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Abstract

We establish the following equation:

Quantitative Probability = Logic + Partiality of Knowledge + Entropy

I.e.: 1. A finitary probability space ∆n (= all probability measures on {1, . . . , n})
can be fully and faithfully represented by the pair consisting of the abstraction Dn

(= the object up to isomorphism) of the partially ordered set (∆n,v) introduced
in [3], and, Shannon entropy; 2. Dn itself can be obtained via a systematic purely
order-theoretic procedure (which embodies introduction of partiality of knowledge)
on an (algebraic) logic. This procedure applies to any poset A; DA

∼= (∆n,v) when
A is the n-element powerset and DA

∼= (Ωn,v), the domain of mixed quantum
states also introduced in [3], when A is the lattice of subspaces of a Hilbert space.

1 Introduction

For a century the dominant formalization of uncertainty has been in terms of
measures on a support. However, already in 1926 F. P. Ramsey proposed to
conceive probability as the logic of partial knowledge [11]. D. S. Scott relied on
a more general notion of partiality to propose the mathematical structure of
a domain [12]. A deep connection between domains and measures of content
was established by K. Martin in [9]. A domain (∆n,v) of probability measures
which has Shannon entropty as a measure of content and a domain (Ωn,v)
of mixed quantum states which has von Neumann entropy as a measure of
content were introduced in [3]. In this paper, we establish:

(i) Quantitative Probability = Qualitative Probability + Entropy

(ii) Qualitative Probability := Logic + Partiality of Knowledge

1 Email: bob.coecke@comlab.ox.ac.uk
2 The phrase “Entropic Geometry” arose in exchanges with Keye Martin. I thank him
for discussing the content and presentation of this paper. I thank Samson A. and Prakash
P. for logistic, Dusko P. for recreational and Rhada J. for gastronomic support, and for their
constructive feedback on [3]. All three referees provided constructive comments.
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The first claim follows from the fact that Dn, the abstraction of (∆n,v) as a
partially ordered set (= poset), when equipped with Shannon entropy µ, fully
and faithfully captures ∆n: the identity is the only entropy-preserving order-
isomorphism of (∆n,v, µ) — up to permutation of the names of its pure states
(Corollary 5.2). Thus, uncertainty can be captured by combining qualitative
(=domains) and quantitative (= entropy) notions of information.

A probability space does not only admit a notion of partiality (=domain
structure); Dn can be purely order-theoretically constructed in terms of partial
knowledge starting from an algebraic logic, namely the powerset of its maxi-
mal elements. Thus, no probability space is a priori required to produce Dn.
This establishes the second claim. This result extends to the quantum case.
It can be seen as the converse to [3] Theorems 4.8 and 4.11, were the the pow-
erset P({1, . . . , n}) and the lattice of subspaces L

n of a n-dimensional Hilbert
space Hn are recoverd in order-theoretic manner respectively from (∆n,v)
and (Ωn,v). The fact that the quantum logic L

n constitutes the algebra of
physical properties of a quantum system [1,5], as opposed to the classical logic
P({1, . . . , n}), justifies the utterance probability from logic (Section 6).

In fact, we produce a probability space with, in addition, a partial order
relation on it (so the above equations are understatements). (Pre)orders have
been in the study of probability [10], but never captured probability itself.

2 Preliminaries

In this section we recall results from [3]. Let ∆n be all probability distribu-
tions on {1, . . . , n}, that is, either a list x = (x1, . . . , xn) ∈ [0, 1]n or a map
x : {1, . . . , n} → [0, 1] :: i 7→ xi, with

∑i=n

i=1 xi = 1. Decreasing monotone
distributions in ∆n, i.e., for all i ∈ {1, . . . , n − 1} we have xi ≥ xi+1, are
denoted by Λn. The spectrum of x is the set spec(x) := {xi | 1 ≤ i ≤ n}.
Denote the collection of all permutations σ : {1, . . . , n} → {1, . . . , n} as S(n).
For a poset D, we set ↑x = {y ∈ D | x v y} and ↓x = {y ∈ D | y v x}; we
call e ∈ D maximal iff ↑e = {e}; we denote the set of maximal elements of D
by Max(D); the bottom ⊥ (if it exists) of D is defined by ↑⊥ = D. A poset
D is a chain iff x, y ∈ D either implies x v y or y v x.

Definition 2.1 Let n ≥ 2. For x, y ∈ ∆n, we have x v y iff there exists
σ ∈ S(n) such that x · σ, y · σ ∈ Λn and if we have ∀i ∈ {1, . . . , n − 1}:

(x · σ)i(y · σ)i+1 ≤ (x · σ)i+1(y · σ)i .(1)

Theorem 2.2 Let n ≥ 2. Then, (∆n,v) is a partially ordered set with

Max(∆n) = {e ∈ ∆n | spec(x) = {0, 1}} & ⊥ = (1/n, . . . , 1/n) .

Moreover, it is a dcpo and admits the notions of partiality and approximation,
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that is, (∆n,v) is entitled to be called a domain. 3 Finally, Shannon entropy

µ : ∆n → [0, 1] :: x 7→ −
n

∑

i=1

xi log xi

is a measure of content in the sense of [9]. 4

The intuition behind x v y is: “State y is more informative than state
x”. In epistemic terms this becomes: “Observer y has more knowledge about
the system than observer x”. Now we will formalize this intuition. Define the
Bayesian projections {pi}i such that for all x ∈ ∆n+1 with xi < 1:

pi(x) =
1

1 − xi

(x1, . . . , xi−1, xi+1, . . . , xn+1) ∈ ∆n .

We then have for x, y ∈ ∆n+1 in terms of (∆n,v):

x v y ⇐⇒ (∀i)(xi, yi < 1 ⇒ pi(x) v pi(y)) .(2)

This interprets as follows. (For a detailed exposition see [3] §2.1 and §4.4.) The
pure states {ei}i are to be seen as the actual states the system can be in,
while general mixed states x and y should be conceived as being epistemic.
Equivalence (2) expresses: 1. Whenever a state x stands for less knowledge
about the system than state y, then, after Bayesian update with respect to the
new knowledge that the actual state of the system is not ei, the state pi(x) still
stands for less knowledge than pi(y) due to the initial advantage in knowledge
of y as compared to x; 2. This behavior of v w.r.t. knowledge update exactly
defines v . 5 Indeed, the inductive rule (2) provides a definition equivalent to
Definition 2.1 when a base case n = 2 is postulated as:

Definition 2.3 For x, y ∈ ∆2 we set

(x1, x2) v (y1, y2) ⇐⇒ (y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1) .

Theorem 2.4 The order of Definition 2.3 is the only partial order on ∆2

which has ⊥ = (1/2, 1/2) and satisfies the mixing law:

x v y and p ∈ [0, 1] =⇒ x v (1 − p)x + py v y .

The canonicity of this choice for the order on ∆2 reflects in the shape of
the Shannon entropy curve (left) and the graph of the order (right):

-

6µ

x1
flip
−→

(1, 0) (1, 0)

⊥ = ( 1

2
, 1

2
)

straighten
−→

T
T
TT�

�
��

(1, 0) (1, 0)

⊥ = ( 1

2
, 1

2
)

Conclusively, there exists an order on ∆n which canonically arises from en-
visioning probability distributions as informative objects, and which is tightly
intertwined with Shannon entropy.

3 We refer to [3] for definitions and details on these domain-theoretic aspects. They are
not essential for the developments in this paper.
4 I.e., there is a tight connection between µ and the domain-theoretic properties of (∆n,v).
5 This gets extremely close to how order on physical properties is defined [7].
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3 Symmetries and degeneration

For x ∈ ∆n, the map xΛ := x · σ : {1, . . . , n} → [0, 1]n does not depend on the
particular choice of σ when σ ∈ S(n) is such that x · σ ∈ Λn. It follows that
σ ∈ S(n) monotonizes x ∈ ∆n iff σ makes the following diagram commute:

{1, . . . , n}
x - [0, 1]

�
�

�
�

�

xΛ

�

{1, . . . , n}

σ

6

(3)

The inequalities (1) can now be restated without explicit reference to σ.

Proposition 3.1 For x, y ∈ ∆n, we have x v y iff

(i) There exists at least one σ ∈ S(n) such that x · σ, y · σ ∈ Λn;

(ii) For all i ∈ {1, . . . , n − 1} we have xΛ
i · yΛ

i+1 ≤ xΛ
i+1 · y

Λ
i .

Remark 3.2 When xΛ
i+1 6= 0 6= yΛ

i+1 the inequalities express ratios:

xΛ
i /xΛ

i+1 ≤ yΛ
i /yΛ

i+1 .

Let x ∈ ∆n. Let nx be the cardinality of spec(x); let xspec be the decreas-
ingly ordered spectrum of x. Denote the multiplicity of value xspec

j in the list
xΛ by nx

j , or, nj when it is clear from the context to which state this number

applies. Then, set K
(x)
1 := {1, . . . , n1} and set:

(i) ∀j ∈ {1, . . . , nx} : n̄j :=
∑i=j

i=1 ni

(ii) ∀j ∈ {2, . . . , nx} : K
(x)
j := {n̄

(x)
j−1 + 1, . . . , n̄

(x)
j }

that is i ∈ Kj ⇔ xΛ
i = xspec

j . The diagram in eq.(3) then splits up in

{1, . . . , n}
x - [0, 1]

�
�

�
�

�

xspec(1)

�

K1

σ

6

. . .

{1, . . . , n}
x - [0, 1]

�
�

�
�

�

xspec(n)

�

Knx

σ

6

where xspec(1), . . . , xspec(n) are constant maps. Requiring commutation then
imposes an ordered partition (σ[K1], . . . , σ[Knx ]) on {1, . . . , n}.

For i, j ∈ {1, . . . , n} set i ∼ j whenever xi = xj . The corresponding

equivalence classes then admit a total ordering I
(x)
1 � . . . � I

(x)
nx which is such

that Ik � Il whenever for i ∈ Ik and j ∈ Il we have xi > xj . Thus

i ∈ Ij ⇔ xi = xspec
j .(4)

The cardinality of Ij is the same as that of Kj, namely nj.
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Lemma 3.3 For x ∈ ∆n and σ ∈ S(n) we have x · σ ∈ Λn iff

∀j ∈ {1, . . . , nx} : σ[Kj] = Ij .

Proof. Since by diagram (3) we have x · σ ∈ Λn ⇔ ∀i ∈ {1, . . . , n} : xΛ
i =

(x · σ)(i) the equivalence follows from σ(i) ∈ σ[Kj] ⇔ i ∈ Kj ⇔ xspec
j = xΛ

i

and σ(i) ∈ Ij ⇔ xspec
j = xσ(i) = (x · σ)(i). 2

Proposition 3.4 Each x ∈ ∆n is faithfully represented by the pair

(i) The ordered partition Ix := (I1, . . . , Inx) on {1, . . . , n} ;

(ii) The [0, 1]-valued nx-element set spec(x).

Conversely, each such pair defines a state x ∈ ∆n iff
∑j=nx

j=1 nj · x
spec
j = 1.

Proof. Direction ⇒ of eq.(4) fixes x given spec(x) and (I1, . . . , Inx). The
converse follows by construction. 2

The degeneration of the spectrum of x ∈ ∆n which is now encoded in the
ordered partition Ix is of crucial importance w.r.t. v .

Lemma 3.5 (Degeneration) [3] If x v y in ∆n, then

xi = 0 ⇒ yi = 0 & yi = yj > 0 ⇒ xi = xj

Thus, degeneration admits a hierarchy in (∆n,v):

zero-values/degeneration

non-degenerated non-zero values

degenerated non-zero values

Setting






n
(x)
0 := nx 0 6∈ spec(x)

n
(x)
0 := nx − 1 , n̄0 :=

∑i=n0

i=1 ni , I0 := Inx , K0 := Knx 0 ∈ spec(x)

we can express the Degeneration Lemma in terms of Ix.

Lemma 3.6 (Degenerationbis) If x v y in ∆n, then

Ix
0 ⊆ Iy

0 & ∀i ∈ {1, . . . , ny
0}, ∃j ∈ {1, . . . , nx

0} : Iy
i ⊆ Ix

j .

4 Coordinates

Definition 4.1 (Coordinates) Let Coord(∆n) be all x ∈ ∆n with an at
most binary spectrum. Let the degenerated coordinates Ir⊥(∆n) be the set of
all x ∈ Coord(∆n) with 0 ∈ spec(x). For x ∈ Ir⊥(∆n) let the x-axis be the
set of all y ∈ Coord(∆n) with Iy

1 = Ix
1 (and thus also Iy

2 = Ix
2 ).

As shown in [3] §4.3, Ir⊥(∆n) constitutes a subposet of ∆n which, when
top and bottom are added to it, is isomorphic to the powerset P({1, . . . , n}).
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The illustrations below expose Ir⊥(∆n) ∪ {⊥} in the “triangle” ∆3 and the
“tetrahedron” ∆4. The figures on the right are their Hasse diagrams.

The segments represent increase of the order and coincide on the left and the
right, the increase being respectively radially and upwardly. The coordinate
axes of ∆3 and ∆4 look as follows.

Proposition 4.2 Coordinates and coodinate axes are order-theoretical:

• Ir⊥(∆n) ∪ {⊥} are the infima of sets in P(Max(∆n)) \ {∅}.

• If x ∈ CoordIr(∆
n) := Coord(∆n)\ Ir⊥(∆n) then ↓x is a chain. Conversely,

if ↓x is a chain then x ∈ Coord(∆n).

• A coordinate axis is the completion of a maximal CoordIr(∆
n)-chain.

Proof. Maximal elements and bottom are order-theoretical by definition and
so are all x ∈ Ir⊥(∆n) since by [3] §4.3 we have x =

∧

(↑x ∩ Max(∆n)).

For x ∈ Coord(∆n)\Ir⊥(∆n) we have x = ⊥ or Ix = (Ix
1 , Ix

2 ). Let x 6= ⊥. If
y v x by Lemma 3.6 we have Ix

1 ⊆ Iy and Ix
2 ⊆ Jy for some Iy, Jy ∈ Iy. Thus,

Iy = Ix or Iy
1 = {1, . . . , n}. If y, z ∈↓x with y 6= ⊥ 6= z then Iy = Iz = Ix

and either y+ · z− ≤ z+ · y− or z+ · y− ≤ y+ · z− so y and z compare. The
cases x = ⊥, y = ⊥ and z = ⊥ are trivial so ↓x is a chain.

Let x 6∈ Coord(∆n). Then {Ix
1 , Ix

2 , Ix
3 } ⊆ Ix. But y, z ∈ ∆n defined by

6
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Iy = {Ix
1 , {1, . . . , n} \ Ix

1 } Iz = {Ix
1 ∪ Ix

2 , {1, . . . , n} \ (Ix
1 ∪ Ix

2 )}

yspec
1 · xspec

2 = xspec
1 · yspec

2 zspec
1 · xspec

3 = xspec
2 · zspec

2

(cfr. Proposition 3.4) don’t compare although y, z v x so ↓x is not a chain.

From the above we also know that for x ∈ CoordIr(∆
n) and y v x we have

y ∈ Coord(∆n) and in particular that y belongs to the same axis as x. Thus
for y, z ∈ x-axis with z 6= x we have that y v w v z forces w ∈ x-axis. Thus
x-axis\{x} is a maximal chain in CoordIr(∆

n). By [3] Proposition 2.16 we
then have x =

⊔

(x-axis\{x}). 2

To x ∈ ∆n \ {⊥} we attribute Cx = {c(1), . . . , c(nx − 1)} ⊂ Coord(∆n) as
its coordinates, where, using Proposition 3.4, each c(j) is defined by

Ic(j) =

{

i=j
⋃

i=1

Ix
i ,

i=nx
⋃

i=j+1

Ix
i

}

c(j)spec
1 · xspec

j+1 = xspec
j · c(j)spec

2 .

Further we set C⊥ = ∅. If 0 ∈ spec(x) we set c0 := c(nx − 1) ∈ Ir⊥(∆n).

Theorem 4.3 (Decomposition in coordinates) States x ∈ ∆n and their
coordinates Cx are in bijective order-theoretic correspondence:

x =
⊔

Cx and Cx = Max(Coord(∆n)∩↓x) \ {⊥} .

Proof. We exclude the trivial case x = ⊥. Note that by counting we obtain

K
c(j)
1 =

i=j
⋃

i=1

Kx
i K

c(j)
2 =

i=nx
⋃

i=j+1

Kx
i Kc0

1 =

i=nx
0

⋃

i=1

Kx
i Kc0

2 = Kx
0 .

Let x · σx ∈ Λn. By Lemma 3.3 we have ∀i ∈ {1, . . . , nx} that σ[Ki] = Ii and
as such we have for all j ∈ {1, . . . , nx

0 − 1}

σx

[

K
c(j)
1

]

= σx

[

i=j
⋃

i=1

Kx
i

]

=

i=j
⋃

i=1

σx [Kx
i ] =

i=j
⋃

i=1

Ix
i = I

c(j)
1 .

Analogously, σx[K
c(j)
2 ] = I

c(j)
2 , σx [Kc0

1 ] = Ic0
1 and σx [Kc0

2 ] = Ic0
2 . Thus, again

by Lemma 3.3, for all c(j) ∈ Cx we have c(j) · σx ∈ Λn so x and c(j) admit
joint monotonization. Again, let j ∈ {1, . . . , nx

0 − 1}. We have:

(i) c(j)Λ
n̄x

j
/c(j)Λ

n̄x
j
+1 = xΛ

n̄x
j
/xΛ

n̄x
j
+1 ;

(ii) c(j)Λ
i /c(j)Λ

i+1 = 1 ≤ xΛ
i /xΛ

i+1 for i ∈ {1, . . . , n̄x
0 − 1} \ {n̄x

j} ;

(iii) c(j)Λ
i · xΛ

i+1 = c(j)Λ
i · 0 ≤ c(j)Λ

i+1 · x
Λ
i for i ∈ {n̄x

0 , . . . , n − 1}.

Thus c(j) v x by Proposition 3.1. Analogously, in the case that 0 ∈ spec(x)
we have c0 v x. Thus, x is an upper bound for Cx.

Let z ∈ ∆n be such that ∀c ∈ Cx : c v z and σx, σz ∈ S(n) such that
x · σx ∈ Λn and z · σz ∈ Λn. First we construct σ ∈ S(n) that monotonizes
both x and z. Set nx

z := sup({0} ∪ {j ∈ {1, . . . , nx} | Kx
j ∩ Kz

0 = ∅}).

Assume nx
z 6= 0 (if not, skip this paragraph). We have for i ∈ I

c(1)
1 = Ix

1
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and for k ∈ I
c(1)
2 = {1, . . . , n} \ Ix

1 that c(1)i > c(1)k 6= 0. Since c(1) v z we
have by Lemma 3.5 that ∀i ∈ Ix

1 , ∀k ∈ {1, . . . , n}\Ix
1 : zi > zk so σz[K

x
1 ] = Ix

1 .

Ix
1

Iz
1 . . . Iz

i

. . .

. . .

Ix
n

x

z

Iz
j . . . Iz

n
z

x

Ix
n

x

z
+1

Iz
n
z

x
+1 . . . Iz

n
z

0

. . . Ix
n

x

0

Iz
0

Ix
0

↑ σ

. . . . . .. . . . . . . . . . . .

0 n

Kz
1 Kx

0

By induction on j ∈ {1, . . . , nx
z}, since c(j) v z we have

∀l ∈

l=j−1
⋃

l=1

Ix
l , ∀i ∈ Ix

j , ∀k ∈ {1, . . . , n} \

l=j
⋃

l=1

Ix
l : zl > zi > zk

so σz [K
x
j ] = Ix

j . Let nz
x be such that

⋃j=nz
x

j=1 Kz
j =

⋃j=nx
z

j=1 Kx
j . Setting

∀j ∈ {1, . . . , nz
x} : σ[Kz

j ] := σz [K
z
j ] = Iz

j

we also obtain ∀j ∈ {1, . . . , nx
z} : σ[Kx

j ] = Ix
j .

Next we set

• ∀j ∈ {nz
x + 1, . . . , nz

0} : σ[Kz
j ] := σz [K

z
j ] = Iz

j

• σ[Kx
nx

z+1 ∩ Kz
0 ] := σx[K

x
nx

z+1] ∩ σz[K
z
0 ] = Ix

nx
z+1 ∩ Iz

0

• ∀Kx
j ⊆ Kz

0 : σ[Kx
j ] := σx[K

x
j ] = Ix

j

Since c(nx
z + 1) v z we obtain along the same lines as above that σ[Kx

nx
z+1] =

Ix
nx

z+1 and σ[Kz
0 ] = Iz

0 . Conclusively, σ monotonizes both x and z. We now
verify the inequalities of Proposition 3.1 in order to prove that x v z.

(i) xΛ
n̄x

j
/xΛ

n̄x
j
+1 = c(j)Λ

n̄x
j
/c(j)Λ

n̄x
j
+1 ≤ zΛ

n̄x
j
/zΛ

n̄x
j
+1 for j ∈ {1, . . . , nx

0− 1} ;

(ii) xΛ
i /xΛ

i+1 = 1 ≤ zΛ
i /zΛ

i+1 for i ∈ {1, . . . , n̄z
0− 1} \ {n̄x

j | j ∈ {1, . . . , nx
0− 1}};

(iii) xΛ
i · zΛ

i+1 = xΛ
i · 0 ≤ xΛ

i+1 · z
Λ
i for i ∈ {n̄z

0, . . . , n − 1}.

Conversely, Cx = Max(Coord(∆n)∩ ↓x) \ {⊥} follows by Lemma 3.6 and the
fact that c(j)spec

1 · xspec
j+1 = xspec

j · c(j)spec
2 maximizes those coordinates below x

that are on the same axis. 2

One easily verifies that this decomposition is irreducible, that is, Cx is the
infimum for inclusion of all finite C ⊆ Coord(∆n) with x =

⊔

C. We proceed
by characterizing the sets that arise as Cx for some x. It will follow that each
Cx implicitly is an ordered list, the order being induced by the order on the
irreducibles that label the axes to which each c(j) ∈ Cx belongs.

Proposition 4.4 {c(1), . . . , c(m)} are the coordinates of some x ∈ ∆n iff

(i) m ≤ n − 1

(ii) x1
A . . . A xm where ∀j ∈ {1, . . . , m} : c(j) ∈ xj-axis\{⊥}

(iii) c(j) = xj ⇒ j = m

8
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Proof. For each c(j) we obtain xj such that c(j) ∈ xj-axis by setting Ixj

=
Ic(j) and 0 ∈ spec(xj). (2.) is then easily verified. (1.) and (3.) are obvious.
Conversely, defining Ix by intersecting the sets Ic(j) for all j ∈ {1, . . . , m} and
imposing c(j)spec

1 · xspec
j+1 = xspec

j · c(j)spec
2 we construct x ∈ ∆n which satisfies

Cx = {c(1), . . . , c(m)}. 2

5 Isomorphisms

Theorem 5.1 (Isomorphisms) Order-isomorphisms of (∆n,v) are in bi-
jective correspondence with pairs consisting of

• σ ∈ S(n), (∼ labeling the elements in Max(∆n))

• 2n − 2 order-isomorphisms of [0, 1]. (∼ gauging each coordinate axis)

Proof. Let h : ∆n → ∆n be an order-isomorphism. We have h(⊥) = ⊥. Since
h[Max(∆n)] = Max(∆n) this induces a permutation σ ∈ S(n) via σ(ei) =
h(ei). This permutation σ extends to one on all x ∈ Ir⊥(∆n) since they are of
the form

∧

(↑ x ∩ max(∆n)) which on its turn extends by Proposition 4.2 to
all coordinate axis (as a whole). For each coordinate axis set

fx : x-axis → x-axis :: y 7→ h(y · σ−1)

Since h is an order-isomorphism, so is fx. The action on each x ∈ ∆n is then
implied by x =

⊔

Cx. Conversely, let {fx : x-axis → x-axis} be the 2n − 2
order-isomorphisms of [0, 1] and let σ ∈ S(n). Define an order isomorphism

h : ∆n → ∆n :: y 7→
⊔

{fx(c(j)) · σ | c(j) ∈ Cy, c(j) ∈ x-axis} .

Existence of the suprema follows from Proposition 4.4, bijectivity from The-
orem 4.3 and monotonicity from Cx = Max(Coord(∆n)∩ ↓ x) \ {⊥}. Indeed,
when x v y then this forces each c(j) ∈ Cx to have an upper bound in Cy since
then ↓x ⊆↓y. Applying this argument to h−1 yields strictness. 2

Corollary 5.2 The identity is the only order-isomorphism of (∆n,v) which
preserves both Max(∆n) and Shannon entropy (or any other map that is
strictly increasing on coordinate axis).

Proof. By Theorem 5.1 it suffices to verify that Shannon entropy is strictly
increasing on each coordinate axis. Then its preservation forces all maps
{fx : x-axis → x-axis | x ∈ Ir⊥(∆n)} to be identities. 2

By definition of Dn there exists an order-isomorphism h : Dn → (∆n,v).
A map µ : Dn → [0, 1] is induced by commutation of

[0, 1]
id - [0, 1]

Dn

µ

6

h- (∆n,v)

µ

6

9
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Corollary 5.2 implies that if µ : Dn → [0, 1] is fixed, no other order-isomorphism
h′ : Dn → (∆n,v) satisfying ∀i : h(ei) = h′(ei) makes the diagram commute.
Thus, the pair (Dn, µ : Dn → [0, 1]) defines a unique gauge h : Dn → ∆n

which assigns to each x ∈ Dn a unique list of numbers h(x) ∈ ∆n.

6 Probability from logic

We will reconstruct Dn from A := P({1, . . . , n}) in order-theoretic manner.

Formal procedure. Let A be a bounded poset. Let Γ be a bounded chain. 6

(i) Denote by A∗

0,1 the poset obtained by removing the top and bottom from
A and by reversing the order.

(ii) Let MChain(A∗

0,1) be all maximal chains ~a = {a1 A . . . A an−1} in A∗

0,1.
In benefit of lucidity we assume that all these chains have length n− 1. 7

(iii) Denote by Cl>(Γn−1) the set of all Γ-valued tuples ~γ = (γ1, . . . , γn−1)
subjected to the closure 8

∀i < j ∈ {1, . . . , n − 1} : γi = > ⇒ γj = > .

(iv) Set [A∗

0,1, Γ] := {~a · ~γ | ~a ∈ MChain(A∗

0,1) , ~γ ∈ Cl>(Γn−1)} .

(v) Introduce the pointwisely induced relation

~a · ~γ v ~b · ~ϕ ⇐⇒ ~a = ~b and ∀i ∈ {1, . . . , n − 1} : γi v ϕi .

(vi) Define the indices:

I(~γ) := {i ∈ {1, . . . , n − 1} | γi 6∈ {⊥,>}} ;

ι(~γ) := inf{i ∈ {1, . . . , n − 1} | γi = >} .

Let [A∗
0,1, Γ] be the set of equivalence classes in [A∗

0,1, Γ] obtained for

~a · ~γ = ~b · ~ϕ ⇐⇒ ~γ = ~ϕ and (i ∈ I(~γ) ∪ {ι(~γ)} ⇒ ai = bi) .

(vii) Finally, [A∗
0,1, Γ] inherits the relation v on [A∗

0,1, Γ], explicitly,

~a · ~γ v ~a · ~ϕ =⇒ [~a · ~γ] v [~a · ~ϕ] .

Proposition 6.1
(

[A∗
0,1, Γ] , v

)

is a poset with a bottom.

Proof. We have to prove anti-symmetry and transitivity of v on [A∗
0,1, Γ].

Anti-symmetry. Let ~a · ~γ v ~a · ~ϕ and ~b · ~γ w ~b · ~ϕ with [~a · ~γ] = [~b · ~γ] and

[~a · ~ϕ] = [~b · ~ϕ]. We must then for all i ∈ {1, . . . , n− 1} both have γi v ϕi and
ϕi v γi from which ~a · ~γ = ~a · ~ϕ and thus [~a · ~γ] = [~a · ~ϕ] follows.

6 The construction and Proposition 6.1 still hold for Γ any bounded poset.
7 The construction and Proposition 6.1 still hold without this assumption.
8 Cl> indeed acts as a closure operator on the pointwisely ordered complete lattice Γn−1,
and thus, Cl>(Γn−1) is itself a complete lattice. For all n ≥ 2 monotone states constitute
complete lattices since (Λn,v) ∼= Cl>([0, 1]n−1). Moreover, (∆n,v) admits arbitrary non-
empty infima and any subset of ∆n with an upper bound has a supremum w.r.t. v [2].
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Transitivity. Let ~a ·~γ− v ~a ·~γ and ~b ·~γ v ~b ·~γ+ with [~a ·~γ] = [~b ·~γ]. We have

to prove that [~a · ~γ−] v [~b · ~γ+]. We define ~c ∈ MChain(A∗

0,1) as follows. For
i ∈ I(~γ) : ci := ai = bi, for i ∈ {ι(~γ), . . . , n−1} : ci := ai and in all other cases,
that is γi = ⊥, we set ci := bi. Since γ−

i v γi implies γi = ⊥ ⇒ γ−

i = ⊥ and
γi v γ+

i implies γi = > ⇒ γ+
i = > it respectively follows that [~c ·~γ−] = [~a ·~γ−]

and [~c · ~γ+] = [~a · ~γ+]. Thus, since ~c · ~γ− v ~c · ~γ+ due to γ−

i v γi v γ+
i for all

i ∈ {1, . . . , n − 1} we obtain [~a · ~γ−] v [~b · ~γ+].

Finally, choosing ~a arbitrary in MChain(A∗

0,1) and setting ~γ = (⊥, . . . ,⊥),

we obtain [~a · ~γ] as the bottom of [A∗
0,1, Γ]. 2

Problem 6.2 A categorical variant of this construction would be desirable.

Lemma 6.3 MChain(P({1, . . . , n})∗0,1)
∼= S(n) as sets.

Proof. The sets MChain(P({1, . . . , n})∗0,1) and S(n) are in bijective corre-
spondence via ∀i ∈ {1, . . . , n − 1} : ai =

∨

{ej | j ∈ σ[{1, . . . , i}]} . 2

Theorem 6.4 (Construction of classical states) Let n ≥ 2.
(

[

P({1, . . . , n})∗0,1 , [0, 1]
]

, v
)

∼= (∆n,v)

Proof. Assume ξ : [0, 1] → [1,∞] to be a fixed order isomorphism. Let
~a · ~γ ∈ [P({1, . . . , n})∗0,1 , [0, 1]]. We can define a set C~a·~γ of coordinates as
follows. For each ai ∈ ~a such that i ∈ I(~γ) ∪ {ι(~γ)} define c(i) ∈ Coord(∆n)
such that Ic(i) = (I i, {1, . . . , n} \ I i) where I i is implicitly defined by ai =
∨

{ej | j ∈ I i}, and by setting ci
1/c

i
2 = ξ(γi) whenever γi 6= 1 and ci

2 = 0
otherwise. The set C~a·~γ = {ci | i ∈ I(~γ) ∪ {ι(~γ)}} satisfies the conditions

in Proposition 4.4 and as such C~a·~γ = Cx for x =
⊔

C~a·~γ. For ~a · ~γ,~b · ~ϕ ∈

[P({1, . . . , n})∗0,1 ,[0, 1]] we have C~a·~γ = C
~b·~ϕ iff ~a · ~γ ∼ ~b · ~ϕ in the above

defined equivalence relation on [P({1, . . . , n})∗0,1 ,[0, 1]]. Due to uniqueness
of the decomposition in coordinates (Theorem 4.3) we obtain an injective
correspondence between [P({1, . . . , n})∗0,1 , [0, 1]] and ∆n and by Proposition
4.4 it follows that it is also surjective.

We now show that this correspondence also preserves the order. It follows
from the definition of v that for [~a · ~γ], [~b · ~ϕ] ∈ [P({1, . . . , n})∗0,1 , [0, 1]] we

have [~a · ~γ] v [~b · ~ϕ] iff there exists ~c ∈ MChain(P({1, . . . , n})∗0,1) such that

~c · ~γ ∈ [~a · ~γ] and ~c · ~ϕ ∈ [~b · ~ϕ] and such that ~c · ~ϕ v ~b · ~ϕ. Moreover,

(i) Existence of ~c ∈ MChain(P({1, . . . , n})∗0,1) with ~c · ~γ ∈ [~a · ~γ] and ~c · ~ϕ ∈

[~b · ~ϕ] coincides with existence of σ ∈ S(n) which monotonizes both

x =
⊔

C~a·~γ and y =
⊔

C
~b·~ϕ, extending the isomorphism in Lemma 6.3.

(ii) Due to ci
1/c

i
2 = ξ(γi) for γi 6= 1 and ci

2 = 0 for γi = 1, the pointwisely

defined order for ~γ and ~ϕ induces eq.(1) for x =
⊔

C~a·~γ and y =
⊔

C
~b·~ϕ.

Explicit verification of the above completes the proof. 2
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Remark 6.5 It should be clear to the reader that the metric on [0, 1] doesn’t
play any role, i.e., [0, 1] should be read as an order-theoretic abstraction.

Remark 6.6 The alternative representation of classical states in Proposition
3.4 incarnates as an instance of an alternative formulation of this construction.
It simplifies the definition of the set [A∗

0,1, Γ] but one looses lucidity w.r.t. the
pointwise nature of the induced order. Explicitly, let Chain(A∗

0,1) be all chains
in A∗

0,1, let Γ⊥,> := Γ \ {⊥,>}, let Γ⊥ := Γ \ {⊥}, let

Cl>(Γn−1
⊥

) := {(γ1, . . . , γk) | k ≤ n − 1; γ1, . . . , γk−1 ∈ Γ⊥,>; γk ∈ Γ⊥} ,

and denoting by | − | the length of a list we obtain

[A∗
0,1, Γ] ∼=

{

~a · ~γ | ~a ∈ Chain(A∗

0,1) ;~γ ∈ Cl>(Γn−1
⊥

) ; |~a| = |~γ|
}

.

Theorem 6.7 (Construction of quantum states) Let n ≥ 2.
(

[

(Ln)∗0,1 , [0, 1]
]

, v
)

∼= (Ωn,v) .

We omit the proof here. We do want to expose a remarkable fact. Contrary
to a Boolean algebra where orthogonality is captured by the order via

a ⊥ b ⇔ a ∧ b = 0 ,

the lattice L
n admits many different orthocomplementations. 9 Mixed quan-

tum states, due to the particular status measurements have in quantum theory,
are measures ω : L

n → [0, 1] which satisfy

a ⊥ b ⇒ ω(a ∨ b) = ω(a) + ω(b) .(5)

By Gleason’s theorem [6] these are in bijective correspondence with the den-
sity matrices (the set which we denoted in [3] by Ωn). We can envision a
constructor Val[−] , acting on all posets D that go equipped with an orthog-
onality relation ⊥ , which assigns to each (D,⊥) the (monotone) measures
ω : D → [0, 1] that satisfy (5), ordered along the lines of [3]. 10 We have

Val [(P({1, . . . , n}), (−)c)] ∼= (∆n,v) & Val [(Ln, (−)′)] ∼= (Ωn,v) ,

with (−)c the Boolean complement and (−)′ any orthocomplementation on
L

n. The above entropic geometry construction however enables to produce
an isomorphic copy of (Ωn,v) without the requirement of specification of an
orthocomplementation on L

n. Indeed, we obtain the constructor EntGeom[−]
which acts on any poset and satisfies

EntGeom [P({1, . . . , n})] ∼= (∆n,v) & EntGeom [Ln] ∼= (Ωn,v) .

A detailed exposition and elaboration on this matter is in preparation [4].

9 An orthocomplementation on a lattice L is an antitone involution (−)′ : L → L which
satisfies a∧ a′ = 0 and a∨ a′ = 1. It provides an orthogonality relation via a ⊥ b ⇔ a ≤ b′.
10 Besides domain-theoretic differences, a sharp distinction between (∆n,v) and the Jones–
Plotkin probabilistic powerdomain [8] is the fact that the Bayesian order is a relation on
probability measures contra the Jones–Plotkin construction which builds a probabilistic uni-
verse on top of a pre-existing order-theoretic structure; we claim that the epistemic nature
of probability has a primal mathematical structure on its own which is order-theoretic.
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As a third example let D be a (n + 1)-element chain with n ≥ 2. Then
(

[

D∗
0,1 , [0, 1]

]

, v
)

∼= (Λn,v) .

This construction of monotone states constitutes a fragment of both the
classical and the quantum states construction; it constitutes the atom of the
entropic geometry construction.

Interpretation. The Boolean logic A ∼= P({1, . . . , n}) can be generated by
introducing disjunction on its atomic properties {e1, . . . , en}. These atomic
properties provide total specification of the system. A disjunction ei ∨ . . .∨ ej

only provides partial specification of the system. It however still provides total
knowledge on truth of the property ei ∨ . . . ∨ ej. We could emphasize this by
writing (ei∨ . . .∨ej ,>) standing for “total knowledge on truth of ei∨ . . .∨ej”.

Rather than only providing total knowledge on properties, we can in-
crease expressiveness by making partiality of knowledge explicit: We will write
(ei ∨ . . . ∨ ej , γ) with γ ∈ Γ⊥,> the degree of partiality of our knowledge. This
for example allows to refine (ei ∨ ej ,>) to ((ei, γ), (ei ∨ ej ,>)) standing for
“most likely the state of the system is ei, with certainty it is either ei or ej ,
and the degree to which it is rather in ei than in ej is γ”. The list

((a1 := ei, γ1), . . . , (ak−1, γk−1), (ak := ak−1 ∨ ej,>))

with γ1, . . . , γk−1 ∈ Γ⊥,> then expresses that most likely the system is in pure
state ei, with certainty it is either in one of the states that span ak, and the
degree to which ai is more likely than ai+1 is encoded as γi; any occurence of
(aj,⊥) should be conceived as a void statement — their explicit ommitance
exactly provides the alternative construction of Remark 6.6; we can extend
the list with a superfluous tail, or, if it has lenght n, delete (1,>) from it, in
order to obtain a maximal chain ~a = (a1, . . . , an−1). Such a list provides full
specification of our knowledge about the system. This explains why we can
reproduce all classical states by means of this construction.

An order relation arises naturally. We compare ~a·~γ and ~a· ~ϕ by pointwisely
comparing ~γ and ~ϕ; we have ~a · ~γ v ~a · ~ϕ iff each property in ~a is less likely
to be true for ~a · ~γ than it is for ~a · ~ϕ. The void statements then cause an
equivalence relation on the set of all possible specifications of this kind.

Note that we do not have to require i ≤ j ⇒ γi v γj since γi, γj ∈ Γ⊥,>

encode ratios of decrease of likelyness of the newly added atomic property in
the next list element as compared to the remaining head of the list; on the
other hand whenever i ≤ j then γi = > ⇒ γj = > has to be fulfilled since in
that case we have ai ⇒ aj. The bounds ⊥ and > indeed play a distinct role
in the construction, one is void and the other captures truth.

This reasoning also extends to chains in arbitrary posets when envisioned
as algebras of properties of a system: Whenever we have (ai, γi) with γi 6= >,
we add a weaker property ai+1 ∈ A which is such that ai ⇒ ai+1, untill we
obtain ak such that (ak,>) — this ak can of course be 1. The construction of
quantum states illustrates this claim.
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The geometric picture. We illustrate the above for the case of n = 3.

A =

1

e1∨e2 e1∨e3 e2∨e3

e1 e2 e3

0

A∗
0,1 = e1∨e2 e1∨e3 e2∨e3

e1 e2 e3

Pairing elements of A∗

0,1 with those of Γ creates increasing “lines” which all
rise from a common source, namely the “void” statement (denoted as ⊥).

e1∨e2 e1∨e3 e2∨e3

e1 e2 e3

⊥

Finally, the formation of lists for all chains in MChain(A∗

0,1) fills the regions
enclosed by the corresponding lines resulting in a triangle.

e1 e2 e3

∼=

e1

e2

e3

Note how the formation of lists of pairs (= conjunctive) corresponds with the
generation of points as joins of coordinates (∼ reversed order).

Entropic geometry is not merely a geometry of lines but one of directed
lines. The triangle or the tetrahedron are not merely convex geometric ob-
jects. For example, the center of the triangle is a special point from which
directed lines emerge, which stand for the decrease of entropy. In a dynamic
perspective where the lines Γ obtain the connotation of flow, the bounds ⊥
and > obtain the connotation of initiation and termination. The fact that

14
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the 4-tuple (A, Γ,⊥,>) generates an entropic geometry by the above presented
systematic formal procedure can then be interpreted as

Entropic Geometry = Logic + Flow + Initiation + Termination .
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