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Abstract

We address the question of how elegantly to combine a number of different struc-
tures, such as finite product structure, monoidal structure, and colimiting structure,
on a category. Extending work of Marmolejo and Lack, we develop the definition of
a pseudo-distributive law between pseudo-monads, and we show how the definition
and the main theorems about it may be used to model several such structures si-
multaneously. Specifically, we address the relationship between pseudo-distributive
laws and the lifting of one pseudo-monad to the 2-category of algebras and to the
Kleisli bicategory of another. This, for instance, sheds light on the preservation of
some structures but not others along the Yoneda embedding. Our leading examples
are given by the use of open maps to model bisimulation and by the logic of bunched
implications.

1 Introduction

Categories with additional structure, such as symmetric monoidal structure,
finite product structure, cartesian closed structure, both symmetric monoidal
and finite product structure together [17,22], a monad [15], or a class of colim-
its [3,10], play a fundamental foundational role in theoretical computer science.
Typically, one considers categories with several structures at once, with those
structures interacting with each other in some way. For instance, Moggi’s
work on computational effects [15] involves both finite product structure and
a monad, interacting with each other in the definition of strong monad. The
logic of bunched implications involves a small symmetric monoidal category C

with finite products and extends both the symmetric monoidal structure and
the finite product structure along the Yoneda embedding Y :C −→ [Cop, Set].

1 This work is supported by EPSRC grant GR/M56333: The structure of programming
languages : syntax and semantics.
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In contrast, finite coproduct structure does not extend along the Yoneda em-
bedding. The Yoneda embedding exhibits [Cop, Set] as the free cocompletion
of C, and, consequently, the monoidal and finite product structures are sent to
monoidal closed and cartesian closed structures respectively. In the analysis of
bisimulation using open maps [3,10], crucial use is explicitly made of the fact
that the Yoneda embedding yields the free cocompletion of a small category,
and structures such as finite product structure are analysed in that light.

Motivated by these examples, we seek a calculus of categories with struc-
ture: what does it mean to mean to be a “category with structure”? what
elegant constructions, supported by theorems, can one make with categories
with structure? how may one elegantly combine two or more structures on a
category, again supported by theorems? There has been considerable abstract
mathematical work on the first two of these questions over recent decades: a
definitive definition of algebraic structure on a category appears in [2], with
an account of some of the ideas directed towards theoretical computer scien-
tists in [19]; the former paper also develops some constructions on categories
with algebraic structure, with further development appearing in [6,7]. In this
paper, we address the third question: how elegantly to combine two or more
structures on a category? This question did not arise for us from abstract con-
siderations, but was put to us by computer scientists working on bisimulation,
and is also of immediate relevance to the work on bunched implications. The
primary interest of the workers on bisimulation is where one of the structures
is that of all small colimits, i.e., relating to the free cocompletion of a category.

The notion we develop here is that of a pseudo-distributive law between
pseudo-monads [13,14]. The definition of a pseudo-distributive law generalises
that of a distributive law between ordinary monads [1]. The generalisation
is not routine because the pseudo-ness adds so much complication that, al-
though it is fairly clear what is the right data for a pseudo-distributive law,
it is less clear what are definitive axioms for the notion. The main result for
pseudo-distributive laws is the generalisation of the equivalence between ordi-
nary distributive laws and liftings [1]. Computational interest lies both in the
lifting, given a pseudo-distributive law of one pseudo-monad S over another
pseudo-monad T , of T to the 2-category of algebras of S and in the lifting of
S to the Kleisli bicategory of T .

Except for a size concern that we analyse below, the leading examples for
us of pseudo-monads on Cat are the 2-monads for finite products, symmetric
monoidal structure, and all small colimits, and the pseudo-monads generated
by their combinations. And the leading examples of pseudo-distributive laws
for us are those between these structures. For a further wide class of exam-
ples, if T is a pseudo-commutative monad on Cat, as defined in [6,7], there is a
canonical pseudo-distributive law of S over T , where S is the 2-monad on Cat

whose algebras are small symmetric monoidal categories. This yields a sub-
stantial range of examples of relevance to computer science, many of them used
to model contexts or parallelism. Pseudo-commutative monads have proved
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to be useful in the analysis of combining computational effects [8,9]. Fur-
ther examples of pseudo-distributive laws arise involving premonoidal struc-
ture [20,21], as is increasingly used in modelling continuations [4].

The most relevant work to date in the direction of this paper, and work
that is particularly helpful here, has been that of Marmolejo in [14] and Lack
in [13], building on Kelly’s work in [11]. Both papers rely on and are expressed
in terms of definitions and results relevant to tricategories in [5,19], and neither
paper is sullied by the presence of an example. Marmolejo’s paper contains
the central definition we need and goes a long way towards one result we
regard as fundamental. But it is a long, dense paper, and it is not directed
towards computer scientists, or, for that matter, towards any non-specialist
in higher-dimensional category theory. Moreover, it does not address some of
the issues of primary importance to us: for instance, it does not define the 2-
category of algebras or the Kleisli bicategory of a pseudo-monad. Nor does the
latter concept follow easily from the work in that paper: to give a definition in
the spirit of that paper would require careful analysis of a three-dimensional
colimit in a standard tricategory. Lack’s paper is also dense and is also directed
only towards experts in higher-dimensional category theory. It does contain
a universal property that identifies the notion of the 2-category of algebras as
we need it here, but, despite appearances, it does not actually describe that
2-category. Nor does it contain a definition of the Kleisli bicategory, even
by identifying the appropriate universal property. It also assumes profound
knowledge of coherence and of weighted enriched colimits. The gentle reader
may be pleased to observe that we do not assume such knowledge in this
paper.

We must now add a caveat: the example of all small colimits, as appears
in our leading examples, is not explicitly covered by the above-mentioned
definition. But the only reason for that is one of size: the free cocompletion
of a small category is never small in non-trivial cases, so does not yield either
a 2-monad, or, more generally, a pseudo-monad on Cat. The question of size
can be addressed in various ways. For instance, in regard to bisimulation, one
may restrict to a small class of small colimits as done in [3]. Alternatively, one
may consider a larger universe, which is effectively equivalent to considering
colimits of size less than κ for a strongly inaccessible cardinal κ. The work
here is already complicated enough without explicit concern about size, and
such techniques do exist to address the issue; so, for the purposes of this
paper, we shall ignore the issue beyond our mentioning it here and making an
occasional reference in the text as seems appropriate. We think a fundamental
point of this paper that should be of considerable help to workers especially in
bisimulation is that the bicategory Prof is simply, except for this size issue,
the Kleisli bicategory for a pseudo-monad on Cat.

The paper is organised as follows. In Section 2, we recall the definition of
a pseudo-monad, and we provide examples that arise naturally in theoretical
computer science. In Section 3, we define the 2-category of pseudo-algebras for
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a pseudo-monad, describe a universal property for it, and give computational
examples. In Section 4, we define the Kleisli bicategory for a pseudo-monad,
give a universal property for it, and give examples. And in Section 5, we
recall the definition of a pseudo-distributive law, and we provide a theorem
giving an equivalence between pseudo-distributive laws and liftings both to
the 2-category of algebras and to the Kleisli bicategory.

2 Pseudo-monads

In this section, we introduce the notion of a pseudo-monad on a bicategory,
a fortiori on a 2-category. Most of the examples of bicategories of primary
interest to us are 2-categories. For instance, Cat, the 2-category of small
categories, functors, and natural transformations, appears naturally as a 2-
category rather than as a bicategory. So this paper is generally written in
terms of pseudo-monads on 2-categories rather than on bicategories. But the
usual expression of the definition of pseudo-monad nowadays is the same, as
one suppresses the structural isomorphisms of the base bicategory in describing
the axioms. So we give the bicategorical setting here.

For some further examples of bicategories, Rel is the 2-category, indeed
the locally ordered category, whose objects are sets, with a 1-cell from X to
Y being a binary relation from X to Y , and with 2-cells given by inclusion of
relations. A more sophisticated example, indeed one of our leading examples,
of a bicategory is given by Prof , cf. [3,10].

Example 2.1 Prof may be defined naturally in a number of different ways,
some of them bicategorical and others 2-categorical. In all cases, its objects
are small categories. One definition has an arrow from C to D defined to
be a functor C −→ [Dop, Set], with composition defined using a canonical
lifting, given by left Kan extension, of any such functor to a functor with
domain [Cop, Set], then by using ordinary composition of functors. With this
definition, Prof naturally forms a bicategory, one that is evidently, in spirit,
of the nature of a Kleisli bicategory. But an arrow in Prof from C to D may
alternatively be defined to be a colimit preserving functor from [Cop, Set] to
[Dop, Set]. This latter definition makes Prof naturally into a 2-category, one
that is equivalent to the previous definition. Yet another definition has a map
from C to D defined to be a functor from [Cop, Set] to [Dop, Set] that has a
right adjoint: that definition is isomorphic to the second definition, and it also
naturally defines Prof as a 2-category. Prof is fundamental to the study of
bisimulation using open maps [3,10].

We give the definitions of pseudo-functor, pseudo-natural transformation

and modification in Appendix A, following [23]. They are exactly the same as
2-functor, 2-natural transformation and modification except for the system-
atic replacement of equalities between arrows by invertible 2-cells subject to
coherence axioms. In writing bicategorical diagrams, one typically suppresses
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the structural isomorphisms in the definition of bicategory, pseudo-functor
and pseudo-natural transformation: the coherence conditions are sufficient to
force there to be a unique choice in each case, and quite often, one’s data is
strict anyway. So we retain that convention in our diagrams here in order to
avoid clutter.

Definition 2.2 A pseudo-monad on a bicategory C consists of

• a pseudo-functor T : C −→ C

• a pseudo-natural transformation µ : T 2 → T

• a pseudo-natural transformation η : 1 → T

• an invertible modification

T 3 Tµ - T 2

⇓ τ

T 2

µT

?

µ
- T

µ

?

• invertible modifications

T
Tη - T 2 T 2 µ - T

@
@

@
@

@

⇓ λ

1
R �

�
�

�
�

ρ ⇓
1

�

T

µ

?
T

ηT

6

subject to two coherence axioms:

T 4 T 2µ - T 3 T 4 T 2µ - T 3

@
@

@
@

@
TµT

R

⇓ Tτ

@
@

@
@

@

Tµ

R

∼=

@
@

@
@

@

Tµ

R

T 3

µT 2

?
⇓ τT T 3

Tµ
- T 2 = T 3

µT 2

?
Tµ - T 2

µT

?
⇓ τ T 2

@
@

@
@

@
µT

R

⇓ τ

@
@

@
@

@
µT

R

⇓ τ

@
@

@
@

@

µ

R

T 2

µT

?

µ
- T

µ

?
T 2

µ
- T

µ

?
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T 3 1 - T 3 Tµ - T 2 T 3 1 - T 3 Tµ - T 2

⇓ λT ⇓ τ = ⇓ Tρ

�
�

�
�

�

1

�

T 2

TηT

6

1
- T 2

µT

?

µ
- T

µ

?
T 2

TηT

6

1
- T 2 µ - T

µ

?

Example 2.3 Any 2-monad yields a pseudo-monad: given a 2-monad, regard
the 2-functor trivially as a pseudo-functor and the two 2-natural transforma-
tions trivially as pseudo-natural transformations. And take the three invertible
modifications to be identities.

Often, as was exploited heavily in [11] then in [2], one starts with a 2-
monad on Cat rather than with the more general notion of pseudo-monad.
That works far better than one might imagine for the purposes of studying
categories with algebraic structure. But there are two ways in which pseudo-
monads that are not 2-monads arise naturally, even in that study; and one of
those ways is fundamental for us here.

Example 2.4 Consider the process of combining algebraic structures on Cat.
One starts with 2-monads S and T , but one often only has a pseudo-distributive
law of S over T , not a distributive law in the usual strict sense. For in-
stance, taking S to be the 2-monad on Cat whose algebras are small symmetric
monoidal categories, and taking T to be the 2-monad whose algebras are small
categories with finite products, no natural choice of data for a distributive law
of S over T satisfies the pentagon axiom:

S2T
Sλ- STS

λS - TS2

ST

µST

?

λ
- TS

TµS

?

But one may prove, by a combination of two of the main results in [6,11],
that, making any natural choice of data for λ, this pentagon does commute
up to coherent isomorphism. Consequently, although the 2-functor TS does
not extend to a 2-monad, it does extend to a pseudo-monad as defined in [14].
This situation is typical, holding in general for pseudo-commutative T [6,7].

Example 2.5 One often has explicit descriptions of the various 2-monads on
Cat, equivalently explicit descriptions of their free algebras. For instance, the
free category with any class S of colimits on a small category C is given by the
closure of C in [Cop, Set] under that class of colimits, where C is considered as
a subcategory of [Cop, Set] via the Yoneda embedding C −→ [Cop, Set] [12].
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But that explicit description only agrees with the 2-monad for S-colimits up
to equivalence. The explicit description always forms a pseudo-monad but
rarely gives a 2-monad.

Example 2.6 The 2-monad on Cat for small categories with finite products
extends to a pseudo-monad on Prof . Similarly for the 2-monad for small sym-
metric monoidal categories. These results will both follow, modulo size, from
our work on pseudo-distributive laws and their liftings to Kleisli bicategories.

3 The 2-category of pseudo-algebras

In this section, given a pseudo-monad T on a 2-category C, we describe its
2-category Ps-T -Alg of pseudo-algebras. It is straightforward to define the
notions of pseudo-T -algebra, pseudo-map of pseudo-T -algebras, and algebra 2-
cell. But we shall need to consider delicate variants of the the definition as we
proceed through the paper, so we shall give the definition of pseudo-algebra
in detail. In the case of a 2-monad T , all the definitions are given compactly,
in complete detail and in modern notation, but with one redundant axiom,
at the start of [18]. For a pseudo-monad T , the definitions are almost given
in [13,14]: there is an indexed version in [14] and there is a version for 2-
functors in [13]; but neither paper formally has the definitions in the setting
in which we use them here.

We mention, for cognoscenti, that if one adopts the spirit of [13,14], the
distinction between 2-functors and pseudo-functors is more significant than
it may appear: in order to make the generalisation to pseudo-functors, one
uses the fact that the Gray-category 2-Catp of small 2-categories, pseudo-
functors, pseudo-natural transformations, and modifications has a particular
Gray-limit that might be called a relaxed three-dimensional limit, and such
existence requires proof as 2-Catp is not complete.

Recall that T has an underlying pseudo-functor that is not necessarily a
2-functor, so in the diagrams here, we are tacitly suppressing the coherence
data.

Definition 3.1 A pseudo-T -algebra consists of

• an object A of C

• an arrow a : TA −→ A

• invertible 2-cells

T 2A
Ta - TA A

ηA - TA

⇓ α

@
@

@
@

@

⇓ ᾱ

1
R

TA

µA

?

a
- A

a

?
A

a

?
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subject to two coherence axioms:

T 3A
T 2a- T 2A T 3A

T 2a- T 2A

@
@

@
@

@
TµA

R

⇓ Tα

@
@

@
@

@

Ta

R

∼=

@
@

@
@

@

Ta

R

T 2A

µTA

?
⇓ τA T 2A

Ta
- TA = T 2A

µTA

? Ta - TA

µA

?
⇓ α TA

@
@

@
@

@
µA

R

⇓ α

@
@

@
@

@
µA

R

⇓ α

@
@

@
@

@

a

R

TA

µA

?

a
- A

a

?
TA

a
- A

a

?

T 2A
1 - T 2A

Ta - TA T 2A
1 - T 2A

Ta - TA

⇓ λA ⇓ α = ⇓ T ᾱ

�
�

�
�

�

1

�

TA

TηA

6

1
- TA

µA

?

a
- A

a

?
TA

TηA

6

1
- TA

a - A

a

?

A second identity axiom, one for the composite of α with ηTA follows from
these two axioms. A pseudo-map of pseudo-T -algebras from (A, a, α, ᾱ) to
(B, b, β, β̄) consists of an arrow f : A −→ B and an invertible 2-cell

TA
Tf - TB

⇓ f̄

A

a

?

f
- B

b

?
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subject to two coherence axioms:

T 2A
T 2f- T 2B T 2A

T 2f- T 2B

@
@

@
@

@
Ta

R

⇓ T f̄

@
@

@
@

@

Tb

R

∼=

@
@

@
@

@

Tb

R

TA

µA

?
⇓ α TA

Tf
- TB = TA

µA

? Tf - TB

µB

?
⇓ β TB

@
@

@
@

@
a

R

⇓ f̄

@
@

@
@

@
a

R

⇓ f̄

@
@

@
@

@

b

R

A

a

?

f
- B

b

?
A

f
- B

b

?

A
f - B A

f - B

@
@

@
@

@
ηA

R

∼=

@
@

@
@

@

ηB

R

@
@

@
@

@

ηB

R

A

1

?
⇓ ᾱ TA

Tf
- TB = A

1

? f - B

1

?
⇓ β̄ TB

@
@

@
@

@
1

R

⇓ f̄

@
@

@
@

@
1

R

@
@

@
@

@

1

R

A

a

?

f
- B

b

?
A

f
- B

b

?

An algebra 2-cell from (f, f̄) to (g, ḡ) is a 2-cell χ : f ⇒ g subject to one
coherence axiom:

TA TA

@
@

@
@

@

Tf

R

@
@

@
@

@

Tf

⇓ Tχ
R

A

a

?
⇓ f̄ TB = TA

1

?

Tg
- TB

@
@

@
@

@

f

⇓ χ
R

⇓ ḡ

A

1

?

g
- B

b

?
A

a

?

g
- B

b

?

Observe that, for any 2-category C and any pseudo-monad T on C, there
are

• a forgetful pseudo-functor U : Ps-T -Alg −→ C
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• a canonical pseudo-natural transformation u : TU ⇒ U

• canonical invertible modifications

T 2U
Tu - TU U

ηU - TU

⇓ υ

@
@

@
@

@

⇓ ῡ

1
R

TU

µU

?

u
- U

u

?
U

u

?

satisfying the axioms we demanded in the definition of a pseudo-T -algebra.

Proposition 3.2 The data (U, u, υ, ῡ) are universal, subject to the axioms,

among all pseudo-functors with codomain C, pseudo-natural transformations,

and invertible modifications, subject to the above-mentioned axioms.

A proof follows from routine checking. Its significance is that, combined
with [13] and the main result of [14], it will allow us to deduce an equivalence
between pseudo-distributive laws and liftings of one pseudo-monad to the 2-
category of algebras of the other. It also allows us to deduce other results
of [13], including those one would reasonably expect of such a construction:

Corollary 3.3 For any pseudo-monad T on any 2-category C

• the 2-category Ps-T -Alg yields a decomposition of T into a pseudo-adjunction.

• every pseudo-adjunction gives rise to a pseudo-monad and a comparison

pseudo-functor into the induced 2-category of pseudo-algebras.

Example 3.4 Let C = Cat. There are many examples of 2-monads on Cat of
interest in theoretical computer science. In all the leading examples, including
all those mentioned below, the 2-category Ps-T -Alg is biequivalent to the full
sub-2-category determined by the strict T -algebras: see [18] for one of the two
main general results to that effect. That full sub-2-category, often denoted
T -Alg, was the focus of study of [2], which includes many specific examples.
They include: the 2-category FProd of small categories with finite products
and functors that preserve finite products; the 2-category SymMon of small
symmetric monoidal categories and strong monoidal functors; for any small
class S of colimits, the 2-category of small categories with S-colimits and
functors that preserve S-colimits; the 2-category for which an object is a
small category together with a monad on it; among many others.

Example 3.5 For a base 2-category other than Cat, let C be the 2-category
SymMon. It will follow from our analysis of pseudo-distributivity that the
2-monad on Cat for small categories with finite products lifts to SymMon and
that an object of the 2-category of algebras of the lifting consists of a small
symmetric monoidal category with finite products, for which the symmetric
monoidal structure distributes over the finite product structure.
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Example 3.6 Let C = FCoprod, the 2-category of small categories with fi-
nite coproducts. Put TA = FProd(Aop, Set). For size reasons, TA is not
a monad on FCoprod, but except for that caveat, Ps-T -Alg would be the
2-category of categories with all small colimits. One can modify the descrip-
tion of TA in order to make a precise true statement here by making a size
restriction along the lines we have explained above (see, for instance, [3,12]).

Example 3.7 Let C = FProd. It will follow from our analysis of pseudo-
distributivity that, except for our usual size problem, TA = [Aop, Set] would
form a pseudo-monad on FProd with pseudo-algebras given by categories with
all small colimits and finite products, and with pseudo-maps given by functors
that preserve such structure.

4 The Kleisli bicategory

In this section, we develop the notion of the Kleisli bicategory of a pseudo-
monad. Except for a size issue addressed in [3], Prof should be the Kleisli
bicategory for a pseudo-monad on Cat given by TA = [Aop, Set]. An analysis
of Prof is fundamental to the study of bisimulation using open maps [10].
Winskel also needs a variety of Kleisli bicategory in order to analyse a variety
of exponentials [16,24]. So we are keen to define the notion of Kleisli bicategory
in a way that includes such variants.

However, it seems to be impossible to define the Kleisli bicategory of a
pseudo-monad in a way that satisfies a result dual to Proposition 3.2, thus al-
lowing us to adopt the theory of [13], while giving a construction that includes
such leading examples and is easy to handle in practice. In fact, it is unclear
whether a dual, in the sense required in [13], exists at all. Even if it does,
it seems likely that it would be awkward to describe and it definitely would
not have the same simple relationship with the usual Kleisli construction for
ordinary categories as that we develop here: our construction is inherently
bicategorical, while the general setting of [13,14] is inherently 2-categorical.

Nevertheless, with care, one can generalise the idea in [13], without be-
coming bogged down in the full generality of three-dimensional colimits in
tricategories, to provide a construction that: agrees with the leading exam-
ples; is remarkably easy to describe; yet provides a dual up to biequivalence,
which is sufficient for the main abstract proof of [13], albeit not the theorem
as stated therein, to work. Indeed, the definition looks like an obvious idea for
generalising the Kleisli construction: the hard part is to identify its universal
property. The reason it is a bicategory rather than a 2-category is because
the lifting requires the greater generality of the notion of bicategory in order
to define the composition. The construction is surprisingly simple.

Definition 4.1 Given a pseudo-monad (T, µ, η, τ, λ, ρ) on a 2-category C,
the Kleisli bicategory of T , denoted Kl(T ), is defined by putting Ob(Kl(T )) =
ObC and Kl(T )(A, B) = C(A, TB), with composition given by the composite:
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C(B, TD) × C(A, TB) - C(TB, T 2D) × C(A, TB) - C(A, T 2D) - C(A, TD)

where the arrows in the composite are labelled using T , composition in C and
µD respectively, with identities given by:

ηA : A −→ TA

and with the coherence isomorphisms for the bicategorical structure of Kl(T )
given by τ , λ and ρ.

We should like to dualise Proposition 3.2 and use it both to deduce the
results one would expect of a Kleisli construction and to give an equivalence
between pseudo-distributive laws and liftings to Kleisli bicategories: but that
duality does not hold of this construction. We can, however, rectify the sit-
uation with a little care for coherence. Mimicking the situation for algebras,
observe that there are

• a canonical pseudo-functor I : C −→ Kl(T )

• a canonical pseudo-natural transformation i : IT ⇒ I

• canonical invertible modifications

IT 2 iT - IT I
Iη - IT

⇓ ι

@
@

@
@

@

⇓ ῑ

1
R

IT

Iµ

?

i
- I

i

?
I

i

?

satisfying axioms corresponding to those we demanded in analysing Ps-T -Alg.

When T is a 2-monad, observe that Kl(T ) is a 2-category. But Kl(T )
is only a bicategory in general, hence the impossibility of dualising Proposi-
tion 3.2 directly.

Definition 4.2 For any pseudo-monad T on a 2-category C and for any bicat-
egory B, define the bicategory Cocone((C, T ), B) such that an object consists
of

• a pseudo-functor H : C −→ B

• a pseudo-natural transformation h : HT −→ H
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• invertible modifications

HT 2 hT - HT H
Hη - HT

⇓ θ

@
@

@
@

@

⇓ θ̄

1
R

HT

Hµ

?

h
- H

h

?
H

h

?

satisfying axioms as above.

An arrow in Cocone((C, T ), B) from (H, h, θ, θ̄) to (H ′, h′, θ′, θ̄′) consists
of a pseudo-natural transformation χ : H −→ H ′ together with an invertible
modification

HT
χT - H ′T

⇓ χ̄

H

h

?

χ
- H ′

h′

?

subject to two axioms corresponding to the two axioms in the definition of
a pseudo-map of algebras. A 2-cell from (χ, χ′) to (ξ, ξ′) is given by a mod-
ification ζ : χ ⇒ χ′ subject to one coherence axiom, corresponding to that
in the definition of an algebra 2-cell. The composition and identities for the
bicategorical structure of Cocone((C, T ), B) are induced by those of B. The
axioms required to prove that Cocone((C, T ), B) is indeed a bicategory follow
routinely from the bicategorical axioms of B.

Theorem 4.3 For any bicategory B, composition with (I, i, ι, ῑ) induces a

biequivalence of bicategories between Cocone((C, T ), B) and Pseudo(Kl(T ), B),
the bicategory of pseudo-functors from Kl(T ) to B.

A proof follows from routine but lengthy checking. The result provides a
universal property for the Kleisli bicategory, allowing us to adopt the spirit
of the development of [13], albeit with somewhat more subtle definitions or
statements. For instance, adopting a natural tricategorical understanding of
the notions of decomposition and comparison pseudo-functor, we may deduce
the following results:

Corollary 4.4 For any pseudo-monad T on any 2-category C

• the bicategory Kl(T ) yields a decomposition of T into a pseudo-adjunction.

• every pseudo-adjunction gives rise to a pseudo-monad and a comparison

pseudo-functor from the induced Kleisli bicategory.

13
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Example 4.5 Let S be a small class of colimits. Then the pseudo-monad
on Cat for small categories with S-colimits is given by sending a small cate-
gory A to the free cocompletion of A in [Aop, Set], with inclusion the Yoneda
embedding A −→ [Aop, Set], under S-colimits. Consequently, the Kleisli bi-
category has objects being small categories and an arrow from A to B given
by a functor from A to the closure of B in [Bop, Set] under S-colimits. This
fact is exploited in [3].

5 Pseudo-distributive laws

The central result about distributive laws for ordinary categories and ordinary
monads is as follows [1]:

Theorem 5.1 Given monads S and T on a category C, the following are

equivalent:

• a distributive law λ : ST −→ TS of S over T

• a lifting of T to S-Alg

• a lifting of S to Kl(T )

It also follows from the definition of a distributive law of S over T that
TS acquires a canonical monad structure, its category of algebras agrees with
that for the lifting of T , and dually for the Kleisli construction.

As we have mentioned earlier, distributive laws rarely exist for 2-monads,
even less for pseudo-monads. So one seeks an appropriate weakening of the
notion, and Marmolejo’s definition is definitive, given as follows:

Definition 5.2 A pseudo-distributive law of a pseudo-monad S over a pseudo-
monad T consists of

• a pseudo-natural transformation λ : ST −→ TS

• invertible modifications

S2T
Sλ- STS

λS - TS2 ST 2 λT - TST
Tλ - T 2S

⇓ µs ⇓ µt

ST

µST

?

λ
- TS

TµS

?
ST

SµT

?

λ
- TS

µT S

?

T S

@
@

@
@

@

TηS

⇓ ηs
R

@
@

@
@

@

ηT S

⇓ ηt
R

ST

ηST

?

λ
- TS ST

SηT

?

λ
- TS

14
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subject to nine coherence axioms: they are not complicated and they are spelt
out clearly in [14], but we do not have space here to list them.

We have described examples, with forward references, through the course
of the paper, so we do not give them in detail here. Leading ones are generated
by the 2-monads on Cat for small categories with finite products and for small
symmetric monoidal categories over the 2-monad for the free cocompletion of
a small category under a small class of colimits. A non-example is given by
replacing finite products by finite coproducts here, as the Yoneda embedding
does not preserve finite coproducts. Another leading class of examples is given
as follows:

Proposition 5.3 Every pseudo-commutative monad T on Cat gives rise to

a pseudo-distributive law of S, the 2-monad for small symmetric monoidal

categories, over T .

A proof follows from one of the main results from each of [6,7] and [11].
The main theorem about pseudo-monads mimics that for ordinary monads. To
understand this result, one must adopt the bicategorical sense of equivalence
as explained in the previous section.

Theorem 5.4 Given pseudo-monads T and S on a 2-category C, the follow-

ing are equivalent:

• a pseudo-distributive law of S over T

• a lifting T ′ of T to Ps-S-Alg

• a lifting S ′ of S to Kl(T )

Proof. The equivalence of the first two items here can be deduced by com-
bining [14] with [13] and Proposition 3.2. The equivalence of the first and last
items follows from Theorem 4.3 together with a dual of the proof for algebras
but with more delicacy systematically taken to account for the weaker notion
of equivalence of Theorem 4.3. 2

It is also shown in [14] that TS acquires the structure of a pseudo-monad.

Corollary 5.5 For a pseudo-distributive law of S over T :

• Ps-T ′-Alg is biequivalent to Ps-TS-Alg

• Kl(S ′) is biequivalent to Kl(TS)
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A Pseudo-functors, pseudo-natural transformations, and

modifications

Definition A.1 Given bicategories C and D, a pseudo-functor from C to D

consists of

• a function H : ObC −→ ObD

• for each pair of objects (A, B) of C, a functor H : C(A, B) −→ D(HA, HB)

• for each triple (A, B, E), an invertible natural transformation

C(B, E) × C(A, B)
H × H- D(HB, HE) × D(HA, HB)

⇓ h

C(A, E)

◦

?

H
- D(HA, HE)

◦

?

• for each object A, an invertible 2-cell h̄A : 1HA ⇒ H(1A), equivalently an
invertible natural transformation

1

@
@

@
@

@

1HA

⇓ h̄
R

C(A, A)

1A

?

H
- D(HA, HA)
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subject to the coherence of three diagrams, in which we suppress the coherence
data for the two bicategories:

C(E,F ) × C(B,E) × C(A,B)
H × H × H- D(HE,HF ) × D(HB,HE) × D(HA,HB)

⇓ H × h

C(E,F ) × C(A,E)

1 × ◦

?

H × H
- D(HE,HF ) × D(HA,HE)

1 × ◦

?

⇓ h

C(A,F )

◦

?

H
- D(HA,HF )

◦

?

must equal

C(E,F ) × C(B,E) × C(A,B)
H × H × H- D(HE,HF ) × D(HB,HE) × D(HA,HB)

⇓ h × H

C(B,F ) × C(A,B)

◦ × 1

?

H × H
- D(HB,HF ) × D(HA,HB)

◦ × 1

?

⇓ h

C(A,F )

◦

?

H
- D(HA,HF )

◦

?

and both

C(A, B)

@
@

@
@

@

1HB × H

⇓ h̄ × 1
R

C(B, B) × C(A, B)

1B × 1

? H × H- D(HB, HB) × D(HA, HB)

⇓ h

C(A, B)

◦

?

H
- D(HA, HB)

◦

?
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and

C(A, B)

@
@

@
@

@

H × 1HA

⇓ 1 × h̄
R

C(A, B) × C(A, A)

1 × 1A

? H × H- D(HA, HB) × D(HA, HA)

⇓ h

C(A, B)

◦

?

H
- D(HA, HB)

◦

?

must be identities.

Definition A.2 A pseudo-natural transformation from (H, h, h̄) to (K, k, k̄)
consists of

• for each object A, an arrow αA : HA −→ KA

• for each pair (A, B) a natural transformation

C(A, B)
K - D(KA, KB)

⇓ ᾱ

D(HA, HB)

H

?

D(HA, αB)
- D(HA, HB)

D(αA, KB)

?

such that for every pair of composable arrows (f : A −→ B, g : B −→ E),
suppressing the coherence data in the definition of bicategory:

HA
αA - KA HA

αA - KA

@
@

@
@

@
Hf

R

⇓ ᾱf

@
@

@
@

@

Kf

R

⇓ ᾱgf

@
@

@
@

@

Kf

R

HE

H(gf)

?
⇓ h(g,f) HB

αB

- KB = HE

H(gf)

? αE - KE

K(gf)

?
⇓ k(g,f) KB

@
@

@
@

@
1

R

⇓ ᾱg

@
@

@
@

@
1

R

@
@

@
@

@

1

R

HE

Hg

?

αE

- KE

Kg

?
HE

αE

- KE

Kg

?
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and

HA
αA - KA

⇓ ᾱ1

HA

1

?

αA

- KA

1

?

is the identity.

Definition A.3 A modification from (α, ᾱ) to (β, β̄) consists of, for every
object A, a 2-cell χA : αA ⇒ βA such that for every arrow f : A −→ B,
suppressing the bicategorical coherence data, we have:

HA HA

@
@

@
@

@

αA

R

@
@

@
@

@

αA

⇓ χA
R

HB

Hf

?
⇓ ᾱf KA = HA

1

?

βA

- KA

@
@

@
@

@

αB

⇓ χB
R

⇓ β̄f

HB

1

?

βB

- KB

Kf

?
HB

Hf

?

βB

- KB

Kf

?
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