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Abstract

In this brief study we explicitly match the properties of spaces modelled by domains
with the structure of their models. We claim that each property of the modelled
topology is coupled with some construct in the model. Examples are pairs: (i) first-
countability - strictly monotone map, (ii) developability - measurement, (iii) metriz-
ability - partial metric, (iv) ultrametrizability - tree, (v) Choquet-completeness -
dcpo, and more. By making this correspondence precise and explicit we reveal how
domains model topologies.

1 Introduction

The idea that properties of certain topological spaces can be studied via an
appropriate partially ordered set that “approximates” or “models” the space
is present in early works such as Lacombe [29], Martin-Löf [38], Scott [42], and
has been developed further in the work of Weihrauch and Schreiber [44] and
Kamimura and Tang [24]. Since then, the connection between domain theory
and “classical” mathematics has been exploited in a variety of applications
including: real number computation [15], integration [17], [6], [10] and differ-
ential calculus [13], geometry [12], dynamical systems, fractals and measure
theory [7], [8], and basic quantum mechanics [5]. 2

There is a common pattern in all of the above research: one identifies a
topology τ on the objects of interest X (usually it is a metric space), then
defines partial approximants of the objects out of the resources available in the
space (usually these are certain compact or closed sets) and a partial order

1 Email: pqw@ii.uj.edu.pl
2 Most of the applications are surveyed in [9].

c©2004 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume83.html


Waszkiewicz

P between them. The construction makes the modelled space homeomor-
phic to the subset of maximal elements of P in the subspace Scott topology:
〈X, τ〉 ∼= 〈maxP, σ |maxP 〉. Lastly, having prepared the setup, one studies the
phenomena in the modelled space via the domain-theoretic tools available for
the model. It comes as no surprise that the fundamental question of which
topological spaces have maximal point models focused much attention in the
past decade.

Lawson [31], [30] settled this question under certain assumptions (the
model is second countable and the Scott and Lawson topologies restricted
to the maximal elements of the model coincide 3 ) by showing that a topologi-
cal space has a model iff it is a Polish space. An explicit, elegant construction
of such a domain was given by Edalat and Heckmann in [11] - later adapted
to the special case of computable Banach spaces in [14] and used to introduce
the notion of partial metric to domain theory [23]. Under the same assump-
tions Flagg and Kopperman [18] characterized complete separable ultrametric
spaces as the ones which can be modelled by algebraic domains.

The domain-theoretic approach to Topology made it possible to gain new
insight into the nature of both the spaces and their models. In a series of
papers [34], [35], [32] following [36] Martin proposed a handful of useful tech-
niques for studying topologies and their models, including the notion of mea-
surement and ideal domain. Discarding Lawson’s condition, he generalised
Lawson’s result by showing that spaces modelled by ω-continuous dcpos are
regular iff they are Polish [33]. Moreover, outside the metrizable case, Reed
and Martin characterised developable spaces as the ones modelled by contin-
uous dcpos with measurement. Recently, Martin also observed a fundamen-
tal connection between order completeness of continuous domains and the
Choquet-completeness of topological spaces [37].

Motivated by considerations from the area of injective spaces, people be-
came concerned with finding bounded complete models. These domains have
an especially pleasing property that every continuous mapping between mod-
elled spaces extends to a Scott continuous function between the models; more-
over, such an extension can be defined in a canonical way. The formal ball
model for a metric space is not bounded complete in general; In [3] Ciesiel-
ski, Flagg and Kopperman gave a first (admirably involved) construction of a
bounded complete model for Polish spaces and presented various topological
and bitopological characterisations of second countable models. Finally, last
year, Kopperman, Künzi and Waszkiewicz characterised all topologies that
have bounded complete models of arbitrary cardinality [27]. Combining their
results with a work of Künzi [28] resulted in a construction of such a model
for arbitrary complete metric spaces.

The main objective of this paper is to explicitly match the properties of
modelled spaces with the structure of their models. We thus inspect existing

3 the latter property will be referred to as: “Lawson’s condition”
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construction of models and reexamine considerations concerning the space of
maximal elements of continuous domains. We claim that every structure of the
modelled topology is mirrored by some construct in the model and vice versa.
By making this correspondence precise and explicit we show how domains
model topologies.

Our exposition is based on the author’s doctoral dissertation [43].

2 Background

2.1 Domain theory

We review some basic notions from domain theory, mainly to fix the language
and notation. See [1] for more information.

Posets

Let P be a poset. A pair of elements x, y ∈ P is consistent (bounded), denoted
x↑y, if there exists an element z ∈ P such that z ⊒ x, y. The contrary
case is written as x#y. We say that a poset is bounded complete if each
finite, bounded set of elements has a supremum. In particular, a non-empty
bounded complete poset P has a least element, which arises as a supremum of
the empty set. A subset A of P is directed if it is non-empty and any pair of
elements of A has an upper bound in A. If a directed set A has a supremum,
it is denoted

⊔
↑A. A poset P in which every directed set has a supremum is

called a dcpo. A dcpo P is bounded complete iff every non-empty subset of P
has an infimum.

Approximation

Let x and y be elements of a poset P . We say that x approximates (is way-
below) y if for all directed subsets A of P , y ⊑

⊔
↑A implies x ⊑ a for some

a ∈ A. We denote it as x ≪ y. If x ≪ x then x is called a compact element.
The subset of compact elements of a poset P is denoted K(P ). Now, ↓↓x is

the set of all approximants of x below it. ↑↑x is defined dually. We say that a
subset B of a dcpo P is a (domain-theoretic) basis for P if for every element x
of P , the set ↓↓x∩B is directed with supremum x. A poset is called continuous
if it has a basis. One can show that a poset P is continuous iff ↓↓x is directed
with supremum x, for all x ∈ P . A poset is called a domain if it is a continuous
dcpo. Note that K(P ) ⊆ B for any basis B of P . If K(P ) is itself a basis,
the domain P is called algebraic. If a domain admits a countable basis, we
say that it is ω-continuous (or ω-algebraic providing that K(P ) is a countable
basis for P ). A Scott-domain is a bounded complete ω-algebraic dcpo with a
least element. A poset is ideal iff every element is either compact or maximal
(or both). Obviously, ideal posets are algebraic.
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Intrinsic topologies

A subset U ⊆ P of a poset P is upper if x ⊒ y ∈ U implies x ∈ U . Upper sets
inaccessible by directed suprema form a topology called the Scott topology; it
is denoted σ(P ). A continuous poset P admits a countable domain-theoretic
basis iff its Scott topology is second countable ([21], Theorem III-4.5). The
Scott topology encodes the underlying order: x ⊑ y in P iff for all U ∈ σ we
have that x ∈ U implies y ∈ U . This is the general definition of the so-called
specialisation order for a topology. The collection {↑↑x | x ∈ P} forms a basis
for the Scott topology on a continuous poset P . The topology satisfies only
weak separation axioms: It is always T0 on a poset but T1 only if the order
is trivial. For an introduction to T0 spaces, see [22]. An excellent general
reference on Topology is [16].

Another two intrinsic topologies on a continuous poset P are: The weak
topology ω(P ) generated by the collection {P \ ↑x | x ∈ P} and the Lawson
topology defined as λ(P ) := σ(P ) ∨ ω(P ), the join of the Scott topology and
the weak topology in the lattice of topologies on P . It has a basis of the
form {↑↑x \ ↑F | x ∈ P, F ⊆fin P} on any continuous poset P . The Lawson
topology of any continuous poset is Hausdorff and for ω-continuous posets it
is separable metrizable [21].

2.2 Partial metrics

We will briefly review basic definitions and facts about partial metric spaces
from Heckmann [23], Matthews [39] and O’Neill [40], [41]. A partial metric
on a set X is a map p: X × X → [0,∞) which satisfies for all x, y, z ∈ X,

(i) p(x, y) = p(y, x) (symmetry).

(ii) p(x, y) = p(x, x) = p(y, y) implies x = y (T0 separation axiom).

(iii) p(x, y) ≤ p(x, z) + p(z, y)−p(z, z) (∆♯ – “the sharp triangle inequality”).

(iv) p(x, x) ≤ p(x, y) (ssd – “small self-distances”).

The kernel of p is the set kerp := {x ∈ X | ∃y. p(x, y) = 0}.

Topology

The topology τp(X) induced by a partial metric p on a set X is given by the
basis consisting of open balls of the form Bp(x, ε) := {y ∈ X | p(x, y) <
p(x, x) + ε} for an x ∈ X and a radius ε > 0. It is not Hausdorff in general.
Therefore, the specialisation order ⊑τp(X) of τp(X) will be non-trivial in gen-
eral. All of the τp(X)-open sets, the open balls among them, are upper sets
with respect to the order.

2.3 Martin’s theory

Our main reference is [36].
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Fig. 1. The set of elements ε-close to x.

Quantitative approximation

Let P be a poset. For a monotone mapping µ: P → [0,∞)op and any x ∈ P ,
ε > 0 we define

µ(x, ε) := {y ∈ P | y ⊑ x ∧ µy < µx + ε}.

We say that µ(x, ε) is the set of elements of P which are ε-close to x.

Measurement

We say that a monotone mapping µ: P → [0,∞)op induces the Scott topology
on a subset X of a poset P if

∀U ∈ σ(P ). ∀x ∈ U ∩ X. ∃ε > 0. µ(x, ε) ⊆ U.

We denote it as µ → σ(X). If P is continuous, µ is Scott-continuous and
µ → σ(P ), then we will say that µ measures P or that µ is a measurement
on P . (Our definition of a measurement is a special case of the one given by
Martin. In the language of [36] our maps are measurements which induce the
Scott topology everywhere.)

Define the kernel of µ by kerµ := {x ∈ P | µx = 0}. The kernel is
always a Gδ subset of maximal elements of P and as such is a topologically
important object of study. We often seek a measurement on a domain with
kerµ = maxP ; this is called the kernel condition for measurements.

Let P be a continuous poset. A Scott-continuous map µ: P → [0,∞)op is a
Lebesgue measurement on P if for all Scott-compact subsets K ⊆ maxP and
for all Scott-open subsets U ⊆ P ,

K ⊆ U ∩ maxP ⇒ ∃ε > 0. µ(K, ε) ⊆ U ∩ maxP,

where µ(K, ε) :=
⋃
{µ(x, ε) | x ∈ K}.

Definition 2.1 Let P be a continuous poset with a measurement µ: P →
[0,∞)op. If for all consistent pairs a, b ∈ P , for all upper bounds r of a and b
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and for all ε > 0, there exists an s ⊑ a, b such that

µr + µs ≤ µa + µb + ε,

then we say that µ is a weakly modular measurement on P .

It can be shown that every weakly modular measurement is a Lebesgue
measurement [43].

2.4 Model of a space

Definition 2.2 A model of a topological space X is a continuous poset P
together with a homeomorphism φ: X → maxP, where maxP carries its sub-
space Scott topology inherited from P . A model P is complete if it is a dcpo;
bounded complete if P is a bounded complete dcpo; countably based if P is
ω-continuous; ideal if P is an ideal poset; a Gδ model if X is a Gδ subset in
the Scott topology on P .

We write 〈X, τ〉 ∼= 〈maxP, σ |maxP 〉 or simply X ∼= maxP .

3 Useful techniques and facts

3.1 Ideal models of spaces

In [32], Martin observed that in the majority of cases, continuous models of
spaces can be replaced with special algebraic models called ideal domains. In
fact, he proved in [32] that any topological space X, which has a complete
Gδ model P , has a complete Gδ ideal model. In [43] it has been noted that
Martin’s result remains valid in a more general setting:

Proposition 3.1 If a topological space has a Gδ model P , then it has a Gδ

ideal model E. In addition, if P is equipped with a measurement (kernel
measurement, Lebesgue measurement, partial metric for the Scott topology),
then E can be constructed in such a way that it admits a measurement (kernel
measurement, Lebesgue measurement, partial metric for the Scott topology).

3.2 Partial metrics versus measurements

A tight connection between partial metrics and measurements has been es-
tablished in [43]. The shortest summary of the facts that are useful for this
paper reads as follows:

Proposition 3.2 Let P is a continuous poset.

(i) If P is equipped with a partial metric p: P × P → [0,∞) for the Scott
topology, then the self-distance mapping of p is a Lebesgue measurement
with the same kernel.

(ii) If P is equipped with a weakly modular measurement µ: P → [0,∞)op,
then the map p: P × P → [0,∞) given by pµ(x, y) := inf{µz | z ≪ x, y},
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x, y ∈ P is a partial metric for the Scott topology with the same kernel as
µ.

(iii) If, in addition, P is algebraic, then it admits a partial metric for the Scott
topology iff it admits a Lebesgue measurement with the same kernel.

4 Basic relationship between spaces and their models

Consider a model 〈P, φ〉 of a topological space 〈X, τ〉. Since the specialisation
preorder of the Scott topology on P agrees with the underlying order, the
topology on P is always T0. For the same reason the subspace Scott topology
on maxP is T1. Therefore, any topology that can be modelled must be at least
T1. On the other hand, if the topology τ is not discrete, the Scott topology
on P can not be T1. At the moment we do not know if every T1 space arise
as a model of some continuous poset P . This question, however, seems to be
far too general to be of any practical importance in computing.

In the case of interesting topologies it happens most often than they are
Gδ subsets of their models. Martin [36] characterised this situation as follows:

Proposition 4.1 (Martin) Let P be a continuous poset and 〈X, τ〉 a topo-
logical space. P is a Gδ model of X iff X ∼= kerµ for some Scott-continuous
mapping µ: P → [0,∞)op.

It is worth to note that if X has a complete Gδ model, then it must be
first-countable and Baire [34]; this does not hold in general if the model is not
a dcpo.

The following result is a simultaneous generalization of the formal ball
model proposed for metric spaces in [11] and its algebraic version described in
[33]. It shows how to build domain models for first-countable spaces.

Proposition 4.2 For a T1 topological space 〈X, τ〉 the following are equiva-
lent:

(i) X is first-countable;

(ii) X ∼= kerµ for some Scott-continuous, strictly monotone mapping µ: P →
[0,∞)op on a continuous poset P .

Proof. For (1)⇒(2), since X is first-countable, for every a ∈ X we can pick a
collection N(a) := {N(a, n) | n ∈ ω} of neighbourhoods of a with the property
that n ≥ m implies N(a, n) ⊆ N(a, m). Define N(X, ω) :=

⋃

a∈X N(a) and
X ′ := {{a} | a ∈ X}. Let

P := {(a, n) ∈ X × ω | N(a, n) ∈ N(X, ω)} ∪ X ′.

Consider a function n: P → ω ∪ {∞} given by n(x) := m, when x = (a, m) ∈
P \X ′ and n(x) := ∞, whenever x ∈ X ′. Consider a partial order ⊑ between
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elements of P defined as the reflexive closure of

(a, r) ⊏ (b, s) iff (N(b, s) ⊆ N(a, r) and s > r).

Clearly X ′ = maxP .

Observe that

∀x, y ∈ P. n(x) = n(y) implies (x = y or x#y),(1)

by the definition of the order on P (recall that x#y means that the subset
{x, y} of P has no upper bound).

Define a mapping µ: P → [0, 1)op by µx = 2−n(x) if x ∈ P \X ′ and µx = 0
otherwise. By definition and (1), kerµ = X ′ = maxP . It is also clear that the
map is monotone and strictly monotone.

We will show that the function µ is Scott-continuous. Let D be a directed
subset of P with supremum x.

Assume x ∈ P\X ′. Suppose that for any d ∈ D we have n(d) < n(x). Since
D is nonempty, choose d1 ∈ D such that for any other e ∈ D, n(e) ≤ n(d1).
Now, if for arbitrary d2 ∈ D we have d2 ⊑ d1, then d1 = x, a contradiction as
n(d1) < n(x). Otherwise, there is d2#d1 and by directness of D, there exists
d3 ∈ D with n(d3) > n(d1), a contradiction with our choice of d1. We conclude
that there exists an element d ∈ D with n(d) = n(x) and hence x = d ∈ D by
(1). We have proved that

∀D ∈ P. (x =
⊔

↑D and x /∈ X ′) implies x ∈ D.(2)

Therefore,
⊔

↑µ(D) = µx.

Assume that x ∈ X ′. Suppose that there exists m ∈ ω such that n(d) ≤ m
for any d ∈ D. Without loss of generality we may choose the number m in such
a way that m = n(e) for some e ∈ D. If all elements of D are below e, then
x ⊑ e and hence x = e, by maximality of x. This implies that n(e) = n(x) = 0,
a contradiction. Otherwise, there exists e1 ∈ D with e1#e. By directness of
D, there is e2 ⊒ e1, e with n(e2) > n(e), which is again a contradiction. We
have shown that

∀D ∈ P. (x =
⊔

↑D and x ∈ X ′) implies {n(d) | d ∈ D} is unbounded.(3)

Hence,
⊔

↑µ(D) = 0 = µx.

We conclude that the mapping µ is Scott-continuous.

We claim that every non-maximal element is compact. Let z ∈ P \X ′ and
z ⊑ x =

⊔
↑D for some directed subset D of P . If x /∈ X ′, then z ⊑ x ∈ D by

(2). Otherwise, say x = {a} for some a ∈ X, and so there exists k ∈ ω such
that a ∈ U ⊆ z for some U ∈ Uk. Without loss of generality, k > n(z) and
n(e) = k for some e ∈ D (the latter follows from (3)). Hence a ∈ e ⊆ z and
so z ⊑ e. We have shown that z ≪ z, whenever z ∈ P \ X ′.

It is now easy to see that for any x /∈ X ′ we have ↓↓x = ↓x and so x =
⊔

↑↓↓x.
Otherwise, if x ∈ X ′ (say x = {a}), then by construction of P , ↓↓x is directed
and {n(y) | y ≪ x} is unbounded. Clearly, if ↓↓x ⊑ z for any other z ∈ P , then
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n(z) = ∞ and so z ∈ X ′. Then z = x by the T1 axiom of the space X. We
conclude that x =

⊔
↑↓↓x. Therefore, P is an ideal poset and so it is continuous.

Also, from the construction of P it is immediate that τ = σ(P ) |X′ .

For (2)⇒(1), we will identify elements of X with kerµ, which is a subset
of maximal elements of P . Let x ∈ X. Since ↓↓x is directed, we can construct
an increasing sequence (xn) in ↓↓x with µxn < 1/n. It is now easy to see that

↑↑xn ∩ maxP is a basis at x in σ |maxP
∼= τ . 2

A simple modification of the above proof leads to a complete domain-
theoretic characterisation of developable T1 spaces. The following result was
announced by Martin and Reed at the First Irish Conference on the Math-
ematical Foundations of Computer Science and Information Technology two
years ago (but unpublished so far).

Proposition 4.3 (Reed & Martin) For a topological space X, the follow-
ing are equivalent:

(i) X is developable and T1,

(ii) X is the kernel of a measurement on a continuous poset.

Proof (Sketch) Let {Un}n∈ω = N(X, ω) be a development for X. Define
functions n, µ and the poset P as in the proof of Proposition 4.2 (and use the
same notation), prove that µ is Scott-continuous and strictly monotone. Show
that P is ideal.

Finally, to conclude that the mapping µ measures P , take x ∈ P and
x ∈ ↑↑z ∈ P . If x /∈ X ′, taking ε := µx/2 proves the claim. Otherwise,
x = {a} for some a ∈ X and the claim follows from the fact that there exist
k ∈ ω with a ∈ St(a,Uk) ⊆ z. 2

Let us summarise the relationship between the structure of a modelled
space and the structure of the model:

space X model P

always T1 always T0; T1 in degenerate cases

has Gδ model X ∼= kerµ for µ continuous

first-countable X ∼= kerµ for µ continuous, strictly monotone

developable X ∼= kerµ for a measurement µ

5 Metrizable spaces and their models

We have shown that certain structural properties of topologies can be encoded
in the existence of appropriate Scott-continuous mappings on the underlying
model. This observation is valid also for the case of metrizable spaces and
alike. Different equivalences presented in the following proposition have been
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known and proved by Martin [36] and Heckmann [23]. The connection between
partial metrics and measurements established in [43] allows to combine them
in an elegant way.

Proposition 5.1 The following are equivalent for a topological space X:

(i) X is metrizable;

(ii) X is the kernel of a Lebesgue measurement on a continuous poset;

(iii) X is the kernel of a partial metric that induces the Scott topology on a
continuous poset;

(iv) X is the kernel of a partial metric that induces the Scott topology on an
ideal poset.

Proof. For (1)⇒(3) use the formal ball model BX. (3)⇒(2) holds since
the self-distance mapping of a partial metric is a Lebesgue measurement (cf.
Proposition 3.2). For (2)⇒(4), use Proposition 3.1. (4)⇒(1) is trivial. 2

It turns out that ultrametrizable spaces can be characterised in exactly the
same way if we put some meaningful restriction on the order in the models:

Definition 5.2 A tree is a poset P such that

∀x, y ∈ P. x↑y implies (x ⊑ y or y ⊑ x).

A tree is complete if P is a dcpo. We will also assume that every tree has a
bottom element ⊥.

Proposition 5.3 The following are equivalent for a topological space X:

(i) X is ultrametrizable;

(ii) X is the kernel of a Lebesgue measurement on an ideal tree;

(iii) X is the kernel of a partial metric that induces the Scott topology on an
ideal tree;

Proof. (1)⇒(3). Set Un := {Bd(x, 1/4n) | x ∈ X} with respect to some
ultrametric d: X × X → [0,∞) compatible with the topology on X. The
collection {Un} is a development for X. We build an ideal model P of X
as in Propositions 4.2, 4.3 (and use the notation from there). Since d is an
ultrametric, for every x, y in P \ X ′ such that x↑y we have either x ⊑ y or
y ⊑ x, and so P has a tree structure. Therefore the map µ (as defined in the
proof of Proposition 4.3) is a measurement and is vacuously weakly modular.
Hence, the induced partial semimetric pµ is a partial metric with kerpµ = X by
Proposition 3.2.(2). (3)⇒(2) is clear. For (2)⇒(1), observe that any partial
metric p on a tree P satisfies

p(x, y) ≤ max{p(x, z), p(z, y)}

for any x, y, z ∈ P . Hence, the mapping p restricts to an ultrametric on its
kernel. 2
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6 Completeness of the spaces and their models

In his “Lectures on analysis” [2] Gustave Choquet proposed a notion of com-
pleteness for topological spaces.

Definition 6.1 Let 〈X, τ〉 be a topological space and τ∗ := {(U, x) | x ∈
U, U ∈ τ}. The space X is Choquet-complete if there exists a sequence of
functions

fn: τ∗ × ... × τ∗
︸ ︷︷ ︸

n times

→ τ, n ∈ ω

such that

(i) for each ((U1, x1), ..., (Un, xn)) we have

xn ∈ fn((U1, x1), ..., (Un, xn)) ⊆ Un

and

(ii) for any sequence (Vn, xn) in τ∗ with Vn+1 ⊆ fn((V1, x1), ..., (Vn, xn)) for
all n ∈ ω we have ⋂

Vn 6= ∅.

Basic facts about Choquet completeness are:

Proposition 6.2 The following hold:

(i) A Choquet complete space is Baire.

(ii) A metric space is Choquet complete iff it is completely metrizable.

(iii) Gδ subspaces of Choquet complete spaces are Choquet complete.

(iv) A locally compact sober space is Choquet complete.

Proof. First two claims are demonstrated in [2]. For the proof of the third
one, we refer to Exercise 8.16 of [25]. Finally, the last fact is proved in [35].2

As has been already remarked in [36], Choquet completeness does not as-
sume any separation axioms to hold and, moreover, captures two fundamen-
tal aspects of computing: approximation and convergence. It seems therefore
well-suited as a topological notion that characterise completeness of contin-
uous domains. A single most important property of topological spaces that
have complete models has been stated by Martin in a recent paper [37]:

Theorem 6.3 (Martin) A topological space with a complete model is Cho-
quet complete.

Martin observes that this result implies that the space of maximal elements
in a continuous dcpo is metrizable iff it is completely metrizable. We, however,
do not need the full strength of Martin’s theorem to prove next proposition:

Proposition 6.4 The following are equivalent for a topological space X:

(i) X is completely metrizable;
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(ii) X is the kernel of a Lebesgue measurement on a continuous dcpo;

(iii) X is the kernel of a partial metric that induces the Scott topology on a
continuous dcpo;

(iv) X is the kernel of a partial metric that induces the Scott topology on an
ideal dcpo.

Proof. (4)⇒(1) it is clear that X is metrizable. Since X is a Gδ subset of a
Choquet complete space (cf. Theorem 6.2(3)-(4)), it is completely metrizable.
The rest of the proof obeys the same pattern as in Proposition 5.1 above and
is therefore omitted. 2

Finally, we characterise Polish spaces in the spirit of the proposition above.
Note that models of Polish spaces differ from models of complete metric spaces
only by the assumption of second countability of the Scott topology (as one
should expect). In the proposition below, we gather results on models of Polish
spaces from [33] and [4], [3]. Again, the methods developed in [43] make the
proof concise and transparent:

Proposition 6.5 The following are equivalent for a topological space X:

(i) X is Polish;

(ii) X is the kernel of a Lebesgue measurement on an ω-continuous dcpo;

(iii) X is the kernel of a partial metric that induces the Scott topology on an
ω-continuous dcpo;

(iv) X is modelled by an ω-continuous dcpo P such that maxP is regular with
respect to the subspace Scott topology.

(v) X is modelled by an ω-continuous dcpo which satisfies the Lawson con-
dition.

(vi) X is modelled by a countably based Lawson-compact dcpo.

Proof. For (1)⇒(3) use the formal ball model BX. (3)⇒(2) is immediate.
(2)⇒(4). Let µ be a Lebesgue measurement on a countably based complete
model P . Define d: P × P → [0,∞) by

d(x, y) := 2 · inf{µz | z ≪ x, y} − µx − µy.

By Theorem 2.28, page 32 of [43], d can be extended to a metric ρ on P such
that ρ |maxP induces the subspace Scott topology. That is, maxP is metrizable
and thus regular. (4)⇒(1) is proved by Martin in [33]. The argument is elegant
and worth repeating: Since second-countability is hereditary, the subspace of
maximal elements of P is second-countable and thus metrizable by Urysohn’s
Lemma (cf. [45], Theorem 23.1, page 166). The space maxP is also a Gδ subset
of a Choquet complete separable metric space, and hence Polish. (1)⇒(5) is
proved in [3]. (5)⇒(6) is immediate. To complete the proof, we show (6)⇒(2).
Let P be a countably based Lawson-compact model of X. By a result of
Lawson [31], P admits a radially convex metric d for the Lawson topology.

12
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Now, Martin proves (cf. Theorem 5.6.1 of [36], page 150) that P admits a
kernel measurement µ such that for all y ⊑ x we have d(x, y) ≤ µy − µx.
Let K be a Scott-compact subset of a Scott-open set U in P . Hence K is
Lawson-compact and U is Lawson-open. By the Lebesgue covering lemma
(cf. [45], Theorem 22.5, page 163), there exists ε > 0 with Bd(K, ε) ⊆ U .
Let x ∈ K and y ∈ µ(x, ε). Then d(x, y) ≤ µy − µx ≤ µy < ε. Therefore
y ∈ Bd(K, ε) ⊆ U and we conclude that µ(K, ε) ⊆ U , as required. 2

Bearing in mind that Choquet-completeness of the modelled space is re-
flected in the completeness of the model and vice versa, it takes no effort
to restate Proposition 5.3 for complete (separable) ultrametric spaces. The
proof, however, uses a new idea from [43] that the Choquet-completion of the
space can be performed via the rounded ideal completion of the model.

Proposition 6.6 The following are equivalent for a topological space X:

(i) X is a complete (separable) ultrametric space;

(ii) X is the kernel of a Lebesgue measurement on a complete (countably
based) ideal tree;

(iii) X is the kernel of a partial metric that induces the Scott topology on a
complete (countably based) ideal tree;

Proof. For (1)⇒(3) use construction from Proposition 5.3 to build the model
P of X. It is ideal and admits a Lebesgue measurement µ with X ∼= kerµ. In
[43] it is shown that the Choquet completion X̄ of the maximal point space of
P is given by the subset of maximal elements of the rounded ideal completion
I(P ) of P . Moreover, the measurement µ on P extends to a measurement
µ̄ on I(P ) with kerµ̄ ∼= X̄. But since X is already Choquet complete by
Proposition 6.2.(4), this means that I(P ) is a complete model for X equipped
with a measurement µ̄. Observe that since P is a tree, its rounded ideals
are chains and hence the tree structure is inherited by I(P ). Moreover, µ̄ is
vacuously weakly modular, and hence induces a partial metric pµ̄ on I(P ) by
Proposition 3.2.(2).

The rest of the proof mimics Proposition 5.3 and the claims about second-
countability present no difficulties. 2

To summarise, in this section we have shown that Choquet-completeness of
modelled spaces corresponds precisely to completeness of their models. This
correspondence is affirmed by Martin’s theorem 6.3 and by the proof of the
last proposition, where the rounded ideal completion of the model was used
as the Choquet-completion of the space that “sits at the top of the model”.
Moreover, we observed that second-countability (or equivalently: separability
in the metric case) of the space is reflected by the existence of a countable
base in the model. It can be shown that this correspondence remains valid for
just developable spaces as well.

13



Waszkiewicz

space X model P

developable X ∼= kerµ for a measurement µ,

+ second countable P countably based

completely metrizable X ∼= kerµ for a Lebesgue measurement µ

(or: X ∼= kerp for a partial metric p with τp = σ)

P directed-complete

completely metrizable as above + P countably based

+ second-countable

completely ultrametrizable X ∼= kerµ for a Lebesgue measurement µ

(or: X ∼= kerp for a partial metric p with τp = σ)

P directed-complete, tree

completely ultrametrizable as above + P countably based

+ second-countable

7 Bounded complete models of spaces

In [27] a long awaited characterisation of all topological spaces with bounded
complete models has been presented. The theorem extends in some sense the
characterisation of Polish spaces given in [4] but goes far beyond the metrizable
case. We will only state the result and sketch its basic consequences. For the
introduction to bitopological and quasi-uniform spaces consult [26] and [20],
respectively. A bitopological characterisation of posets is provided in [19].

Theorem 7.1 ([27]) The following are equivalent for a T1 topological space
〈X, τ〉:

(i) There exists a compatible quasiproximity δ on X such that τ(δ−1) is com-
pact;

(ii) There exists a compatible quasiuniformity U on X such that τ(U−1) is
compact;

(iii) 〈X, τ〉 is homeomorphic to 〈maxP,pσ〉 where P is a pointed, coherent
poset which has directed upper bounds and is equipped with an auxil-
iary, approximating, multiplicative binary relation ≺, and pσ is the pseu-
doScott topology on P ;

(iv) X admits a bounded complete model;

(v) There is a compact topology τ ∗ ⊆ τ on X such that 〈X, τ, τ ∗〉 is pairwise
completely regular.
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A remarkable characterisation of complete metrizability has been given by
Künzi in [28]:

Theorem 7.2 (Künzi) A metrizable topological space X is completely metriz-
able iff there is a compatible quasiuniformity U on X such that τ(U−1) is
compact.

The two theorems above yield an immediate corollary:

Corollary 7.3 ([27]) Every complete metric space has a bounded complete
model.

It should be remarked (as it is noted in [4] for the second-countable case)
that the fact that every locally compact Hausdorff space X can be modelled
by its standard bounded complete model U(X) := {K ⊆ X | K 6= ∅ compact}
(ordered by the inverse inclusion) is a special case of Theorem 7.1. A similar
remark applies to complete ultrametric spaces and the model proposed in
Proposition 6.6.

We conclude that bounded completeness of models is reflected in certain
compactness properties for bitopology characterising the modelled space.

8 Summary

We have shown explicitly how certain structural properties of topological
spaces are modelled by mappings on domains that approximate the spaces.
We hope that this concise study will be a good starting point for a systematic
search for models of topological spaces of practical importance in computer
science.

References

[1] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 3,
pages 1–168. Clarendon Press, 1994.

[2] G. Choquet. Lectures on Analysis, volume 1. Benjamin, 1969.

[3] K. Ciesielski, R. Flagg, and R. Kopperman. Polish spaces, computable
approximations and bitopological spaces. Topology and its Applications, to
appear.

[4] K. Ciesielski, R.C. Flagg, and R. Kopperman. Characterizing Topologies With
Bounded Complete Computational Models. Electronic notes in Theoretical
Computer Science, 20:11, 1999.

[5] B. Coecke and K. Martin. A partial Order on Classical and Quantum States.
Technical Report PRG-RR-02-07, Oxford University Computing Laboratory,
2002.

15



Waszkiewicz

[6] A. Edalat. Domain theory and integration. Theoretical Computer Science,
151:163–193, 1995.

[7] A. Edalat. Dynamical systems, measures and fractals via domain theory.
Information and Computation, 120(1):32–48, 1995.

[8] A. Edalat. Power domains and iterated function systems. Information and
Computation, 124:182–197, 1996.

[9] A. Edalat. Domains for Computation in Mathematics, Physics and Exact Real
Arithmetic. Bulletin of Symbolic Logic, 3(4):401–452, 1997.
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Constructivity in Mathematics, pages 129–158. North-Holland, 1959.

[30] J. Lawson. Computation on metric spaces via domain theory. Topology and its
Applications, 85:274–263, 1998.

[31] J. D. Lawson. Spaces of maximal points. Mathematical Structures in Computer
Science, 7(5):543–555, October 1997.

[32] K. Martin. Ideal Models of Computable Objects. Theoretical Computer Science,
to appear.

[33] K. Martin. The Regular Spaces with Countably Based Models. Theoretical
Computer Science, to appear.

[34] K. Martin. Domain theoretic models of topological spaces. In COMPROX III,
volume 13 of Electronic Notes in Theoretical Computer Science, 1998.

[35] K. Martin. Nonclassical techniques for models of computation. Topology
Proceedings, 24, 1999.

[36] K. Martin. A Foundation for Computation. PhD thesis, Department of
Mathematics, Tulane University, New Orleans, LA 70118, 2000.

[37] K. Martin. Topological games in domain theory. Topology and Appl., 129(2),
2002.
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