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Abstract

In [15], processes represent incomplete specifications that guarantee proper behavior
only under assumed constraints. Behaviors are represented as abstract executions.
Here we define a corresponding notion of morphism, called process abstractions,
as maps that preserve a composition operator on processes. We show that all
process abstractions can be obtained from binary relations on execution sets, and
we point out a ternary symmetry for process abstractions and the main composition
operators. We rework and generalize correctness-preserving properties of commonly
used process maps and we study new properties and maps of interest for verification.

1 Introduction

In [14,15], we define processes that embed an assumption and a guarantee
in terms of sets of executions, akin to [10] or [8] but without relying on the
structure of executions. Executions are abstract, that is, make no reference to
events, states, ports, or other structural or operational information. Therefore,
unlike the assume-guarantee rule used in model checking (see for instance [13]),
our processes and their algebraic properties do not rely on causal or tempo-
ral relationships between the assumption and the guarantee; we use the term
assumption-guarantee to designate such less-coupled association of an assump-
tion and a guarantee. A benefit of our approach is increased generality, which
has enabled new applications in the area of asynchronous and mixed-timing
circuits, such as those reported in [2,16].

In this paper we formalize maps on assumption-guarantee processes and
we study the properties of such maps. We define our maps, call them process
abstractions, by the property that they preserve a composition operator. Such
operators include the product (parallel composition) and the meet and join of
a refinement partial order. The contributions in this paper include:
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• Characterization of process abstractions for assumption-guarantee processes
as being induced by four binary relations between execution sets.

• Characterization of process abstractions that allow pessimistic or optimistic
verifications on images of assumption-guarantee processes.

• Characterization of assumption-guarantee processes that allow pessimistic
or optimistic verifications on images through an arbitrary given process
abstraction.

• A rotation process abstraction that relates the main composition operators
and the process abstractions that preserve the respective operators.

• Rework of Galois connection properties of process maps and generalization
to assumption-guarantee processes and abstract executions.

We depart from previous treatments of process transforms in several re-
spects. Generic studies of abstract interpretations [7], transition system ab-
stractions [12,17], and model reductions [6,11], which unify several types of
maps, only express guarantees in a process specification. In particular, their
process domains do not have a trace-theory-style reflection or mirroring op-
erator that swaps guarantees and assumptions. Embedded assumptions can
be expressed by means of divergences in [10] or failures in [8]; however, no
attempts are made in [10], or [8] to unify and generalize properties of their
frequently used process maps, such as hiding (deletion, projection) and deriva-
tive (after-operator). Our executions are abstract and can be instantiated
arbitrarily. Criteria that authorize verification on images of processes can be
found in [11], and also include the “exact approximation” of [6] and the under-
and over-approximations in [9]; our counterparts Theorems 4.1 and 4.3. Ga-
lois connection properties of abstractions have been given in [12] and [17];
our counterpart is Theorem 3.2. However, prior to our study, these criteria
and properties had been given only in operational settings (transition systems
or predicate transformers) and for guarantee-only interfaces, while abstract
executions have been introduced by our work on process spaces.

We are not aware of previous attempts in the literature to establish a
ternary symmetry of process domains as we do with rotation, or the entailed
relations between parallel composition and choice operators (meet and join)
and among the maps that preserve the respective operators. Finally, abstract
executions and the related generalizations are an original contribution of our
work on process spaces.

2 Preliminaries

2.1 Process Spaces

Process spaces are a generic theory of concurrency, parameterized by the exe-
cution domain. Executions can be sequences of events, timed words, functions
of time, etc., but a priori they are a primitive notion. Here we briefly overview
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the formalism; more details and examples can be found in [14,15].

Let E be an arbitrary set, whose elements are called executions. A process
over E is a pair (X, Y ) of subsets of E such that X ∪ Y = E . The process
space of E , denoted by SE , is the set of all processes over E .

A process (X, Y ) represents a contract for the interface between a device
and its environment. The goal of this contract is to allow only executions from
X ∩ Y , called goals , to occur. The device guarantees that only executions
from X (accessible) may occur, which means that the device should avoid
executions from X (escapes). Also, the device assumes that only executions
from Y (accessible) may occur, which means that the environment should
avoid executions from Y (rejects). We use the following notation: as p = the
set of accessible executions of p, at p = acceptable executions, g p = goals, r p
= rejects, e p = escapes.

Example 1 Consider an “etiquette machine” that has polite conversations
with its environment, intended to contain only phrases “How do you do”
and “How are you”. A conversation can be arbitrarily long, but finite. The
available vocabulary also includes the undesirable phrase “XXX”.

The behavior of the machine is represented by the process in Figure 1,
whose executions consist of finite strings of greetings between the machine
and the environment. The greetings are represented by symbolic events. The
initial state is shaded. A string of greetings is a reject, goal, or escape for this
process if it is spelled by a path starting at the initial state and ending at a
state marked r , g , or e , respectively.

 

ex 

m1, m2 

e1, e2 

m1, m2, mx,

e1, e2, ex

g e

m1, m2, mx 

r e

e1, e2, ex 

m1, m2, mx, 

e1, e2, ex 

mx 

 
 

Greeting Event

Environment says “How do you do” e1

Environment says “How are you” e2

Environment says “XXX” ex

Machine says “How do you do” m1

Machine says “How are you” m2

Machine says “XXX” mx

Fig. 1. Process of the etiquette machine.

For instance, execution ex mx is a reject because the environment violates
the contract by illegal input ex; execution m1 ex m2 is an escape, because the
machine is not allowed to speak out of turn with illegal output m1, even though
the environment issues ex afterwards; the empty string is a goal, because
neither the environment nor the machine have done anything wrong; and,
execution e2 is an escape, because it would be impolite for the machine not
to respond to the greeting. 2

The main process space operators are as follows. 2

2 The definitions here are consistent to [14] but use different execution sets (for simplicity).
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• Product (×), defined by g (p × q) = g p ∩ g q and as (p × q) = as p ∩ as q,
models the parallel composition of two devices.

• Refinement (v), defined by p v q ⇔ as p ⊇ as q ∧ at p ⊆ at q, models a
relative notion of correctness: q can substitute ‘specification’ p.

• Robustness (RE), defined by p ∈ RE ⇔ r p = ∅, models an absolute notion of
correctness: the device works without the environment avoiding executions.

 

ex 

beep 

e1, e2 

beep, e1, e2, ex

g e

beep 

r e

e1, e2, ex 

beep, e1, e2, ex 

m1, m2 

beep 

m1, m2, mx, beep

g e 

m1, m2, mx 

r e 

beep 

m1, m2, mx, beep 

mx 

(a) (b) 

(self-loops on m1, m2, mx) (self-loops on e1, e2, ex) 

 
Fig. 2. Example for product: (a) Listener; (b) Speaker.

Example 2 Consider a realization of the etiquette machine from Example 1
as a system of two components, call them Listener and Speaker. Listener
emits a “beep” each time it hears a greeting from the environment, provided
that the greeting is not out of turn and not an “XXX”. Speaker delivers a
polite greeting after each “beep”.

Listener and Speaker can be represented by processes over the execution
set E = {e1, e2, ex, m1, m2, mx, beep}∗, shown in Figure 2. By convention,
we omit from the figures actions that are ignored by the respective processes,
and we assume that the omitted actions produce self-loops at every state. For
instance, e1, e2, ex are ignored by Speaker and are omitted from Figure 2 (b).

Execution e2 beep m1 is a goal for both Listener and Speaker, and it is a
goal for the product process as well. Execution e1 e2 is a reject for Listener
and a goal for Speaker; accordingly, this execution is a reject for the product
process. Execution e1 beep beep is an escape for Listener and a reject for
Speaker, and, therefore, this execution is an escape for the product process.

The process in Figure 1 considered over the execution set {e1, e2, ex, m1,
m2, mx, beep}* is refined by the product of Listener and Speaker, assuming
the ignored beep produces self-loops at every state in Figure 1.

We perform such verifications by a tool, called FIREMAPS [14], that im-
plements several process operations. The verification algorithms use state
reachability analysis with binary decision diagrams to decide inclusion and

Any two non-complementary sets as p, at p, v p, g p, r p, and e p uniquely define a process.
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compute intersection of regular languages, which represent execution sets. 2

Product is associative, commutative, and idempotent. Refinement is a
partial order, and product is monotone with respect to refinement.

Refinement induces a complete lattice, in which we use u to denote the
meet and t to denote the join. Process spaces are not Boolean algebras, but
they are ternary algebras [5].

2.2 Binary Relations and Galois Connections

In the following, we use notation from [3] or introduce our own. A poset
is a pair 〈P,�〉 consisting of a set P and a partial order relation � on P .
A Galois connection between posets 〈A,�A〉 and 〈B,�B〉 is a pair (α, β) of
maps α : A → B and β : B → A such that, for every u ∈ A and v ∈ B,
u �A β(v) ⇔ v �B α(u) . 3

A relation over two sets E1 and E2 is a subset of E1 × E2. (The sign × is
used both for Cartesian product and the process product.) The converse of a
relation ρ ⊆ E1 ×E2 is a relation ρ^ ⊆ E2 ×E1 such that, for every u ∈ E1 and
v ∈ E2, uρv ⇔ vρ^u. The image of set X ⊆ E1 through relation ρ ⊆ E1×E2 is
the set Imρ(X) = {v ∈ E2 | ∃ u ∈ X : uρv}. The powerset of set E is denoted

by ℘(E). For any function f : ℘(E1) → ℘(E2), ∀ X ⊆ E1 : f(X) = f(X) =
E2\f(X) (pointwise complementation).

The following lemma [3] characterizes a class of maps between execution
sets that are of interest for defining our process abstractions.

Lemma 1 For any map f : ℘(E1) → ℘(E2), the following are equivalent.

(a) There exists a map f
^

: ℘(E2) → ℘(E1) such that ∀ X ⊆ E1, Y ⊆ E2 :
X ∩ f

^

(Y ) = ∅ ⇔ Y ∩ f(X) = ∅ ;

(b) For every set M of subsets of E1, f(
⋃

X∈M X) =
⋃

X∈M f(X) ;

(c) There exists a relation ρ ⊆ E1 × E2 such that f = Imρ .

A function f between power sets is a union-preserving map (UPM for
short) if it satisfies the properties in Lemma 1. Noting that two sets A and
B are disjoint if and only if A ⊆ B, Part (a) of Lemma 1 essentially says
that the maps f and f^ form a Galois connection between 〈℘(E1),⊆〉 and
〈℘(E2),⊆〉. (Recall the contravariant definition of Galois connections, in which
we follow [3]; here, a larger X yields larger f(X) and f

^

(X) and smaller f(X)
and f^(X).) Part (b) characterizes such maps as those maps that preserve
union. Part (c) provides a representation for such maps, showing they can
be constructed from binary relations. Also notice that any function satisfying
either of the properties in Lemma 1 is strict (f(∅) = ∅), and that relation ρ
in Part (c) is unique for any such function.

Example 3 All language homomorphisms are UPMs. For any finite sets Σ1

3 Galois connections are sometimes defined in a covariant manner. Following [3], we use
without loss of generality the contravariant form of these definitions.
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and Σ2, a language homomorphism is a map h : Σ1 → Σ∗
2 extended to Σ∗

1 and
℘(Σ∗

1) by the following laws:

h(ε) = ε ,
∀ u1, u2 ∈ Σ∗

1 : h(u1u2) = h(u1)h(u2) ,
∀ L ⊆ Σ∗

1 : h(L) =
⋃

u∈L h(u) .

Consider, for instance, deletion from [8]. For finite sets Γ and Σ such that
Γ ⊆ Σ, del(Γ)(·) : Σ → Σ∗ satisfies ∀ a ∈ Σ \ Γ : del(Γ)(a) = a and ∀ a ∈ Γ :
del(Γ)(a) = ε . The resulting language homomorphism del(Γ)(·) : ℘(Σ∗) →
℘(Σ∗) deletes from the argument words all occurrences of symbols from Γ.

Note, however, that not all UPMs are language homomorphisms; for in-
stance, prefix-closure is a UPM but it is neither a language homomorphism
nor the converse of a language homomorphism (Example 8.4 in [14]). 2

For any UPM f between ℘(E1) and ℘(E2), the underlying relation of f is
the (unique) relation ρf ⊆ E1 × E2 that satisfies f = Imρf

, and the converse

of f is the (unique) map f
^

: ℘(E2) → ℘(E1) for which (f, f^) is a Galois
connection.

3 Symmetries and Process Abstractions

Process spaces admit a duality and ternary symmetry based on the following
operations:

• Reflection (−), defined by as (−p) = at p and at (−p) = as p;

• Rotation (/), defined by as /p = as p ∪ at p and at /p = as p.

Proposition 2 For any processes p and q,

(a) −− p = p (c) −(p u q) = −p t−q

(b) /// p = p (d) / (p × q) = / p u / q

Proposition 2 (a) and (b) show that − and / are bijective, since they
are roots of identity and their inverses are − and //, respectively. To verify
Proposition 2 (b), notice that / maps the rejects of p into the goals of /p,
goals into escapes, and escapes into rejects.

Proposition 2 (c) and (d) reveal that the main process space operators
(product, meet, and join) induce isomorphic semilattice structures over a pro-
cess space; we refer to these and other similar operators as compositions.
Formally, binary operator * in a process space is a composition if there exists
a bijection H such that H(p ∗ q) = H(p) u H(q) for all processes p and q.

Process abstractions are defined generically, independently of the execution
domain and also independently of the composition operator used.

Definition 1 For any compositions ∗ and � in process spaces SE1
and SE2

,
map F between SE1

and SE2
is a ∗� process abstraction (∗�-PA for short) if

∀B ⊆ SE1
: F (∗p∈B p) = �p∈BF (p) .
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Example 4 Revisiting Example 2, the product of Listener and Speaker is
not refined by the etiquette machine; a counter-example execution is beep,
revealing that the etiquette machine does not control action beep. Now,
let us delete beep from Listener×Speaker using the deletion UPM of Exam-
ple 3. Letting F (p) = (del({beep})(as p), del({beep})(at p)), we have that
F (Listener×Speaker) is exactly the etiquette machine process of Figure 1,
considered over execution set {e1, e2, ex, m1, m2, mx}*. 2

In the following, we study the algebraic properties of uu-PAs only (read
meet-meet process abstractions). Nevertheless, because the process space op-
erators are isomorphic with respect to rotation and reflection (see Proposi-
tion 2), the formalization and properties we develop for meet also apply to
product and the other process space compositions, as in the example given in
Subsection 5.4.

Theorem 3.1 (characterization) For any uu-PA F between SE1
and SE2

,
there exist UPMs f , g, h, and i from ℘(E1) to ℘(E2) such that:

F (p) = (f(as p) ∪ h(r p), g(as p) ∪ i(r p)) ,

for all p from SE1
.

UPMs f , g, h, and i are related to F as follows. For any X ⊆ E , we have:

f(X) = asF (X, E), asF (X, X)\f(X) ⊆ g(X) ⊆ asF (X, X) ,

h(X) = rF (X, E) , rF (X, X)\h(X) ⊆ i(X) ⊆ rF (X, X) .

UPMs g and i might not be unique for a given F , but they can be in-
stantiated in Theorem 3.1 to their upper bounds asF (X, X) and rF (X, X).
By Lemma 1, UPMs f , g, h, and i are induced by their underlying relations.
Thus, any uu-PA can be constructed from binary relations on execution sets.

Example 5 Map F in Example 4, which implements deletion of action beep,
can be represented in Theorem 3.1 by f = del({beep}), g = ∅, h = ∅, i =
del({beep}))uu. This is because the accessible and reject sets of F (p) can be
obtained by applying the deletion UPM on the accessible and reject sets of p,
with no additional executions.

Alternately, F can be represented by g = del({beep}) and the same f ,
h, and i: since for all p we have r p ⊆ as p, we also have f(as p) ∪ g(r p) =
del({beep})(as p) ∪ del({beep})(r p) = del({beep})(as p) = f(as p). 2

Example 6 Product with a constant is a uu-PA. Let c be a process and Πc

a map on processes such that for any process p, Πc(p) = p × c. The image of
p through Πc is uniquely determined by:

asΠc(p) = as c ∩ as p, and
rΠc(p) = (as c ∩ r p) ∪ (r c ∩ as c) .

Therefore, map Πc can be represented as: (idas c, ∅, idr c, idas c)
uu. 2

By definition, a uu-PA preserves meet; it follows that a uu-PA also pre-
serves refinement: p v q ⇒ F (p) v F (q) .
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In the following, we focus on a simpler type of uu-PAs that includes most
maps of interest for verification.

Definition 2 An uu-PA F is simple (is a uu-SPA for short) if there exists
a UPM f so that F (p) = (f(as p), f(r p)) . For such F and f , we write
fuu = F and the converse of F is the uu-SPA F

^

= ((Fuu)
^

)uu.

Theorem 3.2 (reciprocity) For any uu-SPA F between SE1
and SE2

and
processes p over E1 and q over E2,

p × F
^

(q) ∈ RE1
⇔ F (p) × q ∈ RE2

.

Reflection relates robustness and refinement verifications by the following
property [14, Theorem 2.12]: p v q ⇔ −p × q ∈ R, which states essen-
tially that we can close a system by the reflection of the specification. Hence,
Theorem 3.2 reveals a Galois connection (−F,−F

^

) with respect to the con-
verse of refinement: p w −F

^

(q) ⇔ q w −F (p) .

A consequence of Theorem 3.2 is that, for specification processes of a spe-
cial form, certain reductions can be performed on implementations without
affecting the result of verification. Specifically, if the reflection of the specifi-
cation is invariant to a process abstraction and its converse, then the process
abstraction and its converse can be applied on the implementation without
affecting the verdict, but possibly reducing the computational costs.

Example 7 It follows from Theorem 3.2 that, in a verification of refinement,
we can hide internal actions of the implementation without affecting the result.

 

ex 

beep, bop 

e1, e2 

beep, bop,

e1, e2, ex

g e

beep, bop 

r e

e1, e2, ex 

beep, bop, 

e1, e2, ex 

 

Fig. 3. Modified Speaker for Example 7.

For example, consider a specification consisting of an Etiquette2 process
as in Figure 1 extended with self-loops on beep and bop at every state, and an
implementation consisting of the Listener2 process in Figure 3 and a Speaker2
process as in Figure 2 (b) extended with self-loops on bop at every state.

Let F = del({beep, bop})uu where del({beep, bop}) is deletion of beep and
bop (Example 3). We have that F ^(F (−Etiquette2)) = −Etiquette2, and:

Etiquette2 v Listener2 × Speaker2
⇔ −Etiquette2 × Listener2 × Etiquette2 is robust
⇔ F (F ^(−Etiquette2)) × Listener2 × Speaker2 is robust
⇔ −Etiquette2 × F (F ^(Listener2 × Speaker2)) is robust
⇔ Etiquette2 v F (F ^(Listener2 × Speaker2))
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Observe how the possibility of internal deadlock comes through deletion of
internal actions. Listener2 × Speaker2 does not refine Etiquette2 because bop
leads to deadlock: execution m1 bop is accessible for Listener2 × Speaker2 but
not for Etiquette2. We also find that F

^

F (Listener2 × Speaker2) does not
refine Etiquette2, because execution m1 is accessible for F

^

F (Listener2 ×
Speaker2). Moreover, these counterexamples to refinement are related: m1 bop
maps to m1 through deletion and converse deletion. 2

4 Verifications on Images

The basic verification problems we address, robustness of product and re-
finement by a product, are computationally intractable (PSPACE-hard [14]).
To reduce computational costs, we would like to verify images of processes
through a uu-SPA instead of the original processes, which may be more com-
plex. In this section, we establish relationships between robustness of ×p∈B p
and robustness of ×p∈BF (p): for which processes or process abstractions does
one of these robustness conditions imply the other? The following lemma gives
two such relationships that actually hold for all processes and uu-SPAs.

Lemma 3 For any uu-SPA F between SE1
and SE2

, for any processes p and
q over E1, and for any set B ⊆ SE1

of processes, we have

(a) ×p∈BF (p) v F (×p∈B p) (half-compositionality w.r.t. product)

(b) p ∈ RE1
⇒ F (p) ∈ RE2

(preservation of robustness)

Certain elementary properties of an underlying relation entail several ad-
ditional properties for the induced UPMs and uu-SPAs. Let ρ ⊆ E1 ×E2 be a
relation. We say that ρ is injective if, for all u1, u2 ∈ E1 and v ∈ E2 such that
u1ρv and u2ρv, we have u1 = u2; ρ is co-surjective if Imρ^(E2) = E1.

Now we give criteria for performing “optimistic” verifications (of robust-
ness of product) on image processes. In such verifications, correct systems
never fail, although flawed systems may pass. The criteria are as follows:
Theorem 4.1 characterizes all processes that are suitable for such verifications
for a given uu-SPA, and Theorem 4.2 characterizes all uu-SPAs for which all
processes are suitable. The characterizations are fairly wide: processes that
are refined through F ^F , or maps induced by injective relations, respectively.

Definition 3 Let F be a uu-PA between process spaces SE1
and SE2

. Process
p over E1 is F -optimistic if F

^

(F (p)) w p. F is optimistic if all processes
from SE1

are F -optimistic.

Theorem 4.1 For any uu-SPA F between process spaces SE1
and SE2

, and
any set B of F -optimistic processes from SE1

,

×p∈B p ∈ RE1
⇒ ×p∈BF (p) ∈ RE2

.

Theorem 4.2 For any uu-SPA F = fuu between process spaces SE1
and SE2

,
the following properties are equivalent:
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(a) relation ρf is injective;

(b) every process p over E1 is F -optimistic.

Now we give criteria for performing “pessimistic” verifications (of robust-
ness of product) on image processes. In such verifications, flawed systems
never pass, although correct systems may fail. Theorem 4.3 characterizes all
processes that are suitable for such verifications for a given uu-SPA as pro-
cesses that refine their images through F ^F . Theorem 4.2 characterizes all
uu-SPAs for which all processes are suitable; remarkably, it suffices that the
underlying be co-surjective.

Definition 4 Let F be a uu-PA between process spaces SE1
and SE2

. Process
p over E1 is F -pessimistic if F

^

(F (p)) v p. F is pessimistic if all processes
from SE1

are F -pessimistic.

Theorem 4.3 For any uu-SPA F between process spaces SE1
and SE2

, and
any set B of F -pessimistic processes from SE1

,

×p∈B p ∈ RE1
⇐ ×p∈BF (p) ∈ RE2

.

Theorem 4.4 For any uu-SPA F = fuu between process spaces SE1
and SE2

,
the following properties are equivalent:

(a) relation ρf is co-surjective;

(b) every process p over E1 is F -pessimistic.

One can combine optimistic and pessimistic approximations to achieve
verifications on images that are equivalent to verifications of robustness of
products of original processes. Our notion of independence of a process from a
uu-PA is simply the conjunction of optimistic and pessimistic approximations.

5 Examples

In the following we describe several applications of process abstractions to
reduce the costs of verification.

5.1 Derivatives

Occurrence of an event can be formalized as the image of a derivative map
on processes. Let relation dw on Σ∗ be such that u dw v iff u = wv. Let Dw

= Imdw
be the induced UPM. For any process p over Σ∗ and word w ∈ Σ∗,

the derivative of p by w is the process (Dw)uu(p) . Relation dw is injective
because wv1 = wv2 ⇒ v1 = v2, but it is not co-surjective because words that
do not start with w do not have an image through dw.

Derivatives of formal expressions [4] and similar operators (such as the
after-operator in [10]) have been applied widely to represent occurrence of
events in concurrency theory. One such application is reinitializing processes:
change state after following an initial sequence of events. By Theorem 4.2,
verifications of robustness of product can be performed directly on the reini-
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tialized processes without false flaws. This allows to verify the steady-state
behavior of a system separately from the initialization behavior. Monotonicity
with respect to refinement and other properties of derivatives also follow from
generic properties of uu-PAs in Section 3.

5.2 Projections of Finite Words

For any process p over Σ∗ and set A ⊆ Σ, the projection of p on A is the process
p↓A = (del(Σ\A))uu(p) , where del is deletion (Example 3). The underlying
relation of is co-surjective (every word has an image through deletion).

By Theorem 4.2, it follows that verifications on images through projection
are always pessimistic, and yield no false passes! Although the branching
structure is not preserved by such projections, deadlock and other flaws come
through as illustrated in Example 7.

5.3 Projections of Timed Infinite Words

Following loosely [1], a timed word over action set Σ is a pair (σ, τ) of an
infinite trace from (Σ∗l)ω, where l is a symbol from outside Σ, called the
“invisible action”, and an increasing, unbounded sequence τ of positive reals.
(The invisible action has no meaning; we use it to simplify the definition of
projection for infinite words. Superscript ω indicates infinite repetition.) Let
T (Σ) be the set of timed words over Σ. For instance, (a(bl)ω, τ) such that
∀ i > 0 : τi = i is in T ({a, b}), but (a(bl)ω, θ) such that ∀ i > 0 : θi = 1 − 2−i

is not in T ({a, b}) because θ is bounded. (Sequence indices start at 1.)

We define projection of timed words recursively, as follows. For any A ⊆ Σ
and timed word ξ = (σ, τ) ∈ T (Σ), let ξ↓A be a timed word (σ′, τ ′) such that:

• if σ1 ∈ A or σ1 = l, then σ′
1 = σ1 , τ ′

1 = τ1, and (σ′
2,...,∞, t′2,...,∞) = (σ2,...,∞,

τ2,...,∞)↓A, where 2, . . . ,∞ denotes the tail subsequence.

• if σ1 ∈ Σ\A and σ1 6= l, then (σ′, τ ′) = (σ2,...,∞, τ2,...,∞)↓A.

For instance, (a(bl)ω, τ)↓{a} = (alω, τ ′) such that τ ′
i = τ2i−1 for all i ≥ 1.

Let 〈↓A〉T = {(ξ, ξ′) | ξ′ = ξ↓A} ⊆ T (Σ) × T (Σ). Notice that 〈↓A〉T is by
construction a total function, hence it is co-surjective. Therefore, the induced
process abstraction 〈↓A〉uuT is pessimistic, and verifications on projected timed
processes yield no false passes. Monotonicity and other properties also follow
immediately from generic properties of uu-SPAs.

5.4 Rotations

As an example of process abstraction defined with respect to a composition
operator other than u, recall the rotation operation from Section 3.

One verifies that rotation is a ×u-PA; namely, it is (ImidE)
×u. Since the

underlying relation is injective and co-surjective, all processes are independent
from this PA, which is not surprising since rotation is bijective.
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5.5 Delay-insensitivity

Delay-insensitive (DI) circuits are a class of asynchronous circuits whose cor-
rectness of operation does not depend on delays in components or wires. In [2],
we have extended the formalization of delay-insensitivity of [18] so it can be
applied to circuits that include DI parts and non-DI parts and to circuits that
may have bidirectional lines. Also in [2] we have shown that our formalization
allows reductions in the verification costs for such circuits.

We consider processes over Σ∗, where Σ is an arbitrary set of actions. Let
Π be a set of pairs of actions from Σ, and let the relation nΠ be { (u, u) ∈
Σ∗ × Σ∗ | ∀(x, y) ∈ Π : u does not contain substring xy} . Note that nΠ is
injective, hence it enables optimistic approximations.

We further define the relation sΠ as the smallest subset of Σ∗ × Σ∗ such
that, for every u, v, w ∈ Σ∗, we have:

• nΠ ⊆ sΠ, and

• ∀(x, y) ∈ Π : if (vxyw, u) ∈ sΠ, then (vxyw, u) ∈ sΠ.

In effect, (v, w) ∈ sΠ if and only if w is obtained from v by replacing sub-
strings xy by yx whenever (x, y) ∈ Π, until no more xy substrings exist in the
trace. This replacement procedure is not always deterministic; for instance,
(cba, bca) ∈ s{(c,b),(b,a)} and (cba, cab) ∈ s{(c,b),(b,a)}. We can show that the pro-
cedure will terminate in a finite number of steps, however, so each word has
an image through such a sequence of swaps. It follows that sΠ is co-surjective.

We say that a set of action pairs Π is swappable for process p if nΠ(p) =
sΠ(p) . Generalizing the NS rule of [18], a DI process is defined by the property
that swappability holds for all pairs of two inputs, two outputs, and of one
output and one input (in this order), but not one input and one output (in
this order).

Since nΠ is injective and sΠ is co-surjective, Theorems 4.2 and 4.4 allow
for exact verifications on the images of such processes through nΠ. This leads
to a verification flow where the nΠ(p) = sΠ(p) rule is checked inexpensively
component-wise, permitting to simplify the expensive system-wide verifica-
tions by taking into account only executions that have the desired interleaving
of events of Π, i.e., only executions from the image of nΠ.

5.6 Semihiding

In [16], we have proposed a new concurrency operator, called semi-hiding, for
analyzing digital systems that ignore passive edges on their control signals.
Unlike hiding, semi-hiding does not eliminate all transitions of a certain signal,
but only events on certain positions in the execution traces.

We construct semi-hiding as a process abstraction, as follows. We use the
following notation:

• #at is the number of occurrences of a in t, for any a ∈ Σ and t ∈ Σ∗.
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• Z+ = {1, 2, 3, . . .} is the set of positive integers (non-zero natural numbers).

The semi-hiding relation is the graph of the sh function defined recursively as
follows. For any F ∈ Σ × Z+ and t ∈ Σ∗, shF (t) is:

• ε for t = ε ;

• shF (u) for u ∈ Σ∗, a ∈ Σ, (a, #at) ∈ F and t = ua;

• shF (u)a for u ∈ Σ∗, a ∈ Σ, (a, #at) 6∈ F and t = ua.

For instance, sh{d}×{2,4,...}(dabddadbda) = dabdabda and sh{d}×{1,3,...}(dabddadbda)
= abdadba. (Sequence indices start at 1.)

It suffices to note that semi-hiding is co-surjective to conclude that any ver-
ifications in the semi-hiding co-domain can be done pessimistically. Moreover,
specifications that ignore occurrence of passive edges of certain signals (such
as positive-edge-triggered flip-flops, self-resetting logic, etc.) can be defined as
being semi-hiding-optimistic. This offers automatically verifiable criteria for
compliance to several asynchronous and synchronous protocols that are based
on active edges of control signals [16].

6 Conclusion

This paper proposes a novel framework for studying process abstractions. We
show that the structure of executions is of no consequence for several algebraic
properties of process abstractions, including significant criteria for performing
optimistic and pessimistic verifications. We show that this framework includes
several common maps on concurrent processes, such as derivative, projection,
and swapping of events. Our study also proposes several new maps, which
do not exist in other theories of concurrency but are nevertheless significant:
semihiding enables verification of compliance to several clocking and hand-
shaking protocols used in digital circuits, while rotation reveals that meet
and product (alternative and parallel compositions) are isomorphic. It follows
that process abstractions defined as preserving the respective operators are
also related by rotation.
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