, showing the simultaneous sending of tetm the first cord, with the
receiving oft into variablex by the second cord. We call this anternal action
because it involves an interaction between two cords. Theratactions all take
place within a single cord. We call theggernal actions Reaction[(R) is a basic
pattern match action, where the cord matches the pattéermith the expected pat-
ternp(z), and substitutesfor x. Reaction[(B) is a decryption pattern match action,
where the cord matches the pattdym(t) |}, with the decryption patterfip(z)|[}y
and substitutesfor z. Reaction[(#) is a signature verification pattern matctoacti
Finally, reaction[(b) shows the binding action where thedameates a new value
that doesn’t appear elsewhere in the cordspace, and suéstihat value for in
the cord to the right. The intuitive motive for the conditiétV (¢) = () should be
clear: a term cannot be sent, or tested, until all of its fra@ables are instantiated.

[S(z)8 @ [T{)T] @ Cor [SS(t/2)] @ [TT’] C 1)
[S (p(t)/p(x)) Sl @ Cor [SS(t/2)] ® (2)
1S ({p@®) [y /Alp(2)) @ Cee [SS(E/ 93)] 3)
[S {p@ s/ {lp@)]y) STe Coe [SST® (4)
[S(vz)S'| @ Ce> [SS'(m/a:)] ®C (5)
Where the following conditions must be satisfied:
@FEVE)=0
@ FV(t)=0
@) FV(t) = 0 andy bound
@ FVt)=0

@)z ¢ FV(S)andm & FV(C)U FV(S) U FV/(S")

Table A.2
Basic reaction steps

A.3 Protocols

A protocol is defined by a finite set of roles, such as initiatesponder and server,
each representing the actions of a participant in a prowesdion. In representing

24

DATTA, DEREK, MITCHELL & PAVLOVIC

protocol roles by cords, it is useful to identify the pringipvho carries out the
role. Also, since the same principal might engage in mudtggssions in the same
role (e.g., principald might be the initiator in two sessions at the same time),
associating aole-id with the cord allows us to distinguish between the actions
carried out in the different sessions. A principal exeqytm instance of a role is
referred to as a process.

The protocol intruder is capable of taking any of severalpgme actions, in-
cluding receiving a message, decomposing it into partgypéng the parts if the
key is known, remembering parts of messages, and genematishgending new
messages. This is the standard “Dolev-Yao model”, whicleappto have devel-
oped from positions taken by Needham and Schroédér [32] amaldel presented
by Dolev and YaollB]. Arun of a protocolis a sequence of reaction steps from an
initial configuration An initial configurationis determined by a set of principals,
a subset of which are designated as honest, a cord spacevctedty assigning
one or more roles to each honest principal, and an intrudertbat may use only
the secret keys of dishonest principals. A particularahitonfiguration may give
rise to many possible runs. Intuitively, a protocol has gprty if in all runs of the
protocol arising from all possible initial configuratiorisat property is preserved.

B Semantics of Protocol Logic

The formulas of the logic are interpreted ovans which are finite sequences of
reaction steps from an initial configuration. An equivaleigw, consistent with
the execution model used in defining Linear Temporal Logid_{Lsemantics, is to
think of a run as a linear sequence of states. Transition estate to the next is
effected by an action carried out by some principal in sonhe & formula is true
inarun ifitis true in the last state of that run.

The main semantic relatio?, R = ¢, may be read, “formula holds for run
R of protocolQ.” If Qs a protocol, then le® be the set of all initial configurations
of protocol Q, each including a possible intruder cord. [Retns(Q) be the set of
all runs of protocolQ with intruder, each a sequence of reaction steps within a
cord space. Il has free variables, theR, R = ¢ if we have@, R = o¢ for
all substitutionss that eliminate all the free variables in We write Q = ¢ if
Q,R = ¢ forall R € Runs(Q).

In presenting the inductive definition of, R = ¢ below, for ¢ without free

variables, we use the following notation to describe a reastep of cord calculus:
EVENT(R,X,P,n,x) =
([SPSx®C b [SS'(n/z)]x @ C') € R)
Inwords,EVENT (R, X, P,n,x) means that in rufk, processX executes actions
P, receiving datan into variablesz, wheren and x are the same length. We

use the notatiol.AST (R, X, P,n,x) to denote that the last event of riis
EVENT (R, X, P,n,x).

25

DATTA, DEREK, MITCHELL & PAVLOVIC

Action Formulas:

Q, R = Send(A,m) if LAST(R, A, (m),0,0).
Q, R |= Receive(A, m) if LAST(R, A, (z), m, z).
Q, R = New(A,m) if LAST(R, A, (vx),m,z).
Q, R = Decrypt(A, {m[rx) if Q, R |= Has(A, {m[tx)
A LAST(R, A, ({{mltk /{|zix), m, x)
Note: Decrypt(A, n) is false if n # {{m/|} x for somem and K.
Q, R = Verify(4, {ml) if Q, R |= Has(A, {ml}z)
A Q, R |=Has(A,m)
A Q, R = Has(A, K)
N LAST(R, A, ({mlix/{ml «), 0, 0)
Note: Verify(A, n) is false if n # {{m|} for somem and K.

Other Formulas:

Q, R |= Has(A,m) if there exists an such thatHas;(A, m) whereHas; is de-
fined by induction ory as follows:
(Haso(A, m) if ((m € FV(R|4))
V EVENT (R, A, (vx),m,x)
V EVENT(R, A, (z), m, x)
andHas; 1 (A, m) if (Has;(A, m/)
A((m" = {lp()[fx Am =1
AN EVENT(R, A, (m'{lp(y)}}x). 1.)
Vim =plt)Am=t
A EVENT (R, A, (m'/p(y)),t,9))))
V(Has;(A, m') A Has;(A, m")
A((m=m'm")V (m=m"m)))
V(Has; (A, m') AHas; (A, K)
Am = {m'})
V(Has;(A, a) A Has;(A, g°)
Am = gab)
V(Has;(A, g%°) Am = g*)
Intuitively, Hasy holds for terms that are known directly, either as a freealde
of the role, or as the direct result of receiving or genegatime term. Has; ;
holds for terms that are known by applyingperations (decomposing via pat-
tern matching, composing via encryption or tupling, or bynpaiting a Diffie-
Hellman secret) to terms known directly.
Q,.R = Fresh(A,m) if QR E (S New(A,m)V (S New(A,n) Am =
g(n))) A=(& Send(A,m') Am C m/).
Q, R = Honest(A) if A € HONEST (C) in initial configurationC for R.

Q, R = Contains(tq,t5) if to C, t;. to is a visible subterm ofy, t, C, 1, if
ty C t; and it is not the case that all occurrences$.ah ¢, are as parameters of
one-way functions. For example,Z, g(n). The only one-way function that we

26

DATTA, DEREK, MITCHELL & PAVLOVIC

consider here is the Diffie-Hellman exponentiation funutig(x).

* QRE (01 Ag)if Q R ¢1andQ, R = ¢,

e QREIf Q R

e Q REJroif Q R (d/x)¢, for somed, where(d/x)¢ denotes the formula
obtained by substituting for = in ¢.

e QRE Soif Q R E ¢, whereR' is a (not necessarily proper) prefix &f
Intuitively, this formula means that in some state in thetgasmulaq is true.

e Q. REOo¢if Q R E ¢, whereR = R'e, for some event. Intuitively, this
formula means thap ¢ is true in a state i is true in the previous state.

Modal Formulas:

e QR ¢1[P]ads if R= RyRiR, for someRy, R, andR,, and either does
not matchR, |4 or P matchesR;|4 andQ, Ry = o¢, impliesQ, RyR; = oo,
whereo is the substitution matching to R | 4.

e Q. R[E[Plagif R= RiR,, for someR; andR,, and eitherP does not match
Ry|4 or P matchesR; |4 andQ, R, = o¢, whereo is the substitution matching
PtoR; |A.

Note: The semantics o, R = [P]a ¢ can be expressed in terms of the se-
mantics ofQ, R = ¢, [P]a ¢2 by settinge; to true and requiring thatz, be
empty.

Semantic Entailment:

e 'E=oif Q= I'impliesQ | ¢. I" denotes a set of formulas. Intuitively, if in
every run ofQ all the formulas inl" are true, then in every run @, formula¢
is also true.

C Soundness of Temporal Ordering and Composition Rules

In this section, we prove the soundness of the composititas mnd some of the
temporal ordering rules. The soundness proof of the resteptoof system is
quite similar to our previous work[9].

Axiom AF3 states that if a process creates a fresh value and then sends
out a message containing it as a subterm, then any actideaaut by any other
process which involves (e.g. if Y receives a message containingside a signa-
ture), happens after the send action. Assumexha Y, n C m, a, and

Q |= Fresh(X,n)[(m)P]x (¢ D ©ax(Y)). (6)
We need to show that

Q) = Fresh(X,n)[(m)P]x (¢ D After(Send(X,m),az)). (7)
27

DATTA, DEREK, MITCHELL & PAVLOVIC

Let R = RyR;Rs be a run of@ such thatR, matchegm)P under substitution
and@, Ry = Fresh(X,n). We need to prove that

Q, RoR; = o(¢ D After(Send(X,m), az)). (8)

WhenQ, RyR; | 0—¢ then® holds trivially. On the other hand, wh@nRyR; =
o¢, it follows from[@ thatQ, RoR; = ©ax(Y). In this casdI8 follows from the
semantics of formulaBresh(a, m) and< a, (V).

Axiom AF4 is similar except for the fact that the rolesX¥fandY are reversed.
Soundness aAF4 can be easily verified, using the same reasoning as in thé proo
of soundness foAF3.

The weakening ruléV states that a formula which is provable from a set
of hypothesesl’, remains provable if additional formulas are added to theke
hypotheses. This rule is trivially sound since= ¢ impliesT" UT" |= ¢.

The protocol composition rul€1 gives us a way of sequentially composing
two roles P and P’ when post-condition of?, matches the pre-condition @t'.
Assume that) is a protocol and” is the set of formulas such thBt|= ¢1[P] 402
andTl’ | ¢,[P'|a¢3. We need to prove that = ¢1[P; Pl a¢3. When@ - T this
is trivially true. Assume thaf) = TI', now it has to be thaf) &= ¢:[P]a¢, and
Q | ¢2[P'la¢s. Let R = RyR, R, be a run of@) such thatk,; matchesP; P’'|4
under substitutio and@, Ry = c¢,. Run R can be written aft = R R\ R R,
where R} matchesP|, underc and R] matchesP’|A undero. It follows that
Q, RyR) |= 0¢, and therefore, Ry R\ R = c¢s.

The protocol composition rul€2 states that all invariants provable in bagh
and(Q)’ are provable in their compositigpo)’. Remember that we are only consid-
ering invariants that are provable using one applicatidgh@honesty rule. Suppose
that the formulap can proved inQ and(@’ using only one application of the hon-
esty rule. By the definition of the honesty ride € QU Q' .VPeBS(p). ¢ [P]x ¢.
Every basic sequence of a rolehv ()’ is either a basing sequenfef QUQ’ or a
concatenation of two basic sequence®io (', in the first case it trivially follows
that@ o Q' = ¢[P]x¢, in the second case the same follows by the application of
the composition rul€1.

D Formal Correctness Proofs of Protocols

A complete proof of the authentication property for theiatir role in challenge-
response protocollfitcgr) is given in TabldD. The proof of the shared secret
property oflSO-9798-3s given in TabléD.

28

DATTA, DEREK, MITCHELL & PAVLOVIC

AA1,T1F Fresh(A,m)[(A, B,m)|a

& (Send (A, {A, B,m}) A OFresh(A,m)) 1)
AALTL [(B,An, {m,n,A}g)la
OReceive(A, {B, A,n, {m,n, A}5}) 2

AALTL [({m,n, Alg/{m.n, A})la & Verify (A, {m,n, Alz) (3)
AALTL [(A B {m,n Bl)la &Send(A,{A, B, {m,n,Blz}) (4
AF1,AF2 Fresh(A,m)[(4, B,m)(z)(x/B, A,n,{m,n, A}p)
({m,n, Abg/{m,n, A} s)(A, B, {m,n, Blz)]a
ActionsInOrder(Send(A, {A, B, m}),
Receive(4, {B, A,n, {m,n, Al}5}),
Send(4, {4, B, {m,n, Bl}})) (5)
(5),F1,P1,G2 Fresh(A, m)[Initcr]4—< Fresh(B, m) (6)
VER Honest(B) A & Verify (A, {]m,n,fl\}g) D
3B.3m’.(& Send (B, m') A Contains(m/, {m, n, Al}5)) (7)
(3),(7),P1,G1 —3 Fresh(A, m)[Initcg]aHonest(B) D
3B.3m’.(& Send (B, m') A Contains(m/, {m, n, All5)) (8)
HON Honest(B) > (((& Send (B, mg) A
Contains(mg, {m, n, A}5) A =& Fresh(B,m)) D
(mo = {B, A, {n,{m,n, A}5}} A
& (Send(B,{B, A, {n,{m,n, A}5}}) A OFresh(B,n)) A
ActionsInOrder(Receive(B, {A, B, m}),

Send(Bv{B>A’ {’I’L, {|m7fL’A|}§}}))))) (9)

(6),(8),(9),G1 —3 Fresh(A, m)[Initcr|4Honest(B) D
& (Send(B, {B, A, {n, {m,n, A}5}}) A OFresh(B,n)) A

After(Receive(B, {A, B, m}),Send(B, {B, A, {n, {{m,n, A}5}})) (10)
(1),(10), AF3 Fresh(A, m)[Initcr]aHonest(B) D
After(Send(A, {A, B, m}), Receive(B, {A, B,m})) (11)

(10),(5), AF3 Fresh(A, m)[Initcr]aHonest(B) D
After(Send (B, {B, A, {n,{m,n, fl[}g}}),
Receive(A, {3, A, n, {m,n, fl]}g}) (12)
(10), (11), (12), AF2 Fresh(A, m)[Initcr]4Honest(B) D
ActionsInOrder(Send(A, {A, B, m}), Receive(B, {4, B,m}),
Send(B, {B, A, {n,{m,n, A}5}}),
Receive(A, {B, A, n, {m,n, A}5})) (13)
A Table D.1
Deductions of4 executingInit role of Challenge-Response Protocol

29

DATTA, DEREK, MITCHELL & PAVLOVIC

P3 HasAlone(4,a) A
Fresh(A, g*)[Initcr/]a HasAlone(A,a) (1)
CR HasAlone(A4,a) A
Fresh(A, ¢%)[Initcgr/] AHonest(B) D
ActionsInOrder(
Send(A, {4, B,¢"}),
Receive(B, {A, B, g°}),
Send(B, {B, 4, {n,{g",n, A} 5}}).

Receive(4, {B, 4,n,{ig",n, A}5})) 2
HON Honest(B) A
OSend (B, {B, A, {n, {g",n, A} 5}}) D ®3)

W' .(n = ¢g” A HasAlone(B, V)
(2),(3) HasAlone(A,a) A
Fresh(A, ¢*)[Initcr/]4Honest(B) D

Jb.(n = ¢° A HasAlone(B, b)) (4)
AA1,REC,PROJ,P1 HasAlone(A4,a) A
Fresh(A, ¢*)[Initcr/|aHas(A,n) (5)

(1),(4),(5), Computes HasAlone(A,a) A
Fresh(A, ¢%)[Initcgr/] 4Honest(B) D
Jb.(n = ¢° A Computes(A4, g?)) (6)
(1),(4), Computes HasAlone(A,a) A
Fresh(A, g%)[Initcgr/]4Honest(B) D
Jb.(n = g® A (Computes(X, g%) O
(X =AVX = B)))) @)
(6),(7) HasAlone(A,a) A
Fresh(A, ¢%)[Initcgr/] 4AHonest(B) D
Jb.(n = g°® A Computes(4, g?°) A (Computes(X, g?°) D
(X =AVX =B)))) (8)
DH2,DH3 Has(X, ¢®) D (Computes(X, ¢°°) v IY,m/’.
(Computes(Y, g?°) A

& Send(Y,m’) A Contains(m/, g®)) 9)
HON Honest(Y) D (Computes(Y, g%°) O
—3m’.(& Send(Y,m') A Contains(m/, g?))) (10)

(8),(9),(10) HasAlone(A,a) A Fresh(A, ¢*)[Initcr/]aHonest(B) D
Jb.(n = ¢° A Computes(A4, g?°) A (Has(X, g®) D
(X = AV X = B)) (11)
Table D.2

Deductions ofd executingInit role of Challenge-Response Protocol
with ¢ substituted form

30

DATTA, DEREK, MITCHELL & PAVLOVIC

E Protocol derivation system

In [5], we have examined the structure of a family of key exg®protocols that
includes Station-To-Station (ST3H0-9798-3 Just Fast Keying (JFK) and related
protocols, showing how all the protocols in this family mag/ derived systemati-
cally. The protocol derivation system for this class of poatls consists of two base
protocol components, three transformations, and sevarereénts. The two pro-
tocol components are Diffie-Hellman key exchange and a twesage signature-
based challenge and response authentication protocokefihements (which add
data to message fields) include extending messages byazesfiin order to dis-
charge the assumption that each participant knows the '®theblic key. The
transformations include moving data from a later messagmtearlier one, and
reordering messages using a denial-of-service prevetaawkie” technique. The
derivation graph is shown in FiguteEE.1. In this figure, fis denote protocols,
and the labels on the arrows indicate the operation whicmvalpplied to the pro-
tocol at the tail of the arrow results in the protocol at thade The refinement
operations are denoted B’s, transformations b¥;’s and sequential composition
by ‘.

In this paper, we defined a general composition operationtothwsequen-
tial composition is a special case. We then constructed3e9798-3protocol
by composing the Diffie-Hellman and Challenge-Respons&pots and proved
properties of theSO-9798-Jrotocol from the properties of its components. Note
that this corresponds to the step in the derivation treei®iSTS family wheré,
and P, are composed to yielék.

31

DATTA, DEREK, MITCHELL & PAVLOVIC

C 1 C2

(Diffie-Hellman) (Signature-based Authenticator)

\M/C%CQ
Py
7
Y
Py
§T2
v
!
C1;Ps Ry
P sy
\ 2 (Challenge-Response)
C1;Py
Ry \LR2 \LRS Ry
Fs Py I Py
(STS) (IKE-core) (JFKr-core) (1ISO-9798)
R5 R5
PIO Pll
(STS+nonces) (IKE-core+nonces)
Rg
P12
(STS+n0_nces+IDs)
ETS
\
P 13

(JFKIi/JFKr-core+cookies)

R "
Py J
(JFKD) Pis

:
Pig
(JFKi)

Fig. E.1. Derivation graph of the STS protocol family

32

	Introduction
	Cord Calculus
	A Protocol Logic
	Syntax
	Semantics

	Proof System
	Axioms for Protocol Actions
	Axioms relating Atomic Predicates
	Inference Rules, Preservation and Freshness Loss Axioms
	Axioms and Rules for Temporal Ordering
	The Honesty Rule

	Formalizing Protocol Composition
	Examples of Protocol Composition
	Related Work
	Conclusions
	References
	Cord Calculus
	Terms, Actions, Strands and Cords
	Cord Spaces and Runs
	Protocols

	Semantics of Protocol Logic
	Soundness of Temporal Ordering and Composition Rules
	Formal Correctness Proofs of Protocols
	Protocol derivation system

