
Electronic Notes in Theoretical Computer Science 83 (2004)
URL: http://www.elsevier.nl/locate/entcs/volume83.html 18 pages

Cumulative Computing

Yifeng Chen 1

Department of Mathematics and Computer Science

University of Leicester

Leicester LE1 7RH, UK

Abstract

In this paper we use the concept of resource cumulation to model various forms
of computation. The space of cumulations (called a cumulator) is simply repre-
sented as a five tuple consisting of a well-founded partial order, a monoid and a
volume function. The volume function is introduced to simplify reasoning about
limit points and other topological properties. A specification command is a set of
cumulations. Typical phenomena of concurrency such as reactiveness, safety and
liveness, fairness, real time and branching time naturally arise from the model. In
order to support a programming theory, we introduce a specification language that
incorporates sequentiality, nondeterminism, simple parallelism, negation and gen-
eral recursions. A new fixpoint technique is used to model general recursions. The
language is applied to the case study on CSP, which becomes a special model of
cumulative computing with a combination of four resource cumulators of alphabet,
termination, trace and refusal. All laws of cumulative computing are also valid for
CSP and the generalization from CSP to Timed CSP can be achieved by simply
combining the four cumulators with real time. Loops whose bodies may take zero
time can then be modeled more satisfactorily.

1 Introduction

Many aspects of computing can be modeled as cumulation of resources. For
example, a bubble-sorting algorithm takes O(n2) steps to terminate where
cost is a resource consumed by the algorithm. In real-time computing, time
is a kind of resource: a process ‘consumes’ non-negative amount of time. A
computation may also produce resources. For example, a reactive process
generates an increasingly longer sequence of intermediate states called trace.

We can think of resources more generally. A sequential program that suc-
cessfully terminates in 10000 steps is as good as another program with the
same result that terminates in 10 steps. However, a nonterminating program

1 Email: yc10@mcs.le.ac.uk

c©2004 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume83.html

Chen

is always different from any terminating program. We can treat termina-
tion as a ‘resource’: a nonterminating program consumes infinite resource of
‘termination’, while a terminating program consumes zero such resource.

Resource cumulation can be measured. For example, length is a good
measure for the trace of a reactive process. A cumulation is said to be infinite
if its measure is infinite. Infinite cumulation is a conceptual abstraction (or
approximation) for resource exhaustion. The set of all possible cumulations
of a resource forms a cumulator.

A specification is a statement on the observables of computation (or alter-
natively a set of cumulations). An observable is cumulative if it is related to
some resource. Not all observable aspects of computation are cumulative. For
example, the temperature of a physical system is not a resource but a ‘state’
that can change up and down over time. Whether or not an observable is
cumulative depends on not only its nature but also the level of abstraction.
For example, the number of instructions executed by a CPU indicates the
cost of a program and thus corresponds to a cumulator. However if we intend
to model the process of debugging, the execution can then be reversed, and
the number of instructions only denotes the point of execution. That does
not mean a debugging process consumes no resources — any back tracking at
least takes time, which is a typical cumulative resource.

In this paper, we will use the concept of resource cumulation to model var-
ious forms of computation. A simple specification language called cumulative
computing is introduced. Primitive commands become constant specifications,
while program compositions become functions on specifications.

The notion of ‘resources’ is not new in computer science. For example,
resource at a place in a Petri net represents a local state [14]. In operating
systems, the availability of resources can be represented using semaphores [6].
Other aspects of resources such as static resource ownership have also been
studied in logic [8,13]. In this paper, we focus on the cumulation (or dynamics)
of resources. In this sense, our approach is closer to the studies of the dynamic
behaviours of real-time and reactive processes [4,5,9,11,14]. Indeed they are
the typical computational models we intend to study. Our formalism resembles
domain theory in many aspects, although the use of volume function is new. It
is introduced to simplify the reasoning about limit points and other topological
properties.

Communicating Sequential Processes (or CSP) [9] is a language that incor-
porates reactiveness, sequentiality, deadlocks, livelocks, parallelism and gen-
eral recursions. Failures-divergences model is a popular semantic model of
CSP [16]. Hoare and He [10] presented the model in predicative semantics
using a number of special variables to denote the observation on trace, termi-
nation, waiting and refusal set of events. These variables are in fact related to
resources and will be typed as cumulators in this paper. Timed CSP [15,12] is
a generalization of untimed CSP. Using cumulative computing, we can obtain
Timed CSP by simply combining the cumulators of untimed CSP with real

2

Chen

time. For example, the cumulator of termination is replaced by the cumulator
of real time.

In Section 2, the notion of cumulator is formalized, and several cumulator
constructors are introduced. In Section 3, specification commands and their
algebraic laws are studied. The techniques will be applied to case studies on
CSP and Timed CSP in Section 4.

2 Cumulators

A resource cumulator can be formalized as a five tuple.

Definition 1 A five-tuple (X, 6 ; 0, a ; | · |) is a cumulator, if

(i) the well-founded partial order (X, 6) is closed under non-empty glb;
(ii) the chop operation a : X × X →֒ X is monotonic and associative, and

for any x, y ∈ X if x 6 y then there exists z ∈X such that xaz = y;
(iii) the monoid (X, 0, a) satisfies 0ax = xa0 = x and 0 6 x for any x;
(iv) the volume function | · | : X → [0,∞] is monotonic and strict, i.e. |0| = 0.

Note that the chop operation may be a partial function in which case its
correspondence with the partial order must still hold.

Partial order and monoid have been well studied in mathematics and
widely applied in computer science. The unusual part of our definition is
the volume function. A volume function measures the amount of resource
cumulation. With such additional information we can then reason about the
dynamics of resource cumulation. For example, a resource is exhausted when
its volume reaches infinity ∞. Another example is the comparison of the
speeds of two different cumulators: to synchronize a reactive process with a
running clock, we simply require that the volume (or length) of the process
equals the time shown on the clock.

Example 2.1

(i) The cumulator RTime =̂ ([0,∞], 6 ; 0, + ; id) represents relative
cumulation of real time, while AbsTime =̂ ([0,∞], 6 ; 0, max ; id)
represents absolute cumulation of real time.

(ii) The cumulator Clock =̂ (N∞, 6 ; 0, + ; id) is an integer clock.

(iii) The cumulator Trace(T) =̂ (T ∗∞, 6 ; 〈 〉, ∧ ; | · |) represents the trace
of a reactive process where T ∗∞ is the set of all sequences (including the
ω-infinite ones) of events from T . The order s 6 t holds iff s is a prefix
of t. s ∧ t denotes the concatenation of the two sequences. If s is an
infinite sequence, then for any t, s ∧ t = s. |s| denotes the length of s,
and si denotes the i-th element of the sequence s where 0 6 i < |s|. The
restriction s ↾ A of a trace s by a set A is a trace including only the
elements from A. The merge s ppp t is a set of traces that are interleavings
of the two traces s and t.

3

Chen

(iv) The cumulator String(A) =̂ (A∗, 4 ; “ ”, max ; | · |) represents strings,
each of which is a finite sequence of characters from the alphabet A. s 4 t
holds iff s is less than t in lexical order. max(s, t) identifies the greater
string in lexical order. |s| denotes the length of a string s. The length
of the empty string “ ” is 0. For example we have “Yifeng”<“Jeff” and
“Chen”4“Sanders”.

(v) The cumulator Optimization =̂ ([0,∞], > ; ∞, min ; 1/x) represents
an optimization process. We assume that 1/0 = ∞ and 1/∞ = 0. We
use the variable x to denote the argument of a function. Thus 1/x is the
same as λx·1/x.

(vi) The cumulator Termin =̂ ({true, false}, ⇐ ; true, ∧ ; | · |) repre-
sents termination/nontermination. We let true denote termination or ‘no
resource consumption’ and let false denote nontermination or ‘resource
exhaustion’. Thus |true|=0 and |false|=∞.

(vii) The cumulator Set(T) =̂ (P(T), ⊆ ; ∅, ∪ ; card) represents the power
set of a set T . We assume that the cardinality card(S) of a finite set S is
the number of elements in it. If S is any infinite set, then card(S)=∞.
The cumulator Set ′(T) =̂ (P(T), ⊇ ; T, ∩ ; | · |) also represents the
power set of a set T , although the subsets are ordered by set containment,
the concatenation is set intersection, and the volume is the number of
elements not in the set |S| =̂ card(T \ S).

A cumulator is normal if no infinite cumulation can be further extended,
i.e. |x|=∞ and x 4 y implies x = y. All above cumulators are normal. Com-
posite cumulators can be constructed from simple ones. Let C =̂ (X, 6 ; 0, a ;
| · |) and C ′ =̂ (X ′, 6′ ; 0′, a′

; | · |′) be two cumulators.

Definition 2 (Cartesian product) The Cartesian product of C and C ′

is defined by C × C ′ =̂ (X × X ′, 6′′ ; (0,0′), a′′
; | · |′′) where

(x, x′) 6′′ (y, y′) =̂ x 6 y ∧ x′ 6′ y′

(x, x′)a′′
(y, y′) =̂ (xay, x′ a′

y′)

|(x, x′)|′′ =̂ max (|x|, |x′|) .

Example 2.2 The Cartesian-product cumulator (Clock ×Clock) is a pair
of independent clocks that run freely at their own speeds.

Definition 3 (Restriction) C ↾ Y =̂ (X ∩ Y, 6 ∩ (Y ×Y) ; 0, a′′
; | · |)

is a restricted cumulator if it is a cumulator. Here we assume that xa′′
y =̂ xay

if x, y ∈Y and xay ∈Y .

Example 2.3 The restricted cumulator (Clock ×Clock) ↾ 6 represents a
pair of clocks between which the first one never runs faster than the second.

A finitely-restricted cumulator is a cumulator restricted by the set of finite
cumulations.

4

Chen

Definition 4 (Finite restriction) The finite restriction of the cumulator
C is defined by Fin(C) =̂ C ↾ { x∈X | |x|<∞}.

Example 2.4 (i) An integer counter is a finitely-restricted clock
Counter =̂ Fin(Clock).

(ii) A semaphore is a protected non-negative integer variable accessible to
only the operations ‘wait’ and ‘signal’ besides initialization [6]. The
number of ‘wait’ operations executed must be bounded by the initial
value plus the number of ‘signal’ operations executed. A semaphore
corresponds to a restricted cumulator (Counter ×Counter) ↾ R where
x R y =̂ (x 6 I + y). The first counter and the second counter count the
numbers of executed ‘wait’ and ‘signal’ operations respectively, while I
denotes the initial value of the semaphore.

There are many kinds of fairness in the literature [7]. All of them require
‘fair’ distribution of resources among competing consumers such that no re-
source can be kept cumulating at the expense of another resource’s exhaustion.

Definition 5 (Fair product) The fair product of C and C ′ is defined by
C ⊗ C ′ =̂ (C × C ′) ↾ ≈ where x ≈ y =̂ (|x|=∞) ⇔ (|y|′=∞).

Example 2.5 The fair product (Clock ⊗ Clock) is a pair of clocks running
fairly. If one of them stops, the other must stop in finite steps.

Definition 6 (Synchronous product) The synchronous product of C and
C ′ is defined by C • C ′ =̂ (C × C ′) ↾ ≈ where x ≈ y =̂ |x|= |y|′.

Example 2.6 The synchronous product (Clock • Clock) is a pair of syn-
chronized clocks running at the same speed.

The cumulation of one resource may have priority over the cumulation of
another resource.

Definition 7 (Priority product) The priority-product of C and C ′ is de-
fined by C ⋉ C ′ =̂ (X ×X ′, 6′′ ; (0,0′), a′′

; | · |′′) where

|(x, x′)|′′ =̂ max (|x|, |x′|)

(x, x′)a′′
(y, y′) =̂ (x, x′ a′

y′) � (x = xay) � (xay, y′)

(x, x′) 6′′ (y, y′) =̂ x< y ∨ (x = y ∧ x′ 6′ y′) ,

and A � b � B denotes “if b then A else B”.

Example 2.7 The cumulator (Surname ⋉ Firstname) represents a name
list in which names are primarily ordered by surnames and then by first
names. Here we assume Surname = Firstname =̂ String . For example we
have (“Chen”,“Yifeng”)4(“Sanders”,“Jeff”) where 4 is the order of the com-
bined cumulator.

5

Chen

In most applications, resources are bounded. For example, a system may
fail if it does not terminate before timeout.

Definition 8 (Overflow) The overflow cumulator of C over a set Y of
limit points is defined by CրY =̂ (X, 6 ; 0, a ; | · |′′) where 0 6∈ Y and
|x|′′ =̂ ∞ � (∃y ∈Y ·y 6 x) � |x|.

Example 2.8 (i) The overflow cumulator RTimeր{t} represents a real-
time process with a timeout limit t.

(ii) The overflow cumulator Optimizationր{ǫ} represents an optimization
process with an accuracy criterion ǫ.

The cumulation of one resource may depend on the availability of another
resource.

Definition 9 (Control product) The control-product of C and C ′ is de-
fined by C ⊲ C ′ =̂ (X ×X ′, 6′′ ; (0,0′), a′′

; | · |′′) where

|(x, x′)|′′ =̂ max (|x|, |x′|)

(x, x′)a′′
(y, y′) =̂ (xay, x′ a′

y′) � |x|<∞ � (x, x′)

(x, x′) 6′′ (y, y′) =̂ (x 6 y ∧ x′ 6 y′) � |x|<∞ � (x=y ∧ x′=y′) .

Example 2.9 The control product (RTimeր{t}) ⊲Optimization represents
a real-time optimization process, which will be terminated if the timeout limit
t is reached.

3 Specification of cumulative computing

Let C = (X, 6 ; 0, a ; | · |) be a normal cumulator. A specification (also
called ‘command’) of cumulative computing is a subset P ⊆ X of cumulations.
The following table lists the basic imperative commands.

6

Chen

⊥ =̂ X chaos (all cumulations)

⊤ =̂ ∅ magic (no cumulations)

∢ =̂ {x∈X | |x|<∞} termination (all finite cumulations)

∢ =̂ {x∈X | |x|=∞} nontermination (all infinite cumulations)

II =̂ {0 } skip (zero cumulation)

P # Q =̂
{

xay | x∈P, y ∈Q
}

sequential composition

P ∪ Q nondeterministic choice (set union)

P ∩ Q parallel composition (set intersection)

∼P =̂ X \ P negation (set complement)

P |Q =̂ (P ∩ ∢) ∪ (Q ∩ ∢) partition

φf =̂ µX ·f(νf |X) recursion (partitioned fixpoint)

Commands of cumulative computing form a Boolean complete lattice un-
der set containment (i.e. the refinement order). The top, bottom, lub, glb and
complement are ⊤, ⊥, ∩, ∪ and ∼ respectively. We allow universal lub

⋂

and universal
⋃

, which are closed under the complete lattice. Termination
∢and nontermination ∢ are complements of each other, i.e. ∢∪ ∢ = ⊥ and
∢∩ ∢ = ⊤. Skip II is the singleton set of the zero cumulation.

Sequential composition of two commands is their pointwise concatenation.
Concatenation operator is associative, so is sequential composition. Skip II
is the unit of sequential composition. The (sequential) interactions between
extreme commands are shown in the following table in which P is on the left
and Q is at the top.

P # Q ⊤ ⊥ ∢ ∢

⊤ ⊤ ⊤ ⊤ ⊤

⊥ ⊤ ⊥ ⊥ ∢

∢ ⊤ ⊥ ∢ ∢

∢ ⊤ ∢ ∢ ∢

Nondeterministic choice corresponds to set union. The simplest form

7

Chen

of parallelism corresponds to set intersection and exhibits the common be-
haviours agreed by two commands. We will discuss more advanced forms
of parallel compositions in Section 4. Nondeterministic choice and parallel
composition are idempotent, commutative and distributive with each other.
Sequential composition distributes over both nondeterministic choice and par-
allel composition. Negation is useful in specifying assumptions. It satisfies De
Morgan’s laws and other laws of complement of Boolean complete lattice.

The important composition, partition P |Q combines the terminating cu-
mulations of P with the nonterminating cumulations of Q. Partitions satisfy
some simple but powerful laws and will be used to define recursions.

Law 1 (1) (P |R) |Q = P |Q (2) P | (R |Q) = P |Q

(3) P = (P |P) = (P | ⊤) ∪ (⊤ |P)

Law 2 (1) P # Q = (P |⊤ # Q|⊤) | ((⊤|P # Q) ∪ (P # ⊤|Q))

(2) P ∪ Q = (P |⊤ ∪ Q|⊤) | (⊤|P ∪ ⊤|Q)

(3) P ∩ Q = (P |⊤ ∩ Q|⊤) | (⊤|P ∩ ⊤|Q)

(4) ∼P = ∼(P |⊤) | ∼(⊤|P)

A general recursion is normally written as an equation: Y =f(Y) in which
Y is called the recursive argument, and f(Y) called the recursion. In this
paper, the fixpoint of a recursion f(Y) is denoted by φY ·f(Y) or φf for short.
For example, if the cumulator C is Trace(N), the recursion φY ·({〈1〉} # Y)
specifies a process that generates an infinite sequence of 1’s.

The modeling of general recursions is subtle. Since (unbounded) nondeter-
minism is allowed, a recursion does not guarantee a unique fixpoint. Among all
fixpoints, we must determine the fixpoint that is consistent with programmer’s
intuition and at the same time convenient to our semantic studies. Tarski’s
fixpoint theorem [17] is a standard technique to determine the least fixpoint
of a monotonic function over a complete lattice (or a well-founded partial
order if the function is known to have some fixpoint). Commands of cumu-
lative computing can be ordered by various well-founded partial orders. The
least fixpoint with regard to the refinement order ⊇ is the weakest (or most
chaotic) fixpoint denoted by µf =̂

⋃
{Y ∈P(X) | Y ⊇ f(Y) }. The least

fixpoint with regard to reverse refinement order ⊇ is the strongest (or most
miraculous) fixpoint νf =̂

⋂
{Y ∈P(X) | Y ⊆ f(Y) }. We may use other

orders to determine fixpoints. Various orders have been proposed in the past.
All of them are applicable in some circumstances, but none of them is univer-
sally applicable.

Let ⊑> be the well-founded partial order that we use. Note that ⊑>

should not just be a preorder, if we want to uniquely pinpoint fixpoints using
Tarski’s theorem. Any calculation of Tarski’s least fixpoint starts from the
bottom ⊥> of the order. The corresponding function f(Y)=Y of the empty

8

Chen

loop φY ·Y immediately reaches its least fixpoint ⊥>. Since the empty loop
never terminates, its semantics must not contain any terminating cumulation;
otherwise, for example in trace semantics, if its fixpoint were chaos ⊥, we
would have an undesirable inequality (φY ·Y) # {〈1〉} 6= (φY ·Y) in which
the right-hand side allows the empty trace 〈 〉 but the left-hand side does
not. The inequality suggests that the behaviour of a nonterminating process
could be altered if it is followed by another process that generates an event 1.
Such counterintuitive interpretation is the result of the incorrect semantic
assumption on the empty loop. Thus we conclude that ⊥> ⊆ ∢. On the other
hand, the empty loop is an executable program that at least generates some
outputs. Thus its semantics must not be empty, i.e. ⊤ ⊂ ⊥>. In summary,
the required order ⊑> must satisfy:

(A) ⊑> is a well-founded partial order,
(B) ⊤ ⊂ ⊥> ⊆ ∢ where ⊥> is the bottom of the order,
(C) all program compositions are ⊑>-monotonic.

Unfortunately it has been proved that such an order ⊑> does not exist [3]. We
use a new technique called partitioned fixpoint of which the following theorem
is the basic property.

Theorem 1 If a ⊇-monotonic function f is distributive f(Y |⊤) = f(Y |⊤)|⊤
for any command Y , then φf is a fixpoint such that f(φf) = φf .

For example the strongest fixpoint νY ·(P # Y) of the recursion φY ·(P # Y)
is ⊤ and hence its partitioned fixpoint can be calculated as follows:

φY ·(P # Y) = µY ·(P # (⊤ |Y)) .

The empty loop can be determined as a special case: φY ·Y =
⋂

κ(II
κ

#

∢) = ∢ where κ is any ordinal.

Many useful specification commands can be derived from the basic ones.

P 0 =̂ II zero repetition

P n =̂ P # P n−1 repetition n times (n> 1)

P∞ =̂
⋂

n<∞
(P n # ∢) ω-infinite repetition

P λ =̂
⋃

n∈λ P n general repetition (λ ⊆ N∞)

P ⇉ Q =̂ ∼P ∪ Q rely-guarantee specification

3P =̂ ∢# P # ⊥ temporal operator of possibility

2 P =̂ ∼3∼P temporal operator of necessaity

Repetition P n repeats the command P for n times sequentially. Zero

9

Chen

repetition P 0 is skip. ω-Infinite repetition P∞ represents a nonterminating
loop. Note that it equals φY ·(P # Y) only when it is indeed a fixpoint
that satisfies P # P∞ = P∞. General repetition P λ is the nondeterminis-
tic choice of n-time repetitions for all n ∈ λ where λ is a subset of N∞.
All general repetitions are monotonic with regard to the refinement order.
We use two conventions P ∗ = P N∞ and P⊛ = P N to denote special rep-
etitions and assume that P ∅ = ⊤. The pointwise sum of two sets is de-
fined λ + µ =̂ {n + m | n∈λ, m∈µ}, and their pointwise product is defined
λ×µ =̂ {n×m | n∈λ, m∈µ}. Sequential composition, nondeterministic
choice and parallel composition of general repetition operators can then be
merged.

Law 3 (1) P λ # P µ = P (λ + µ)

(3) P λ ∪ P µ = P (λ∪µ)

(2) (P λ)µ = P (λ×µ) (0 6∈λ or ∞ 6∈µ)

(4) P λ ∩ P µ = P (λ∩µ)

Using partitions, we can reason about repetition’s terminating and non-
terminating behaviors in separate. The following laws are essential properties
of repetitions.

Law 4 (1) P ∗ = (P |⊤)∗ # (II|P) (2) P⊛ = (P |⊤)⊛ # (II|P)

(3) P∞ = (P |⊤)∞ ∪ (P |⊤)⊛ # (⊤|P)

Rely-guarantee specification is a general form of logical implication. A
computation satisfies a rely-guarantee condition P ⇉ Q iff whenever P is
satisfied Q is guaranteed. This corresponds to the rely-guarantee specifications
in TLA [11] and UNITY [1] and satisfies the laws:

Law 5 (1) P ∩ (P ⇉ Q) = P ∩ Q (2) P ⇉ Q = ⊥ iff P ⊆ Q.

Temporal operator 3P specifies the liveness property that the computa-
tion ‘eventually’ behaves like the command P , while temporal operator 2 P
specifies the safety property that the computation ‘always’ behaves like the
command P . Standard logical axioms of reflexivity, idempotence and seriality
now become algebraic laws respectively.

Law 6 (1) 2 P ⇉ P = ⊥

(3) 2 P ⇉ 3P = ⊥

(2) 2 P ⇉ 2 2 P = ⊥

The above commands can be used to support rely-guarantee or temporal-
logic style of reasoning, although the emphasis of this paper is imperative
parallel programming.

4 Case study: from CSP to Timed CSP

In this section, we will try to model CSP processes as special commands of
cumulative computing. The basic CSP language that we consider has the

10

Chen

following syntax:

P = STOP | SKIP | PA | P # P | a→ SKIP | P \ E |

P [] P | P ⊓ P | P |||P | P ‖ P | φf .

The nonterminating process STOP represents a deadlock. It generates an
empty trace of events and refuses all events from its alphabet. The process
SKIP always terminates successfully but also generates an empty trace of
events. The command PA denotes the alphabetical restriction over a process
P . It requires that the process P generate only traces of events in the alphabet
A. If P does not satisfy this restriction, the command PA becomes magic that
indicates the occurrence of inconsistency. P # Q is sequential composition of
two processes. The process a→ SKIP either performs a single event a before
termination or waits for the event a to occur. A process a→P is equivalent
to the sequential composition of a→ SKIP and P . Event hiding P \E reduces
the alphabet of P . Only events of P not in E are observable. P [] Q denotes
external choice between two processes. Nondeterministic choice P⊓Q becomes
a disjunction. Fair-interleaving composition P |||Q terminates if both P and
Q terminate. The trace of the composition can be any interleaving of the
traces of the two processes, which must agree on the set of refused events. A
parallel composition P ‖ Q terminates if both processes terminate. The trace
of P ‖ Q in P ’s (or Q’s) alphabet is the same as the trace of P (or Q). The
composition refuses any event that is refused by either P or Q.

The failures-divergences semantics is a popular semantics of CSP [16]. To
model CSP using commands of cumulative computing, we must first identify
the resources involved and then represent them as appropriate cumulators.

Let Σ be the set of all events that we consider. The (finite) set of all observ-
able events (called the alphabet) of a process can be formalized as a cumulator
Alpha =̂ Fin(Set(Σ)) whose chop operator is set union. This allows us to
expand the alphabet of a process. For example, the alphabet of the sequential
composition of two processes is the union of the their alphabets. Since each
process ‘carries’ the information about its alphabet, parallel composition no
longer needs two alphabets as its parameters. This helps clarify the difference
between a command (e.g. SKIP) and its alphabetical restriction (e.g. SKIPA):
the alphabet of the former is nondeterministically arbitrary, while that of the
latter is deterministic on a set.

Failures-divergences model allows only finite traces, which can be repre-
sented as a restricted cumulator Trace =̂ Fin(Trace(Σ)). The trace of a CSP
process is downwards-closed. Any trace’s prefix is also a possible trace of the
process. This reflects the assumption that any event either occurs or waits
indefinitely.

The set of events refused by a waiting process (called a refusal) is a cumu-
lator Refusal=̂ Set ′(Σ). The refusal of a process is downwards closed in the
sense that any refusal’s subset is also a refusal. The cumulation of trace has

11

Chen

priority over the cumulation of refusal. This can be represented as the priority
product of the two cumulators Trace ⋉ Refusal .

Termination becomes a resource whose cumulator is Termin. A nontermi-
nating process always consumes infinite resource of Termin. If a process does
not terminates (for example due to deadlock), its trace and refusal will be kept
unchanged. This is achieved by a control product Termin ⊲ (Trace ⋉ Refusal).

The sequential composition of two processes may refuse the events that
are refused by either process: if the first process does not terminate (for ex-
ample due to deadlock), then the cumulation of trace and refusal is blocked
(according to the definition of control product), and the composition refuses
only the events refused by the first process; if the first process terminates and
the second process has performed some new event, then the priority product
forces the composition to refuse only the events refused by the second pro-
cess; otherwise, if the first process terminates but the second one has started
but waits indefinitely without performing its first events, their composition
refuses the events refused by the second process. Note that, in CSP, since a
terminating process is not ready to accept any new event until the start of a
following process, its refusal is arbitrary. We also note that the refusal of the
second process is downwards closed. That means, in the last case, although
the priority product requires the composition to refuse the events commonly
refused by both processes, these events are actually all the events that are
refused by the second process.

The cumulator of CSP (denoted by the variable x) is a combination of the
four cumulators of alphabet, termination, trace and refusal, which are denoted
by the variables alf =̂ (x)1, ok =̂ (x)2, tr =̂ (x)3 and ref =̂ (x)4 respec-
tively. A process can only perform events allowed by its alphabet and thus
satisfy (tr ↾ alf = tr). The refusal set is a subset of the alphabet: (ref ⊆ alf).
The composite cumulator of CSP is finally obtained:

CSP =̂ (Alpha × (Termin ⊲ (Trace ⋉ Refusal))) ↾ R

where R =̂ (tr ↾ alf = tr) ∧ (ref ⊆ alf). A CSP process is a set of cumula-
tions in CSP . For convenience, we may represent a set of cumulations as a
predicate P (x) on a variable x (whose type is a four tuple), or alternatively,
a predicate P (alf , ok , tr, ref) on the four variables alf , ok, tr and ref . The
definitions of sequential composition and recursion of CSP are the same as
those of cumulative computing. Other commands are defined in a following

12

Chen

table (cf. [10]).

SKIP =̂ ok ∧ tr=〈 〉 ∧ ref ⊆ alf

STOP =̂ ¬ok ∧ tr=〈 〉 ∧ ref ⊆ alf

a→ SKIP =̂ (tr=〈a〉 ∧ ref ⊆ alf) � ok � (tr=〈 〉 ∧ ref ⊆ alf \ {a})

a→P =̂ (a→ SKIP) # P

PA =̂ P ∧ alf =A

P \ E =̂ ∃x0 ·P [x0/x] ∧ (alf = alf 0 \ E) ∧ (ok = ok 0)∧

(tr = tr0 ↾ alf) ∧ (ref = ref 0 ∩ alf)

P [] Q =̂ (P ∧ Q) � (¬ok ∧ tr=〈 〉) � (P ∨ Q)

P ⊓ Q =̂ P ∨ Q

P |||Q =̂ ∃x0x1 ·(P [x0/x] ∧ Q[x1/x]∧

alf = alf 0 = alf 1 ∧ ok = ok 0 ∧ ok 1 ∧

tr∈ (tr0 ppp tr1) ∧ ref = ref 0 ∩ ref 1)

P ‖ Q =̂ ∃x0x1 ·(P [x0/x] ∧ Q[x1/x]∧

alf = alf 0 ∪ alf 1 ∧ ok = ok 0 ∧ ok 1 ∧

tr ↾ alf 0 = tr0 ∧ tr ↾ alf 1 = tr1 ∧

ref = ref 0 ∪ ref 1)

The semantic model is pleasingly simple and has some interesting differ-
ences from the failures-divergences semantics. For example, the alphabet is
no longer a separate parameter but a variable whose type is a cumulator. Di-
vergences are represented as nontermination ∢ but not chaos ⊥. Infeasible
specifications (i.e. miracles) such as ⊤ are allowed. Formal program deriva-
tion based on the refinement order is hence supported. The most significant
difference lies in the modeling of recursion. Partitioned fixpoint instead of
‘weakest fixpoint’ is used.

A number of generalizations of CSP are now possible. For example, the
original CSP allows only finite sequences and finite nondeterminism. These
restrictions can be removed if we use the cumulator Trace(Σ) directly. Note
that the cumulator allowing infinite traces must satisfy an additional restric-
tion ok ⇒ (|tr|<∞) for consistency between the cumulators of trace and
termination. Using partitions, we can easily define and reason about infinite

13

Chen

traces in the general model of cumulative computing.

Timed CSP is another non-trivial generalization of untimed CSP. Not
only termination but also absolute time of termination should be represented.
The cumulator Termin is then replaced by the cumulator of absolute time
AbsTime.

In untimed CSP, a failure is a pair of trace and refusal. A process refuses to
perform events in the refusal after performing a trace of events. In the timed
failures model, a timed failure is a pair of timed trace and timed refusal. A
process may perform a trace of events while refusing the events of the refusal
set. To model Timed CSP, we need to replace the cumulators of trace and
refusal with the cumulators of timed trace and timed refusal respectively. Let
the time domain be [0,∞). A timed trace is a finite trace of time-stamped
events with non-decreasing time points:

TimedTrace =̂ Fin(Trace([0,∞)×Σ) ↾ (∀i < |x|·(xi)1 6 (xi+1)1)) .

A refusal token is the Cartesian product of a finite-time half-open interval
and a set of events. All events from a token will be refused continuously
throughout the interval of the token. A timed refusal is a finite set of refusal
tokens:

TimedRefusal =̂ Fin(Set({ [t1, t2) × A | 0 6 t1 < t2 <∞, A⊆Σ })) .

The cumulator of Timed CSP is a combination of the cumulators of alpha-
bet, termination, timed trace and timed refusal:

TimedCSP =̂ (Alpha × (AbsTime ⊲ (TimedTrace ⋉ TimedRefusal))) ↾ R

where R =̂ (ttr ↾ ([0, t)×alf) = ttr ∧ tref ⊆ ([0,∞)×alf)), alf =̂ (x)1 is
still the alphabet, t =̂ (x)2 denotes the absolute time of termination, ttr =̂ (x)3

is the timed trace, and tref =̂
⋃

(x)4 is the timed refusal. Commands of
Timed CSP become cumulative specifications. For example, the command
WAIT t0 is a delayed form of SKIP . It does nothing but is ready to ter-
minate successfully after the specified time t0. Sequential composition and
recursion are the same as those of cumulative computing. Alphabetical re-
striction PA is the same as that of untimed CSP. For convenience, we use a
convention talf =̂ [0,∞)×alf .

14

Chen

SKIP =̂ t <∞ ∧ ttr=〈 〉 ∧ tref ⊆ talf

STOP =̂ t =∞ ∧ ttr=〈 〉 ∧ tref ⊆ talf

WAIT t0 =̂ t0 6 t <∞ ∧ ttr = 〈 〉 ∧ tref ⊆ talf

a→ SKIP =̂ (∃t1 < t· ttr=〈(t1, a)〉 ∧ tref ⊆ talf \ ([0, t1)×{a}))

� (t <∞) � (ttr=〈 〉 ∧ tref ⊆ talf \ ([0,∞)×{a}))

a→P =̂ (a→ SKIP) # P

P \ E =̂ ∃x0 ·(P [x0/x] ∧ (alf = alf 0 \ E) ∧

(t = t0) ∧ ttr = ttr0 ↾ talf ∧ tref = tref 0 ∩ talf)

P [] Q =̂ (P ∧ Q) � (t=∞ ∧ ttr=〈 〉) � (P ∨ Q)

P ⊓ Q =̂ P ∨ Q

P |||Q =̂ ∃x0x1 ·(P [x0/x] ∧ Q[x1/x] ∧

alf = alf 0 = alf 1 ∧ t = max(t0, t1) ∧

ttr ∈ (ttr0 ppp ttr1) ∧ tref = tref 0 ∩ tref 1)

P ‖ Q =̂ ∃x0x1 ·(P [x0/x] ∧ Q[x1/x] ∧

alf = alf 0 ∪ alf 1 ∧ t = max(t0, t1) ∧

ttr ↾ ([0,∞)×alf 0) = ttr0 ∧

ttr ↾ ([0,∞)×alf 1) = ttr1 ∧

tref = tref 0 ∪ tref 1)

The empty loop whose body may take zero time caused a subtle prob-
lem in Timed CSP. In the original presentation of Timed-CSP semantics, the
problem was circumvented by requiring any loop’s body to have at least a
constant delay δ. Later models do not assume the delay but cannot guar-
antee a valid semantics for every recursion and requires a “simple” syntactic
check to avoid empty loops. This is certainly not satisfactory from a semantic
point of view. Fortunately, we have solved the problem using the technique
of partitioned fixpoint. The solution coincides with the traditional failures-
divergences model when a loop is guarded or the body of a loop has at least a
constant delay. Any recursion in Timed CSP now has a valid semantics as a

15

Chen

cumulation command. Law 4 can be used to reason about infinite processes.
For example, the recursion φX ·(SKIP # X) is the same as the command of
nontermination ∢.

5 Conclusion

A cumulation is simply represented as a five tuple. The use of the volume
function is aimed to simplify specifications. It transforms a potentially com-
plex domain to the range of real numbers. In most applications, the range of
real numbers is rich enough for the reasoning of limit points, continuity, den-
sity and other topological properties. We particularly focus on the common
features of computational models and, more importantly, study how typical
phenomena of concurrency such as reactiveness, safety and liveness, fairness,
real time and branching time naturally arise from a simple semantic model
that may contribute to a programming theory.

To apply the theory to a specific computational model, we need to first
identify the resources involved. Each resource is then modeled as a cumulator.
Finding the right cumulator is normally not difficult. Various examples have
been provided in this paper. However, more experience is required to combine
cumulators with appropriate constructors. Several subtly different construc-
tors have been introduced. Their differences reflect the essential distinctions
of computational models. A specification is simply a predicate on a cumulator
(or a set of cumulations). If the cumulator is discrete and finite, the formal-
ism is complete in the sense that the equality between any two specifications
without recursions can be established using just the laws of predicate calculus.
If recursions are present, manual calculation is required.

Denotational semantics has been blamed for not scaling up to real program-
ming languages. For example, a domain-theoretic semantics of a language like
OCCAM or BSP [18] can be over-complicated and provide little insight into
reasoning. The model of cumulative computing is proposed to provide some
higher-level concepts and more abstract formalism to fill the gap between
low-level domain construction and real programming models.

The case study on CSP and Timed CSP posed a substantial challenge to
us. The failures-divergences model includes an alphabet of events, information
about termination, a trace of events and a refusal set of events. Their links
with resource cumulation are not obvious. In particular, the priority-product
relation between trace and refusal and is subtle, so is control product that
protects trace and refusal after a deadlock. Once the composite cumulator of
CSP is determined, CSP becomes a special model of cumulative computing
and all laws can be inherited. More importantly, the generalization from CSP
to Timed CSP simply becomes the replacement of individual cumulators. This
minimizes our effort of linking and combining computational models.

16

Chen

Acknowledgement

This paper arose from a DPhil thesis. The author is grateful to his supervisor
J.W. Sanders for various discussions, comments and suggestions. The author
also gratefully acknowledge the wide-ranging comments of anonymous referees.

References

[1] Chandy, K. M. and J. Misra, “Parallel Program Design: A Foundation,”
Addison-Wesley, 1988.

[2] Chen, Y., “Formal Methods for Global Synchrony,” Ph.D. thesis, Oxford
University Computing Laboratory (2001).

[3] Chen, Y., A fixpoint theory for non-monotonic parallelism, in: 11th Annual

Conference of the European Association for Computer Science Logic, CSL’02,
LNCS 2471 (2002), pp. 120–134, full version to appear in TCS.

[4] Chen, Y. and J. Sanders, Logic of global synchrony, in: 12th International

Conference on Concurrency Theory, LNCS 2154 (2001), pp. 487–501.

[5] Davies, J. and S. Schneider, A brief history of Timed CSP, Theoretical
Computer Science 138 (1995), pp. 243–271.

[6] Dijkstra, E., Cooperating sequential processes, EWD 23 (1965), university of
Eindhoven, The Netherlands.

[7] Francez, N., “Fairness,” Springer-Verlag, 1986.

[8] Girard, J.-Y., Linear logic, Theoretical Computer Science 50 (1987), pp. 1–102.

[9] Hoare, C. A. R., “Communicating Sequential Processes,” Prentice Hall, 1985.

[10] Hoare, C. A. R. and J. He, “Unifying Theories of Programming,” Prentice Hall,
1998.

[11] Lamport, L., A temporal logic of actions, ACM Transctions on Programming
Languages and Systems 16 (1994), pp. 872–923.

[12] Mislove, M., A. Roscoe and S. Schneider, Fixed points without completeness,
Theoretical Computer Science 138 (1995), pp. 273–314.

[13] O’Hearn, P. W., Resource interpretations, bunched implications and the alpha-

lambda-calculus, in: J.-Y. Girard, editor, 4th Conference on Typed Lambda-

Calculi and Applications, LNCS 1581 (1999), pp. 258–279.

[14] Peterson, J. L., “Petri Net Theory and Modelling of Systems,” Prentice Hall,
1981.

[15] Reed, G. and A. Roscoe, A timed model for communicating sequential processes,
Theoretical Computer Science 58 (1988), pp. 249–261.

17

Chen

[16] Roscoe, A., “The Theory and Practice of Concurrency,” Prentice Hall, 1998.

[17] Tarski, A., A lattice-theoretical fixpoint theorem and its applications, Pacific
Journal of Mathematics 5 (1955), pp. 285–309.

[18] Valiant, L., A bridging model for parallel computation, Communications of the
ACM 33 (1990), pp. 103–111.

18

	Introduction
	Cumulators
	Specification of cumulative computing
	Case study: from CSP to Timed CSP
	Conclusion
	Acknowledgement
	References

