
Electronic Notes in Theoretical Computer Science 83 (2004)
URL: http://www.elsevier.nl/locate/entcs/volume83.html 15 pages

Domain-theoretic Solution of Differential Equations
(Scalar Fields)

A. Edalat M. Krznarić

Department of Computing, Imperial College London, U.K.

A. Lieutier

Dassault Systemes Provence, Aix-en-Provence & LMC/IMAG, Grenoble, France

Abstract

We provide an algorithmic formalization of ordinary differential equations in the
framework of domain theory. Given a Scott continuous, interval-valued and time-
dependent scalar field and a Scott continuous initial function consistent with the
scalar field, the domain-theoretic analogue of the classical Picard operator, whose
fix-points give the solutions of the differential equation, acts on the domain of
continuously differentiable functions by successively updating the information about
the solution and the information about its derivative. We present a linear and
a quadratic algorithm respectively for updating the function information and the
derivative information on the basis elements of the domain. In the generic case of a
classical initial value problem with a continuous scalar field, which is Lipschitz in the
space component, this provides a novel technique for computing the unique solution
of the differential equation up to any desired accuracy, such that at each stage of
computation one obtains two continuous piecewise linear maps which bound the
solution from below and above, thus giving the precise error. When the scalar field
is continuous and computable but not Lipschitz, it is known that no computable
classical solution may exist. We show that in this case the interval-valued domain-
theoretic solution is computable and contains all classical solutions. This framework
also allows us to compute an interval-valued solution to a differential equation when
the initial value and/or the scalar field are interval-valued, i.e. imprecise.

1 Introduction

Using domain theory [18,2] and in particular the domain-theoretic model for
differential calculus presented in [7], we aim to synthesize Differential Equa-
tions, introduced by Newton and Leibnitz in the 17th century, and the modern
science of Computability and the Theory of Algorithms and Data Structures
developed in the 20th century.

c©2004 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume83.html

Edalat, Krznarić & Lieutier

The question of computability of the solutions of differential equations
has been generally studied in the school of computable analysis pioneered
by Grzegorczyk [10,11,1,5,13,17]. As far as the general theoretical issues of
computability are concerned, the domain-theoretic approach is equivalent to
this traditional one [19]. We will however use the domain-theoretic model
to develop an algorithmic formalization of differential equations, i.e. to pro-
vide proper data structures which support tractable and robust algorithms for
solving differential equations. The established numerical techniques for solv-
ing ordinary differential equations, such as the Euler and the Runge-Kutta
methods, all suffer from the major problem that their error estimation is too
conservative to be of any practical use [14, Section 3.5 and page 127] and [12,
page 7]. Interval analysis, [15], provides a technique to obtain an enclosure for
the solution of the initial value problem for a vector field satisfying a Lipschitz
condition. In this paper we develop an alternative technique based on domain-
theoretic data-types, which gives lower and upper bounds for the solution at
each stage of computation.

The classical initial value problem for a scalar field is of the form,

ẋ = v(t, x) , x(t0) = x0,

where ẋ = dx
dt

and v : O → R is a continuous, time-dependent scalar field in
a neighbourhood O ⊂ R

2 with (t0, x0) ∈ O. If v is Lipschitz in its second
argument uniformly in the first argument, then Picard’s theorem establishes
that there exists a unique solution h : T → R to the initial value problem,
satisfying h(t0) = x0, in a neighbourhood T = [t0 − δ, t0 + δ] of t0 for some
δ > 0. The unique solution will be the unique fixed point of the Picard
functional P : C0(T) → C0(T) 1 defined by P : f 7→ λt.x0 +

∫ t

t0
v(u, f(u))du.

The operator P was reformulated in [7] as the composition of two operators
U, Av : (C0(T))2 → (C0(T))2 on pairs (f, g), where f gives approximation to
the solution and g gives approximation to the derivative of the solution:

U(f, g) = (λt.(x0 +

t
∫

t0

g(u) du), g) ,

Av(f, g) = (f, λt.v(t, f(t))) .

The map Av updates the information on the derivative using the information
on the function and U updates the information on the function itself using the
derivative information. We have P (f) = π0(U ◦Av(f, g)), for any g, where π0

is projection to the first component. The unique fix-point (h, g) of U ◦Av will
satisfy: h′ = g = λt.v(t, h(t)), where h′ is the derivative of h.

We consider Scott continuous, interval-valued and time dependent scalar
fields of the form v : [0, 1] × IR → IR, where IR is the domain of non-empty
compact intervals of R, ordered by reverse inclusion and equipped with a

1 Here, C0(T) = T → R is the set of real-value continuous functions on T with the sup
norm.

2

Edalat, Krznarić & Lieutier

bottom element 2 . Such set-valued scalar fields have also been studied under
the name of upper semi-continuous, compact and convex set-valued vector
fields in the theory of differential inclusions and viability theory [3], which
have become an established subject in the past decades with applications in
control theory [4]. Our work also aims to bridge differential equations and
computer science by connecting differential inclusions with domain theory. It
can also be considered as a new direction in interval analysis [15].

In [7], three ingredients that are fundamental bases of this paper were
presented: (i) a domain for continuously differentiable functions, (ii) a Picard-
like operator acting on the domain for continuously differentiable functions,
which is composed of two operators as in the classical case above one for
function updating and one for derivative updating, and finally (iii) a domain-
theoretic version of Picard’s theorem.

Here, a complete algorithmic framework for solving general initial value
problems will be constructed. We will develop explicit domain-theoretic op-
erations and algorithms for function updating and derivative updating and
seek the least fixed point of the composition of these two operations, which
refines a given Scott continuous initial function consistent with the vector
field. We show that this least fixed point is computable when the initial
function is computable. The classical initial value problem can be solved in
this framework by working with the canonical extension of the scalar field to
the domain of intervals and a canonical domain-theoretic initial value. This
gives a novel technique for solving the classical initial value problem, such
that, as in the interval analysis technique, at each stage of iteration, the ap-
proximation is bounded from below and above by continuous piecewise linear
functions, which gives a precise error estimate. The domain-theoretic method
is based on proper data-types, which makes it distinguished among all existing
methods. The framework also enables us to solve differential equations with
imprecise (partial) initial condition or scalar field.

When the scalar field is continuous and computable but not Lipschitz,
no computable classical solution may exist [16]. We show that in this case
the interval-valued domain-theoretic solution is computable and contains all
classical solutions. All proofs are available in the full version of this paper,
[9].

2 Background

We will first outline the main results from [7] that we require in this paper.
Consider the function space D0[0, 1] = ([0, 1] → IR) of interval-valued function
on [0, 1] that are continuous with respect to the Euclidean topology on [0, 1]
and the Scott topology of IR. 3 We often write D0 for D0[0, 1]. With the

2 This problem is equivalent to the case when the scalar field is of type v : [0, 1]×IO → IR.
3 Note that in [7], the following different notations were used D0[0, 1] := I[0, 1] → IR and
D0

r
[0, 1] := [0, 1] → IR.

3

Edalat, Krznarić & Lieutier

ordering induced by IR, D0 is a continuous Scott domain. For f ∈ D0 the
lower semi-continuous function f− : [0, 1] → R and the upper semi-continuous
function f+ : [0, 1] → R are given by f(x) = [f−(x), f+(x)] for all x ∈ [0, 1].
We denote the set of real-valued continuous function on [0, 1] with the sup
norm by C0[0, 1] or simply C0. The topological embedding Γ0 : C0 → D0

given by Γ(f)(x) = {f(x)} allows us to identify the map f ∈ C0 with the map
x 7→ {f(x)} in D0. For an open subset O ⊂ [0, 1] and a non-empty compact
interval b ∈ IR, the single-step function O ց b : [0, 1] → IR is given by:

(O ց b)(x) =











b , x ∈ O

⊥ , x /∈ O

Given two constant (respectively, linear) functions f−, f+ : a → R with f− ≤
f+ on a compact interval a ⊆ [0, 1], the standard (respectively, linear) single-
step function a ց [f−, f+] : [0, 1] → IR is defined by:

(a ց [f−, f+])(x) =











[f−(x), f+(x)] , x ∈ a◦

⊥ , x /∈ a◦

The collection of lubs of finite and consistent standard (respectively, linear)
single-step functions as such, when a is a rational compact interval and f−

and f+ are rational constant (respectively, linear) maps, forms a basis for
D0, which we call the standard (respectively, the linear) basis. Sometimes, we
work with the semi-rational polynomial basis which is obtained as above when
f−, f+ are polynomials with rational coefficients except possibly the constant
term which is assumed to be algebraic. We denote the number of single-step
functions in a step function f by Nf . Each standard (respectively, linear or
polynomial) step function g ∈ D0 induces a partition of [0, 1] such that g is
constant (respectively, linear or polynomial) in the interior of each subinterval
of the partition; we call it the partition induced by g. If g1 and g2 are step
functions then we call the common refinement of the partitions induced by g1

and g2 simply the partition induced by g1 and g2.

The indefinite integral map
∫

: D0 → (P(D0),⊇), where P(D0) is the
power set of D0, is defined on a single-step function by

∫

a ց b = δ(a, b)
where

δ(a, b) = {f ∈ D0 | ∀x, y ∈ a◦. b(x − y) ⊑ f(x) − f(y)}

and is extended by continuity to any Scott continuous function given as the
lub of a bounded set of single-step functions:

∫

⊔

i∈I

ai ց bi =
⋂

i∈I

δ(ai, bi) .

4

Edalat, Krznarić & Lieutier

The derivative of f ∈ D0 is the Scott continuous function df

dx
∈ D0 defined as

df

dx
=

⊔

f∈δ(a,b)

a ց b : [0, 1] → IR .

The indefinite integral and the derivative are related by the relation

h ∈

∫

g ⇐⇒ g ⊑
dh

dx
.

The consistency relation Cons ⊂ D0 × D0 is defined by (f, g) ∈ Cons if
↑f ∩

∫

g 6= ∅. We have (f, g) ∈ Cons iff ∃h ∈ D0. f ⊑ h and g ⊑ dh
dx

. The
continuous Scott domain D1[0, 1] of continuously differentiable functions is
now defined as the subdomain of the consistent pairs in D0 × D0:

D1 = {(f, g) ∈ D0 × D0 | (f, g) ∈ Cons} .

3 Function Updating

In analogy with the map U presented in Section 1 for the classical reformula-
tion of the Picard’s technique, we have a domain-theoretic, function updating
map as introduced in [7].

Let L[0, 1] := [0, 1] → R, with R = R ∪ {−∞, +∞}, be the collection of
partial extended real-valued functions on [0, 1]. The functions s : D0 × D0 →
(L[0, 1],≤) and t : D0 × D0 → (L[0, 1],≥) are defined as

s(f, g) = inf{h : dom(g) → R | h ∈

∫

g, h ≥ f−} ,

t(f, g) = sup{h : dom(g) → R | h ∈

∫

g, h ≤ f+} .

If s(f, g) is real-valued then it is continuous and s(f, g) ∈
∫

g; similarly for
t(f, g). We have (f, g) ∈ Cons iff s(f, g) ≤ t(f, g); see [7]. Figure 1 shows a
consistent pair of functions. The function updating map Up : D1 → D1 is de-
fined by Up(f, g) = ([s(f, g), t(f, g)], g) and we put Up1(f, g) = [s(f, g), t(f, g)]
as in [7].

We here derive explicit expressions for s(f, g) and t(f, g) on the one hand
and the function updating map on the other. Let K+− : D0 → ([0, 1]2 → R,≤)
with

K+−(g)(x, y) =











∫ x

y
g−(u) du x ≥ y

−
∫ y

x
g+(u) du x < y

,

and put S : D0 × D0 → ([0, 1]2 → R,≤) with S(f, g)(x, y) = f−(y) +
K+−(g)(x, y). For h ∈ D0 we here use the convention that h±(u) = ±∞
when h(u) = ⊥. Similarly, let K−+ : D0 → ([0, 1]2 → R,≤) with

K−+(g)(x, y) =











∫ x

y
g+(u) du x ≥ y

−
∫ y

x
g−(u) du x < y

5

Edalat, Krznarić & Lieutier

f

1

0
1

s(f, g)

t(f, g)

function
approximation

g

2

0
1

derivative
approximation

Fig. 1. A pair of consistent step functions

and put T : D0 × D0 → ([0, 1]2 → R,≥) with T (f, g)(x, y) = f+(y) +
K−+(g)(x, y).

Then K+−, K−+, S and T are Scott continuous. In words, for a given
y ∈ dom(g), the map λx.S(f, g)(x, y) is the least function h : [0, 1] → R such
that h ∈

∫

g and h(y) ≥ f−(y). It follows that

s(f, g) = λx. sup
y∈dom(g)

S(f, g)(x, y).(1)

Similarly,

t(f, g) = λx. inf
y∈dom(g)

T (f, g)(x, y).(2)

Theorem 3.1 Let f = [f−, f+] : [0, 1] → IR be a linear step function and
g = [g−, g+] : [0, 1] → IR a standard step function. Then [s(f, g), t(f, g)] is a
linear step function, which can be computed in finite time when f and g are
basis elements.

The proof of the above theorem is based on the following lemma; assume
the conditions of Theorem 3.1.

Lemma 3.2 Let O be a connected component of dom(g) and J = {yi | 0 ≤ i ≤
n} be the partition of O induced by f and g with O = y0 < y1 < · · · < yn = O.
Then, for every x ∈ O the following hold:

s(f, g)(x) = max
yk∈J∩dom(f)

{f−(x)} ∪
{

limy→yk
S(f, g)(x, y)

}

,

t(f, g)(x) = min
yk∈J∩dom(f)

{

f+(x)} ∪ {limy→yk
T (f, g)(x, y)

}

.

We present a linear time algorithm for computing the function update
s(f, g) of a pair (f, g) ∈ D1, where f is a linear basis element and g is a
standard basis element. A similar algorithm computes t(f, g).

Algorithm 1 The function updating algorithm will consist of an initialisa-
tion and two main steps; see Figure 2. The initialisation process is used to get

6

Edalat, Krznarić & Lieutier

the induced partition points {y0, · · · , yn} of (f, g). Recall that on each inter-
val (yk−1, yk), the functions g− and g+ are constant, with g−|(yk−1,yk) = λt.e−k
and g+|(yk−1,yk) = λt.e+

k , where e−k , e+
k ∈ R. Furthermore, on each interval

(yk−1, yk), the map f− has a constant slope, ak say, i.e., f−|(yk−1,yk) = f−
k ,

with f−
k (x) = akx + bk.

Input: f, g : [0, 1] → IR where f is a linear step function and g is a step
function.

Output: Continuous function s(f, g) : [0, 1] → IR which represents the least
function consistent with the information from f and g.

Initialisation

{y0, · · · , yn} := induced-partition-of (f, g)
Part 1: left to right

u(y0) := f−(y+
0)

for k = 1 . . . n and ∀x ∈ [yk−1, yk)
u(x) := max{ f−(x), u(yk−1) + (x − yk−1)e

−
k }

u(yk) := max{ lim f−(yk), u(yk−1) + (yk − yk−1)e
−
k }

Part 2: right to left

s(yn) := u(yn)
for k = n . . . 1 and ∀x ∈ [yk−1, yk)

s(f, g)(x) := max{ u(x), s(yk) + (x − yk)e
+
k }

Correctness: First, we compute: u(x) = maxyk≤x{ f−(x), lim S(x, yk) }.
Let v(x) = maxyk≥x{ f−(x), lim S(x, yk) }. By Lemma 3.2, it follows that:
s(f, g)(x) = max{u(x), v(x)}, which is precisely the output of the second stage.
Complexity: Computing lim f−(yk) consists of calculating linear functions
fk−1 and fk at yk. Determining max{ f−(x), u(yk−1) + (x − yk−1)e

−
k } and

max{ u(x), s(yk) + (x − yk)e
+
k }, is simply finding the maximum of two linear

functions. Therefore, the algorithm is linear in the number of induced partition
points of (f, g), thus linear in O(Nf + Ng).

4 Derivative Updating

We now consider a Scott continuous, time-dependent and interval-valued scalar
field v : [0, 1] × IR → IR. In analogy with the classical map Av presented in
Section 1 for the classical reformulation of the Picard’s technique, we de-
fine the Scott continuous map A : ([0, 1] × IR → IR) × D0 → D0 with
A(v, f) = λt. v(t, f(t)) and put Av : D0 → D0 with Av(f) := A(v, f). The
derivative updating map for v is now defined as the Scott continuous function

Ap : ([0, 1] × IR → IR) × D0 × D0 → D0 × D0

with Ap(v, (f, g)) = (f, A(v, f)) and we put

Apv : D0 × D0 → D0 × D0

with Apv(f, g) = Ap(v, (f, g)). The map Ap applies the vector field to the
function approximation in order to update the derivative approximation.

7

Edalat, Krznarić & Lieutier

f
function

approximation

1

0 1
Left to right stage: broken lines give the output

f
function

approximation

1

0 1

s(f, g)

Right to left stage: solid line is the final output

y0 y1 y2 y3 y4 y5 y6

g

2
0

derivative
approximation

1

Fig. 2. The function updating algorithm

Note that for a step function (f, g) ∈ D1, the function update Up1(f, g)
is a linear step function. Thus, in order to compute Apv ◦ Up(f, g) we need
to compute Av on linear step functions. We obtain an explicit expression for
Av(f) when v is given as the lub of a collection of single-step functions and
f is the lub of a collection of linear single-step functions, which includes the
case of standard step functions as well. Given g = [g−, g+] ∈ D0 and b =
[b, b] ∈ IR, we write b ≺ g if there exists x ∈ [0, 1] such that b ≪ g(x), i.e., if
g−1(↑↑b) 6= ∅. In that case, b ≪ g(x) for x ∈ ((g−)−1(b,∞))∩ ((g+)−1(−∞, b)).
Let v =

⊔

i∈I ai × bi ց ci and assume f =
⊔

j∈J dj ց [g−
j , g+

j] is the lub of
linear step functions. If bi ≺ gj, then we denote by dji ⊂ dj the closed interval
with d◦

ji = ((g−
j)−1(bi,∞))∩((g+

j)−1(−∞, bi)). Thus, bi ≪ gj(x) ⇐⇒ x ∈ d◦
ji.

The following result follows immediately. We write a↑↑b if a and b are bounded
above with respect to the way-below relation.

Proposition 4.1 λt. v(t, f(t)) =
⊔

{ai ⊔ dji ց ci | bi ≺ gj, ai↑↑dji} .

Corollary 4.2 If for gj = [g−
j , g+

j] the maps g−
j and g+

j are constant for all
j ∈ J , then denoting the constants by e−j , e+

j ∈ R, we have: λt. v(t, f(t)) =
⊔

{ai ⊔ dj ց ci | bi ≪ ej , ai↑↑dj}, with ej = [e−j , e+
j].

8

Edalat, Krznarić & Lieutier

Corollary 4.3 If v is a step function and f a linear step function then
Av(f) = λt. v(t, f(t)) is step function with NAv(f) ≤ NvNf . 2

The following derivative updating algorithm follows directly from Propo-
sition 4.1.

Algorithm 2 We assume that f and v are given in terms of linear and stan-
dard step functions respectively. The algorithm finds the collection of single-
step functions whose lub is the derivative update λt. v(t, f(t)) in O(NvNf).
Input: A and B, where A = {ai × bi ց ci | 1 ≤ i ≤ n} with v =

⊔

A, and
B = {dj ց [g−

j , g+
j] | 1 ≤ j ≤ m} with f =

⊔

B.

Output: C = {ai ⊔ dji ց ci | bi ≺ gj & ai↑↑dji} with λt. v(t, f(t)) =
⊔

C.
Initialisation

C := ∅
for i = 1 . . . n and j = 1 . . .m
if bi ≺ gj obtain dji

if ai↑↑dji put C := C ∪ {ai ⊔ dji ց ci}.

Suppose f ∈ D0 is the initial function, which gives the initial approximation
to the function component of the solution (fs, gs) ∈ D1 of the fix-point equa-
tion Up ◦ Apv(fs, gs) = (fs, gs) that we seek, i.e. f ⊑ fs. Then, λt.v(t, f(t)) is
the initial approximation to the derivative component gs of the solution, i.e.
λt.v(t, f(t)) ⊑ gs. We thus require (f, λt.v(t, f(t))) ∈ Cons. Furthermore, we
need to ensure that for all n ≥ 1 the iterates (Up ◦ Apv)

n(f, λt.v(t, f(t))) of
(f, λt.v(t, f(t))), which by monotonicity are above (f, λt.v(t, f(t)), are consis-
tent. This leads us to the notion of strong consistency.

4.1 Strong Consistency

The pair (f, g) ∈ D0 × D0 is strongly consistent, written (f, g) ∈ SCons, if for
all h ⊒ g we have (f, h) ∈ Cons. It was shown in [7] that the lub of a directed
set of strongly consistent pairs is strongly consistent, i.e. SCons ⊂ D1 is a
sub-dcpo. Strong consistency of the initial pair (f, λt.v(t, f(t))) will ensure
that its orbit under the domain-theoretic Picard operator remains consistent.

We will establish necessary and sufficient conditions for strong consistency
in a general setting and show that on basis elements strong consistency is
decidable. Assume (f, g) ∈ Cons. Let Q : D0 × D0 → ([0, 1]2 → R⊥,≤) with
Q(f, g)(x, y) = f−(y) + K−+(g)(x, y), and R : D0 × D0 → ([0, 1]2 → R⊥,≥)
with R(f, g)(x, y) = f+(y)+K+−(g)(x, y). Note that we use the standard con-
vention that ∞−∞ = ⊥ in R⊥. Compare Q with S and R with T . Then Q and
R are Scott continuous. We finally put q(f, g) = λx. sup

y∈dom(g)
Q(f, g)(x, y)

and r(f, g) = λx. inf
y∈dom(g)

R(f, g)(x, y).

Proposition 4.4 Assume f, g ∈ D0 with g− and g+ continuous almost every-
where and let O be any connected component of dom(g) such that O∩dom(f) 6=
∅. Then (f, g) ∈ SCons implies f− ≤ q(f, g) ≤ f+ and f− ≤ r(f, g) ≤ f+ on

9

Edalat, Krznarić & Lieutier

O ∩ dom(f).

Conversely, we have the following:

Proposition 4.5 Assume (f, g) ∈ D1 with f−, g− and g+ bounded. Suppose,
for each connected component O of dom(g) such that O∩dom(f) 6= ∅, we have
f− ≤ q(f, g) ≤ f+ on O ∩ dom(f). Then (f, g) ∈ SCons.

Corollary 4.6 Assume that for f, g ∈ D0, the functions f−, f+, g−, g+ are
bounded and g−, g+ are continuous a.e. Then (f, g) ∈ SCons iff for each
connected component O of dom(g) such that O ∩ dom(f) 6= ∅, we have f− ≤
q(f, g) ≤ f+ and f− ≤ r(f, g) ≤ f+ on O ∩ dom(f). 2

Corollary 4.7 For a pair of basis elements f, g ∈ D0, we have (f, g) ∈ SCons

iff for each connected component O of dom(g) such that O ∩ dom(f) 6= ∅, we
have f− ≤ q(f, g) ≤ f+ and f− ≤ r(f, g) ≤ f+ on O ∩ dom(f). 2

Corollary 4.8 For a pair of basis elements f, g ∈ D0, we can test whether or
not (f, g) ∈ SCons with complexity O(Nf + Ng).

The following example will show that we cannot relax the assumption that
g− and g+ be continuous a.e. in Proposition 4.4 and Corollary 4.6. It will also
show that it is not always possible to approximate a strongly consistent pair
of functions by strongly consistent pairs of basis elements.

Lemma 4.9 A continuous function [g−, g+] ∈ D0 is maximal iff limg+ = g−

and limg− = g+.

Example 4.10 We construct a fat Cantor set of positive Lebesgue measure
on [0, 1] as in [8]. The unit interval [0, 1] = L ∪ R ∪ C is the disjoint union of
the two open sets L and R and the Cantor set C with µ(L) = µ(R) = (1−ǫ)/2
and µ(C) = ǫ, where 0 < ǫ < 1, such that L = L ∪ C and R = R ∪ C. Define
f−, f+ : [0, 1] → R by f− = λx.0, f+ = λx.(1 − ǫ)/2, and g−, g+ : [0, 1] → R

by

g+(x) =











1 x ∈ R ∪ C

0 x ∈ L
, g−(x) =











1 x ∈ R

0 x ∈ L ∪ C
.

The Cantor set C is precisely the set of discontinuities of g− and g+, which
has positive Lebesgue measure. Let us put f = [f−, f+] and g = [g−, g+] =
([0, 1] ց [0, 1])⊔ (R ց {1})⊔ (L ց {0}). Note that s(f, g) = λx.

∫ x

0
g−(u) du

is monotonically increasing and s(f, g)(1) = (1 − ǫ)/2. It follows that f− ≤
s(f, g) ≤ f+ and thus (f, g) ∈ Cons. Since lim g+ = g− and limg− = g+,
it follows, by Lemma 4.9, that g ∈ D0 is maximal and thus (f, g) ∈ SCons.

However, we have q(f, g)(1) =
∫ 1

0
g+(u) du = (1 + ǫ)/2 > (1 − ǫ)/2 = f+(1)

and thus the conclusion of Proposition 4.4 is not satisfied.

Proposition 4.11 The dcpo SCons ⊂ D1 is not continuous.

10

Edalat, Krznarić & Lieutier

5 The Initial Value Problem

We consider a Scott continuous time-dependent scalar field v : [0, 1]×IR → IR

and an initial function f ∈ D0. We assume that (f, Av(f)) ∈ SCons and define
the sub-dcpo

Dv,f = {(h, g) ∈ SCons | (f, Av(f)) ⊑ (h, g)} ,

The domain-theoretic Picard operator for the scalar field v and initial function
f is now given by

Pv,f : Dv,f → Dv,f

with Pv,f = Up ◦Apv. This has a least fix-point (fs, gs) =
⊔

i∈ω P i
v,f (f, Av(f)).

Lemma 5.1 Suppose f =
⊔

i∈ω fi and v =
⊔

i∈ω vi, where (fi)i∈ω and (vi)i∈ω

are increasing chains, then for each i, j, n ≥ 0 we have

i) (Up ◦ Apvi
)n(fj, Avi

(fj)) ∈ Cons.

ii) (Up ◦ Apvi
)n(fj, Avi

(fj)) ⊑ (Up ◦ Apv)
n(f, Av(f)).

Lemma 5.2 Suppose f =
⊔

i∈ω fi and v =
⊔

i∈ω vi, where (fi)i∈ω and (vi)i∈ω

are increasing chains of standard basis elements. Then, for each i ≥ 0 and each
j ≥ 0, the function and the derivative components of (Up ◦ Apvi

)n(fj, Avi
(fj))

are, respectively, a linear step function and a standard step function.

Theorem 5.3 Suppose that f ∈ D0 and v ∈ [0, 1]×IR → IR are computable,
and assume that (f, Av(f)) ∈ SCons. Then the least fixed point of Pv,f is
computable.

6 The Classical Problem

We now return to the classical initial value problem as in Section 1, and
assume, by a translation of the origin, that (t0, x0) = (0, 0). Thus, O ⊂ R

2

is a neighbourhood of the origin, v : O → R is continuous function and we
consider the initial value problem:

ẋ = v(t, x) , x(0) = 0 .

By the Peano-Cauchy theorem [6], this equation has a solution which is in
general not unique. It is also known that even if v is a computable function,
the above differential equation may have no computable solution [16]. We will
show that all the classical solutions are contained within the least fix-point of
the domain-theoretic Picard operator. Moreover, if v is computable then this
least fix-point is indeed computable.

Let R ⊂ O be a compact rectangle, whose interior contains the origin.
Then the continuous function v is bounded on R and therefore for some M >
0 we have |v| ≤ M on R. Let (an)n∈ω be any positive strictly decreasing
sequence with limn→∞ an = 0. The standard choice is an = a0/2n, for some
rational or dyadic number a0 > 0. For large enough n, say n ≥ m, for
some m ≥ 0, we have [−an, an] × [−Man, Man] ⊂ O. For i ∈ ω, put Ti =

11

Edalat, Krznarić & Lieutier

[−ai+m, ai+m] and Xi = [−ai+mM, ai+mM]. Let f =
⊔

i∈ω fi, where fi =
⊔

j≤i Tj ց Xj , and consider the canonical extension v : T0 × IX0 → IR with

v(t, X) = {v(t, x) | x ∈ X}. We work in the domains D0(T0) and D1(T0).
By [7, Proposition 8.11], (f, T0 ց [−M, M]) ∈ SCon and thus (f, Av(f)) ∈
SCon since (T0 ց [−M, M]) ⊑ Av(f). Therefore, Pv,f has a least fix-point.

Theorem 6.1 The least fix-point (fs, gs) of Pv,f satisfies:
[

df−
s

dt
,
df+

s

dt

]

= v(t, [f−
s (t), f+

s (t)]) , g−
s (t) =

df−
s

dt
, g+

s (t) =
df+

s

dt
.

Corollary 6.2 If f− = f+ or g− = g+ hold, then both equalities hold and the
domain-theoretic solution f− = f+ gives the unique solution of the classical
initial value problem. 2

If v is Lipschitz in its second component then we know from [7, Theo-
rem 8.12] that f−

s = f+
s is the unique solution of the classical problem. We

can now use Theorem 5.3 to deduce a domain-theoretic proof of the following
known result [16].

Corollary 6.3 If v is computable and Lipschitz in its second component then
the unique solution of the classical initial value problem, ḣ = v(t, h(t)) with
h(0) = 0, is computable. 2

Algorithm 1 for function updating, Algorithm 2 for derivative updating,
and Corollary 6.3 together provide a new technique based on domain theory
to solve the classical initial value satisfying the Lipschitz condition. It is
distinguished by the property that the solution can be obtained up to any
desired accuracy. For a continuous piecewise linear map f : [0, 1] → R, let
Jf be the partition of [0, 1] such that f is linear in each subinterval of Jf .
If f, g : [0, 1] → R are continuous piecewise linear maps, then |f − g| =
max(d(f, g), d(g, f)) where d(f, g) = maxx∈Jf

|f(x)− g(x)|. Thus, |f − g| can
be obtained in O(card(Jf)+card(Jg)), where card(D) is the number of elements
in the finite set D.

Algorithm 3 We solve dh
dt

= v(t, h(t)) with the initial condition h(0) = 0
up to a given precision ǫ > 0. The Function Updating Algorithm 1 and the
Derivative Updating Algorithm 2 will be used as subroutines.
Input:

i) Positive rational numbers a0, M , such that v : [−a0, a0]× [−Ma0, Ma0] →
R is continuous, satisfies a Lipschitz condition in the second argument
uniformly in the first, and |v| ≤ M .

ii) An increasing chain (vn)n∈ω of step functions with vn =
⊔

i∈In
ai × bi ց ci ∈

([−a0, a0] × [−Ma0, Ma0] → IR) is given recursively for n ∈ ω such that
v =

⊔

n∈ω vn. (Note that for each elementary function v, the step func-
tions vn can be obtained from available interval arithmetic libraries.)

iii) A rational number ǫ > 0.

12

Edalat, Krznarić & Lieutier

t

t

function
approximation

derivative
approximation

first iterate

t

t

exact

solution

second iterate
Fig. 3. Two iterates of the updating operators for solving ẋ = 2t + x + 9

2 , x(0) = 0

Output: Two continuous and piecewise linear maps f−
ǫ , f+

ǫ : [−a0, a0] → R

which satisfy f−
ǫ ≤ h ≤ f+

ǫ and |f+
ǫ − f−

ǫ | ≤ ǫ, where h : [−a0, a0] → R is the
unique solution of the initial value problem.
for j=0,1,2...

Initialisation

fj :=
⊔

i≤j [−a0

2i ,
a0

2i] ց [−a0M
2i , a0M

2i]

use Algorithm 3.4 as subroutine

(fj0, gj0) := (fj, λt. vj(t, fj(t)))
for n=0,...,j

use Algorithms 3.4 and 2.3 as subroutines

(fjn, gjn) := (Up ◦ Apvj
)n(fj0, gj0).

if |f+
jn − f−

jn| ≤ ǫ then

f−
ǫ := f−

jn and f+
ǫ := f+

jn

return f−
ǫ and f+

ǫ

The algorithm is incremental: a better precision ǫ′ with 0 < ǫ′ < ǫ can be
obtained by continuing with the work already achieved for ǫ.

The function and derivative updating algorithms 1 and 2 can be extended
to the semi-rational polynomial basis, which enables us to solve the differential
equation with v =

⊔

n∈ω vn, where v−
n and v+

n are piecewise semi-rational
polynomials. However, this will in general involve solving for the algebraic
roots of rational polynomials. Moreover, each function updating will in this
case increase the degree of each polynomial by one, in contrast to Algorithm 1
which always produces a piecewise linear function update. We illustrate this
in Figure 6 with two iterations for solving ẋ = 2t + x + 9

2
with x(t0) = x0,

where v = λt.λx.2t+x+9/2 is itself a rational polynomial. The exact solution
is x(t) = 6.5et − 2t − 6.5.

More generally, with the assumption that v is only continuous, all classical
solutions are contained in the domain-theoretic solution as follows:

13

Edalat, Krznarić & Lieutier

Theorem 6.4 Any solution h of the classical initial value problem, with dh
dt

=
v(t, h(t)) and h(0) = 0, satisfies f−

s ≤ h ≤ f+
s in a neighbourhood of the

origin, where (fs, λt. v(t, fs(t))) is the domain-theoretic solution.

The classical initial-value problem may have no computable solutions even
if v is computable [16]. However, from the above result, all the classical
solutions will be contained in the domain-theoretic solution, which, by Theo-
rem 5.3, is computable if v is computable.

7 Conclusion and Implementation

Algorithm 3, as in the case of the interval analysis technique, enables us to
solve classical initial value problems up to any desired accuracy, overcoming
the problems of the round-off error, the local error and the global truncation
error in the current established methods such as the multi-step or the Runge-
Kutta techniques. It also allows us to solve initial value problems for which
the initial value or the scalar field is imprecise or partial. We can implement
Algorithm 3 in rational arithmetic for differential equations given by elemen-
tary functions, by using available interval arithmetic packages to construct
libraries for elementary functions expressed as lubs of step functions. Since
rational arithmetic is in general expensive, we can obtain an implementation
in floating point or fixed precision arithmetic respectively by carrying out a
sound floating point or dyadic rounding scheme after each output of the up-
dating operators. For polynomial scalar fields, an implementation with the
semi-rational polynomial basis can provide a viable alternative. The perfor-
mance of these algorithms will have to be compared with the enclosing method
of interval analysis.

As for future work, generalization to higher dimensions, systems of ordi-
nary differential equations and the boundary value problem will be addressed.
It is also a great challenge to extend the domain-theoretic framework for dif-
ferential calculus to obtain domains for functions of several real variables as a
platform to tackle partial differential equations.

Acknowledgements

We thank John Howroyd and Ali Khanban for various discussions related to
the subject. This work has been supported by EPSRC.

References

[1] O. Aberth. Computable analysis and differential equations. In Intuitionism
and Proof Theory, Studies in Logic and the Foundations of Mathematics, pages
47–52. North-Holland, 1970. Proc. of the Summer Conf. at Buffalo N.Y. 1968.

14

Edalat, Krznarić & Lieutier

[2] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 3.
Clarendon Press, 1994.

[3] J. P. Aubin and A. Cellina. Differential Inclusions. Spinger, 1984.

[4] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski. Nonsmooth
Analysis and Control Theory. Springer, 1998.

[5] J. P. Cleave. The primitive recursive analysis of ordinary differential equations
and the complexity of their solutions. Journal of Computer and Systems
Sciences, 3:447–455, 1969.

[6] E. A. Coddington and N. Levinson. Theory of Ordinary Differential Equations.
McGraw-Hill, 1955.

[7] A. Edalat and A. Lieutier. Domain theory and differential calculus
(Functions of one variable). In Seventh Annual IEEE Symposium on Logic
in Computer Science. IEEE Computer Society Press, 2002. Full paper in
www.doc.ic.ac.uk/~ae/papers/diffcal.ps.

[8] A. Edalat and A. Lieutier. Foundation of a computable solid modelling.
Theoretical Computer Science, 284(2):319–345, 2002.

[9] A. Edalat, M. Krznarić and A. Lieutier. Domain–theoretic Solution
of Differential Equations (Scalar Fields). Full paper is available as
www.doc.ic.ac.uk/~ae/papers/scalar.ps.

[10] A. Grzegorczyk. Computable functionals. Fund. Math., 42:168–202, 1955.

[11] A. Grzegorczyk. On the definition of computable real continuous functions.
Fund. Math., 44:61–71, 1957.

[12] A. Iserles. Numerical Analysis of Differential Equations. Cambridge Texts in
Applied Mathematics. CUP, 1996.

[13] Ker-I Ko. On the computational complexity of ordinary differential equations.
Inform. Contr., 58:157–194, 1983.

[14] J. D. Lambert. Computational Methods in Ordinary Differential Equations.
John Wiley & Sons, 1973.

[15] R.E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, 1966.

[16] M. B. Pour-El and J. I. Richards. A computable ordinary differential equation
which possesses no computable solution. Annals Math. Logic, 17:61–90, 1979.

[17] M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics.
Springer-Verlag, 1988.

[18] D. S. Scott. Outline of a mathematical theory of computation. In 4th Annual
Princeton Conference on Information Sciences and Systems, pages 169–176,
1970.

[19] K. Weihrauch. Computable Analysis (An Introduction). Springer, 2000.

15

	Introduction
	Background
	Function Updating
	Derivative Updating
	Strong Consistency

	The Initial Value Problem
	The Classical Problem
	Conclusion and Implementation
	References

