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Abstract

This paper continues the program initiated in [5], towards aderivation system for security
protocols. The general idea is that complex protocols can beformally derived, starting from
basic security components, using a sequence of refinements and transformations, just like
logical proofs are derived starting from axioms, using proof rules and transformations. The
claim is that in practice, many protocols are already derived in such a way, but informally.
Capturing this practice in a suitable formalism turns out tobe a considerable task.

The present paper proposes rules for composing security protocols from given security
components. In general, security protocols are, of course,not compositional: information
revealed by one may interfere with the security of the other.However, annotating protocol
steps by pre- and post-conditions, allows secure sequential composition. Establishing that
protocol components satisfy each other’s invariants allows more general forms of compo-
sition, ensuring that the individually secure sub-protocols will not interact insecurely in the
composite protocol. The applicability of the method is demonstrated on modular deriva-
tions of two standard protocols, together with their simplesecurity properties.

1 Introduction

Modularity is a central problem in computer security and a proven challenge to
many investigators (including [20,21,22,23,24]). In thispaper, we explore modular
construction of network protocols and present a system for reasoning about com-
pound protocols from their parts. In general terms, we address two basic problems
in modular security. The first may be calledadditive combination– we wish to
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combine protocol components in a way that accumulates security properties. For
example, we may wish to combine a basic key exchange protocolwith an authen-
tication mechanism to produce a protocol for authenticatedkey exchange. The
second basic problem is ensuringnondestructive combination.If two mechanisms
are combined, each serving a separate purpose, then it is important to be sure that
neither one degrades the security properties of the other. For example, if we add an
alternative mode of operation to a protocol, then some partymay initiate a session
in one mode and simultaneously respond to another session inanother mode, using
the same public key or long-term key in both. Unless the modesare designed not
to interfere, there may be an attack on the multi-mode protocol that would not arise
if only one mode were possible. An interesting illustrationof the significants of
nondestructive combination is the construction in [16] which shows that for every
security protocol there is another protocol that interactswith it insecurely.

Recognizing that many common network protocols are built using an accepted
set of standard concepts, we have identified a set of basic components, protocol
composition operations, protocol refinements, and protocol transformations for au-
thentication and key exchange protocols. In [5], we characterize the structure of
a family of key exchange protocols that includes Station-To-Station (STS), ISO-
9798-3, Just Fast Keying (JFK) and related protocols, showing how all the proto-
cols in this family may be derived systematically. (In orderto make this submis-
sion more self-contained, a very cursory overview is contained in Appendix E.)
We have also constructed systematic derivations of other families of protocols, in
each case showing how a simple starting protocol may be extended, incrementally
adding properties or optimizing performance in each step. While the derivation
system seems a useful tool for developing and understandingprotocols, we have
not yet been able to prove that each derivation step is sound for all protocols where
it could be applied. In this paper, we show how to prove correctness of additive and
nondestructive combinations of protocol components.

Intuitively, additive combination is captured by a before-after formalism for
reasoning about steps in protocol execution. SupposeP is a sequence of protocol
steps, andφ andψ are formulas asserting secrecy of some data, past actions ofother
principals, or other facts about a run of a protocol. The triple φ[P ]Aψ means that
if φ is true before principalA does actionsP , thenψ will be true afterwards. For
example, the precondition might assert thatA knowsB’s public key, the actionsP
allowA to receive a signed message and verifyB’s signature, and the postcondition
may say thatB sent the signed message thatA received. The importance of before-
after assertions is that we can combine assertions about individual protocol steps to
derive properties of a sequence of steps: ifφ[P ]Aψ andψ[P ′]Aθ, thenφ[PP ′]Aθ.
For example, an assertion assuming that keys have been successfully distributed can
be combined with steps that do key distribution to prove properties of a protocol
that distributes keys and uses them.

We ensure nondestructive combination, which is useful for reasoning about run-
ning older versions of a protocol concurrently with currentversions (e.g., SSL2.0
and SSL3.0) and for verifying protocols like IKE [13] which contain a large num-
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ber of sub-protocols, using invariance assertions. The central assertion in our rea-
soning system,Γ ⊢ φ[P ]Aψ, says that in any protocol satisfying the invariantΓ,
the before-after assertionφ[P ]Aψ holds in any run (regardless of any actions by
any dishonest attacker). Typically, our invariants are statements about principals
that follow the rules of a protocol, as are the final conclusions. For example, an
invariant may state that every honest principal maintains secrecy of its keys, where
“honest” means simply that the principal only performs actions that are given by
the protocol. A conclusion in such a protocol may be that if Bob is honest (so
no one else knows his key), then after Alice sends and receives certain messages,
Alice knows that she has communicated with Bob. Under the specific conditions
described in this paper, nondestructive combination occurs when two protocols are
combined and neither violates the invariants of the other.

As informally described, “additive combination” and “nondestructive combi-
nation” may seem like overlapping concepts, at least to the degree that additive
combination assumes that the added steps do not destroy any security properties.
In our logic, we factor the two concepts into two separate notions, one for adding
steps to a protocol under some assumed invariants, and another for showing that a
combination of protocol steps preserves a set of invariants. More specifically, if we
want to add an authentication step to a protocol, we first showthat the additional
step preserves the same needed invariants. Then, under the assumption that invari-
ants are preserved, we combine properties guaranteed by separate steps. There is
some synergy in this approach, since the logical principlesused to prove an in-
variant are the same as those used to prove protocol properties from a given set of
invariants.

To show the utility of our logic for practical protocols, we present three exam-
ples. Example 6.1 is a formal correctness proof ofISO-9798-3, constructed by
composing proofs of two parts, a standard signature-based challenge response pro-
tocol [28], and a Diffie-Hellman key exchange protocol [6]. Example 6.2 proves
correctness of a protocol that exchanges certificates to establish public keys, and
then uses public-key cryptography and nonces to establish ashared secret. Exam-
ple 6.3 combines the two, showing that running any number of instances ofISO-
9798-3and the Needham-Schroeder public-key protocol in parallelpreserves the
security properties of both. While the formal proofs are somewhat lengthy when
written out in full detail, as in any formal proof system, theproof structure takes
advantage of composition ideas and illustrates the power ofa modular approach.
Although the assertions we prove only mention steps of the protocol, the logic is
sound in a stronger sense: each provable assertion about an action or sequence of
actions holds in any run of the protocol that contains the given actions and arbitrary
additional actions by any number of additional principals and malicious attacker(s).
This “implicit attacker” method lets us prove security properties of protocols under
attack, while reasoning only about the sequence of actions taken by honest parties
in the protocol.

It is well known that many natural security properties (e.g., noninterference)
are not preserved either under composition or under refinement. This has been ex-
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Fig. 1. ISO-9798-3as arrows-and-messages

tensively explored using trace-based modeling techniques[20,21,22,23,24], using
properties that are not first-order predicates over traces,but second-order predicates
over sets of traces that may not have closure properties corresponding to composi-
tion and refinement. In contrast, our security properties are safety properties over
sets of traces that satisfy safety invariants, thus avoiding negative results about
composability.

The rest of the paper is organized as follows. Section2 discusses the process
calculus that we use for defining the steps of a protocol. The syntax and seman-
tics of the core protocol logic is presented in Section3. The proof system is pre-
sented in Section4. Section5 describes the extensions to the core proof system
used to reason about protocol composition. In Section6, we illustrate applications
of the logic. In Section7, we describe previous work on protocol composition
[4,11,12,14,16,18,27,36] and discuss how our formalization can be used to explain
some of those results. Finally, in Section8, we present our conclusions and propose
some themes for future work.

2 Cord Calculus

Cords [9] are the formalism we use to represent protocols and theirparts. They
form an action calculus [29,30,33], based onπ-calculus [31], and related tospi-
calculus [1]. The cords formalism is also similar to the approach of the Chemical
Abstract Machine formalism [3], in that the communication actions can be viewed
as reactions between “molecules”. Cord calculus serves as asimple “protocol pro-
gramming language” which supports our Floyd-Hoare style logical annotations,
and verifications in an axiomatic semantics. Cord calculus is presented in [9]. In
order to make this paper self-contained, a brief summary is included in Appendix A.

In this section, we illustrate with an example how protocolsare represented in
cord calculus. Figure 1 shows theISO-9798-3protocol [15] in the informal arrows-
and-messages notation which is commonly used to describe security protocols. The
same protocol is written out in the language of cord calculusin Figure 2. The
common point between the two is that a protocol is described by listing out the
sequence of actions that honest parties would execute in a run. In this example,
the protocol consists of two roles, the initiator role and the responder role. The
sequence of actions in the initiator role are given by the cord A in Figure 2. In
words, the actions are: generate a fresh random number; senda message with
the Diffie-Hellman exponential of that number to the peer,B̂; receive a message
with source addresŝB; verify that the message containŝB’s signature over data
in the expected format; and finally, send another message toB̂ with the initiator’s
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signature over the Diffie-Hellman exponential that she sentin the first message, the
data she received from̂B (which should be a Diffie-Hellman exponential generated
by B̂) andB̂’s identity. The notations(νx), 〈t〉, (x) refer respectively to the actions
of nonce generation, sending a term and receiving a message.Here, a message is
assumed to be of the form: (source, destination, content). Detailed syntax of cord
calculus is presented in Appendix A.

3 A Protocol Logic

3.1 Syntax

The formulas of the logic are given by the grammar in Table 1, whereρ may be
any role, written using the notation of cord calculus. Here,t andP denote a term
and a process respectively. We use the wordprocessto refer to a principal exe-
cuting an instance of a role, e.g., Alice taking part in a session of a protocol in
the initiator role. As a notational convention, we useX to refer to a process be-
longing to principalX̂. We useφ andψ to indicate predicate formulas, andm to
indicate a generic term we call a “message”.m is of the form (source, destination,
protocol-identifier, content), i.e., each message has source and destination fields
and a unique protocol identifier besides the contents. Note that the source field of
a message may not be the same as the actual sender of the message since the in-
truder can spoof the source address. Also, the principal identified by the destination
field may not receive the message since the intruder can intercept messages. The
source and destination fields in the message are useful whileproving authentication
properties of protocols. When an honest principal sends outa message, the source
field identifies her and the destination field identifies the intended recipient. Our
formalization of authentication is based on the notion of matching records of runs
[7] which requires that whenever̂A andB̂ accept each other’s identities at the end
of a run, their records of the run should match, i.e., each message thatÂ sent was
received byB̂ and vice versa, each send event happened before the corresponding
receive event, and moreover the messages sent by each principal (Â or B̂) appear in
the same order in both the records. Including the source and destination fields in the
message allows us to match up send-receive actions. Since inthis paper, we reason
about correctness of a protocol in an environment in which other protocols may
be executing concurrently, it is important that whenÂ andB̂ accept each other’s
identities, they also agree on which protocol they have successfully completed with
the other. One way to extend the matching histories characterization to capture this
requirement is by adding protocol identifiers to messages. Now if Â andB̂ have
matching histories at the end of a run, not only do they agree on the source, destina-
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tion and content of each message, but also on which protocol this run is an instance
of.

Most protocol proofs use formulas of the formθ[P ]Xφ, which means that after
actionsP are executed in processX, starting from a state where formulaθ is true,
formulaφ is true about the resulting state ofX. Here are the informal interpreta-
tions of the predicates, with the basis for defining precise semantics discussed in
the next section.

The formulaHas(X, x) means that principal̂X possesses informationx in the
processX. This is “possesses” in the limited sense of having either generated the
data or received it in the clear or received it under encryption where the decryp-
tion key is known. The formulaSend(X,m) means that the last action in a run of
the protocol corresponds to principalX̂ sending messagem in in the processX.
Receive(X,m), New(X, t), Decrypt(X, t), andVerify(X, t) are similarly associ-
ated with the receive, new, decrypt and signature verification actions of a protocol.
Fresh(X, t) means that the termt generated inX is “fresh” in the sense that no one
else has seen any term containingt as a subterm. Typically, a fresh term will be a
nonce and freshness will be used to reason about the temporalordering of actions
in runs of a protocol. This form of reasoning is useful in proving authentication
properties of protocols. The formulaHonest(X̂) means that the actions of princi-
pal X̂ in the current run are precisely an interleaving of initial segments of traces
of a set of roles of the protocol. In other words,X̂ assumes some set of roles and
does exactly the actions prescribed by them.Contains(t1, t2) means thatt2 is a sub-
term oft1. This predicate helps us identify the components of a message. The two
temporal operatorsQ and� have the same meaning as in Linear Temporal Logic
[19]. Since we view a run as a linear sequence of states,Q φ means that in some
state in the pastφ holds, whereas� φ means that in the previous stateφ holds.
The predicateAfter(a1, a2) means that the actiona2 happened after the actiona1 in
a run. In this paper, we restrict attention to protocol rolesin which all actions are
unique. In particular, a principal executing a role of a protocol does not send the
same message twice. This seems like a reasonable assumptionsince even if she did
send two messages with the same content, she would probably distinguish the two
by using message sequence numbers or a similar mechanism. The technical benefit
of this assumption is thatAfter becomes a transitive relation for actions executed
by honest principals.

We note here that the temporal operatorQ and some of the predicates (Send,
Receive) bear semblance to those used in NPATRL [35], the temporal requirements
language for the NRL Protocol Analyzer [25,26]. However, while NPATRL is used
for specifying protocol requirements, our logic is also used to infer properties of
protocols. This leads to essential semantical differences.

3.2 Semantics

A formula may be true or false at a run of a protocol. More precisely, the main
semantic relation,Q, R |= φ, may be read, “formulaφ holds for runR of protocol
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Action formulas

a ::= Send(P,m) |Receive(P,m) |New(P, t) |Decrypt(P, t) |Verify(P, t)

Formulas

φ ::= a |Has(P, t) | Fresh(P, t) |Honest(N) |Contains(t1, t2) |

φ ∧ φ | ¬φ | ∃x.φ | Q φ | � φ

Modal forms

Ψ ::= ρ φ |φ ρ φ

After(a,b) ≡ Q (b ∧� Q a)

Table 1
Syntax of the logic

Q.” In this relation,R may be a complete run, with all sessions that are started in
the run completed, or an incomplete run with some principalswaiting for additional
messages to complete one or more sessions. IfQ is a protocol, then let̄Q be the set
of all initial configurations of protocolQ, each including a possible intruder cord.
Let Runs(Q̄) be the set of all runs of protocolQ with intruder, each a sequence of
reaction steps within a cord space. Ifφ has free variables, thenQ,R |= φ if we
haveQ,R |= σφ for all substitutionsσ that eliminate all the free variables inφ. We
writeQ |= φ if Q, R |= φ for all R ∈ Runs(Q̄).

The inductive definition ofQ,R |= φ is given in Appendix B. The main idea
is to view a run as a sequence of reaction steps within a cord space. Each reaction
step corresponds to a principal executing an action. It therefore becomes possible
to assert whether a particular action occurred in a given runand also to make as-
sertions about the temporal ordering of the actions. An alternative view, similar to
the execution model used in defining Linear Temporal Logic (LTL) semantics, is to
think of a run as a linear sequence of states. Transition fromone state to the next is
effected by an action carried out by some principal in some role. Associating that
action with the state that the system ends up in as a consequence, allows us to use
the well-understood terminology of LTL in our logic. A formula is true in a run if
it is true in the last state of that run. An action formulaa is therefore true in a run
if it is the last action in that run. On the other hand, a past formulaQ a is true if in
the past the action formulaa was true in some state, i.e., if the action had occurred
in the past.
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AA1 φ[a]X Q (a ∧ � φ)

AN1 φ[(νn)]X Has(X, n)

AN2 φ[(νn)]X Has(Y, n) ⊃ (Y = X)

AN3 φ[(νn)]X Fresh(X, n)

AR1 φ[(m)]X Has(X,m)

Table 2
Axioms for protocol actions

4 Proof System

4.1 Axioms for Protocol Actions

The axioms about protocol actions are listed in Table 2. All the axioms state prop-
erties that hold in the state reached by executing one of the actions in a state in
which formulaφ holds. Note that thea in axiomAA1 is any one of the5 actions
anda is the corresponding predicate in the logic.AA1 states that if a principal
has executed an action in some role, then the corresponding predicate asserting that
the action had occurred in the past is true. Also, in the previous state,φ is true. If
processX generates a new valuen and does no further actions, then axiomAN1

says thatX knowsn, AN2 says that no one else knowsn, andAN3 says thatn is
fresh.AR1 says that ifX has received a messagem, then she knowsm.

4.2 Axioms relating Atomic Predicates

Table 3 lists axioms relating various propositional properties, most of which follow
naturally from the semantics of propositional formulas. For example,DEC states
that ifX decrypts{|n|}K , thenX knowsn because that is the result of the decryp-
tion, andPROJ states that if a process knows a tuplex, y then he also knowsx
andy. VER andSEC respectively refer to the unforgeability of signatures and
the need to possess the private key in order to decrypt a message encrypted with
the corresponding public key. The additional condition requiring principalX̂ to
be honest guarantees that the intruder is not in possession of the private keys. The
above described four axioms together provide an abstraction of the standard Dolev-
Yao intruder model [8]. An important axiom isN1 which states that if a processX
has generated a valuen, then that value is distinct from all other values generated
in all other roles.N2 states that freshly generated values are distinct from Diffie-
Hellman exponentials.F1 states that fresh values generated in different processes
are distinct.N1, N2, andF1 together capture the intuition that fresh nonces and
Diffie-Hellman exponentials are unique. Finally,CON states that the tuplex, y
containsx andy as subterms.
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Axioms Capturing Dolev-Yao Model:

DEC Q Decrypt(X, {|n|}K) ⊃ Has(X, n)

PROJ Has(X, (x, y)) ⊃ Has(X, x) ∧ Has(X, y)

SEC Honest(X̂) ∧ Q Decrypt(Y, {|n|}X) ⊃ (Ŷ = X̂)

VER Honest(X̂) ∧ Q Verify(Y, {|n|}X) ⊃

∃X.∃m.(Q Send(X,m) ∧ Contains(m, {|n|}X))

Axioms Capturing Uniqueness of Nonces:

N1 Q New(X, n) ∧ Q New(Y, n) ⊃ (X = Y )

N2 Q New(X, p) ⊃ ¬Q New(Y, gp)

F1 Q Fresh(X, n) ∧ Q Fresh(Y, n) ⊃ (X = Y )

Axiom Capturing Subterm Relationship:

CON Contains((x, y), x) ∧ Contains((x, y), y)

Table 3
Relationship between properties

4.3 Inference Rules, Preservation and Freshness Loss Axioms

Table 4 collects the inference rules and some additional axioms. The generic in-
ference rules follow naturally from the semantics.G2 is exactly of the same form
as the rule of consequence in Hoare Logic. It is clear that most predicates are pre-
served by additional actions. For example, if in some stateHas(X, n) holds, then
it continues to hold, whenX executes additional actions. Intuitively, if a process
possesses some information at a point in a run, then she remembers it for the rest
of the run. Note, however, that theFresh predicate is not preserved if the freshly
generated valuen is sent out in a message (seeF).

4.4 Axioms and Rules for Temporal Ordering

In order to prove mutual authentication, we need to reason about the temporal or-
dering of actions carried out by different processes. For this purpose, we use a
fragment of the proof system for Propositional Linear Temporal Logic, PLTL (Ta-
ble 5). See [34] for a complete axiomatization of PLTL. The axioms and rules
specific to the temporal ordering of actions are presented inTable 5. The first two
rules are fairly straightforward.AF1 orders the actions within a role. This is con-
sistent with the way we view a role as an ordered sequence of actions.AF2 states
that theAfter relation is transitive on actions executed by honest participants. It
makes sense since we assume that in a role of a protocol, an honest principal does
not send the same message twice.AF3 andAF4 use the freshness of nonces to
reason about the ordering of actions carried out by different processes. Intuitively,
AF3 states that if a processX creates a fresh valuen and then sends out a message
containing it as a subterm, then any action carried out by anyother process which
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Generic Rules:

θ[P ]Xφ θ[P ]Xψ
G1

θ[P ]Xφ ∧ ψ

θ[P ]Xφ θ′ ⊃ θ φ ⊃ φ′

G2

θ′[P ]Xφ
′

φ
G3

θ[P ]Xφ

∃x.φ(x)
G4

φ(c0)

Preservation Axioms: (ForPersist ∈ {Has, Q φ},)

P1 Persist(X, t)[a]XPersist(X, t)

P2 Fresh(X, t)[a]XFresh(X, t), where(t 6⊆ a) ∨ (a 6= 〈m〉)

P3 HasAlone(X, t)[a]XHasAlone(X, t), where(t 6⊆v a) ∨ (a 6= 〈m〉)

Freshness Loss Axiom:

F Fresh(X, t)[〈m〉]X¬Fresh(X, t), where(t ⊆ m)

Table 4
Generic Rules, Preservation and Freshness Loss Axioms

involvesn (e.g. ifY receives a message containingn inside a signature), happens
after the send action.AF4 is similar except for the fact that the roles ofX andY
are reversed.

4.5 The Honesty Rule

The honesty rule is essentially an invariance rule for proving properties of all roles
of a protocol. It is similar to the basic invariance rule of LTL [19]. The honesty
rule is used to combine facts about one role with inferred actions of other roles. For
example, suppose Alice receives a response from a message sent to Bob. Alice may
wish to use properties of Bob’s role to reason about how Bob generated his reply. In
order to do so, Alice may assume that Bob is honest and derive consequences from
this assumption. Since honesty, by definition in our framework, means “following
one or more roles of the protocol,” honest principals must satisfy every property
that is a provable invariant of the protocol roles.

Recall that a protocolQ is a set of roles,Q = {ρ1, ρ2, . . . , ρk}. If ρ ∈ Q is a
role of protocolQ, we writePǫBS(ρ) if P is a continuous segment of the actions
of roleρ such that (a)P is the empty sequence; or (b)P starts at the beginning ofρ
and goes upto the first receive ; or (c)P starts from a receive action and goes upto
the next receive action; or (d)P starts from the last receive action and continues till
the end of the role. We call such aP abasic sequenceof roleρ. The reason for only
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PLTL Axioms:

T1 Q (φ ∧ ψ) ⊃ (Q φ ∧ Q ψ)

T2 Q (φ ∨ ψ) ⊃ (Q φ ∨ Q ψ)

T3 � ¬φ ↔ ¬� φ

Temporal Generalization Rule:

φ
TGEN

¬Q ¬φ

Temporal Ordering of actions:

AF1 θ[a1 . . . an]X After(a1, a2) ∧ . . . ∧ After(an−1, an)

AF2 Honest(X̂) ∧ Honest(Ŷ ) ∧ Honest(Ẑ) ⊃

(After(a1(X), a2(Y )) ∧ After(a2(Y), a3(Z)) ⊃ After(a1(X), a3(Z)))

Fresh(X, n)[〈m〉P ]X (φ ⊃ Q a2(Y ))
AF3

Fresh(X, n)[〈m〉P ]X (φ ⊃ After(Send(X,m), a2))
(X 6= Y ) ∧ (n ⊆ m, a2)

θ[Pa2]X (φ ⊃ Q (Send(Y,m) ∧ � Fresh(Y, n)))
AF4

θ[Pa2]X (φ ⊃ After(Send(Y,m), a2))
(X 6= Y ) ∧ (n ⊆ m, a2)

Table 5
Axioms and rules for temporal ordering

considering segments starting from a read and continuing till the next read is that
if a role contains a send, the send may be done asynchronouslywithout waiting for
another role to receive. Therefore, we can assume without loss of generality that
the only “pausing” states of a principal are those where the role is waiting for input.
If a role calls for a message to be sent, then we dictate that the principal following
this role must complete the send before pausing.

Since the honesty rule depends on the protocol, we writeQ ⊢ θ[P ]φ if θ[P ]φ is
provable using the honesty rule forQ and the other axioms and proof rules. Using
the notation just introduced, the honesty rule may be written as follows.

[ ]X φ ∀ρ ∈ Q.∀PǫBS(ρ). φ [P ]X φ
HON

Q ⊢ Honest(X̂) ⊃ φ

no free variable inφ

exceptX bound in

[P ]X

In words, ifφ holds at the beginning of every role ofQ and is preserved by all
its basic sequences, then every honest principal executingprotocolQ must satisfy
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Γ ⊢ φ
W

Γ ∪ Γ′ ⊢ φ

Γ ⊢ φ1[P ]Aφ2 Γ ⊢ φ2[P
′]Aφ3

C1

Γ ⊢ φ1[P ;P ′]Aφ3

Q ⊢ Γ Q′ ⊢ Γ
C2

Q ◦ Q′ ⊢ Γ

Table 6
Composition Rules

φ. The side condition prevents free variables in the conclusion Honest(X̂) ⊃ φ
from becoming bound in any hypothesis. Intuitively, sinceφ holds in the initial
state and is preserved by all basic sequences, it holds at allpausing states of any
run.

5 Formalizing Protocol Composition

Until this point, protocols have been analyzed in isolation. In this section, we ex-
tend the deductive system to reason about protocol composition. In doing so, we
address the two ways in which composition problems can arisein security protocol
analysis. Both arise out of complexity. In one case, we wish to gain control of com-
plexity by building up a proof of correctness of a complex protocol from proofs of
correctness of its component sub-protocols. In the other, we want to avoid insecure
interactions between different protocols or different versions of the same protocol
that may be operating over the same network.

The protocol composition rules are collected in Table 6.Γ denotes a set of
formulas which we refer to asenvironment invariants. The idea is to capture, using
these formulas, the constraints that the environment must satisfy in order to enable
a specific protocol to retain its security property. Typically, these constraints will
impose restrictions on the actions of the honest principals, i.e., the principals who
are faithfully executing one or more of the protocols running in the environment.
We writeΓ ⊢ φ if φ is provable using the formulas inΓ and the axioms and proof
rules of the deductive system. The semantic entailment,Γ |= φ, is defined in
Appendix B. Essentially, it says, that in any run in which theinvariants inΓ hold,
the formulaφ is true.

The weakening rule,W, states that a formulaφ which is provable from a set
of hypotheses,Γ, remains provable if additional formulas are added to the set of
hypotheses. The protocol composition ruleC1 gives us a way of sequentially com-
posing two rolesP andP ′ when the logical formula guaranteed by the execution
of P , i.e., the post-condition ofP , matches the pre-condition required in order to
ensure thatP ′ achieves some property. As before,Γ denotes a set of hypotheses
which are used in proving the properties of the protocols. This form of reasoning
allows a proof of correctness of a protocol to be built up incrementally from a proof
of its component sub-protocols. The other composition ruleC2 states that if the
environment invariants hold for two protocols,Q andQ′, then the invariants also
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hold for their composition. This rule is sound if the formulas in Γ capture trace-
based invariants, which are proved using the honesty rule inour deductive system.
Soundness proofs of the rules in Table 6 are presented in Appendix C.

If Q andQ′ are protocols, then we defineQ ◦ Q′ to be any protocol such that
every roleρ in Q ◦ Q′ is a concatenation of basic sequences of roles inQ or Q′.
Therefore, everyρ ∈ Q ◦ Q′ can be written asρ = ρ1ρ2 . . . ρn where everyρi is a
basic sequence of a role inQ or Q′. Note that sequential and parallel composition
arise as special cases of this general composition operation.

Our general methodology for proving protocol composition results involves the
following steps:

(i) Prove separately the security properties of protocolsQ andQ′.

(ii) Identify the set of environment invariants used in the two proofs,Γ andΓ′.
The formulas included in these sets will typically be the formulas in the two
proofs, which were proved using the honesty rule.

(iii) Apply the weakening rule so thatΓ ∪ Γ′ represents the set of environment
invariants that will be used while applying the compositionrulesC1 andC2.
This step is required in case of sequential composition or ifwe want to prove
that the properties of bothQ andQ′ are preserved by the composition process.
However, if the goal is to just prove that the properties ofQ are preserved, then
the set of environment invariants that will be used while applying C1 andC2

will simply beΓ.

(iv) When the post-condition of a role ofQ matches the pre-condition of the cor-
responding role ofQ′, sequentially compose the two roles by applying rule
C1. This step is required only in the case of sequential composition.

(v) Prove that the environment invariants used in proving the properties of the
protocols,Γ ∪ Γ′, hold for both the protocols. SinceQ ⊢ Γ was already
proved in Step1, in this step, it is sufficient to show thatQ ⊢ Γ′ and similarly
that Q′ ⊢ Γ. If Step 3 was skipped, then it is sufficient to just show that
Q′ ⊢ Γ.

Note that in proving a composition result (whether sequential or parallel), we
always prove that the two protocols under consideration respect each other’s invari-
ants (Step5), i.e., that they do not interact insecurely. In addition, while proving
that two protocols can be sequentially composed, we requirethat the post-condition
of the first matches the pre-condition of the second (Step4). Thus, in proving a se-
quential composition result, we address the two central problems of compositional
protocol analysis mentioned in the beginning of the section.

6 Examples of Protocol Composition

In this section, we illustrate the use of the methodology outlined in the previous
section, by presenting modular proofs of two standard protocols,ISO-9798-3[15]
andNSL [32,17]. The parallel composition of these two protocols isalso proved

13



Datta, Derek, Mitchell & Pavlovic

secure. Due to space constraints, we only present the the proof of ISO-9798-3in
its entirety, and sketch an outline of theNSLproof and the proof of correctness of
their parallel composition.

Example 6.1 TheISO-9798-3Protocol
The ISO-9798-3protocol is constructed by a sequential composition of a protocol
based on the Diffie-Hellman key exchange protocol and the standard signature-
based challenge-response protocol. Here, we prove the key secrecy property of the
Diffie-Hellman protocol and the mutual authentication property of the challenge-
response protocol. We then prove that theISO-9798-3protocol can be used to
establish an authenticated shared secret by composing the correctness proofs of
these two protocols.

Challenge Response Protocol,CR:
Our formulation of authentication is based on the concept ofmatching conver-

sations[2] and is similar to the idea of proving authentication usingcorrespondence
assertions[37]. The same basic idea is also presented in [7] where it is referred to
asmatching records of runs. Simply put, it requires that whenever̂A andB̂ accept
each other’s identities at the end of a run, their records of the runmatch, i.e., each
message that̂A sent was received bŷB and vice versa, each send event happened
before the corresponding receive event, and moreover the messages sent by each
principal (Â or B̂) appear in the same order in both the records.

A complete proof of the mutual authentication property guaranteed by execut-
ing theCR protocol is presented in Table D in Appendix D. The final property
proved about the initiator role (referred asφauth henceforth) is of the form:precon-
dition [actions] postcondition, where:

precondition = Fresh(A,m)

actions = [〈Â, B̂,m〉(B̂, Â, n, {|m,n, Â|}B/B̂, Â, y, z)

(z/{|m, y, Â|}B)〈Â, B̂, {|m, y, B̂|}A〉]A

postcondition = Honest(B̂) ⊃ ActionsInOrder(

Send(A, {Â, B̂,m}),

Receive(B, {Â, B̂,m}),

Send(B, {B̂, Â, {n, {|m,n, Â|}B}}),

Receive(A, {B̂, Â, {n, {|m,n, Â|}B}}))

Here, the predicateActionsInOrder(a1, a2, . . . ,an) means that the actionsa1, a2, . . . ,
an were executed in that order. Intuitively, this formula means that after executing
the actions in the initiator role purportedly witĥB, Â is guaranteed that her record
of the run matches that of̂B, provided thatB̂ is honest. The set of environmental
invariants used in this proof,Γ, contains only one formula (line (9) of Table D), i.e.,
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DH1 Computes(X, gab) ⊃ Has(X, gab)

DH2 Has(X, gab) ⊃

(Computes(X, gab) ∨ ∃m.(Q Receive(X,m) ∧ Contains(m, gab)))

DH3 (Q Receive(X,m) ∧ Contains(m, gab)) ⊃

∃Y,m′.(Computes(Y, gab) ∧ Q Send(Y,m′) ∧ Contains(m′, gab))

DH4 Fresh(X, a) ⊃ Fresh(X, ga)

Computes(X, gab) ≡ ( (Has(X, a) ∧ Has(X, gb)) ∨ (Has(X, b) ∧ Has(X, ga)) )

Table 7
Diffie-Hellman Axioms

Γ = { Honest(B̂) ⊃ (

( Q Send(B,m0) ∧ Contains(m0, {|m,n, Â|}B) ∧ ¬Q Fresh(B,m) ) ⊃

( m0 = {B̂, Â, {n, {|m,n, Â|}B}}∧Q (Send(B, {B̂, Â, {n, {|m,n, Â|}B}}) ∧ � Fresh(B, n))∧

ActionsInOrder(Receive(B, {Â, B̂,m}),

Send(B, {B̂, Â, {n, {|m,n, Â|}B}}))

) ) }

Intuitively, this invariant states that whenever honestB̂ signs a term which is a triple
with the third component̂A, and the first component was not freshly generated by
B̂, then it is the case that this signature was sent as part of thesecond message of
theCR protocol. (Note that each message sent and received has the protocol-id in
it. We omit these to improve readability).

Base Diffie Hellman Protocol,DH0:
TheDH0 protocol involves generating a fresh random number and computing

its Diffie-Hellman exponential. It is therefore the initialpart of the standard Diffie-
Hellman key exchange protocol. In order to reason about the security property of
this protocol, the term language and the protocol logic haveto be enriched to allow
reasoning about Diffie-Hellman computation. The termsg(a) andh(a, b), respec-
tively representing the Diffie-Hellman exponentialgamod p and the Diffie-Hellman
secretgabmod p, are added to the term language. To improve readability, we will
usega andgab instead ofg(a) andh(a, b). Table 7 presents the rules specific to the
way that Diffie-Hellman secrets are computed. The predicateComputes() is used
as a shorthand to denote the fact that the only way to compute aDiffie-Hellman
secret is to possess one exponent and the other exponential.DH1 states that ifX
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can compute the Diffie-Hellman secret, then she also possesses it. DH2 captures
the intuition that the only way to possess a Diffie-Hellman secret is to either com-
pute it directly or obtain it from a received message containing it. DH3 states that
if a principal receives a message containing a Diffie-Hellman secret, someone who
has computed the secret must have previously sent a (possibly different) message
containing it.DH4 captures the intuition that ifa is fresh at some point of a run,
thenga is also fresh at that point.

The property of the initiator role of theDH0 protocol is given by the formula
below.

[(νa)]A HasAlone(A, a) ∧ Fresh(A, ga)

This formula follows easily from the axioms and rules of the logic. It states that
after carrying out the initiator role ofDH0, A possesses a fresh Diffie-Hellman
exponentialga and is the only one who possesses the exponenta. This property
will be useful in proving the secrecy condition of theISO-9798-3protocol. The set
of environmental invariants used in this proof,Γ′, is empty.

Composing the Protocols:
We now prove the security properties of theISO-9798-3protocol by compos-

ing the correctness proofs ofDH0 andCR. In doing so, we follow the general
methodology for proving composition results outlined in Section 5. Let us go back
and look at the form of the logical formulas characterizing the initiator roles of
DH0 andCR:

DH0 : Γ′ ⊢ [InitDH0
]A Fresh(A, ga)

CR : Γ ⊢ Fresh(A,m) [InitCR]A φauth

At this point, steps1 and2 of the general methodology have already been carried
out. We now apply the weakening rule to both the formulas above (step3). Since
Γ′ is empty,Γ ∪ Γ′ is simplyΓ. Note that the post-condition ofDH0 matches the
pre-condition ofCR. We can therefore compose the two formulas by applying the
composition ruleC1 (step4). The resulting formula is:

ISO-9798-3 (auth.): Γ ⊢ [InitDH0
; InitCR]A φauth

The result of composing the two roles is that the freshly generated Diffie-Hellman
exponential is substituted for the nonce in the challenge-response cord. The re-
sulting role is precisely the initiator role of theISO-9798-3protocol. The formula
above states that the mutual authentication property ofCR is preserved by the com-
position process assuming that the environmental invariants in Γ are still satisfied.
Finally, using the honesty rule, it is easily proved thatDH0 respects the environ-
mental invariants inΓ (step 5). Therefore, by applying the composition ruleC2,
we conclude that the sequential composition ofDH0 andCR, which isISO-9798-3
, respects the invariants inΓ. This completes the composition proof for the mutual
authentication property.
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The other main step involves proving that the secrecy property of DH0 is pre-
served byCR, since theCR protocol does not reveal the Diffie-Hellman exponents.

DH0 : ⊢ [InitDH0
]A HasAlone(A, a)

CR′ : ⊢ HasAlone(A, a) [InitCR′]A HasAlone(A, a)

Here,CR′ is the same protocol asCR except thatga is substituted for the nonce
m. Therefore, by applying the composition ruleC1 again, we have the secrecy
condition for theISO-9798-3protocol:

ISO-9798-3 (secrecy):

⊢ [InitDH0
; InitCR]A HasAlone(A, a)

Since the set of environment invariants is empty, steps3 and5 follow trivially.
The rest of the proof uses properties of the Diffie-Hellman method of secret com-
putation to prove the following logical formula:

ISO-9798-3 (shared-secret): [InitDH0
; InitCR]A Honest(B̂) ⊃

(n = gb0 ∧ Has(A, gab0) ∧ (Has(X, gab0) ⊃

(X = A ∨X = B)))

Intuitively, the property proved is that if̂B is honest, then̂A andB̂ are the only
people who know the Diffie-Hellman secretgab. In other words, theISO-9798-
3 protocol can be used to compute an authenticated shared secret. The complete
proof is presented in Table D in Appendix D. It requires another invariant (line
(3)) capturing the intuition that the honest agents sign Diffie-Hellman exponentials
only.

Example 6.2 TheNSLProtocol
The7 messageNSLprotocol can be proved correct by sequential composition of
two protocols, which we refer to asNSL-initandNSL-base. By runningNSL-init,
a principal obtains the public key certificate of a peer from the server. If a principal
possesses a peer’s public key certificate, she can runNSL-basewith him and set up
an authenticated shared secret. In our formalism, the postcondition ofNSL-init is
that the principal knows a peer’s public key certificate. Also, with a precondition
capturing the same property,NSL-basehas a postcondition stating that the two
principals possess a shared secret. Thus, the two protocolscan be composed using
the composition ruleC1. The resulting protocol isNSL. Moreover, it can be proved
that the two protocols respect each other’s invariants, allowing us to conclude that
theNSLprotocol can be used to set up a shared secret. A part of this proof appears
in [9].

Example 6.3 Parallel Composition ofISO-9798-3andNSL
SinceISO-9798-3andNSLrespect each other’s invariants, their parallel composi-
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tion can also be proved secure using our formalism. The main insight from this
proof is that if the authenticators of two protocols (which are individually secure)
cannot be confused with each other, then their composition is secure. Disjoint
encryption, which has been suggested as a design principle to avoid insecure inter-
action between protocols [4,12], appears to be a special case of this more general
principle.

7 Related Work

Early work on the protocol composition problem concentrated on designing pro-
tocols that would be guaranteed to compose with any other protocol. This led to
rather stringent constraints on protocols: in essence, they required the fail-stop
property [11] or something very similar to it [14]. Since real-world protocols are
not designed in this manner, these approaches did not have much practical appli-
cation. More recent work has therefore focussed on reducingthe amount of work
that is required to show that protocols are composable. Meadows, in her analysis
of the IKE protocol suite using the NRL Protocol Analyzer [27], proved that the
different sub-protocols did not interact insecurely with each other by restricting at-
tention to only those parts of the sub-protocols, which had achance of subverting
each other’s security goals. Independently, Thayer, Herzog and Guttman used a
similar insight to develop a technique for proving composition results using their
strand space model [36]. Their technique consisted in showing that a set of terms
generated by one protocol can never be accepted by principals executing the other
protocol. The techniques used for choosing the set of terms,however, is specific
to the protocols in [10]. A somewhat different approach is used by Lynch [18] to
prove that the composition of a simple shared key communication protocol and the
Diffie-Hellman key distribution protocol is secure. Her model uses I/O automata
and the protocols are shown to compose if adversaries are only passive eavesdrop-
pers.

In a recent paper [4], Canetti, Meadows and Syverson, revisit the protocol com-
position problem. They show how the interaction between a protocol and its en-
vironment can have a major effect on the security propertiesof the protocol. In
particular, they demonstrate a number of attacks on published and widely used pro-
tocols that are not feasible against the protocol running inisolation but become
feasible in some environments. The main question that this study leaves open is:
how should the environment be constrained so that it does notsubvert the security
goals of a protocol? The authors put forward some rules of thumb that could be
useful in answering this question. Of these, at least two canbe justified using our
formalization. The first of these states that the environment should not use keys
or other secrets in unaltered form. Specifically, the protocol under consideration
should not encrypt messages with a key used to encrypt messages by any protocol
in its environment. The reason this makes sense is that if twoprotocols use a par-
ticular form of encrypted message as a test to authenticate apeer, then the attacker
might be able to make a principal running the first protocol accept a message which
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actually originated in a run of the second protocol. In our formalism, the environ-
mental invariant for the protocol under consideration would fail to hold in such an
environment, and the composition proof would therefore notgo through. We note
that this principle has been followed in the design of real-world protocols like IKE
[13]. Also, Guttman and Fábrega have proved a theoretical result to the same effect
in their strand space model [12]. The other rule of thumb (also recommended by
Kelsey, Schneier and Wagner in [16]), is the use of unique protocol identifiers to
prevent a message intended for use in one protocol to be mistaken for use in another
protocol. This rule can also be similarly justified.

8 Conclusions

A modular approach towards construction and analysis of systems, which is of-
ten seen in other areas of computer science, does not seem to work very easily in
computer security. The main problem is that systems which are individually secure
might lose their security when they are put together becauseof the way they inter-
act with each other. In this paper, we have presented a methodology for modular
reasoning about security protocols. While doing so, we haveaddressed two basic
problems: (a) how do you construct a protocol from smaller sub-protocols? (b)
how do you prove that two protocols which are individually secure are also secure
while running concurrently? In our formalism, we use before-after assertions to
address the first problem and protocol invariants to addressthe second. The use
of the methodology is illustrated by presenting modular proofs involving practical
protocols,ISO-9798-3andNSL. This formalism also justifies some design princi-
ples which have been used by protocol designers in the construction of real-world
protocols (e.g. IKE) and submuses some previous work in the formal methods com-
munity on the protocol composition problem. Future work would include a deeper
investigation of the limits and applicability of this method and its connection with
other approaches for reasoning about correctness of protocols. Also, it would be an
interesting challenge to automate the proof system.
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A Cord Calculus

Cord calculus is the formalism we use to represent protocols. The main concepts
are collected in this section.

A.1 Terms, Actions, Strands and Cords

The termst are built starting from the variablesx and the constantsc. Moreover,
the set of basic terms also contains the namesN , which can be variableŝX, Ŷ , Ẑ,
or constantŝA, B̂, Ĉ, and keysK which can be variablesy and constantsk. Upon
these basic sets, the term language is then generated by somegiven constructors
p, which always include tupling, the public key encryption{|t|}K of the termt by
the keyK, and the signature{|t|}K over the termt with the private keyK̄. The
language ofactions is then built upon the terms by further constructors. They
include sending a term〈t〉, receiving into a variable(x), matching a term against
a pattern(t/q(x)), and creating a new value(νx). A strand is a list of actions.
The idea is that they should be the subsequent actions of a single role in a protocol.
For example, the strand[(νx)〈x〉] represents a role in which a principal generates
x and then sends out a message containing the freshly generated value. Since some
actions of a role may be mutually independent, they can in principle be executed
in any order. Different strands can thus be semantically equivalent. A cord is
an equivalence class of behaviorally indistinguishable strands. We use the word
processto refer to a principal executing an instance of a role. TableA.1 summarizes
the formal definition of cords. In addition to the sequence ofactions, a cord has an
input interfaceand anoutput interface. As the name suggests, the output interface
represents the output of that cord. The input interface is used to provide initial
data to a cord. These input parameters (called static parameters) can represent data
known apriori (e.g. signing key) or data that becomes known by executing another
cord via its output interface.
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(names) N ::= X̂ variable name

Â constant name

(basic keys) K0 ::= k constant key

y variable key

N name

(keys) K ::= K0 basic key

K0 inverse key

(role id) η ::= s variable role-id

c̄ constant role-id

(process) P ::= N, η

(terms) t ::= x variable term

c constant term

N name

K key

η session id

t, t tuple of terms

{|t|}K term encrypted with keyK

{|t|}K term signed with keyK

(actions) a ::= ǫ the null action

〈t〉 send a termt

(x) receive term into variablex

(νx) generate new termx

(t/q(x1, . . . , xn)) match termt to patternq(x1, . . . , xn)

(basic terms) b ::= x | c | N | K basic terms allowed in patterns

(basic patterns) p ::= b, . . . , b tuple pattern

(patterns) q ::= p basic pattern

{|p|}K decryption pattern

{|p|}K signature verification pattern

(strands) S ::= aS | a

Table A.1
Syntax of terms, actions and strands
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A.2 Cord Spaces and Runs

A cord spaceis a multiset of cords that may interact via communication. We use⊗
for multiset union and[ ] for the empty multiset. Therunsof a protocol arise as re-
action sequences of cord spaces. The basic reactions withina cord space are shown
in Table A.2, with the required side conditions for each reaction shown below them.
The substitution(t/x) is assumed to act on the strand left of it,vizS ′. As usual, it is
assumed that no free variable becomes bound after substitution, which can always
be achieved by renaming the bound variables. Reaction (1) isa send and receive
interaction, showing the simultaneous sending of termt by the first cord, with the
receiving oft into variablex by the second cord. We call this anexternal action
because it involves an interaction between two cords. The other reactions all take
place within a single cord. We call theseinternal actions. Reaction (2) is a basic
pattern match action, where the cord matches the patternp(t) with the expected pat-
ternp(x), and substitutest for x. Reaction (3) is a decryption pattern match action,
where the cord matches the pattern{|p(t)|}y with the decryption pattern{|p(x)|}y

and substitutest for x. Reaction (4) is a signature verification pattern match action.
Finally, reaction (5) shows the binding action where the cord creates a new value
that doesn’t appear elsewhere in the cordspace, and substitutes that value forx in
the cord to the right. The intuitive motive for the conditionFV (t) = ∅ should be
clear: a term cannot be sent, or tested, until all of its free variables are instantiated.

[S(x)S ′] ⊗ [T 〈t〉T ′] ⊗ C ⊲⊲ [SS ′(t/x)] ⊗ [TT ′] ⊗ C (1)
[S (p(t)/p(x))S ′] ⊗ C ⊲⊲ [SS ′(t/x)] ⊗ C (2)

[S ({|p(t)|}y/{|p(x)|}y)S
′] ⊗ C ⊲⊲ [SS ′(t/x)] ⊗ C (3)

[S ({|p(t)|}y/{|p(t)|}y)S
′] ⊗ C ⊲⊲ [SS ′] ⊗ C (4)

[S(νx)S ′] ⊗ C ⊲⊲ [SS ′(m/x)] ⊗ C (5)

Where the following conditions must be satisfied:
(1) FV (t) = ∅
(2) FV (t) = ∅
(3) FV (t) = ∅ andy bound
(4) FV (t) = ∅
(5) x 6∈ FV (S) andm 6∈ FV (C) ∪ FV (S) ∪ FV (S ′)

Table A.2
Basic reaction steps

A.3 Protocols

A protocol is defined by a finite set of roles, such as initiator, responder and server,
each representing the actions of a participant in a protocolsession. In representing
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protocol roles by cords, it is useful to identify the principal who carries out the
role. Also, since the same principal might engage in multiple sessions in the same
role (e.g., principalÂ might be the initiator in two sessions at the same time),
associating arole-id with the cord allows us to distinguish between the actions
carried out in the different sessions. A principal executing an instance of a role is
referred to as a process.

The protocol intruder is capable of taking any of several possible actions, in-
cluding receiving a message, decomposing it into parts, decrypting the parts if the
key is known, remembering parts of messages, and generatingand sending new
messages. This is the standard “Dolev-Yao model”, which appears to have devel-
oped from positions taken by Needham and Schroeder [32] and amodel presented
by Dolev and Yao [8]. Arun of a protocolis a sequence of reaction steps from an
initial configuration. An initial configurationis determined by a set of principals,
a subset of which are designated as honest, a cord space constructed by assigning
one or more roles to each honest principal, and an intruder cord that may use only
the secret keys of dishonest principals. A particular initial configuration may give
rise to many possible runs. Intuitively, a protocol has a property if in all runs of the
protocol arising from all possible initial configurations,that property is preserved.

B Semantics of Protocol Logic

The formulas of the logic are interpreted overruns, which are finite sequences of
reaction steps from an initial configuration. An equivalentview, consistent with
the execution model used in defining Linear Temporal Logic (LTL) semantics, is to
think of a run as a linear sequence of states. Transition fromone state to the next is
effected by an action carried out by some principal in some role. A formula is true
in a run if it is true in the last state of that run.

The main semantic relation,Q, R |= φ, may be read, “formulaφ holds for run
R of protocolQ.” If Q is a protocol, then let̄Q be the set of all initial configurations
of protocolQ, each including a possible intruder cord. LetRuns(Q̄) be the set of
all runs of protocolQ with intruder, each a sequence of reaction steps within a
cord space. Ifφ has free variables, thenQ,R |= φ if we haveQ,R |= σφ for
all substitutionsσ that eliminate all the free variables inφ. We writeQ |= φ if
Q, R |= φ for all R ∈ Runs(Q̄).

In presenting the inductive definition ofQ,R |= φ below, forφ without free
variables, we use the following notation to describe a reaction step of cord calculus:

EVENT (R,X, P,n,x) ≡

(([SPS ′]X ⊗ C ⊲ ⊲ [SS ′(n/x)]X ⊗ C ′) ∈ R)

In words,EVENT (R,X, P,n,x) means that in runR, processX executes actions
P , receiving datan into variablesx, wheren and x are the same length. We
use the notationLAST (R,X, P,n,x) to denote that the last event of runR is
EVENT (R,X, P,n,x).
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Action Formulas:
• Q, R |= Send(A,m) if LAST (R,A, 〈m〉, ∅, ∅).
• Q, R |= Receive(A,m) if LAST (R,A, (x), m, x).
• Q, R |= New(A,m) if LAST (R,A, (νx), m, x).
• Q, R |= Decrypt(A, {|m|}K) if Q, R |= Has(A, {|m|}K)

∧ LAST (R,A, ({|m|}K/{|x|}K), m, x)
Note:Decrypt(A, n) is false if n 6= {|m|}K for somem andK.

• Q, R |= Verify(A, {|m|}K) if Q, R |= Has(A, {|m|}K)
∧ Q, R |= Has(A,m)
∧ Q, R |= Has(A,K)
∧ LAST (R,A, ({|m|}K/{|m|}K), ∅, ∅)

Note:Verify(A, n) is false if n 6= {|m|}K for somem andK.

Other Formulas:
• Q, R |= Has(A,m) if there exists ani such thatHasi(A,m) whereHasj is de-

fined by induction onj as follows:
(Has0(A,m) if ((m ∈ FV (R|A))
∨ EVENT (R,A, (νx), m, x)
∨ EVENT (R,A, (x), m, x)

andHasi+1(A,m) if (Hasi(A,m
′)

∧ ((m′ = {|p(t)|}K ∧m = t
∧ EVENT (R,A, (m′/{|p(y)|}K), t, y))

∨ (m′ = p(t) ∧m = t
∧ EVENT (R,A, (m′/p(y)), t, y))))

∨(Hasi(A,m
′) ∧ Hasi(A,m

′′)
∧ ((m = m′, m′′) ∨ (m = m′′, m′)))

∨(Hasi(A,m
′) ∧ Hasi(A,K)

∧m = {|m′|}K)
∨(Hasi(A, a) ∧ Hasi(A, g

b)
∧m = gab)

∨(Hasi(A, g
ab) ∧m = gba)

Intuitively, Has0 holds for terms that are known directly, either as a free variable
of the role, or as the direct result of receiving or generating the term. Hasi+1

holds for terms that are known by applyingi operations (decomposing via pat-
tern matching, composing via encryption or tupling, or by computing a Diffie-
Hellman secret) to terms known directly.

• Q, R |= Fresh(A,m) if Q, R |= (Q New(A,m) ∨ (Q New(A, n) ∧ m =
g(n))) ∧ ¬(Q Send(A,m′) ∧m ⊆ m′).

• Q, R |= Honest(A) if A ∈ HONEST (C) in initial configurationC for R.
• Q, R |= Contains(t1, t2) if t2 ⊆v t1. t2 is a visible subterm oft1, t2 ⊆v t1, if
t2 ⊆ t1 and it is not the case that all occurrences oft2 in t1 are as parameters of
one-way functions. For example,n 6⊆v g(n). The only one-way function that we
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consider here is the Diffie-Hellman exponentiation function, g(x).
• Q, R |= (φ1 ∧ φ2) if Q, R |= φ1 andQ, R |= φ2

• Q, R |= ¬φ if Q, R 6|= φ

• Q, R |= ∃x.φ if Q, R |= (d/x)φ, for somed, where(d/x)φ denotes the formula
obtained by substitutingd for x in φ.

• Q, R |= Q φ if Q, R′ |= φ, whereR′ is a (not necessarily proper) prefix ofR.
Intuitively, this formula means that in some state in the past, formulaφ is true.

• Q, R |= � φ if Q, R′ |= φ, whereR = R′e, for some evente. Intuitively, this
formula means that� φ is true in a state ifφ is true in the previous state.

Modal Formulas:
• Q, R |= φ1 [P ]A φ2 if R = R0R1R2, for someR0, R1 andR2, and eitherP does

not matchR1|A or P matchesR1|A andQ, R0 |= σφ1 impliesQ, R0R1 |= σφ2,
whereσ is the substitution matchingP toR1|A.

• Q, R |= [P ]A φ if R = R1R2, for someR1 andR2, and eitherP does not match
R1|A or P matchesR1|A andQ, R1 |= σφ, whereσ is the substitution matching
P toR1|A.
Note: The semantics ofQ, R |= [P ]A φ can be expressed in terms of the se-
mantics ofQ, R |= φ1 [P ]A φ2 by settingφ1 to true and requiring thatR0 be
empty.

Semantic Entailment:
• Γ |= φ if Q |= Γ impliesQ |= φ. Γ denotes a set of formulas. Intuitively, if in

every run ofQ all the formulas inΓ are true, then in every run ofQ, formulaφ
is also true.

C Soundness of Temporal Ordering and Composition Rules

In this section, we prove the soundness of the composition rules and some of the
temporal ordering rules. The soundness proof of the rest of the proof system is
quite similar to our previous work [9].

Axiom AF3 states that if a processX creates a fresh valuen and then sends
out a message containing it as a subterm, then any action carried out by any other
process which involvesn (e.g. ifY receives a message containingn inside a signa-
ture), happens after the send action. Assume thatX 6= Y , n ⊆ m, a2 and

Q |= Fresh(X, n)[〈m〉P ]X (φ ⊃ Q a2(Y )). (6)

We need to show that

Q |= Fresh(X, n)[〈m〉P ]X (φ ⊃ After(Send(X,m), a2)). (7)
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Let R = R0R1R2 be a run ofQ such thatR1 matches〈m〉P under substitutionσ
andQ,R0 |= Fresh(X, n). We need to prove that

Q,R0R1 |= σ(φ ⊃ After(Send(X,m), a2)). (8)

WhenQ,R0R1 |= σ¬φ then 8 holds trivially. On the other hand, whenQ,R0R1 |=
σφ, it follows from 6 thatQ,R0R1 |= Q a2(Y ). In this case 8 follows from the
semantics of formulasFresh(a,m) andQ a2(Y ).

Axiom AF4 is similar except for the fact that the roles ofX andY are reversed.
Soundness ofAF4 can be easily verified, using the same reasoning as in the proof
of soundness forAF3.

The weakening ruleW states that a formulaφ which is provable from a set
of hypotheses,Γ, remains provable if additional formulas are added to the set of
hypotheses. This rule is trivially sound sinceΓ |= φ impliesΓ ∪ Γ′ |= φ.

The protocol composition ruleC1 gives us a way of sequentially composing
two rolesP andP ′ when post-condition ofP , matches the pre-condition orP ′.
Assume thatQ is a protocol andΓ is the set of formulas such thatΓ |= φ1[P ]Aφ2

andΓ |= φ2[P
′]Aφ3. We need to prove thatΓ |= φ1[P ;P ′]Aφ3. WhenQ 6|= Γ this

is trivially true. Assume thatQ |= Γ, now it has to be thatQ |= φ1[P ]Aφ2 and
Q |= φ2[P

′]Aφ3. Let R = R0R1R2 be a run ofQ such thatR1 matchesP ;P ′|A
under substitutionσ andQ,R0 |= σφ1. RunR can be written asR = R0R

′
1R

′′
1R2

whereR′
1 matchesP |A underσ andR′′

1 matchesP ′|A underσ. It follows that
Q,R0R

′
1 |= σφ2 and thereforeq, R0R

′
1R

′′
1 |= σφ3.

The protocol composition ruleC2 states that all invariants provable in bothQ
andQ′ are provable in their compositionQ◦Q′. Remember that we are only consid-
ering invariants that are provable using one application ofthe honesty rule. Suppose
that the formulaφ can proved inQ andQ′ using only one application of the hon-
esty rule. By the definition of the honesty rule∀ρ ∈ Q∪Q′.∀PǫBS(ρ). φ [P ]X φ.
Every basic sequence of a role inQ◦Q′ is either a basing sequenceP ofQ∪Q′ or a
concatenation of two basic sequences inQ∪Q′, in the first case it trivially follows
thatQ ◦ Q′ |= φ[P ]Xφ, in the second case the same follows by the application of
the composition ruleC1.

D Formal Correctness Proofs of Protocols

A complete proof of the authentication property for the initiator role in challenge-
response protocol (InitCR) is given in Table D. The proof of the shared secret
property ofISO-9798-3is given in Table D.
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AA1,T1,F Fresh(A,m)[〈Â, B̂,m〉]AQ (Send(A, {Â, B̂,m}) ∧ � Fresh(A,m)) (1)

AA1,T1 [(B̂, Â, n, {|m,n, Â|}B)]AQ Receive(A, {B̂, Â, n, {|m,n, Â|}B}) (2)

AA1,T1 [({|m,n, Â|}B/{|m,n, Â|}B)]A Q Verify(A, {|m,n, Â|}B) (3)

AA1,T1 [〈Â, B̂, {|m,n, B̂|}A〉]A Q Send(A, {Â, B̂, {|m,n, B̂|}A}) (4)

AF1,AF2 Fresh(A,m)[〈Â, B̂,m〉(x)(x/B̂, Â, n, {|m,n, Â|}B)

({|m,n, Â|}B/{|m,n, Â|}B)〈Â, B̂, {|m,n, B̂|}A〉]A

ActionsInOrder(Send(A, {Â, B̂,m}),

Receive(A, {B̂, Â, n, {|m,n, Â|}B}),

Send(A, {Â, B̂, {|m,n, B̂|}A})) (5)

(5),F1,P1,G2 Fresh(A,m)[InitCR]A¬Q Fresh(B,m) (6)

VER Honest(B̂) ∧ Q Verify(A, {|m,n, Â|}B) ⊃

∃B.∃m′.(Q Send(B,m′) ∧ Contains(m′, {|m,n, Â|}B)) (7)

(3), (7),P1,G1 − 3 Fresh(A,m)[InitCR]AHonest(B̂) ⊃

∃B.∃m′.(Q Send(B,m′) ∧ Contains(m′, {|m,n, Â|}B)) (8)

HON Honest(B̂) ⊃ (((Q Send(B,m0) ∧

Contains(m0, {|m,n, Â|}B) ∧ ¬Q Fresh(B,m)) ⊃

( m0 = {B̂, Â, {n, {|m,n, Â|}B}} ∧Q (Send(B, {B̂, Â, {n, {|m,n, Â|}B}}) ∧ � Fresh(B,n)) ∧

ActionsInOrder(Receive(B, {Â, B̂,m}),

Send(B, {B̂, Â, {n, {|m,n, Â|}B}}))))) (9)

(6), (8), (9),G1 − 3 Fresh(A,m)[InitCR]AHonest(B̂) ⊃Q (Send(B, {B̂, Â, {n, {|m,n, Â|}B}}) ∧ � Fresh(B,n)) ∧

After(Receive(B, {Â, B̂,m}),Send(B, {B̂, Â, {n, {|m,n, Â|}B}})) (10)

(1), (10),AF3 Fresh(A,m)[InitCR]AHonest(B̂) ⊃

After(Send(A, {Â, B̂,m}),Receive(B, {Â, B̂,m})) (11)

(10), (5),AF3 Fresh(A,m)[InitCR]AHonest(B̂) ⊃

After(Send(B, {B̂, Â, {n, {|m,n, Â|}B}}),

Receive(A, {B̂, Â, n, {|m,n, Â|}B}) (12)

(10), (11), (12),AF2 Fresh(A,m)[InitCR]AHonest(B̂) ⊃

ActionsInOrder(Send(A, {Â, B̂,m}),Receive(B, {Â, B̂,m}),

Send(B, {B̂, Â, {n, {|m,n, Â|}B}}),

Receive(A, {B̂, Â, n, {|m,n, Â|}B})) (13)

Table D.1
Deductions ofÂ executingInit role of Challenge-Response Protocol
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P3 HasAlone(A, a) ∧

Fresh(A, ga)[InitCR′ ]A HasAlone(A, a) (1)

CR HasAlone(A, a) ∧

Fresh(A, ga)[InitCR′ ]AHonest(B̂) ⊃

ActionsInOrder(

Send(A, {Â, B̂, ga}),

Receive(B, {Â, B̂, ga}),

Send(B, {B̂, Â, {n, {|ga, n, Â|}B}}),

Receive(A, {B̂, Â, n, {|ga, n, Â|}B})) (2)

HON Honest(B̂) ∧Q Send(B, {B̂, Â, {n, {|ga, n, Â|}B}}) ⊃ (3)

∃b′.(n = gb′ ∧ HasAlone(B, b′))

(2), (3) HasAlone(A, a) ∧

Fresh(A, ga)[InitCR′ ]AHonest(B̂) ⊃

∃b.(n = gb ∧ HasAlone(B, b)) (4)

AA1,REC,PROJ,P1 HasAlone(A, a) ∧

Fresh(A, ga)[InitCR′ ]AHas(A,n) (5)

(1), (4), (5),Computes HasAlone(A, a) ∧

Fresh(A, ga)[InitCR′ ]AHonest(B̂) ⊃

∃b.(n = gb ∧ Computes(A, gab)) (6)

(1), (4),Computes HasAlone(A, a) ∧

Fresh(A, ga)[InitCR′ ]AHonest(B̂) ⊃

∃b.(n = gb ∧ (Computes(X, gab) ⊃

(X = A ∨ X = B)))) (7)

(6), (7) HasAlone(A, a) ∧

Fresh(A, ga)[InitCR′ ]AHonest(B̂) ⊃

∃b.(n = gb ∧ Computes(A, gab) ∧ (Computes(X, gab) ⊃

(X = A ∨ X = B)))) (8)

DH2,DH3 Has(X, gab) ⊃ (Computes(X, gab) ∨ ∃Y,m′.

(Computes(Y, gab) ∧Q Send(Y,m′) ∧ Contains(m′, gab)) (9)

HON Honest(Y ) ⊃ (Computes(Y, gab) ⊃

¬∃m′.(Q Send(Y,m′) ∧ Contains(m′, gab))) (10)

(8), (9), (10) HasAlone(A, a) ∧ Fresh(A, ga)[InitCR′ ]AHonest(B̂) ⊃

∃b.(n = gb ∧ Computes(A, gab) ∧ (Has(X, gab) ⊃

(X = A ∨ X = B)))) (11)

Table D.2
Deductions ofÂ executingInit role of Challenge-Response Protocol

with ga substituted form
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E Protocol derivation system

In [5], we have examined the structure of a family of key exchange protocols that
includes Station-To-Station (STS),ISO-9798-3, Just Fast Keying (JFK) and related
protocols, showing how all the protocols in this family may be derived systemati-
cally. The protocol derivation system for this class of protocols consists of two base
protocol components, three transformations, and seven refinements. The two pro-
tocol components are Diffie-Hellman key exchange and a two-message signature-
based challenge and response authentication protocol. Therefinements (which add
data to message fields) include extending messages by certificates in order to dis-
charge the assumption that each participant knows the other’s public key. The
transformations include moving data from a later message toan earlier one, and
reordering messages using a denial-of-service prevention“cookie” technique. The
derivation graph is shown in Figure E.1. In this figure, thePi’s denote protocols,
and the labels on the arrows indicate the operation which when applied to the pro-
tocol at the tail of the arrow results in the protocol at the head. The refinement
operations are denoted byRi’s, transformations byTi’s and sequential composition
by ‘;’.

In this paper, we defined a general composition operation of which sequen-
tial composition is a special case. We then constructed theISO-9798-3protocol
by composing the Diffie-Hellman and Challenge-Response protocols and proved
properties of theISO-9798-3protocol from the properties of its components. Note
that this corresponds to the step in the derivation tree for the STS family whereC1

andP4 are composed to yieldP9.
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Fig. E.1. Derivation graph of the STS protocol family
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