
Electronic Notes in Theoretical Computer Science 83 (2004)
URL: http://www.elsevier.nl/locate/entcs/volume83.html 18 pages

The Security Picalculus and Non-interference
(Extended Abstract)

Matthew Hennessy 1,2

University of Sussex,UK

Abstract

The security π-calculus is a typed version of the asynchronous π-calculus in which
the types, in addition to constraining the input/output behaviour of processes, have
security levels associated with them. This enables us to introduce a range of typing
disciplines which allow input or output behaviour, or both, to be bounded above or
below by a given security level.

We define typed versions of may and must equivalences for the security π-calculus,
where the tests are parameterised relative to a security level. We provide alternative
characterisations of these equivalences in terms of actions in context ; these describe
the actions a process may perform, assuming the observer is constrained by a given
typing environment.

Using these alternative characterisations we prove non-interference results with
respect to may and must testing. These show that information flow between security
levels can be controlled using our typing systems.

Keywords: Distributed Systems, picalculus, security types, non-interference,
testing equivalences.

1 Introduction

The asynchronous π-calculus, [2,13], is a simple formalism for describing dis-
tributed processes. It presupposes a set of channel names through which
processes communicate. Thus a?(X) P is a process which inputs some value v
on the channel a, and executes the body P in which X has been substituted
by the value v, while output on the same channel is denoted by a!〈v〉. These
two primitives, together with operators for parallelism, |, repetition, ∗, and
channel scoping, (new n) , make the π-calculus a very powerful language. For

1 This research has been partially funded by the EU Global Computing projects Mikado
and Myths
2 Email: matthewh@cogs.sussex.ac.uk

c©2004 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume83.html

Hennessy

example the term P ,

∗ req?(x, y) (new r) s!〈x, r〉 | r?(z) y!〈z〉

describes a process which repeatedly receives a request on the channel req,
consisting of a value, bound to x, and a return channel, bound to y. This value
is in turn sent along the channel s, presumably serviced by some independent
server, together with a private return channel r, generated specifically for this
purpose. A response is awaited from the service, on the reply channel r, which
is then forwarded on the original return channel y.

Numerous typing systems have been developed for this language, [17,23,24].
Most are based on judgements of the form Γ ⊢ P indicating that the process
P is well-typed with respect to the channel environment Γ, which associates
capabilities with the free channel names of P . Usually these capabilities are
some elaboration of

read capabilities r〈T〉: the ability to read values at type T from a channel
write capabilities w〈T〉: the ability to write values at type T to a channel

For example let A denote the tuple type (int, w〈int〉); a value of this type
will consist of a pair, the first element of which is an integer, and the second
a channel on which integers may be written. If Γ associates the type r〈A〉
with the channel req and the type w〈A〉 with s, we would expect the above
term, P , to be well-typed with respect to Γ. However for this to be true the
local channel r needs to be generated with the write capability w〈int〉, to be
sent along the channel s, and the read capability r〈int〉, which is used by the
process itself. Thus if we were to annotate all bound names and variables with
their required types we would obtain the annotated term

∗ req?(x, y) : A (new r : R) s!〈x, r〉 | r?(z) y!(z)

where R is the type {w〈int〉, r〈int〉}, more usually written as rw〈int〉. This
term is well-typed with respect to the above mentioned environment Γ.

Intuitively the use of types constrains the behaviour of processes, ensuring
no misuse of channels. By defining sophisticated forms of types process be-
haviour can be more or less constrained, while at the same time the advantages
of well-typing can be preserved. For example a form of polymorphism is in-
vestigated in [17], while in [11] security levels are associated with capabilities,
to obtain so-called security types. Suppose we have two security levels, high,
denoted by top, and low, denoted by bot. Then we would have capabilities of
the form rtop〈T〉, rbot〈T〉, wtop〈T〉, wbot〈T〉, where T in turn is a security type.
By varying the precise definition of a security type we can either implement
resource access control methodologies, or ensure forms of non-interference,
[1,7,6]. In this paper we will be concerned with the latter, using a mild varia-
tion of the I-types of [11]; essentially types are sets of read/write capabilities,
where in addition each capability is annotated by a security level taken from

2

Hennessy

some complete lattice . We will refer to the asynchronous π-calculus, aug-
mented with these types, as the security π-calculus.

The statement of non-interference results requires some definition of pro-
cess behaviour ; intuitively a system is interference-free if its low level behaviour
is independent of changes to high-level behaviour. The main topic of this pa-
per is an investigation of the notion of behaviour of process, relative to a
security level, for the security π-calculus.

Process behaviour is relative to some typing environment Γ and therefore
we wish to develop a relation of the form Γ⊲σ P ≃ Q meaning, intuitively, that
in the typing environment Γ, both P and Q exhibit the same σ-level behaviour.
By this we mean that a σ-level observer will be unable to discern a difference
between P and Q. For example low-level observers will be unable to see any
high-level actions performed by P, Q. But more importantly we assume that
these observers are constrained by the typing environment Γ and therefore
actions disallowed by this environment will also be invisible to observers.

In this paper we investigate may and must testing equivalences, [15,8], for
the security π-calculus. In particular we give an alternative characterisation
of these behavioural equivalences which, as might be expected from [15,8], are
based on the (asynchronous) sequences of actions that a process can perform.
But here these sequences are relative to both a security level and a typing
environment.

These actions, which we call actions in context, take the form

Γ ⊲ P µ−→σ Γ′ ⊲ P ′

indicating that the process P can perform the action µ to interact with some
σ-level observer constrained by the environment Γ; this action affects the
process P but may also change the the typing environment of the observing
process, from Γ to Γ′.

The remainder of this extended abstract is organised as follows. In Sec-
tion 2 we formally define the types we use, together with the syntax of the
security π-calculus. This is followed with a range of typing systems. In the
most straightforward we have the judgements Γ ⊢ P where Γ is a type envi-
ronment, associating types to channel names and variables. This means that
relative to Γ, P uses its channels correctly as input/output devices, ignor-
ing their security annotations. We also have judgements of the form Γ ⊢σ P
which indicates that in addition P uses channels with security level at most
σ. Similarly we have a typing relation Γ ⊢σ P meaning that P uses channels
with at least security level σ. Indeed we can go further, designing relations
such as Γ ⊢rσ P or Γ ⊢wσ P where the read capabilities or the write capabilities
of processes are independently constrained. For all of these typing relations
Subject Reduction is easily established.

Section 3 is the heart of the paper. First the behavioural preorders and
equivalences are defined, by adapting the standard framework, [15,8], to the

3

Hennessy

security π-calculus. We obtain the relations

Γ ⊲σ P ≃may Q and Γ ⊲σ P ≃must Q

indicating that P and Q can not be distinguished, relative to may/must ex-
periments respectively, by any testing process T such that Γ ⊢σ T ; that is any
test running at security level at most σ, relative to the type environment.
This is followed by an exposition of the actions in context, sequences of which
are used the alternative characterisation of ≃may ; we also state a much more
complicated characterisation of ≃must.

One benefit of having behavioural equivalences relativised to security levels
is that non-interference results can be stated succinctly. Section 4 contains
two such statements. The first gives conditions ensure that

Γ ⊲σ P ≃may Q implies Γ ⊲σ P | H ≃may Q | K.

It turns out to be sufficient to require that the read capabilities of P and Q
be bounded above by σ, that is Γ ⊢rσ P, Q, and that the write capabilities of
H and K be bounded below by some δ 6� σ, that is Γ ⊢wδ H, K.

This is quite a general non-interference result. For example in the case
where Q is P and K is the empty process 0 we obtain

Γ ⊲σ P ≃may P | H

indicating that, under the conditions of the theorem, the process H can not
interfere with the behaviour of P .

This result is not true for the must equivalence. As explained in Section 4,
this is because our types allow contention between processes running at dif-
ferent security levels over read access to channels. However by restricting the
type system, to confine read capabilities to a single security level, we show
that a similar result holds for ≃must.

In this extended abstract all proofs are omitted. They may be found in
the full version of the paper, [9].

2 The Language

We presuppose a complete lattice 〈SL,�,⊓,⊔, top, bot〉 of security annota-
tions, ranged over by σ, ρ, For each σ we assume a set of basic types at
that level, of the form Bσ. If the security annotation is omitted, as in int,
then we assume it has security level bot; as we shall see values of these types
are available to all processes. Also, as explained in the Introduction, a σ-level
channel type, for channels accessible to processes with security clearance at
level σ, consists of a set of σ-level capabilities, i.e. a subset of Capσ. These may
either be a read capability, of the form rρ〈T〉, for some appropriate ρ and T,
or a write capability, of the form wσ〈T〉. These capabilities are constrained by

4

Hennessy

Fig. 1 Types

(rt-base)

Bρ ∈ Typeσ

ρ � σ

(rt-wr)

A ∈ Typeσ

wσ〈A〉 ∈ Capσ

(rt-wrrd)

S ⊆fin Capσ

S ∈ Typeσ

S consistent

(rt-rd)

A ∈ Typeρ

rρ〈A〉 ∈ Capσ

σ � ρ

(rt-tup)

Ai ∈ Typeσ (∀i)

(A1, . . . , Ak) ∈ Typeσ

(u-wr) wσ〈A〉 <: wσ〈B〉 if B <: A

(u-rd) rσ〈A〉 <: rσ〈B〉 if A <: B

(u-base) Bσ <: Bρ if σ � ρ

(u-res) {capi}i∈I <: {cap′j}j∈J if (∀j)(∃i) capi <
: cap′j

(u-tup) (A1, . . . , Ak) <: (B1, . . . , Bk) if (∀i) Ai <: Bi

The set of capabilities Cap is consistent if

• wσ〈A〉, wρ〈B〉 ∈ Cap implies σ = ρ and A is B
• rσ〈A〉, rσ〈B〉 ∈ Cap implies A is B
• wσ〈A〉, rρ〈B〉 ∈ Cap implies A <: B.

consistency requirements. For example since values with the capability wσ〈T〉
are written to by σ-level processes we require that T in turn be a σ-level type.

Types, i.e. sets of capabilities, are also constrained. For simplicity in a
given type we only allow at most one write capability, and for each level σ
at most one read capability at that level. More importantly we ensure that,
relative to security levels, only write-ups, [7,1], are allowed by requiring that
if wρ〈T〉 and rρ′〈S〉 are in a type then ρ � ρ′; the additional constraint that
T be a sub-type of S is well-known [17,12]. The formal definitions of types
and capabilities, together with their subtyping relation are given in Figure 1.
These types correspond very closely to the I-types of [11]; the rule (rt-rd)
ensures that only write-ups are allowed, from low-level processes to high-level
processes. But we allow multiple read capabilities, which will enable us to
be more flexible with respect to allowing/disallowing reading from a channel
at different security levels. However subtyping is more restrictive; unlike [11]
they can only be sub-typed at the same security level; rσ〈A〉 <: rρ〈B〉 only if
σ = ρ. Nevertheless this is compensated for in the existence of multiple read
capabilities.

5

Hennessy

Fig. 2 Syntax

P,Q ::= Terms

u!〈v〉 Output

u?(X : A) P Input

if u = v then P else Q Matching

(new a : A) P Name creation

P | Q Composition

∗P Replication

0 Termination

X,Y ::= Patterns

x Variable

(X1, . . . , Xk) Tuple

u, v,w ::= Values

bv Base Value

a Name

x Variable

(u1, . . . , uk) Tuple

Example 2.1

• The set {wbot〈int〉, rbot〈int〉, rtop〈int〉} is a bot-level channel type, an element
of Typebot; that is channels of this type may be transmitted on bot-level
channels. In turn these channels may be written to by a bot-level process
or read by either a bot-level or a top-level process.

• The type {wbot〈int〉, rtop〈int〉} restricts reading from the channel to top-level
processes, although bot-level ones can write to it.

• The set {wtop〈int〉, rbot〈int〉, rtop〈int〉} is not a valid type as it contains a
read capability at a lower level than its write capability.

• The set {wtop〈int〉, rtop〈int〉} is a top-level type but not a bot-level one; that
is, it is in Typetop but not in Typebot.

Proposition 2.2 For every σ, Typeσ is a preorder with respect to <:, with
both a partial meet operation ⊓ and a partial join ⊔.

Multiple read capabilities in a type, such as {wbot〈int〉, rbot〈int〉, rtop〈int〉},
allows processes at different security levels to read from the same channel. We
can eliminate such contention by using a restricted set of types.

Definition 2.3 [Single-level Types] Let SlType be the least set of types ob-
tained by changing the condition on read capabilities in the definition Figure 1
to read:

rρ〈A〉, rσ〈B〉 ∈ Cap implies ρ = σ and A is B.

Note that these types still allow communication from low-level processes
to high-level processes. We leave the reader to check that these types, ordered
by <: also has both partial meet and join operations.

The syntax of the (asynchronous) π-calculus, given in Figure 2, uses a
predefined set of names, ranged over by a, b, . . . and a set of variables, ranged
over by x, y, z. Identifiers are either variables or names. We also assume a set

6

Hennessy

Fig. 3 Typing Rules

(t-id)

Γ(u) <: A

Γ ⊢ u :A

(t-base)

bv ∈ Bσ

Γ ⊢ bv :Bσ

(t-tup)

Γ ⊢ vi : Ai (∀i)

Γ ⊢ (v1, . . . , vk) :(A1, . . . , Ak)

(t-in)

Γ, X : A ⊢ P
Γ ⊢ u : rσ〈A〉

Γ ⊢ u?(X : A) P

(t-out)

Γ ⊢ u :wσ〈A〉
Γ ⊢ v : A

Γ ⊢ u!〈v〉

(t-eq)

Γ ⊢ u : A, v : B
Γ ⊢ Q
Γ ⊓ {u : B, v : A} ⊢ P

Γ ⊢ if u = v then P else Q

(t-new)

Γ, a : A ⊢ P

Γ ⊢ (new a : A) P

(t-str)

Γ ⊢ P, Q

Γ ⊢ P | Q, ∗P, 0

of basic values, ranged over by bv, each of which belong to a given basic type.
We assume the standard notions of free names and variables, fn(P) and fv(P),
respectively, and associated notions of substitution and α-equivalence, ≡α, are
defined as usual. Moreover the typing annotations on the binding constructs
are omitted whenever they do not play a role, as will most occurrences of the
empty process 0. We also assume the standard reduction semantics for closed
terms, usually refereed to as processes. This is expressed in terms of a binary
relation over processes, defined inductively via judgements of the form

P τ−→ Q

See the full version [9] for details, or indeed any standard reference to the
picalculus such as [21].

A type environment is a finite mapping from identifiers to types. We adopt
some standard notation for describing them. For example, for any identifier
u let Γ, u :A denote the obvious extension of Γ; Γ, u : A is only defined if u is
not in the domain of Γ. The subtyping relation <: together with the partial
operators ⊓ and ⊔ may also be extended to environments. For example Γ <: ∆
if for all u in the domain of ∆, Γ(u) <: ∆(u). We will normally abbreviate
the simple environment {u :A} to u : A and moreover use v : A to denote its
obvious generalisation to arbitrary values v; this is only well-defined when v
has the same structure as the type A.

The first typing system is given in Figure 3, where the judgements take
the form

Γ ⊢ P

Intuitively this means that the process P uses all channels as input/output
devices in accordance with their types, as given in Γ. It is the standard typing
system for the π-calculus, [17], adapted to our types; note that the security
levels on the capabilities do not play any role.

7

Hennessy

Fig. 4 Security Typing Rules

(lt-in)

Γ, X : A ⊢σ P
Γ ⊢ u : rδ〈A〉

Γ ⊢σ u?(X : A) P
δ � σ

(lt-out)

Γ ⊢ v : A
Γ ⊢ u :wδ〈A〉

Γ ⊢σ u!〈v〉
δ � σ

(lt-eq)

Γ ⊢ u : A, v : B
Γ ⊢σ Q
Γ ⊓ {u : B, v : A} ⊢σ P

Γ ⊢σ if u = v then P else Q

(lt-new)

Γ, a : A ⊢σ P

Γ ⊢σ (new a : A) P

(lt-str)

Γ ⊢σ P, Q

Γ ⊢σ P | Q, ∗P, 0

We can also design a type inference system which not only ensures that
channels are used according to their types but also controls the security lev-
els of the channels used. One such system is given in Figure 4, where the
judgements now take the form

Γ ⊢σ P

This indicates that not only is P well-typed as before but in addition it uses
channels with security level at most σ. (This corresponds to the typing system
used in [11].) The only difference is in the input/output rules, where the
security level of the channels used are checked. For example Γ ⊢σ a!〈v〉 only
if in Γ the channel a can be assigned a security level δ � σ, in addition to
having the appropriate output capability in Γ.

We can also design a typing system

Γ ⊢σ P

which which ensures that P uses channels with security level at least σ. The
only change is to demand in the input/output rules that σ � δ:

(hl-in)

Γ, X : A ⊢σ P
Γ ⊢ u : rδ〈A〉

Γ ⊢σ u?(X : A) P
σ � δ

(hl-out)

Γ ⊢ u :wσ〈A〉
Γ ⊢ v : A

Γ ⊢σ u!〈v〉
σ � δ

We can provide further mix and matches. For example the type system

Γ ⊢rσ P

ensures that all channels from which values are read have a read capability
of at most σ; the security level of the output channels is unexamined. This
system is obtained by using the rules in the original Figure 3 but with the rule
(t-in) replaced with (lt-in); the output rule is left unchanged. In a similar
manner we can define relations Γ ⊢wσ P, Γ ⊢rσ P and Γ ⊢wσ P .

8

Hennessy

Theorem 2.4 (Subject Reduction) Let denote any of the relations
⊢, ⊢σ, ⊢rσ, ⊢rσ, ⊢wσ, ⊢wσ, and suppose ∆ P . Then P τ−→ Q implies ∆ Q.

3 Behavioural Theories

A test or observer is a process with an occurrence of a new reserved resource
name ω, used to report success. We let T to range over tests, with the typing
rule Γ ⊢σ ω!〈〉 for all Γ. When placed in parallel with a process P , a test may
interact with P , producing an output on ω if some desired behaviour of P has
been observed. We write

P may T

if T | P τ−→∗ R for some R such that R can report success, i.e. R ω!〈〉−−→. The
stronger relation

P must T

holds when in every computation

T | P τ−→ R1
τ−→ . . . τ−→ Rn

τ−→ . . .

there is some Rk, k ≥ 0, which can report success.

We can obtain a testing based behavioural preorder between processes by
demanding that they react in a similar manner to a given class of tests. Here
we choose the class of tests which are well-typed and use channels from at
most a given security level σ; that is we require that processes react in the
same manner to all tests T such that Γ ⊢σ T .

Definition 3.1 [Testing Preorders] We write Γ ⊲σ P ∼⊏may Q if for every test
T such that Γ ⊢σ T , P may T implies Q may T .
Similarly Γ ⊲σ P ∼⊏must Q means that for every such T , P must T implies
Q must T .
We use ≃may and ≃must denote the related equivalence relations.

So for example setting σ to be bot, Γ⊲bot P ≃may Q means that in the type
environment Γ, P and Q are indistinguishable by low-level observers, from a
may testing point of view.

The aim of this section is to outline alternative characterisations of these
equivalences. It is well-known, [15,8], that testing equivalences are closely
related to the ability of processes to perform sequences of actions. We have
explained in the Introduction that here we need to relativise these sequences
to security levels and a typing environments for the observers.

The rules for the Context LTS are given in Figure 5. The judgements take
the form

Γ ⊲ P µ−→σ Γ′ ⊲ P ′ (1)

This judgement should be understood as expressing the fact that:

9

Hennessy

Fig. 5 Context LTS
(c-out)

rδ〈A〉 ∈ Γ(a)

Γ ⊲ a!〈v〉 a!v−→σ Γ ⊓ v : A ⊲ 0
δ � σ

(c-in)

wδ〈A〉 ∈ Γ
Γ ⊢ v : A

Γ ⊲ a?(X : B)P a?v−−→σ P{|v/X|}
δ � σ

(c-open)

Γ, b :⊤ ⊲ P (c̃)a!v−−−→σ Γ′ ⊲ P ′

Γ ⊲ (new b : B) P (b)(ec)a!v−−−−→σ Γ′ ⊲ P ′

b 6= a, c̃

b ∈ fn(v)

(c-weak)

Γ, b : B ⊲ P (c̃ : C̃)a?v−−−−−→σ Γ′ ⊲ P ′

Γ ⊲ P (b : Bec : eC)a?v−−−−−−−→σ Γ′ ⊲ P ′
b 6= a, c̃

(c-red)

P τ−→ P ′

Γ ⊲ P τ−→σ Γ ⊲ P ′

(c-ctxt)

Γ ⊲ P µ−→σ Γ′ ⊲ P ′

Γ ⊲ ∗P µ−→σ Γ′ ⊲ ∗P | P ′

Γ ⊲ P µ−→σ Γ′ ⊲ P ′

Γ ⊲ P | Q µ−→σ Γ′ ⊲ P ′ | Q
Γ ⊲ Q | P µ−→σ Γ′ ⊲ Q | P ′

bn(µ) 6∈ fn(Q)

Γ, a : A ⊲ P µ−→σ Γ′, a : A ⊲ P ′

Γ ⊲ (new a : A) P µ−→σ Γ′ ⊲ (new a : A) P ′
a 6∈ n(µ)

The process P , when run concurrently with any observing process T such
that Γ ⊢σ T , can perform the action µ. This will transform P into P ′ and
may also transform the type environment of the observing process to Γ′.

These actions can take three forms:

internal move: Γ ⊲ P τ−→σ Γ ⊲ P ′ This corresponds to an internal move by
P , which does not depend on its environment. These moves are completely
determined by the reduction semantics.

input move: Γ⊲P (c̃ : C̃)a?v−−−−−→σ Γ′ ⊲P ′ Here the observing process sends a value
v, possibly constructed using the new values c̃ at type C̃, to P ; the type
environment of the observing process will be augmented with these new
values. An appropriate write capability on a is required of the observing

10

Hennessy

Fig. 6 (asynchronous) Traces in Context

(tr-τ)

Γ ⊲ P τ−→σ Γ′ ⊲ P ′

Γ′ ⊲ P ′ s=⇒σ Γ′′ ⊲ P ′′

Γ ⊲ P s=⇒σ Γ′′ ⊲ P ′′

(tr-ǫ)

Γ ⊲ P ǫ=⇒σ Γ ⊲ P

(tr-α)

Γ ⊲ P α−→σ Γ′ ⊲ P ′

Γ′ ⊲ P ′ s=⇒σ Γ′′ ⊲ P ′′

Γ ⊲ P α·s=⇒σ Γ′′ ⊲ P ′′

(tr-async−in)

wδ〈A〉 ∈ Γ
Γ ⊢ v : A

Γ ⊲ P a?v=⇒σ Γ ⊲ P | a!〈v〉
δ � σ

(tr-async−weak)

Γ, b : B ⊲ P (c̃ : C̃)a?v=====⇒σ Γ′ ⊲ P ′

Γ ⊲ P (b : Bec : eC)a?v=======⇒σ Γ′ ⊲ P ′
b 6= a, c̃

process for the action to take place; see the rule (c-in).

output move: Γ⊲P (c̃)a!v−−−→σ Γ′ ⊲P ′ Here P sends a value v, constructed using
new values c̃, along the channel a to the observing process; typically the
observers type environment Γ will be augmented with knowledge of v. This
is implemented via the rules (c-out) and (c-open), which uses the top
type ⊤ to denote the type consisting of the empty set of capabilities; note
that this dominates all channel types in the subtyping relation.

In the judgements (1) above it should not be assumed that P can be typed
in Γ; indeed in the rules of Figure 5 it is not even assumed that the process
terms are even typeable. Intuitively we expect the process P to be well typed
in some environment ∆ and that Γ represents that part of ∆ which is known
to the user. This motivates the following definition.

Definition 3.2 The pair Γ ⊲ P is said to be a configuration if there exists an
environment ∆ such that

• ∆ <: Γ
• domain(∆) = domain(Γ)
• ∆ ⊢ P

One can check that configurations are preserved by the relations defined
in Figure 5; in the sequel we will refer to such judgements, applied to config-
urations, as actions in context.

It is worthwhile noting that in actions in context, (1) above, the new ob-
servers environment Γ′ is not in general determined by the initial configuration
Γ ⊲ P , unlike in [10]. This arises because of the rule (l-out) in Figure 5. In

11

Hennessy

general Γ(a) may contain two read capabilities, rδ1〈A1〉 and rδ2〈A2〉, in which
case Γ′ may take either of the forms Γ ⊓ v : A1 or Γ ⊓ v : A2. However by
restricting ourselves to single-level types this problem does not arise.

We say Γ is a single-level environment if it only uses single-level types.
For such environments we can define the partial predicate Γ afterσ s with the
property that in every action in context, (1) above, if Γ is single-level then Γ′

must be Γ afterσ s; see the full version [9] for details.

It is well-known that may testing is related to the ability of processes
to perform sequences of actions, but in an asynchronous language we must
consider some form of asynchronous sequences. In the present context this
means generalising actions in context to (asynchronous) traces in context :

Definition 3.3 [Traces] Let Γ ⊲ P s=⇒σ Γ′ ⊲ P ′ be the least relation which
satisfies the rules given in Figure 6.

Theorem 3.4 (Alternative Characterisation of May Testing) Suppose
Γ⊲P and Γ⊲Q are configurations. Then Γ⊲σP ∼⊏may Q if and only if Γ⊲P s=⇒σ

implies Γ ⊲ Q s=⇒σ.

The extra ingredients required to capture must testing, in addition to
traces, are well-known from [15,8]; they include a convergence predicate, in-
dicating that a process has no internal infinite computations, and acceptance
sets, indicating the next possible actions in which a process can engage. Here
these need to be generalised from processes to configurations; they must also
be relativised to security levels.

Definition 3.5 [Convergence] We say the configuration C converges, written
C ⇓, if there is no infinite sequence of derivations

C τ−→ C1
τ−→ . . . τ−→ Ck

τ−→

This relation is then parameterised to sequences in context and security levels
by

ε: C ⇓σ ε if C ⇓
s = α · s′: C ⇓σ s if C ⇓ and whenever C α=⇒σ C′, C′ ⇓σ s′.

Note that for a configuration Γ ⊲ P whether or not it converges is actually
independent of the typing environment Γ. However convergence relative to a
sequence in context is in general dependent on these environments.

We now adapt the definition of Acceptance sets, [8], to the security π-
calculus. First let

Oσ(C) = { a! | ∃v.C a!v−→σ }

and

Rσ(C) = { a? | ∃v.C a?v−−→σ } ∪ Oσ(C).

Definition 3.6 [Acceptance sets] For a configuration C, let Aσ(C, s), its σ-

12

Hennessy

level acceptance set after s, be defined by

{Rσ(C′) | C s=⇒σ C′ 6 τ−→}

Similarly let its output acceptance set after s be given by

{Oσ(C′) | C s=⇒σ C′ 6 τ−→}

Note only acceptance sets from stable configurations, configurations C′ such
that C′ 6 τ−→, are used.

The security π-calculus is asynchronous and therefore, as explained in [3],
acceptance sets are too discriminating, when used to characterise must testing;
to see this it is sufficient to consider the simple example

a?(x) 0 ∼⊏must 0 .

The same reference goes on to explain that the use of output acceptance sets
must also be relativised to sets of input actions, which we now explain.

Input Completions. We use Iσ(C) to denote the set of input actions which
the configuration C can perform at level σ, { a?v | C a?v−−→σ }. More generally
we use I to denote an arbitrary multi-set of input actions, c(I) to denote
{ a? | a?v ∈ I } and c(I) its converse, { a! | a?v ∈ I }.

Then ցσ
I is defined to be the least relation which satisfies

• C 6 τ−→ and Iσ(C) ∩ I = ∅ implies C ցσ
I C

• C i=⇒σ C′ and C′ ցσ
I C′′ implies C ցσ

I⊎{i} C
′′.

Intuitively C′ ցσ
I C” means that C can evolve to a stable configuration C′ by

performing a subset of the input actions in the multi-set I; moreover this
subset is maximal in the sense that C′ can not perform any of the remaining
actions.

Definition 3.7 [Asynchronous acceptance sets] For a configuration C, let
Oσ

I (C, s), its σ-level asynchronous acceptance set after s, relative to the multi-
set of input actions I, be defined by

{Oσ
I (C′′) | C C′

=⇒σ, C′ ցσ
I C′′ }.

With one final notational convention we can mimic the alternative charac-
terisation of must testing from [3]. We write Γ allowsσ a?v if Γ ⊢σ a!〈v〉; this is
generalised to sets of actions in the normal manner.

Definition 3.8 Let C, D be configurations of the form Γ ⊲ P , Γ ⊲ Q respec-
tively. Then C ≪σ D if for every s,

13

Hennessy

C ⇓ s implies a) D ⇓ s

b) ∀D ∈ Aσ(D, s), ∀I such that c(I) ∩ D = ∅ and

(Γ afterσ s) allowsσ I,

∃O ∈ Oσ
I (C, s) such that O − c(I) ⊆ D.

Theorem 3.9 Let Γ be a single-level environment such that both Γ ⊲ P and
Γ ⊲ Q are configurations. Then Γ ⊲σ P ∼⊏must Q if and only if Γ ⊲ P ≪σ Γ ⊲ Q.

4 Non-Interference Results

In this section we reconsider the approach taken to non-interference in Section
4 of [11]. The essential idea is that if a process is well-typed at a given level σ
then its behaviour at that level is independent of processes “running at higher
security levels”; or more generally “running at security levels independent to
σ”. A particular formulation of such a result was given in Theorem 5.3 of [11]:

Theorem 4.1 If Γ ⊢σ P, Q and Γ ⊢top H, K, where H, K are σ-free processes,
then Γ ⊲σ P ≃may Q implies Γ ⊲σ P | H ≃may Q | K.

Here, because of our more refined notions of well-typing, and the charac-
terisation result Theorem 3.4 we can give offer a significant improvement on
this theorem, and moreover the formulation is actually easier.

Let us say that the security level δ is independent of σ if δ 6� σ. We can
ensure that a process H is “running at a security level independent to σ” by
demanding that Γ ⊢δ H , for some δ independent of σ. In fact we will only
require the weaker typing relation ∆ ⊢wδ H . This ensures that all the output
actions of H are at a level independent of σ, as can be deduced from the
following property:

Lemma 4.2 Suppose Γ ⊢wδ H. Then Γ⊲H µ−→ρ, where µ is an output action,
implies δ � ρ.

Definition 4.3 We say a process H is σ-high with respect to Γ if Γ ⊢wδ H for
some δ independent of σ.

We can now state our first non-interference result. Note that it applies to
processes such that Γ ⊢rσ P, Q rather than the more restrictive Γ ⊢σ P, Q, as
in Theorem 4.1; only their input actions need to be at level at most σ.

Theorem 4.4 (Non-Interference 1) Suppose Γ ⊢rσ P, Q. Then

Γ ⊲σ P ∼⊏may Q implies Γ ⊲σ P | H ∼⊏may Q | K

for all σ-high processes H, K.

Non-interference with respect to may testing equivalence gives a certain
level of assurance that there is no information flow from high-level processes
to low-level processes. But it has been argued in [5] that the stronger the

14

Hennessy

equivalence used in the formulation of interference-freeness, the more we can
be assured that high-level information can not be leaked. An example may be
found in [4] where it is argued that the ability of a low-level user to observe the
potential absence of actions may result in an undesirable flow of information.
Our second non-interference result, which relies on the characterisation theo-
rem Theorem 3.9, addresses this problem as it is expressed in terms of must
testing equivalence; this is sensitive to potential deadlocks, and therefore the
potential absence of actions.

First note that Theorem 4.4 is no longer true when ∼⊏may is replaced by

∼⊏must, as the following example shows.

Example 4.5 Let A, B denote the types {wbot〈〉, rbot〈〉, rtop〈〉} and {rtop〈〉}
respectively. Further, let Γ map a to A and n to the type {wbot〈A〉, rbot〈A〉, rtop〈B〉}.
Now consider the processes P and H defined by

P ⇐ n!〈a〉 | n?(x : A) x!〈〉 H ⇐ n?(x : B) 0

It is very easy to check that Γ ⊢rbot P and Γ ⊢wtop H . However

Γ; Γ ⊲bot P | 0 6∼⊏must P | H

because of the bot level test a?() ω!〈〉.

The presence or absence of H determines whether or not there is read
contention on the channel n, which in turn influences the deadlock capabilities
of P with respect to the channel a.

Here the problem is the type of the channel n; it may be read at both level
bot and top. Note that such examples, where there is contention between
reads at different levels, can not be expressed in the join calculus, [4].

A not unreasonable restriction would be to require that the read capability
of channels be confined to a particular security level, using single-level types.
This would not rule out inter-level communication, but simply control it more
tightly. This restriction can be enforced requiring the type-checking to use
single-level types and forbidding high-level processes to read from low-level
channels.

Definition 4.6 We say a process H is strong σ-high with respect to Γ if
Γ ⊢δ H for some δ independent of σ.

Theorem 4.7 (Non-Interference 2) Suppose Γ ⊢rσ P, Q, where Γ is a single-
level environment. Then

Γ ⊲σ P ∼⊏must Q implies Γ ⊲σ P | H ∼⊏must Q | K

for all finite strong σ-high processes H, K.

Note that we must restrict our attention to finite H and K since must
testing is sensitive to divergence; if H is a divergent term then we could not

15

Hennessy

expect Γ ⊲σ P | 0 ≃must P | H to hold when P is a convergent term. This
problem is avoided by restricting attention to finite terms, which can never
diverge.

5 Related Work

A general overview of the use of static analysis techniques to enforce information-
flow policies may be found in [20]. Useful surveys of research into non-
interference in process languages are given in [5,19] 3 . Much of this work
is behaviour based; systems are deemed to be interference-free if their trace
sets, sequences of actions labelled high or low, satisfy certain properties. Here
we use a more extensional approach, saying that a system is interference-free if
low-level observers are unable to discern the presence or absence of high-level
components. There must, of course be some connection between our defini-
tion and at least one of the behavioural definitions in the literature. However
the comparison is not straightforward. The definitions, in papers such as
[18,5] are for very simple untyped versions of CCS or CSP, while much of the
power of our approach comes from the use of types for the more sophisticated
π-calculus.

In [14] a type system is given which guarantees non-interference with re-
spect to an extension of the π-calculus; moreover non-interference is expressed
with respect to a barbed congruence. However the language used is a con-
siderable extension of the π-calculus, with operators for selection based in-
put/output, based on disjunctive patterns, and it is the behaviour of these
operators which are mainly constrained by the type system. The types used
are also very sophisticated. Unlike ours, which are simply annotated versions
of the standard Pierce/Sangiorgi types, [16], they track the use of channels,
using annotated affine and linear types, and capture causal relationships be-
tween actions by a partial composition on these types, using ideas based on
the graph types of [24].

Finally [4], which uses security labels attached to messages in the join
calculus to formulate non-interference, argues via an example for the use of a
behavioural equivalence stronger than may testing. The formulation uses weak
barbed congruence but could have equally well used must testing equivalence;
indeed it is difficult to envisage a practical scenario in which there is some-
thing to be gained from assuming attackers have the extra power associated
with the former rather than the latter. We have also already pointed out (in
Example 4.5) that the join calculus can not be used to express situations in
which there is read contention between different security levels. Nevertheless
the approach used to develop a type system for the join calculus for detect-
ing information flow seems to be quite general and may be applicable to the
asynchronous π-calculus.

3 For the use of types for other languages see [22].

16

Hennessy

References

[1] D. E. Bell and L. J. LaPadula. Secure computer system: Unified exposition
and multics interpretation. Technical report MTR-2997, MITRE Corporation,
1975.

[2] G. Boudol. Asynchrony and the π-calculus. Technical Report 1702, INRIA-
Sophia Antipolis, 1992.

[3] Ilaria Castellani and Matthew Hennessy. Testing theories for asynchronous
languages. In V Arvind and R Ramanujam, editors, 18th Conference
on Foundations of Software Technology and Theoretical Computer Science
(Chennai, India, December 17–19, 1998), LNCS 1530. Springer-Verlag,
December 1998.

[4] Sylvain Conchon. Modular information flow analysis for process calculi. In
Iliano Cervesato, editor, Proceedings of the Foundations of Computer Security
Workshop (FCS 2002), Copenhagen, Denmark, JULY 2002.

[5] Riccardo Focardi and Roberto Gorrieri. A classification of security properties
for process algebras. Journal of Computer Security, 3(1), 1995.

[6] Riccardo Focardi and Roberto Gorrieri. Non interference: Past, present and
future. In Proceedings of DARPA Workshop on Foundations for Secure Mobile
Code, 1997.

[7] J. A. Goguen and J. Meseguer. Security policies and security models. In IEEE
Symposium on Security and privacy, 1992.

[8] M. Hennessy. An Algebraic Theory of Processes. MIT Press, 1988.

[9] Matthew Hennessy. The security picalculus and non-interference.
Technical report 2000:05, University of Sussex, 2000. Available from
http://www.cogs.susx.ac.uk/.

[10] Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for
processes in the presence of subtyping. In James Harland, editor, Electronic
Notes in Theoretical Computer Science, volume 61. Elsevier Science Publishers,
2002.

[11] Matthew Hennessy and James Riely. Information flow vs resource access in the
asynchronous pi-calculus (extended abstract). In U. Montanari, J. Rolim, and
E. Welzl, editors, Automata, Languages and Programming, 27th International
Colloquium, volume 1853 of Lecture Notes in Computer Science, pages 415–
427, Geneva, Switzerland, July 2000. Springer-Verlag. Full version to appear in
ACM Transactions on Programming Languages and Systems.

[12] Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. Information and Computation, 173:82–120, 2002.

[13] Kohei Honda and Mario Tokoro. On asynchronous communication semantics.
In P. Wegner M. Tokoro, O. Nierstrasz, editor, Proceedings of the ECOOP ’91

17

Hennessy

Workshop on Object-Based Concurrent Computing, volume 612 of LNCS 612.
Springer-Verlag, 1992.

[14] Kohei Honda and Nobuko Yoshida. A uniform type structure for secure
information flow. In 29th Annual Symposium on Principles of Programming
Languages. ACM, January 2002.

[15] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 24:83–113, 1984.

[16] B. Pierce and D. Sangiorgi. Behavioral equivalence in the polymorphic pi-
calculus. Journal of the ACM, 47(3):531–584, 2000.

[17] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile
processes. Mathematical Structures in Computer Science, 6(5):409–454, 1996.
Extended abstract in LICS ’93.

[18] A.W. Roscoe, J.C.P. Woodcock, and L. Wulf. Non-interference through
determinism. In European Symposium on Research in Computer Security,
volume 875 of LNCS, 1994.

[19] P.Y.A. Ryan and S.A. Schneider. Process algebra and non-interference. In
CSFW 12. IEEE, 1997.

[20] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
J. Selected Areas in Communication, 2002. To appear.

[21] D. Sangiorgi and D. Walker. The Picalculus. Cambridge University Press, 2001.

[22] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-
threaded imperative language. In Conference Record of the ACM Symposium
on Principles of Programming Languages, San Diego, January 1998.

[23] David Turner. The Polymorphic Pi-Calculus: Theory and Implementation.
Ph.d. thesis, Edinburgh University, 1995.

[24] Nobuko Yoshida. Graph types for monadic mobile processes. In FSTTCS,
volume 1180, pages 371–386. Springer-Verlag, 1996.

18

	Introduction
	The Language
	Behavioural Theories
	Non-Interference Results
	Related Work
	References

